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INTERTEMPORAL ASSET PRICING UNDER KNIGHTIAN
UNCERTAINTY

By LarrY G. EpsTEIN AND TAN WANG!

In conformity with the Savage model of decision-making, modern asset pricing theory
assumes that agents’ beliefs about the likelihoods of future states of the world may be
represented by a probability measure. As a result, no meaningful distinction is allowed
between risk, where probabilities are available to guide choice, and uncertainty, where
information is too imprecise to be summarized adequately by probabilities. In contrast,
Knight and Keynes emphasized the distinction between risk and uncertainty and argued
that uncertainty is more common in economic decision-making. Moreover, the Savage
model is contradicted by evidence, such as the Ellsberg Paradox, that people prefer to act
on known rather than unknown or vague probabilities. This paper provides a formal
model of asset price determination in which Knightian uncertainty plays a role. Specifi-
cally, we extend the Lucas (1978) general equilibrium pure exchange economy by suitably
generalizing the representation of beliefs along the lines suggested by Gilboa and
Schmeidler. Two principal results are the proof of existence of equilibrium and the
characterization of equilibrium prices by an “Euler inequality.” A noteworthy feature of
the model is that uncertainty may lead to equilibria that are indeterminate, that is, there
may exist a continuum of equilibria for given fundamentals. That leaves the determination
of a particular equilibrium price process to “animal spirits” and sizable volatility may
result. Finally, it is argued that empirical investigation of our model is potentially fruitful.

Keyworps: Uncertainty, ambiguity, vagueness, multiple prior, asset pricing, price
indeterminacy, price volatility, recursive utility.

1. INTRODUCTION

MODERN ASSET PRICING THEORY typically adopts strong assumptions about
agents’ beliefs. According to the rational expectations hypothesis, for example,
there exists an objective probability law describing the state process, and it is
assumed that agents know this probability law precisely. More generally, even if
existence of the latter is not assumed, each agent’s beliefs about the likelihoods
of future states of the world are represented by a subjective probability measure
or Bayesian prior, in conformity with the Bayesian model of decision-making
and, more particularly, with the Savage (1954) axioms. As a result, no meaning-
ful distinction is allowed between risk, where probabilities are available to guide
choice, and uncertainty, where information is too imprecise to be summarized
adequately by probabilities. In contrast, Knight (1921) emphasized the distinc-
tion between risk and uncertainty and argued that uncertainty is more common
in economic decision-making.? Particularly in the context of asset prices, Keynes
emphasized the importance of “animal spirits” when, because of Knightian
uncertainty, individuals cannot estimate probabilities reliably and so cannot

1ye are grateful to the Social Sciences and Humanities Research Council of Canada for
financial support and to Chew Soo Hong, Darrell Duffie, Mike Peters, J. C. Rochet, Rishin Roy,
and especially to Angelo Melino and Guy Laroque for valuable discussions and suggestions.

2 gee, however, LeRoy and Singell (1987), for a different interpretation of Knight.
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284 LARRY G. EPSTEIN AND TAN WANG

make a good calculation of expected values. (See Keynes (1936) and (1921,
Chapter 6); see also Koppl (1991) for discussion and additional references.)
This paper provides a formal model of asset price determination in which
Knightian uncertainty plays a role. Specifically, we extend the Lucas (1978)
general equilibrium pure exchange economy by suitably generalizing the repre-
sentation of beliefs. Two principal results are the proof of existence of equilib-
rium and the characterization of equilibrium prices by an “Euler inequality.”
The latter represents the appropriate generalization of the standard Euler
equation to the context of uncertainty. A noteworthy feature of our model is
that uncertainty may lead to equilibria that are indeterminate; that is, there may
exist a continuum of equilibria for given fundamentals. That leaves the determi-
nation of a particular equilibrium price process to “animal spirits” and sizable
volatility may result. Overall our model conforms closely to Keynes’ (1936, p.

154) description of the consequences of uncertainty:

“A conventional valuation which is established as the outcome of the mass
psychology of a large number of ignorant individuals is liable to change
violently as a result of a sudden fluctuation of opinion due to factors which
do not really make much difference to the prospective yield; since there will
be no strong roots of conviction to hold it steady.”

Besides the motivation provided by the intuitively appealing ideas of Knight
and Keynes, our paper is motivated also by evidence that people prefer to act
on known rather than unknown or vague probabilities. For example, they
typically prefer to bet on drawing a red ball from an urn containing 50 red and
black balls each, than from an urn containing 100 red and black balls in
undisclosed proportions. The best known such evidence is the Ellsberg Paradox
(Ellsberg (1961)); the large body of empirical evidence inspired by this paradox,
both experimental and market-based, is surveyed by Camerer and Weber (1992).
Behavior such as that exhibited in the context of the Ellsberg Paradox contra-
dicts the Bayesian paradigm, that is the existence of any prior underlying
choices. Intuitively, the reason is that a probability measure cannot adequately
represent both the relative likelihoods of events and the amount, type, and
reliability of the information underlying those likelihoods. On the other hand, in
a multiperiod setting such as ours, one may wonder whether “vagueness” might
disappear asymptotically as a result of learning by the agent, at least if the
environment is stationary. Learning in the presence of uncertainty has not yet
been studied sufficiently well to provide a definitive theoretical answer to this
question. In any event, it would seem that economic processes are typically too
complicated or unstable to be modeled in detail and understood precisely. Thus
we would not presume uncertainty to be strictly a short-run phenomenon. See
Walley (1991, Chapter 5) for further arguments about the general prevalence of
imprecision and Zarnowitz (1992, pp. 61-63) for cogent arguments in a business
cycle setting. In an asset pricing context, Barsky and DeLong (1992) argue that
there is substantial uncertainty about the structure of the aggregate dividend
process in the U.S. over the last century, even on the part of current analysts
who have the benefit of hindsight. In addition, many processes of interest are
presumably physically indeterminate; Papamarcou and Fine (1991) describe an
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empirical process that generates relative frequencies that can be modeled by a
set of probability measures, but not by any single probability measure.

Ultimately, our objective is to investigate whether the noted shortcoming of
the Bayesian paradigm is at all responsible for any of the empirical failures of
the consumption-based asset pricing model derived from Lucas (1978). While
serious empirical analysis is beyond the scope of this paper, we will address the
empirical content of our model informally. We do so first in Section 3.4 where
we indicate the potential usefulness of our model for resolving the excess
volatility puzzle (Shiller (1981) and Cochrane (1991), for example). Further
discussion of empirical content is provided in Section 4.

There are now available a number of extensions of the Bayesian model that
admit a distinction between risk and uncertainty. One, due to Bewley (1986),
drops Savage’s assumption that preferences are complete and adds a model of
the “status quo.” An alternative direction, due to Gilboa and Schmeidler
(1989), is to weaken Savage’s Sure-Thing Principle. The consequence for the
representation of preferences and beliefs is that Savage’s single prior is replaced
by a set of priors. In this paper, we take this multiple-priors model as our
starting point.> Then, since our framework is intertemporal and since the
Gilboa-Schmeidler (1989) framework is atemporal and deals exclusively with
one-shot choice, we extend their model (nonaxiomatically) to an intertemporal,
infinite-horizon setting. Moreover, this is done in a way that delivers two
attractive properties of the standard expected additive utility model that domi-
nates economics and finance—dynamic consistency and tractability. Since such
an extension is potentially useful for addressing issues other than asset pricing
where uncertainty may be important, we view it as a separate contribution of
the paper.

While the rational expectations hypothesis has considerable a priori appeal
for economists, it has come under scrutiny in recent years because of apparently
contradictory empirical evidence. We have already mentioned the asset pricing
anomalies that indicate rejection of a collection of joint hypotheses that includes
rational expectations. In addition, where it has been tested separately by means
of survey data, the rational expectations hypothesis has generally been rejected
(for example, see Cragg and Malkiel (1982), Zarnowitz (1984), Ito (1990),
Frankel and Froot (1990)). As a result, models with “irrational expectations”
have been developed, involving “fads” (Shiller (1991), Barsky and DeLong
(1992)) or “nojse traders” (DeLong et al. (1990)). A focus on beliefs is shared by
the model proposed in this paper, though, in a sense, we deviate much less from
the standard Lucas-style model. One can interpret our model as differing from
Lucas’ only by replacing the Sure-Thing Principle and its implied Bayesian
prior, by the Gilboa-Schmeidler set of axioms, suitably adapted to the intertem-
poral framework, and the resulting set of priors.

3 A closely related model, due to Schmeidler (1989) and Gilboa (1987), replaces the Bayesian
prior by a nonadditive probability measure or capacity. In an earlier working paper, the capacity-
based model was adopted as a starting point and virtually the identical results were obtained.
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We proceed as follows: Section 2 describes our model of intertemporal utility,
including beliefs. Equilibrium asset pricing is studied in Section 3. We conclude
in Section 4 with some comments on the empirical content of our model.
Technical details are collected in appendices.

2. INTERTEMPORAL UTILITY
2.1. Background

The standard specification of utility over infinite horizon consumption pro-
cesses is given by

(2.1.1) U(c)=E(§B‘u(ct)),
1

or in recursive form
(2.1.2) U(c)=u(c,) +BEU(c,,c5,...).

Here E denotes the expectation operator conditional on available information;
other notation is standard and will shortly be defined precisely in any event, as
will the underlying stochastic environment. Beliefs about the likelihoods of
future underlying states of the world are represented by a conditional probabil-
ity measure .

In the rational expectations paradigm, 7 is an objective probability law that
governs the evolution of states of the world and is assumed known to the
decision-maker. An alternative justification for = is the Savage representation
theorem according to which 7 is a subjective probability measure; an objective
probability law need not exist in principle. In either approach, a role for
Knightian uncertainty or imprecise information is excluded a priori, either
because information is assumed to be precise, or, in the second approach,
because the Savage axioms imply that imprecision is a matter of indifference to
the decision-maker (as discussed further below).

Our objective is to investigate the implications of imprecise information and
thus we need to adopt a more general representation for beliefs. In order to
focus more sharply on our objective, we consider otherwise “minimal” varia-
tions of (2.1.1) and (2.1.2).

2.2. The Environment and Beliefs

The set of states is {2, a compact metric space with Borel o-algebra Z((2).
Under the weak convergence topology, .#(£2), the space of all Borel probability
measures, is also a compact metric space. At time ¢ the decision-maker observes
some realization w, € 2. Beliefs about the evolution of the process {w,} conform

_to a time-homogeneous Markov structure. In standard models, this would
involve a Markov probability kernel giving conditional probabilities. Here we
assume that beliefs conditional on w, are too vague to be represented by a
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probability measure and are represented instead by a set of probability mea-
sures. Thus we model beliefs by a probability kernel correspondence &, which is
a (nonempty valued) correspondence &: {2 — .#((2), assumed to be continu-
ous, compact-valued, and convex-valued. For each w € 2, we think of #(w) as
the set of probability measures representing beliefs about next period’s state.
However, the rigorous interpretation of & is as a component of the representa-
tion of the preference ordering over consumption processes as described in the
next subsection.

Anticipating somewhat the noted representation of preferences, adapt com-
mon terminology and refer to the multivalued nature of & as reflecting
uncertainty aversion of preferences (see Schmeidler (1989, Proposition, p. 582)).
In fact, the multivaluedness of &2 reflects both the presence of uncertainty and
the agent’s aversion to uncertainty; for our purposes, there is no need to
attempt to define a meaningful distinction between the “absence of uncertainty”
on the one hand, and the presence of uncertainty accompanied by indifference
to it on the other. If & is singleton-valued, then #={w}, where 7 is a
probability kernel, that is, a continuous map from 2 into .#({). Since this
Bayesian representation of beliefs excludes any role for uncertainty, we refer to
uncertainty neutrality or indifference in this case.

It will be convenient to adopt the following notation: for any bounded,
Borel-measurable f:{2 — R and for any set P C.Z({2),

(2:2.1) [ﬂfdpsinf{[nfdm:mep}

and accordingly,

(22.2) P(A)=inf{m(A):meP), AecB(Q).
In particular, if P= % (w) for some w, then

(223) P(w,A)=inf{m(A):me P(w)},

and for any continuous f,

(224) [f()dP(w,) = [fdP(w) = min{[fdm;m = 9’((0)}.

Note that the latter minimum exists since P(w) is compact and the map
m — [fdm is continuous by the nature of the weak convergence topology. We
stretch common terminology and refer to the expressions on the left sides of
(2.2.1) and (2.2.4) as “integrals” or “expected values.”*

4 Under suitable additional restrictions on P, the map A4 — P(A) defines a capacity and [fdP
equals the associated Choquet integral, that is central to the capacity-based model of Schmeidler
(1989) and Gilboa (1987). (See Appendix C.) With this link in mind, we add the following remark
concerning the above definition of uncertainty aversion: Not every uncertainty averse & can
accommodate Ellsberg-type behavior; the latter is inconsistent with the “small” subclass of corre-
spondences & for which the capacity P(w, ), for some w, defines a qualitative probability
(Schmeidler (1989, p. 585)).
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On occasion, we will want to impose a link between beliefs and “reality,” at
least with respect to which events are null or impossible. Suppose therefore that
objectively null events are defined in the obvious way by the probability kernel
*. It is not necessary to assume that the {w,} process evolves according to 7*
or any other probability kernel. Say that & is absolutely continuous with respect
to 7* if

(225) Yo, VA€ B(2), 7%(w,A)=0=>m(A)=0 VmeP(0);

that is, the objective nullity of A(7*(w, A) = 0) implies the subjective nullity of
A, with “conditioning on »” understood throughout.

For other purposes, it is useful to have the following property satisfied for all
o €2 and all continuous functions f,g: 2 >R,

(226) fzg, 7 (0, {0 f(o) >g(e))}) >0
= [fdP(0) > [gdP(w).

With this in mind, we assume where explicitly stated that & has full support,
that is, m(A4) > 0 for all w € 2, m € #(w) and nonempty open subsets A C (2.
Given this assumption, the indicated strict inequality for the integrals holds if
f>g and f+g. Thus we avoid the expositional and notational clutter associ-
ated with qualifications of the form “a.e. [7*(w, -)]” in various definitions and
statements of theorems below. Note that P(w, A)>0= P(w,N2\A)<1.
Therefore, the assumption of full support limits the class of subjectively null
events and guarantees that, at least for open sets 4, P(w, N\ A)=1=2A=
= 7*(w, A) = 0, which is the converse of the implication in (2.2.5).

2.3. Examples of Probability Kernel Correspondences

Many natural and useful specifications of sets of priors have been studied in
the statistics literatures (see, for example, Wasserman (1990), Wasserman and
Kadane (1990), and Walley (1991)) and many of these are readily extended to
probability kernel correspondences. Here we describe two such examples.

ExampLE 1 (e-Contamination): Fix a probability kernel #* and a continuous
function e: 82 — [0,1]. Let & be defined by

(23.1) P(0)={(1-¢(w))T*(0) +e(0)m:me.#(2)}.

Then the associated integrals (2.2.2) take the form

(23.2) fnfd@(w) =(1 —s(w))fnf(w')ﬂ'*(w,dw') +é&(w)- i?lff’
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and for each B € #(2),

(1-¢(w))m*(w,B) if B+,

(233) P(w,B)= {1 if B=212.

The cotrespondence & has full support if € <1 and supp 7*(w) = 2 for all
w € . It reduces to the probability kernel #=* if ¢ =0. The other extreme,
called complete ignorance, has ¢ =1 and P(-) =.#({2), in which case

[fdP(w) = inf .

The set #(w) includes all perturbations of 7*(w, - ), where e(w) reflects the
amount of error deemed possible. Accordingly, a possible rationale for the
above specification of & is that 7* represents the “true” probability law on 2
that the agent knows only imprecisely.” Other forms of perturbations are also
possible as suggested by the examples in the references cited above. An
attractive feature of the particular perturbation represented by (2.3.1) is the
explicit formula (2.3.2) available for associated integrals.

ExampLE 2 (Belief Function Kernels): The set of states {2 is assumed to be
exhaustive and therefore is presumably large and complex. Consequently, the
law of motion on {2 may be too complicated to be understood precisely, or
alternatively may not be representable by a probability kernel. Suppose, how-
ever, that the agent observes N statistics, each a function of the current state,
and that the probability law governing the dynamics of these statistics is known.
More precisely, let

(234) G:02-RY

and let p be a probability kernel that describes the evolution of {G(w,)} as a
time-homogeneous Markov process; that is, p(-|y) is a conditional probability
measure on G({2) that varies continuously with y € G(£2). We assume both that
G is continuous and that the inverse y = G ~(y) is a continuous correspon-
dence. Since, as described below, pay-off relevant variables, such as consump-
tion and dividends, vary with w, rather than G(w,), assessment of likelihoods
over (2 is essential to the agent. It is important to note that p and G do not
imply a probability kernel over 2 unless G is one-to-one. However, a represen-
tation of likelihoods in terms of a probability kernel correspondence may be
constructed for arbitrary G in the following intuitively plausible fashion: For
any w €2 and B € #(), let

(23.5) p(w,B)=p({y eRY:G"'(y) cB}IG(w)),
the probability according to p of those realizations for the statistics that imply B

S Another possible rationale for (2.3.1) is based on the hypothesis that the set of states {2 is not
exhaustive. See Epstein and Wang (1992) for elaboration and for another class of examples
motivated by “missing states.”
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conditional on the values of the statistics at w. Now define &; by

(23.6) Py(w)={me#(2):m(B)>up(w,B),VBE B(Q)}.

Then &, is continuous and therefore is a probability kernel correspondence.®
To elucidate (2.3.6), note that for each w € 2, u(w, *) is a special capacity,

called a belief function (Dempster (1967)) and Z(w) is the “core” of u(w, - );

see also Wasserman (1988, 1990), Jaffray (1992), and Schmeidler (1989).

Examination of the integration formulae implied by (2.3.6) provides further
insight into the nature of Z;. The analogues of (2.2.3)-(2.2.4) are

P(w, A) = p(w, 4), w €, A€ #(1),

and

(237)  [fdPs(w) = [£*() dp(¥1G()),

where f* :G(£2) — R is defined by f*(y) = min{f(): G(«') = y}. Since f*is
defined as the indicated minimum, the integral on the right side of (2.3.7)
reflects the agent’s ignorance on each level set {«':G(w')=y}. Thus Z;
models the situation where the law of motion p for the statistics G is the only
information available regarding the law of motion on (2.

2.4. Utility

This subsection completes the description of the utility function over con-
sumption processes, the first component of which is the probability kernel
correspondence &.

To define the domain of consumption processes, we need some notation and
terminology. The measurable space underlying all random processes is (2%, the
product Borel o-algebra #(027). For o € Q” and t > 1, o' = (0q,...,0,); 2" is
the collection of all such points. Let Z(£2") be the product Borel o-algebra and
embed it in the usual fashion in Z(2%). A process {X,}, X, : 02" — R" for each
t, is adapted if X, is #(0")-measurable for all ¢. Given such measurability, we
can identify X, with a map from 2’ - R". If each such map is also continuous,
refer to the process {X,} as a continuous process. The process is real-valued if
n=1.

Consumption processes lie in the complete normed space

9= {X ={X,}:{X,} is an adapted and continuous real-valued
process, X,(»') >0forall r >1and o' €2,
and || X|| = sup sup | X,(w")|/b* < 00},
P
% The continuity of & follows from Epstein and Wang (1992, Proposition A.2.1). A closely

related form of continuity is apparent from (2.3.7) below. Under our assumptions on p and G, the
integrals there vary continuously with @ since f * js continuous by the Maximum Theorem.
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where b > 1 is a fixed real number that provides an upper bound for the average
rate of growth of consumption. The restriction to adapted processes is natural,
consumption at time ¢ can depend only on information available then. The
assumption of continuity is undoubtedly less natural. Nevertheless, it affords
considerable analytical simplification and is important for the analysis of equi-
librium asset pricing and therefore seems appropriate in our attempt to balance
mathematical generality with economic significance and accessibility.” Consump-
tion processes are typically denoted by c¢={c}. Since Z will also be the
ambient space for utility and price processes, the “neutral” dummy variable X
is used above. An element X in 2 is Markovian if for each ¢ and w, €2,
X,(-,w,) is constant on ‘"' and time-homogeneous if in addition X, does not
vary with .

Utilities over 2 are defined by three primitives: a probability kernel corre-
spondence &, a discount factor B €(0,1), and an instantaneous utility or
felicity function u:R, - R, assumed to be continuous, increasing, concave, and
normalized to satisfy u(0) = 0.

For each given ¢ in 2 we define a utility process {V,(c)}] as the unique
element of 9 satisfying the following recursive relation: for all ¢ > 1 and o' in
0,

(24.0) Vi(eiw) =u(c(@) +B[Viue; o', ) dP (o),

where V,(c;w') denotes V,(cXw'). Think of V(c;w’) as the utility of the
continuation consumption process ‘c = (c,, ¢,,1,...) conditional on the history
'. The (initial) utility of the entire path c is Vy(c; 0,).

The interpretation of (2.4.1) is clear. Given the history o' at time ¢, the
individual evaluates the consumption process for the remaining future in two
stages. First, the future from (¢ +1) onward is evaluated by means of the
«expected value” of V,,, with respect to beliefs #(w,). This summary index of
future is then combined with the instantaneous utility of time ¢ consumption to
define the utility of the consumption process from ¢ onward. If each P(w,)is a
singleton probability measure, then (2.4.1) reduces to the standard model
(2.1.2). Uncertainty aversion is incorporated into preferences in the general case
by permitting #(w,) to be multivalued.®

7 The class of functions that are analytic in the sense of analytic set theory (see Dellacherie and
Meyer (1982)) is the appropriate one for Choquet integration, which is closely related to the
integration notion (2.2.1) employed here. Therefore, future extensions of 2 may need to go beyond
the space of adapted processes to include processes for which each X, is analytic.

Epstein and Zin (1989) study recursive relations of the form V(c; o) = W(c(w"), m(V, , (c; o',
)), where m is a generalized certainty equivalent operator. Relation (2.4.1) is the special case in
which W(c, z) = u(c) + Bz and m is the generalized expected value operator (2.2.4). Several of our
results can be extended considerably beyond the specification (2.4.1) by applying and adapting
available results on recursive utility, but such extensions would detract from the main focus of this
paper. Note also that the presence of uncertainty aversion introduces an important technical
difference, namely a lack of Giteaux differentiability, relative to the analysis in Epstein and Zin. See
Sections 2.5 and 3 for elaboration and for the economic significance of the nondifferentiability.
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By routine arguments based on the contraction mapping theorem, we show in
Appendix A that utilities are well-defined by (2.4.1). To state our theorem,
adopt the notation ‘clo’~'={c (o'}, )., € 2, for the continuation of c
given the history w’~! preceding ¢. Also, if ¢ and ¢’ are elements of 9, write
¢'>cif ¢ #cand c,>c, for all ¢; ¢’ > c if ¢’>c and there exists ¢ such that
c(w") > c(w") for all ' €. Finally, if U: Z - R,, say that U is (strictly)
increasing if (¢’ > ¢) ¢’ > c implies U(c") > U(c).

TueoreM 1 (Existence of Utility): Suppose that Bb < 1. Then for each c € 2,
there exists a unique V(c) € D satisfying (2.4.1). Moreover, for all ¢, t > 1 and
',

(242) V(c;0") =Vy(clo' ).

For each w € Q, V(+; w) is increasing and concave on D, it is strictly increasing if
P has full support. Finally, if u satisfies a growth condition, that is, if there exist
constants k, and k,> 0 such that u(x) <k, + k,x for allx € R, then V{(c; w) is
jointly continuous on 2 X ().

Condition (2.4.2) asserts that time ¢ utility equals a time-invariant function of
the continuation consumption path ‘clw’~! and the current state ‘. This
follows from the time-homogeneous, first-order Markov structure assumed for
beliefs. Since the time 1 designation is irrelevant, we denote V (c; w) simply by
V(c; w) and refer to V as the utility function defined by (2.4.1). By the last part
of the theorem, V' possesses some standard regularity conditions. Note that the
assumption Bb <1 is adopted throughout.

Another important property of V, or at least of the entire utility process, is
dynamic consistency. The recursive construction of utility via (2.4.1) suggests
that dynamic consistency (suitably defined) will be satisfied. To be more precise,
each V,(-;w') is a utility function over 2; denote by {V}} the corresponding
process of utility functions. Say that {V,} is dynamically consistent if for all
0, €0, c and ¢ in Z and T > 1, V{(¢'; 0,) > V{(c; wy) if:

@Dc,=c, fort=1,...,T—1,

(i) V(s wy, ) # Vilc; w4, ), and

(i) V(c'; 01, ) = Vilc; y, +) on Q771
Say that {V,} is weakly dynamically consistent if (i)-(iii) imply only that
V(c'; ;) > Vi(c; w)). The stronger notion of dynamic consistency is the coun-
terpart for our framework of the usual definition (Epstein and Zin (1989),
Duffie and Epstein (1992), for example). Only the weaker notion is satisfied in
general by the process {V}, since the set of histories ®,,...,wr_; where
Vi(c'; 0y, ) > Vilc; wy, - ) could be “null” from the perspective of time 1 and
the beliefs prevailing there and thus Vy(c’; w,) = V{(c; w,) is possible. That
possibility is ruled out if & has full support, in which case dynamic consistency

“holds (see Appendix A). However, even if only weak dynamic consistency
obtains, we show that our asset pricing model of Section 3 has an equilibrium
along which optimal plans are carried out.
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Risk aversion for V is not mentioned above since it is well-defined only given
the existence of probabilities that can be used to define actuarial fairness. For
that purpose, suppose there exist events in #({2) that can be assigned probabil-
ities; that is, suppose &* is a sub-sigma algebra of #({2) such that for each o,
any two measures in #(w) agree when restricted to #*. Then V' has the form
(2.1.1) on the subdomain of consumption processes defined by #*-measurabil-
ity, and so is clearly risk averse there.

Finally, in this subsection we relate our recursive model of utility to Gilboa
and Schmeidler (1989) and argue that (2.4.1) represents a sensible extension of
their atemporal model to an intertemporal framework. An alternative extension
has the following form: there exists a correspondence .%: {2 — A7), with the
set of measures % (w,) representing beliefs at (¢, w,) about the entire future,
such that intertemporal utility U, is given by

(24.3) U(c;o') =fm[§l3i"u(ci)] dX¥(w,)

= inf{fnm[iﬂi"u(ci)] dm:me J{(w,)}.

In comparing (2.4.1) and (2.4.3), note first that they coincide under uncertainty
neutrality but not more generally. In particular, if & is a probability kernel,
then, given w,, it determines a unique probability measure p(w,) on 0% and
(2.4.3) is derived with #(w,) equal to the singleton {p(w,)}. However, such a
derivation of (2.4.3) from (2.4.1) fails more generally since the additivity prop-
erty of Lebesgue integration with respect to a probability measure is not
satisfied by “integration” with respect to a set of probability measures.

Given that (2.4.1) and (2.4.3) represent distinct models of intertemporal
utility, one is left wondering which is more attractive. A definitive judgement
would presumably require an examination of the axiomatic underpinnings of
each model.? While such an examination is beyond the scope of this paper, we
can point to an axiomatic difference between the two models that is important
and supportive of (2.4.1) at least when “time” is taken seriously. That feature is
simply that {U} is generally weakly dynamically inconsistent. Therefore, in the
absence of an explanation of how dynamic inconsistency is resolved, the model
(2.4.3) does not deliver predictions about choice behavior. In an important
sense, therefore, the model (2.4.3) is incomplete; in particular, it is not clear
how it should be applied to describe consumption/savings behavior and asset

9Though we have not axiomatized our model, there is reason to believe that it can be provided
with a respectable axiomatic basis. That is because in the literature on preferences under risk, the
corresponding question of how to extend atemporal theories has been thoroughly examined and the
recursive approach has been provided with respectable axiomatic credentials (see Kreps and Porteus
(1978), Chew and Epstein (1991), and, for an overview, see Epstein (1993)). In addition, Skiadas
(1992) axiomatizes recursive utility in a Savage-style framework where conditional subjective
probabilities are derived.
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price determination in the model economy of Section 3. A game-theoretic
resolution of dynamic inconsistency has been examined in related models, but
the tractability of such an approach is a serious concern in the setting of Sect-
ion 3.

There is a closely related observation concerning (2.4.3) that also merits
mention. One might think of adopting the specification (2.4.3) at ¢ =1 and then
suitably updating the set of priors J%(w,) as time proceeds. However, any
updating rule will invariably imply the weak dynamic inconsistency of prefer-
ences, excluding a “small” number of arguably uninteresting specifications for
#(w,), one of which is that #(w,) is a single probability measure (see Epstein
and LeBreton (1993)). This difficulty reflects the problematic nature of rules for
updating vague beliefs that is now well recognized (see Walley (1991,
pp. 279-281), Gilboa and Schmeidler (1993), Jaffray (1992), Epstein and LeBre-
ton (1993)).

In contrast, our model of utility delivers weak dynamic consistency. By
adopting “conditional belief,” represented by &, as the primitive, we obviate
the need for an updating rule. Moreover, we feel that the recursive framework
has some psychological plausibility because of the algorithmic appeal of back-
ward induction.

2.5. Utility Supergradients

Since we will be concerned below with the (shadow) pricing of securities, we
are led naturally to an examination of the supergradients, suitably defined, of
our utility function V. A novel feature of V relative to utility functions that have
been generally applied previously in the macro /finance literature is that (-, w)
is “frequently” nondifferentiable in the Giteaux sense unless & is a probability
kernel. However, since V(-;w) is concave, it possesses one-sided Gateaux
derivatives. Here we derive representations for these one-sided derivatives and
the associated supergradients. These representations are applied to the security
valuation problem in Section 3.2.

Let e € 9 represent a base consumption process that is everywhere strictly
positive and consider the effect on utility of perturbations in specified direc-
tions. It will suffice to consider perturbations in “today’s” and “next period’s”
consumption only, that is, consider the change from e to e + ¢h where £ € R!
and h={h})} is a continuous real-valued process, such that h,=0 for ¢+
1,2,h, €R, and h,€ C(£2). Note that e+¢(he D for sufficiently small £.
Therefore, V(e + £h; ) is defined for such £. Since V' is defined via a minimum
over a set of probability measures as in (2.2.4) and (2.4.1), one-sided directional
derivatives of ¥ may be derived by an appropriate “envelope theorem.” The
one-sided derivatives are described in the following important lemma, which is a

“special case of the envelope theorem result in Aubin (1979, p. 118). For
simplicity, the lemma deals with the case where e is Markovian and time-homo-
geneous.
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LemMa 1: Let e € 9 be a positive, Markovian and time-homogeneous con-
sumption process with e (w')=e*(w,). Let h={hJ} with h,=0 for t+1,2,
h, € R, and h, € C(Q). Define the convex-valued and compact-valued correspon-
dence Q: Q — #(2) by

(251) Q(w)= {m e P(w): [V*dm= Jv* dgv(w)},

where

(252) V¥(w)=V(e;w), wEN.

Then the one-sided Géteaux derivatives of V(-, w) at e and in the direction h, are
given by

d ,
(25.3) d_§V(e + ¢hyw)

=u/(e*(@))h

ot

=u'(e*(@))h

0-

d
d—gV(e+§h;w)

+Bmax{fu’(e*)h2 dm:mé€ Q(w)}.

The Lemma suggests, and this will be confirmed by examples below, that
utility is not Gateaux differentiable in general. The “origin” of this nondifferen-
tiability is clear since utility is defined via a pointwise minimum, namely the
“integral” on the right side of (2.4.1), corresponding to the Gilboa-Schmeidler
(1989) way of modeling uncertainty aversion, and a pointwise minimum of
functions is not differentiable in general.

The particular representation for one-sided derivatives provided in (2.5.3) is
also intuitive for “envelope theorem” reasons. To elaborate and in order to
pave the way for its role in our study of asset prices, we spell out the following
interpretation for Q : m € Q(w) if and only if m is (i) “compatible” with beliefs,
in the sense of lying in #(w), and (ii) “equivalent” to F(w), in the sense of the
calculation of expected future utility for the given base process e. Since any
single prior reflects the absence of (or indifference to) uncertainty, the relation
between P(w) and each m € Q(w) is akin to that between a random payoff and
its certainty equivalent familiar in the case of risk. Accordingly, refer to Q(w) as
the set of uncertainty adjusted probability measures corresponding to #(w), for
the given e.

A critical question for our purposes is whether the nondifferentiability sug-
gested by (2.5.3) is likely to be sufficiently frequent to be “significant.” We
postpone discussion of this question until Section 3.4, at which point the
relevance of (2.4.4) for asset pricing will have been described.
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Finally, in this subsection, we provide an alternative formulation of Lemma 1.
Let e and & be as above. Refer to s as a (one-period ahead) supergradient of
V(-,w) at e if s is a continuous linear functional on R X C({2) satisfying

(25.4) V(e+h,w)—V(e;w)<s(hy,hy)
for all (h, h,) such that e +h € 9. Denote by .#*(£2) the space of positive
countably additive measures on {2 endowed with the weak topology induced by

C(£). By the Riesz Representation Theorem, each s can be 1dent1ﬁed with an
element (s, p) € R, X.#*(£2) in the sense that

s(hy, hy) =8,k +B/ﬂh2 dp,  (hy,h,) ERXC(Q).

Lemma 1 shows that s, =u'(e*(w)) and dp =u'(e*)dm for some m € Q(w).
Therefore the set of supergradients of V(-; w) at e,dV(e; w), viewed as a subset
of R, X.#" (), is given by
(25.5) V(e;w)={(v'(e*(w)),p):pEA"(2),Im e Q(w),

dp =u'(e*) dm}.
The continuity of the correspondence w — dV(e; w) is important in the proof of
existence of an equilibrium in the economies to which we now turn.

3. EQUILIBRIUM ASSET PRICING
3.1. The Economy

We consider an extension of the Lucas (1978) pure exchange economy, having
a representative agent, or equivalently a number of agents with identical
preferences and endowments. Preferences are as above, with the exception that
we add the assumptions that the felicity function u is strictly increasing and
continuously differentiable, with #'(0) = » admissable. Such a “minimal” varia-
tion of the Lucas model seems appropriate given our focus on the effects of
uncertainty aversion.

There is a single perishable consumption good with the total supply available
at any time and state described by the endowment process e ={e,} € 9. For
simplicity, assume that the endowment process has a time-homogeneous Markov
structure, in the sense that for some function e*,

(3.1.1) e (o) =€*(w,) t>1, ow'e,
and that endowments are positive, that is,
(3.12) e*(w)>0 on{.

There are n securities, where the ith provides the dividend process d;=
{d, .} € 2. In each period, the securities are traded in a competitive market at
prices ;= {q, Y€ 9,i=1,...,n, with consumption in each period serving as
numeraire.)® Write g, = (q1 1r--+>dy,,) and g ={q,} € 2. Without loss of gen-

©1n particular, we assume that for each security buying and selling prices coincide. In faet, the
presence of uncertainty aversion can “explain” bid-ask spreads even in the absence of transactions
costs. We leave this extension of our model to a separate paper.
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erality, that is, by redefining e if necessary, we can assume that each asset is
available in zero net supply at all times and states.

At the beginning of each period, the consumer plans consumption and
portfolio holdings for the current period and all future periods in order to
maximize intertemporal utility. Plans are represented by a pair (c, ), where
ce 2 and 9 ={0,) is a continuous process with 8, = (8, ,,...,6, ) representing
the portfolio plan for period ¢. Consider a time-history pair (¢, w"). Refer to
(c, 0) as (t, w")-feasible if for all 7> ¢

q7.01'+c'r=01'—1'[q1'+d'r]+e7’ 0!—1(wt_1)50’ and

inf 6, (@") > —,

i, T, 0"
where the latter is a weak restriction on short sales and 6,=0."" Say that the
(¢, w')-feasible plan (c, 0) is (¢, w’)-optimal if Viclo'™ L w') = V(|0 ') for
all other plans (¢, 8') that are (¢, »*)-feasible.

An equilibrium is a price process {g,); € 2" such that {(e,,0)}7 is a (¢, 0")-op-
timal plan for all £ > 1 and o’ €£2’. In an equilibrium, spot asset and consump-
tion good markets clear at any (¢, »*) when the agent optimizes given expecta-
tions regarding future prices described by {q,)7.1; and subsequently, those
expectations are fulfilled in that they clear later spot markets. Note that the
consumer is dynamically consistent in equilibrium in the sense that the given
(¢, ")-optimal plan remains optimal from the perspective of all later times and
histories. A weaker notion of equilibrium would require only that {(e,,0))7 be
(1,w,)-optimal. The relation between these two equilibrium notions is clarified
in Theorem 2. The term “equilibrium” is reserved for the first definition.

3.2. Euler Inequalities

In this section we derive necessary conditions for an equilibrium from the
first-order conditions for the agent’s optimization problem. These conditions
generalize the standard Euler equations; they take the form of inequalities,
rather than equalities, because V(-;w) is generally nondifferentiable in the
Gateaux sense (see Section 2.5) unless & is a probability kernel.

Suppose {g,} is an equilibrium. At any given (¢, »"), consider a variation (c, 6)
of the optimal policy such that c,=e, and 6,=0 for 7#¢, £+ 1, c,=e,—
&(A-q,), 0,=£4,0,,,=0,and ¢, =e,, +E4-(q 4, +d,,,), where A €R"
represents the direction in which the period ¢ portfolio is perturbed and £ € R
represents the “size” of the perturbation. Any such perturbation must leave the

gy ¢,, we mean the function c(w',-) on 27 and similarly for g, 6, and so on. The
indicated equality and inequality are intended at the level of functions and so apply throughout
7", Similar simplifying notation is adopted throughout the paper. Finally, note that restrictions on
short sales are commonly assumed in the literature in order to guarantee existence of planning
optima and equilibria.
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agent worse-off. In other words, if
h,=-4-q, and Biv1 =4 (o1 +disn)
then in the obvious notation

(32.1) 0¢€ argmaxV(e+£&(h,, R,y 1,0, );@,).
3
By Lemma 1, the first-order conditions for this problem take the form!?

B min fu'(e*)A'(‘It+1+dt+1)dm
meQ(w,)

<u'(e,)A-q,<B max fu'(e*)A (Goyy +d,yy) dm.
me(w

t

We can rewrite these inequalities in the more compact and equivalent form

. u(e 1)
(32.2) min {BE,|———A (g4 +d,11)|—4-aq}<0 VAER"
me(w,) u (et)
where E, denotes integration with respect to the probability measure m.

We wish to express this infinite collection of inequalities in a more efficient
and useful way. In usual formulations, where differentiability obtains, there is
no loss in restricting A4 to the coordinate directions. Such equivalence fails here,
however, since the expression in (3.2.2) is not linear in 4, or equivalently, the
one-sided Gateaux derivatives of ¥, described in Lemma 1, are not linear in the
perturbation. Therefore, a slightly more elaborate procedure is required.

First, rewrite (3.2.2) in the more manageable form

sup min F(m,4)<0.
A meQ(o)

Since F(m, -) is linearly homogeneous, this inequality is equivalent to

max min, F(m,4) <0,
Aey meQ(w)

where y is the convex hull of {+ith unit coordinate vector: i=1,...,n}. By
Fan’s Theorem (see Appendix B), the latter inequality is equivalent to
min maxF(m,4) <0.
meQ(w,) A€y

By the Maximum Theorem, there exists m* € Q(w,) for which the minimum
over Q(w,) equals max 4, F(m*, 4) <0. By the linear homogeneity of F(m™*, -)

12 The objective function in (3.2.1) is concave in & and therefore is almost everywhere differen-
tiable in £, for given e, d, g, and 4. It is incorrect, however, to interpret this fact as implying that
the price indeterminacy discussed below is “infrequent.” Only differentiability at £ = 0 is relevant to
price determinacy. Thus the relevant question is whether for “many” specifications of e, d, g, and
A, the objective function in (3.2.1) is nondifferentiable in £ at £=0. The frequency of price
indeterminacy is examined in Section 3.4.
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and the fact that A €y & —A €y, we conclude that for all A €,

(32.3) F(m*,A)= min maxF(m,4)=0.
meQ(w,) A€y
Since for each m, F(m, -) is linear, max{F(m, A): A € y} is attained on the set
of extreme points of y. We arrive finally at the following system of Euler
inequalities that must be satisfied in equilibrium: for all (t, w"),
} “o.

w(e 1)
BEm[_um_(‘qi’Hl + di,t+l) —4q;;:

The presence of the minimization over Q(w,) on the left side of (3.2.4)
justifies our use of the term “inequalities” to refer to (3.2.4), in spite of the
equality with zero. The inequality nature of (3.2.4) is highlighted in the single
asset case (n = 1) where it reduces, in the obvious notation, to

u'(e 1)

3.25 i E | ———— +d
( ) m;an?w,)B m[ u’(et) (qt+1 t+1)]

(3.2.4) min max {

meQ(w,) i

<q,< max BE z’(jiﬁ(q +d,. )
= t\mEQ(w,) m ui(et) t+1 t+1 .
When 7 > 1, (3.2.4) implies an inequality analogous to (3.2.5) for each asset, but
this collection of n inequalities is not exhaustive for the reasons given above
concerning the nonlinearity of one-sided Géteaux derivatives.
Of course, if & is a probability kernel, then both H(w,) and O(w,) are
singletons and (3.2.4) reduces to the standard Euler equation
w(e 1) .
qi,t=BE/-'-(wn')[_l;r(_etT(qi,t+1+di,t+1) ) for all i.

3.3. Equilibrium

The Euler inequalities are not only necessary, but they are also sufficient for
an equilibrium, that is, any price process {g,} satisfying (3.2.4) is an equilibrium,
as we show shortly. To establish the existence of solutions to (3.2.4), and
therefore of equilibria, we need to restrict the probability kernel correspon-
dence . To formulate the added assumption, define the correspondence O
from {2 into .#(Q), for any given f<€ C(£2), by

(3.3.1) Qf(w) = argmin {ffdm:m € 9((0)}

AssumpTioN (Strict Feller Property for &): Qs isa continuous correspon-
dence for each f € C(12).

If & is a probability kernel, then Q, is continuous since Q= . Another
trivial case, termed i.i.d. beliefs, has P(w) independent of w; then Q; is
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constant and a fortiori continuous. The continuity of Q; is trivial also if £ is
finite and endowed with the discrete topology. More generally, we can infer
from the continuity of & and the Maximum Theorem only that Q, is upper
semi-continuous.

The interpretation of the strict Feller property is facilitated by reference to
Section 2.5. From (2.5.5), we see that it implies that the set of supergradients of
V(-; w) varies continuously with . From the perspective of the question of the
existence of equilibria, such “continuous superdifferentiability” is the essential
content of the added assumption. Note that for the proof of existence in the
economy corresponding to the specific endowment process e, it suffices that
Q.+ be continuous (see Lemma 1 and note that Qu«=Q). In particular,
existence is guaranteed if e* is constant, since the V'* is constant and thus
Q=2

The proof of existence of solutions to the Euler inequalities now proceeds as
follows.!®> Since Q is compact and convex-valued and continuous, it admits a
continuous selection, that is, there exists a sequence of probability kernels {,}
such that 7(w,, -) € Q(w,) for all ¢ and w, € 2. Now consider the equations

w(e 1)

W)—(‘L‘,tn +d; 1)

(332) q; : =BE7r,(w,,‘)

for all ¢, w,, and i. By contraction mapping arguments (as extended in Lemma
A.1), one can prove the existence of a unique (given {m]}) price process
satisfying (3.3.2). For that solution g, the Euler inequalities follow immediately.

The above arguments lead us to the following central theorem, the proof of
which is completed in Appendix B:

TueoreM 2 (Existence and Characterization of Equilibria):

(a) The set of equilibria coincides with the set of price processes satisfying (3.2.4).

(b) If & satisfies the strict Feller property, there exist equilibria.

(©) If P has full support, then q € D" is an equilibrium if and only if {(e,,0)}7
is (1, w,)-optimal for all , € (2.

Part (c) shows that the two equilibrium notions described earlier coincide if &
has full support. This is not surprising in light of the dynamic consistency
property of the utility process implied by the full support assumption, as
discussed in Section 2.4.

There exists an equilibrium for each sequence of selections {m,}, used as in
(3.3.2), implying that there may be many equilibria in our economy. This
nonuniqueness is related to the findings of Dow and Werlang (1992), who show
in a static model with one risky and one riskless asset, that there exists a set of
asset prices that support the optimal choice of a riskless portfolio. Here we

-extend their analysis to an infinite-horizon, multiple-asset framework and we

13 We continue to write Q rather than Q.
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show that the nonuniqueness of supporting prices is not restricted to riskless
positions. Simonsen and Werlang (1991) also observe the potential nonunique-
ness of supporting prices under uncertainty aversion in a static setting. Note
also that the nonuniqueness of prices and its “origin” in the multiplicity of
underlying priors accord well with Keynes’ intuition. He writes (1936, p. 152)
that the “existing market valuation...cannot be uniquely correct, since our
existing knowledge does not provide a sufficient basis for a calculated mathe-
matical expectation.”

In order to discuss further the nonuniqueness or indeterminacy of equilib-
rium prices, adopt the following notation and terminology: Denote by & the set
of all equilibria. Say that the price of the ith security is determinate if for all g
and ¢’ in &, {q, J7=1q; J}-

THEOREM 3 (Structure of Set of Equilibria): If & satisfies the strict Feller
property, then:

(a) & is a closed and connected subset of 9".

(b) For each i, the equations

w(ei)
{ u'(e,)

w(e 1)
{W(gi,wl + di,t+1)}

(333) g,,=B max E,

(Giev1+di41) and
meQ(w,)

q;,,=B min E,
- meQ(w,)

have unique solutions in 9, denoted g, and q; respectively. These solutions satisfy
the condition that for any q € & and for any i and t,

(334) 4;,,<4;,,<q;, on ',

Moreover, given i, t, and any & > 0, there exist q* and q* in & such that
(335) gq!,<q,+e and q},>q,—¢ onfl.

Finally, the ith security price is indeterminate if and only if for some t
(33.6) 4, #4;,

in which case {q;: q € &} is an uncountably infinite set."*

Part (a) provides some information regarding the size of &. Since & is a
connected complete metric space, it follows from the Baire category theorem
(Royden (1988, p. 159)), that if the equilibrium is not unique, then there exists
an uncountable infinity of equilibria. This is confirmed by part (b). The latter
first provides, via (3.3.4), bounds for the equilibrium price of any security and

141t is common in the literature to assume a time-homogeneous Markov structure for dividends
and to restrict attention to price processes that are time-homogeneous and Markovian. Therefore,
we point out that under the above assumption, Theorems 2 and 3 remain valid if price processes are
defined to be elements of 2 that are time-homogeneous and Markovian.
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then shows that these bounds are tight, in the natural sense of (3.3.5). Finally,
(3.3.6) provides necessary and sufficient conditions for price indeterminacy. In
special circumstances, those conditions assume a simpler form. For instance, the

condition
u(e ul(e
min E,, ———(, r1) # max E,, ———(, e+1)
meQ(w,) u'(e,) meQ(w,) u'(e,)

characterizes the indeterminacy of the price of a one-period discount bond
issued at (¢, »") and paying one unit of consumption at t+ 1.

Intuitively, we would expect a link between indeterminacy of asset prices and
intertemporal price volatility. This intuition can be confirmed in the special case
of “ii.d. beliefs,” that is, where H(w) is independent of w, in which case the
correspondence Q is also constant. Hence, for a security with time-homoge-
neous dividend process, if the price of the security is determinate, then it must
be constant (across time and states). Consequently, any fluctuation in price is a
reflection of indeterminacy. More generally, the link between indeterminacy
and volatility can be thought of in the usual way in terms of the existence of
“sunspot equilibria.” That is, if the selection {rr} from Q (see (3.3.2)) is made to
depend on a “sunspot” or “extrinsic” variable, then the corresponding equilib-
rium price process will also depend on that variable."

The discussion to this point has assumed implicitly that price indeterminacy is
a significant feature of our model in the sense of occurring on a “nonnegligible”
set of economies. That this assumption is warranted is most easily demonstrated
in the context of specific examples of probability kernel correspondences and so
we defer further discussion to the next section.

The final result of this section provides a further characterization of equilib-
ria. Let g be an equilibrium and reconsider (3.2.3). For the given ¢, we will now
consider @' to be variable and thus the dependence of F on o* (through ¢, and
g,.,) is made explicit by writing F (m, A, w"). From (3.2.3) and the linearity of
F(m, -, ") we derive

min g(m,w0") =0,
meQ(w,)

where g(m, »') = max{F(m, A, »"): A an extreme point of v}. By the Maximum
Theorem, g is continuous and the correspondence of minimizers above is upper
semicontinuous. Therefore, it admits a measurable selection (Klein and
Thomson (1984, Theorem 4.2.1)), that is, there exists for each ¢

(33.7) &:0' > .#(2) measurable, (o, )€0(0w,) Vo'e

15 1t is well known that sunspot equilibria may exist, even in infinitely lived representative agent
models, given financial constraints, externalities, nonconvexities, or other sources of market imper-
fection that lead to inefficient equilibrium allocations. See Guesnerie and Woodford (1993) for a
survey. In contrast, in our model no such imperfections exist and the equilibrium allocation is
trivially efficient, but quantities do not vary with the extrinsic state.
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and g(£,(", +), w') = 0. Substitution of the appropriate expressions for g and F
establishes the nontrivial portion of the following result.

TueoreM 4 (Further Characterization of Equilibria): g is in & if and only if q
is in 9™ and for some {¢,} as in (3.3.7), q satisfies

u’(et+1)
33.8 . =BE,,: \ ——(4q; +d,;
(338) 4,,=B g,(w,~){ U (e,) (4,041 dl,t+1)}’

for all t and i.'°

The characterization provided by Theorem 4 is helpful in placing our model
of asset price determination in the context of the literature. In order to proceed,
adopt the standard assumption that the actual evolution of {w,} is described by a
probability kernel 7*. In place of the rational expectations hypothesis that 7*
is known precisely by the agent, assume instead that Q is absolutely continuous
with respect to 7*, for which it suffices that the probability kernel correspon-
dence & be absolutely continuous (recall (2.2.5)). Such absolute continuity is
assured if £ is finite and 7*(w,w’) >0 for all ® and « in 0. Denote by
z,, (', -): 2> R, the Radon-Nikodym derivative of ¢(w, ). Then (3.3.8)
has the form

u(e 1)
(33.9) qi,t=BEw*(w,,~){ u'(te+)_ Zt+1(qi,t+1+di,t+1)}‘
t

By construction, {z,, ;) is restricted by z,,, >0,
(3.3.10) fnz,Hd'n'*(w,, )=1 and  §(0, ") €Q(@),

dft(wt’ ") EZt+1(“’)t7 ") dr*(w,, ")

The relations (3.3.9), without (3.3.10) or other restrictions on {z, +1), can be
established under fairly general considerations and contain commonly consid-
ered models as special cases (see Hansen and Richard (1987) and Hansen and
Jagannathan (1991)). Generally, (3.3.9) is rewritten in terms of the “stochastic
discount factors” v, = Bz, (e,,,)/u(e,) in the form

(33.11) g, =Ew*(w,,~)[7t+1(qi,t+1 + di,t+1)] ) i=1,...,n.

16 Note the difference between (3.3.2) and (3.3.8). The former is sufficient for g to be an
equilibrium since the selection {r} is assumed to be continuous and hence the solution g to (33.2)
must lie in @". On the other hand, as just shown, the existence of a measurable selection {£,} as in
(3.3.7)—(3.3.8) is a necessary condition for g to be an equilibrium. It is also sufficient only if, as in

Theorem 4, we assume that the solution g to (3.3.8) lies in 2".
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Since one can always find some {y,,,} so that (3.3.11) is satisfied, the empirical
content of any particular model of asset prices is represented by the restrictions
it imposes on the discount factors {y,,} or equivalently, on {z,,,}. For our
model, those restrictions are represented by (3.3.10). The standard Lucas based
rational expectations model imposes the stronger restriction z,.,=1. See
Cochrane and Hansen (1992) for examples of other restrictions on stochastic
discount factors that have been studied in the literature.

3.4. Examples

We illustrate and elaborate upon our analysis of asset price determination in
the context of the two examples of probability kernel correspondences of
Section 2.3. Then, in order to lend indirect support to our “explanation” of
price indeterminacy, we examine another model where indeterminacy can occur
—a Lucas-style model where the felicity function u is not differentiable. Finally,
we consider briefly an example of an economy where agents are uncertainty
averse and heterogeneous so that trade may occur.

e-Contamination: Tt follows from (2.3.2) that for any f € C({2),
Qs(w) = {(1 —&(0))m*(0) te(w)m:m e/(argminf)}.
0
Therefore, the strict Feller property is satisfied. In the particular case f= V*

(see Lemma 1),

(341) 0(w) = (1 ()7 (0) + (@) #(2,,), 2,,= argmin¥*.

For simplicity, assume henceforth that dividend processes are Markovian and
time-homogeneous,'’

d; (') =df(w,), foralli,t, and '

Then it follows from Theorem 4 and (3.4.1) that the price of security i is
indeterminate if and only if

(3.4.2) w/(e*)d; is nonconstant on £2,,.

The essential economic (as opposed to mathematical) content of this restriction
is that knowledge of the level of intertemporal utility V* is not sufficient to

171t is more common to assume a time-homogeneous Markov structure for growth rates rather
than levels. Our analysis is readily modified accordingly with no effects on our qualitative. results.
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infer the weighted dividend u'(e*) d¥, or more precisely
(3.4.3) u/(e*)d? is not V*-measurable.'®

The conditions for indeterminacy simplify if we consider the i.i.d. case where
e(w) and 7*(w, ), and hence also P(w) and Q(w), are independent of w.
Then

V*(-) =u(e*(-)) + constant.
Therefore, by (3.4.2), the ith price is indeterminate if and only if

(3.4.4) d} is nonconstant on argmine®
0

which in the sense explained in the preceding footnote is tantamount to!?
(3.4.5) df is not e*-measurable.

This will be the case, for example, if there exist state variables affecting
dividends that do not influence consumption. Since that is a plausible hypothe-
sis, we conclude that our model predicts price indeterminacy for a “broad” or at
least economically interesting class of dividend and endowment processes.
Moreover, note that the model delivers predictions regarding the cross-sectional
(across asset) variation of the degree of indeterminacy. That is, referring to
Theorem 4, we see that

‘_Ij,t<‘_1i,t<‘_1i,t< t if

a;,
min d¥ < min df < max d} < maxdf,
Q, Q,, Q Q,,

m

where, given the i.i.d. assumption, (2,, = argmin, e*. Therefore, asset j features
a “large” degree of indeterminacy in its price if [ming, df,max, df]is large,
which interval provides a measure of the extent to which d}" is “unpredictable”
given consumption.?

Finally, consider the counterpart of (3.3.9)-(3.3.10), under the assumptions
that the contamination function & is constant, £ is finite, and 7*(w, ') > 0 for
all ® and « in (2, ensuring thereby the absolute continuity of & with respect

18 That is, u'(¢*)d* is not measurable with respect to the o-algebra on 2 generated by the
mapping V*: 2 > R. Note that (3.4.3) is weaker than (3.4.2) since the latter requires only that one
not be able to infer the magnitude of u'(e*)d* from knowledge that V* = min, V¥, while the
former rules out the possibility of such inference given V* =k for some k. This difference does not
appear to us to be economically significant and thus we will not differentiate between (3.4.2) and
(3.4.3).

199¢ (O consists of only two states, then (3.4.4) and (3.4.5) are each equivalent to: (%) e* is
constant and d¥ is not constant (on £2). In particular, for this i.id. case, indeterminacy can occur
only if consumption is certain. This conclusion that asset price indeterminacy is limited to riskless
initial positions is also apparent from examination of the indifference curves of a Gilboa-Schmeidler
utility in the state preference diagram for a static setting (see Simonsen and Werlang (1991), for
example). However, one must be cautious in extrapolating to more general state spaces, where
(3.4.4) implies not (*), but rather that the conditions specified there apply on argming e*.

Note the loose parallel with the case of risk (¢ =0 and & a probability kernel) where our
model reduces to the consumption-based CAPM accofding to which the risk premium for asset j
depends on the covariation of d} and consumption.
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to 7*. Then (3.3.10) is equivalent to?'
(346) [zdm*(0,)=1 and z.,>1-e,

0

z,.(0',")=1—-¢ on 0O2\Q,,
and the associated Euler equations (3.3.9) take the form

_ w(e 1) .
(3.4.7) B 1=E,n.*(wt,.)|'_u—,(;t)-_zt+1Ri,t+1 ’ l=17"'7n7

where R; .1 =[G o1+ d;1411/4i0

The potential empirical significance of (3.4.6)—(3.4.7) can be illustrated
through the analysis of stochastic discount factors in Hansen and Jagannathan
(1991), for example. They infer from asset price and aggregate consumption
data for the U.S. that stochastic discount factors that rationalize the data in the
sense of (3.3.11) must have a large variance. The indicated variance is often
considered too extreme to be compatible with any “reasonable” model of
fundamentals and is occasionally interpreted as evidence for “fads” (Porterba
and Summers (1988)). In particular, the consumption-based model having z,,
= 1, is rejected in this way because consumption is too smooth. It is interesting,
therefore, to examine whether our specific model of discount factors (3.4.6) is
compatible with a large variance. To highlight the role of uncertainty, we make
the challenge facing our model of discount factors as difficult as possible and
assume the extreme case of “smooth consumption,” e* constant. We then
compute mvar (¢), the maximum variance of limiting distributions corresponding
to some {z,, ,} satisfying (3.4.6) and ergodicity. (Ergodicity justifies the approxi-
mation of moments of the limiting distribution by appropriate sample moments.)
Assuming that {w,} under 7* is ergodic with limiting distribution described by
p €.#(0), we find that?

mvar (&) =32(1 - glei?)p(w))/al,nei?)p(w).

A consideration in evaluating the implications of this expression is that the
underlying state space £ and therefore also m*, may not be observable to the
analyst even if the probability distributions induced by 7* on dividends and
rates of return are observable or estimable. Note accordingly that for any given
¢ >0, mvar(e) - o as min, ., p(w)— 0. It follows that, unless the analyst

2l Under the stated assumptions, (3.4.1) implies that any £, , (', -) € Q(w,) has Radon-Nikodym
derivative of the form z,,4(e’, ) =1—¢+ &g (o', ), for some g, >0 satisfying
08111 d7*(w,,-)=1 and g,.;=0 on 2\ .2, These restrictions on z,,; are equivalent to

22 speciﬁcally, if 2={wy,...,w,}, then
mvar(e) = max{ Y p(w)zt—1:z€RY,z;>1-¢ Vi, Y p(w)z;= 1},
N

and the maximum is attained at one of the N extreme points of the constraint set {z/}{’, where
zj=1-¢+e /p(w) and z/=1—¢ if i #]. Finally, note that ¢* constant implies that (2, = (2.
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insists on maintaining assumptions on £ and 7* that are themselves arguably
irrefutable, our model does not restrict the variance of discount factors. More-
over, the above is true for any fixed ¢ > 0, even arbitrarily small. This suggests,
therefore, that some heretofore anomalous features of asset return data can be
accommodated if we introduce a “small” amount of uncertainty aversion into
the standard model.

The above is not to suggest that other important empirical puzzles are
similarly resolvable or that the model (3.4.6)—(3.4.7) is irrefutable. Indeed, in
other dimensions the empirical restrictiveness of the generalization (34.1)
diminishes “continuously” as & increases from 0, the standard model, to the
extreme of complete ignorance, ¢ = 1. For example, assuming for simplicity that
e* is constant, it follows from (3.4.6)-(3.4.7) that the return to a one-period
pure discount bond equals 8~ and that

_1 .
E‘rr*(wt,')Rt+1 —B <“:(E"rr’“(a)t,')Iet-f—vl - n};nRt+1)7

where R,,,=(q,,;+d,,1)/q,. Consequently, the largest admissible equity
premium is small if ¢ is small.”

Belief Function Kernels: Let f& C({2) and define ¥;(y) = argmin{f(w):
G(w) =y). From (2.3.7) (see also Wasserman (1990, Theorem 2.1)), it follows
that for any given f < C(Q2),

(34.8) Qf(w)= {m eH(02):
m(-) = fG(mr(y)(-) dp(y|G(w)) for some function

r:G(£2) - #(Q) such that r(y)(¢;(y)) =1 for all y}.

Therefore, Oy is a continuous correspondence and & satisfies the strict Feller
property if the mapping y’ — p(- |y’) is continuous in the strong topology.

If f is set equal to V* in (3.4.8), we obtain a representation for elements of
Q as a suitable mixture of measures {r(y):y € G(2)}, where r(y) has support
on ,«(y). Since VV* is constant on each ¥+(y), every m € Q(w) induces the
identical probability distribution for V"*. Nevertheless, O(w) is a nonsingleton if

23 Under the additional assumption that the price of equity is constant across time and states
(such an equilibrium exists if beliefs are i.i.d.), the maximum equity premium equals, in terms of
primitives of the model,

&(1 _B)B_I[E'rr*(m,,')dt+1 - ngndt-rll/[(l =€) Ep¥(u,, ) dis1 +em!;nd,+l] .

The latter vanishes if & = 0. Therefore, this expression represents a premium for the uncertainty
associated with holding equity rather than for the bearing of risk. We leave to a separate paper
consideration of the equity premium puzzle (Mehra and Prescott (1985)) unrestricted by the
numerous simplifying assumptions of this section.
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the set of minimizers ,«(y) is a nonsingleton for “many” y values, since then
there are many possible choices for the measure r(y) supported on ().

Arguing as in the preceding example, we can show that the essential eco-
nomic characterization of indeterminacy for the ith security price is the condi-
tion

(3.4.9) u'(e*)df isnot (G,V*)-measurable;

that is, the level of the weighted dividend u*(e*)d} cannot be inferred from
knowledge of the levels of the statistics G and intertemporal utility V'*, This
can be expected to be the case in situations where the statistics G provide only
a crude summary of the underlying state.

Nondifferentiable Lucas Model: Price indeterminacy can occur also in a Lu-
cas-style model where the felicity function u is not necessarily differentiable.
However, such an “explanation” of indeterminacy differs from ours in two
important respects. First, it does not capture Keynes’ intuition, in the citation
above, regarding the link between uncertainty and indeterminacy. In our model,
V(c) = Z5B'ulc,) for deterministic consumption processes, that is, those for
which each c, is a constant function. Therefore, all the usual regularity proper-
ties, including the uniqueness of supporting prices, are satisfied in the domain
of deterministic consumption processes, supporting our assertion that indeter-
minacy is due to uncertainty. In contrast, in the modified Lucas model, support-
ing prices are nonunique even for deterministic consumption processes. The
second important difference concerns the robustness of the prediction of
indeterminacy. Since u can fail to be differentiable only on a zero Lebesgue
measure subset K of R, security prices are determinate in the Lucas model as
long as all conditional distributions assign zero probability to consumption lying
in K. For example, if the endowment process is constant with e* =g, then
security prices are determinate for all € & K. On the other hand, for the
constant endowment case our model predicts indeterminacy for all values of €
and all securities paying nonconstant dividends (see (3.4.2), for example, and
note that 2,, = £ if e* is constant). More generally, we have argued above that
in our model indeterminacy occurs in a “large” set of economies.

Heterogeneous Agents: Our “justification” for representative agent modeling
is the usual one, namely that it provides a simple way to organize observations
in terms of familiar microeconomic principles and notions. One may also take a
more stringent view and ask whether such a model can be justified theoretically
in the context of an economy with heterogeneous agents. Here we adopt such
an approach and prove a complete-markets aggregation theorem along the lines
of Constantinides (1982), thereby providing an additional “example” to which
our representative agent analysis applies. The example serves also to suggest an
alternative interpretation for our price indeterminacy result in a model with
trade and to clarify the “real” consequences of Knightian uncertainty in our
model.
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Expand the economy defined in Section 3.1 to admit H consumers, where
consumer 4 has intertemporal utility function V* corresponding to discount
parameter B, belief kernel correspondence &, and felicity function u”, the only
source of differences in consumer preferences. (Though restrictive, these as-
sumptions are weaker than those in Constantinides (1982), where the standard
single prior representation of beliefs is also imposed.) Specialize & further so
that it implies i.i.d. beliefs (#(w) independent of w), has full support and is
based on the capacity representation of beliefs (Schmeidler (1989)); both the
e-contamination and belief function kernel examples fulfill the latter require-
ment. (See Appendix C for clarification and for a proof of the assertions below
under more general assumptions.)

Though we will be interested in the competitive equilibria of a decentralized
economy, it is useful first to characterize Pareto optimal allocations given the
above preferences, an aggregate endowment process ¢ (possibly different from
e), and the initial state w,. For the usual reasons, it is enough to consider, for
each vector a = (a,)f_, of nonnegative utility weights, the planning problem

(3.4.10) U%(c; wy) = max{Sea, V' (c" w):c" € 9,3c" =c}, ce9.

This U® is a candidate utility for the representative agent in the decentralized
economy specified in the usual way (see Duffie (1992, Chapter 2), for example).
Consumers begin with endowments e” € 2 of consumption and zero shares of
each asset and then trade in complete asset markets. Focus on a (Pareto
optimal) equilibrium allocation and denote by g € 2" a corresponding equilib-
rium price and by « the utility weights corresponding to (3.4.10). Then, by
suitable adaptations of Duffie (1992, pp. 9-11), g is also an equilibrium in the
single-agent model with aggregate endowment e and intertemporal utility U*.

The agent with utility U® is “representative” if the intertemporal utility
function U? lies in the same recursive class defined in Section 2 containing the
individual utilities. Under our assumptions, this is indeed the case: The stan-
dard risk-sharing rule, that is Pareto optimal in the expected utility framework
of Constantinides, is to allocate the endowment x at any time ¢ and state ’ by
solving

(3.4.11) u®(x)=max{ L a,u"(x,): Lx, =x}.

Under our assumptions, this risk-sharing rule continues to be efficient given
aversion to Knightian uncertainty, that is, the set of processes {¢"};~; solves
(3.4.10) if and only if {¢/(o")}fL, solves (3.4.11) for all ¢, ' and x =c, (o). It
follows that U is the recursive intertemporal utility function corresponding, in
the sense of our paper, to 8, &, and u®.

This aggregation result “justifies” the application to aggregate data of our
Euler inequalities (3.2.4) or the discount-factor model (3.3.9)-(3.3.10). However,
interpretations of the indeterminacy of prices and its potential empirical rele-
vance must be revised. That is because it is generally not the case that every
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equilibrium g for the representative agent economy with utility U® is also a
competitive equilibrium for the given initial endowments {e”}. The situation is
easily visualized in the context of an Edgeworth box where at an arbitrary point
on the contract curve there exists a continuum of price lines that separate the
better-than-sets for the two agents, but these lines do not all pass through the
given initial endowment. Since not all selections from the set of representative
agent equilibria are warranted, our earlier discussion of sunspots, animal spirits
and price volatility seems wrong from this perspective. However, not all is lost if
the analyst does not know the initial micro endowments. Indeed, if she knows
nothing at all about them other than that they sum to e, then from her
perspective all equilibria in the representative agent model have equal standing
and the significance of price indeterminacy in the representative agent model is
restored. More generally, one would expect there to remain a continuum of
representative agent price equilibria that are consistent with the analyst’s
information about the micro endowments, and some potential for explaining
price volatility would be retained. We emphasize that, according to this perspec-
tive, the “origin” of price indeterminacy and the associated price volatility lies
in the conjunction of: (i) agents’ aversion to Knightian uncertainty and (ii)
incompleteness of a model formulated exclusively in terms of aggregate vari-
ables, or the analyst’s incomplete information.

The preceding also clarifies the differing implications of our model for prices
versus allocations. In the general representative agent model, prices may be
indeterminate while consumption is exogenously specified and thus trivially
determinate. This can “explain” greater volatility for prices than for consump-
tion. These comparisons are more interesting in the heterogeneous agent model
where the consumption side is nontrivial. Here we see the above confirmed in
the sense that the prices supporting a given efficient allocation may be indeter-
minate. This is not to say, however, that Knightian uncertainty aversion has no
real consequences, as it clearly influences the set of efficient and competitive
allocations.

4. REMARKS ON EMPIRICAL CONTENT

Alternative models of irrational expectations, such as Shiller’s model of
“fads,” have been criticized for not being well enough specified to produce
rejectable implications (West (1988), Cochrane (1991), Leroy (1989)). Some
readers may be sceptical also regarding the useful empirical content of our
model. The discussions surrounding (3.3.9)-(3.3.10) and in Section 3.4 provided
some indication of the potential usefulness of our model. Here we argue further
that empirical investigation of our model is potentially fruitful. However, we
caution the reader that the example just described may provide cause for
* suitably revising and weakening our arguments regarding empirical relevance.

One potential source of scepticism concerns Theorem 4. Equations (3.3.8) are
the Euler equation implied by a Lucas style model in which {¢,} represents
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beliefs. Note that £, is not a probability kernel because it (i) depends on o’ and
not just w, and (ii) may not be continuous in w,. Nevertheless, the theorem
raises concerns about whether our model is essentially observationally indistin-
guishable from a Lucas model, with the rational expectations hypothesis possi-
bly deleted, but where beliefs are represented by probability measures and
therefore uncertainty neutrality prevails. Observe, however, that to replicate an
equilibrium ¢ as an equilibrium of a Lucas style model and the associated Euler
equations (3.3.8), the required “shadow” sequence of probability kernels {£,]}
may seem unnatural and contrived. (For convenience, we refer to the &/’s as
probability kernels though they need not conform to our definition of the term.)
For example, the £,’s will often depend on history or be time dependent for no
“good” reason. Secondly, when some states are extrinsic (see the discussion of
sunspot equilibria in Section 3.3), replication of a sunspot equilibrium g
requires that “shadow” beliefs about intrinsic states, represented by {¢), de-
pend upon extrinsic states. Therefore, acceptance of the Lucas model approxi-
mation requires that one revise the classification of “intrinsic” versus “extrinsic”
states. Finally, we point out below that our model has some cross-sectional
(across agent) implications. They can be delivered also by a Lucas style model
with a larger number of agents, if each agent’s beliefs are represented by some
{¢,}, but the latter would have to vary across agents in an artificial way.

Another possible reason for scepticism is the feeling that our model “can
explain anything” by a suitable specification of the capacity kernel representing
beliefs, which are presumably unobservable. But similar remarks apply with
respect to the specification of utility even if the Bayesian, rational expectations
model of beliefs is adopted. That is, in principle, a wide range of specifica-
tions are possible for the intertemporal von Neumann-Morgenstern index
v(cg,Cys-+-»C;s-..). The strong predictive content of the Lucas asset pricing
model derives in part from the parametric specialization of v to the additive
form Y3Bu(c,). This specialization is widely accepted, at least as a benchmark,
both because of the tractability that it delivers and because we have some
understanding of its plausibility, via its axiomatic underpinnings, for example.
Analogy with the present context of modeling beliefs argues, not for scepticism,
but rather for the need to study the properties of alternative specifications for
2. This paper points out some attractive features of the e-contamination model
(2.3.1) and of belief function kernels, but much more work in this direction is
required.

In order to derive rejectable predictions for time series data, beliefs must be
related to the actual evolution of the state process. One possible link is to posit
that {w,} is governed by a probability kernel 7* and that beliefs incorporate
some vagueness about 7* on the part of the investor. For reasons of robustness
of empirical procedures, Lehmann (1992) suggests studying pricing equations
for a range of discount factors, reflecting the analyst’s imprecise information
about the correct factors. It is at least as plausible to posit that investor’s
information is imprecise. Here such imprecision is incorporated into the theo-
retical framework and a “robust” theoretical model is delivered.
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Finally, some may disagree with the presumption that beliefs are unobserv-
able; for instance, a number of researchers, cited in the introduction, have used
survey data as an independent measure of investors’ expectations. Therefore, to
conclude, suppose that such information is available for a cross-section of
investors and consider some predictions of our model regarding expectations.
We interpret our model as containing a number of agents with identical
endowments and preferences, including the probability kernel correspondence
. 1f surveys elicit entire correspondences, then agents will respond identically
given our model. However, suppose that they are asked for a conditional
probability distribution over next period’s state variables, or for some summary
moments and that they respond with an uncertainty adjusted conditional prior,
that is, with an element of Q(w). Then there is no reason to expect all investors
to report the same element of Q(w). Thus our model is consistent with
heterogeneous measured forecasts, even though agents have common informa-
tion in the form of . Moreover, the dispersion of forecasts should increase if
QO(w) increases in the sense of set inclusion.

Specialize to the s-contamination model of beliefs (2.3.1) and suppose that
e(w) is larger in those states w where the “true” conditional probability
measure 7*(w) is riskier, e.g., has larger variance. Then a positive relation is
indicated between dispersion of reported expectations of forecasters on the one
hand and the poor performance of point forecasts, on the other. For a related
prediction, recall our earlier discussion of a link between the indeterminacy and
volatility of prices. Given such a link, our model suggests a positive relation
between price volatility and the dispersion of reported expectations of forecast-
ers. There is some supporting evidence for such a relation (Cragg and Malkiel
(1982), Frankel and Froot (1990)).

One could derive a number of other predictions that would be testable given
appropriate survey data. Needless to say, we are not asserting that such data are
currently available (see, however, Zarnowitz and Lambros (1987)). The current
paucity of suitable data is not damning of our model, however. After all, one of
the roles of theory is to guide the collection of data.
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APPENDIX A: ProoF oF THEOREM 1

The following lemma is an adaptation to our space 9, consisting of sequences of real-valued
functions, of the well-known Blackwell sufficient condition for a contraction mapping that applies to
a space of real-valued functions.
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LemMa A.l: Let T: 9 — 9 be an operator with the followmg properties: (i) (Monotonicity): if
f,e€ D and f<g, that is, f{0') <g w") for all t and ', then Tf < Tg; (ii) (Discounting): there
exists a real constant B, 0 <bB <1, such that for any f€ 9 and sequence of constant functions
a={a)e Dwitha,eR_, (T(f+a) ") <(Tf) (o) +a,, B for all t and o'. Then T has a unique
fixed point.

Proor: Let f and g € 9. Set a,=|If,— gl Then f<g + a. By monotonicity and discounting,

(1) (") < (T(g + a))(0") < (Tg) (@) + Bl fi+1 — & 41l Thus |(Tf),(w') - (Tg) (@) /b* <
BblIf,+1—8,+1ll/b' 1, and further ||Tf — Tgll < Bbll f — gl|, proving that T is a contraction. = Q.E.D.

ProrosiTion A.2 (Existence of Utility): For each ¢ € 9 there exists a unique V(c) € D such that
(2.4.1) holds for all t and '.

Proor: Define amap T: 2 9 by Vfe 9

(Tf)t(w’) =u(ct(‘”l)) +ﬁfft+l(wt’ )dP(w,, ).

By the continuity of &, (Tf), is continuous. Next,
s (1) (1)< s () + 2 up { [t ) d ()}
= supu(c,(w’))/b’ + Bbllf,+1||/b’+1.

Since u is increasing, concave, and u(0) = 0, we have © > u(llc|) > u(c,/b") > u(c,)/b* and
(If ) ( ') el
177 1| = sup sup ————= < u(licll) + Bbsupllf, . 1ll/6'** <u(llcll) + BbISfI.
¢

t o

Therefore, T is well-defined. Monotonicity and discounting for T are obvious. By Lemma A.1, T
has a unique fixed point, which is the solution of (2.4.1). Q.E.D.

ProposiTioN A.3 (Approximation of Utility): Fix ¢ € 9. For each T, define (V,/(c)}., € 2 by
V,I=0 fort>Tand

Vil(c; o) =u(c(w)) +B[Viic;o', ) dP(w,, )
for 0<t < T. Then limy _,, V,(c; 0") = V/{c; ') for all t and '.
Proor: Verify that, for any ¢t < T and o,
(A1) VT(c;0') <Vi(c;0) <VT(c; o) + V() I(BL) bt Q.E.D.

ProrosiTioNn A.4 (Continuity of Utility): If u satisfies the growth condition, then Vi(c; ') is
continuous in (¢, »").

Proor: Under the growth condition,

[Vi(c;0")| < T_B +k, E Bllc, 4.
j=1

Hence

Bky . Bbk;licll
IOl< =5+ Tg -
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Thus it follows from (A.1) that
Bky " Bbk,|icll
1-8  1-pb

() Ve -V < )(rsbf-fﬂbz.

Let ¢" — c. For fixed ¢,
V(e 0t) - Vi(es 1) <|Vilems o) = V(e o) |+ [V (e 01) = V(e )]
+|Vi(es0') =V (c;01)].
For all ¢ such that [lc" —cll < 1, lc(w")] < (el + DbT for ¢t < T. It follows from the continuity of
u that the second term converges to zero as ¢ — ¢ and that the convergence is uniform in '. By
(A.2), the first and third terms on the right side converge to zero as T — « uniformly in n and o'

Therefore, V,(; »') is continuous at ¢ uniformly in '. The desired joint continuity now follows
from the continuity of V,(c; »") in o'. Q.E.D.

The remaining properties asserted for utility can be proven by standard arguments from the
theory of recursive utility (see Lucas and Stokey (1984), Stokey and Lucas (1989), and Epstein and
Zin (1989), for example). Footnote 8 clarifies the link with the recursive utility literature; note that
W defined there is increasing and concave. For dynamic consistency, note that if & has full support,
then (2.2.6) applies.

APPENDIX B: PROOF oF THEOREMS IN SECTION 3

For the convenience of the reader, we provide here statements of two results invoked in Section
3. The first is the version of Fan’s Theorem employed in the derivation of the Euler inequalities
(3.2.9). A stronger form is proven in Sion (1958, Theorems 4.2 and 4.2').

Fan’s TuEOREM: Let X and Y be metrizable convex and compact subsets of some linear topological
spaces, and f a continuous real-valued function on X XY that satisfies @) f(-,y) is concave on X for
each y; and (ii) f(x, ) is convex on Y for each x. Then

max min f(x,y) = min max f(x,y).
x y y x

Second, the argument surrounding (3.3.2) relies on the following selection theorem that is slightly
stronger than that which is explicitly stated in Michael (1956). This result is also needed below in the
proof of Theorem 3.

LemMa B.1 (Michael): Suppose that X is paracompact, Y is a topological linear space, and Z is a
convex closed subset of Y containing 0 that has a base {B,} for the neighborhoods of 0, consisting of
symmetric and convex sets such that B, 1 C 1B,. Suppose that ¢ : X > Z CY is a lower semicontinu-
ous convex-valued correspondence such that y(X) + B, C Z. Suppose further that for each y € $(X),
y + B, is open in Z. Then the correspondence § defined by ¥(x) =¥ (x) admits a continuous selection.

ProoF: See the proofs of Lemma 4.1 and Theorem 3.2 in Michael (1956), or the proof of
Theorem 9.G of Zeidler (1986). Q.E.D.

Proor oF THEOREM 2: Part (a): It remains to show only that if a price process g satisfies (3.2.4),
or equivalently (3.2.2), then it is an equilibrium. Let (c,6) be any (¢, w")-feasible plan for which
6,_(»'~1)=0. It follows from (3.2.2) with A = 6, that there exist . : 27 - #(2), T >, such that
7 (07) € Q(w,) for each »” and
(Bl) 01- : q‘ru’(e‘r) > BE-n-,,.(w,,, '){u’(ef+1)0‘r : (q1-+1 - d7+1)} .
1t follows from the budget constraints that
) (BZ) e.,—c,—0,~q,= _(q'r+d‘r)'0‘r—1'

By the concavity of u,
(B3) u(e‘r) >u(c'r)+ul(e7)(e1—cf)‘
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Define V,T as in Proposition A.3. We have the following lengthy but elementary chain of
inequalities:
Vi(c;0') = Vi(e; ")
=u(e,) +B[Vii(c; ', ) dP(w, ) —u(e) = B [Viri(es o', ) dP (), )
<u,(et)(ct _et) +BthT+1(C;wt7 ) d‘@(wn ) _Bth+1(e;wt?')d‘@(wt? )

= —u(e)0,-a,+ B [Vii(c;0', ) dP (0, ) ~ B[ Via(es o', ) dP (w1, 7)

< = (€8, 4+ BEy ur, { ViE1(c5 0, )} = BEn o, { Vira(es 0", )}

<BE. (., -){ —u'(e 1) (41t dy1)} +BE, o, ~){ VEi(c; o, )}
—BE. (o, ~){V:+1(e§ o', )}

=BE. o, ~){— w(e )0 (dry1+dsr) +u(crir) +ﬁfV:£2(C§0"+1, 9]
XA (11, =) ~ B [ Vira(es 0", ) dP (0y01.°))
B et o ers ) = o= D i) e 10) + B[Vl 1)
XAP (1) =) ~ B[ Visa(es 01, ) dP (011:) )
B o e s B Va5, ) 4P 0110)
—Bfsz(e?le’ ’)dy(‘”tﬂ»')}
<BE; !, ~){ﬁEm+,(w'“, ~){ —u'(€142)0i12 (2~ d112)
+u(err) +B [VEa(c0 2, ) dP (0,42, ) ~ulerr2)

[ Vius(ei0 ) (0110}

<BE; (., ~){ T ﬁEmw(w'”,'){— W(erre)0ier (drrrs1 +diire1)
+u(c i) —u(errre1)

Vi aa(es0 T NP o)) )
<'BE‘l'n(w’,'){ T ﬁEm+7‘(w’+T, '){ —u’(€,+7+1)0,+7—'q,+7—+1

_Bfl/t+T+2(e;""+T+1’ )dP (o 7415 )} T }

SBEm(w‘,~){ ce ﬁE‘rr,”(w’*T,~){u,(et+T+1)I?"It+T+1} U }
<bi(Bb) " Mw(e*)K gl >0
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where K€ R” has all components equal to inf; , ,-8; (7). The first inequality follows from
(B.3); the second equality follows from (B.2) and 6,_; = 0; the second inequality follows from
m{(0") € Q(w,); the third inequality follows from (B.1); the third and fourth equalities follow
from (2.4.1) and (B.2); the fourth inequality follows from (B.3); the fifth inequality follows from (B.1)
and 7, (@' *!) € Q(w, . 1); the seventh inequality follows from (B.2) and (B.3); the eighth inequal-
ity follows from the short selling constraint 6 > —K and the nonnegativity of utility; and the last
inequality follows from the fact that the process {u'(e,)K - q,} is in 2. Thus V,(c; 0) — V(e; 0') <0,
which implies that g is an equilibrium.

Part (b): We need to show only that Q admits a continuous selection. Then the claim of (b)
follows from (a) and the arguments in the text surrounding (3.3.2).

Let C*(2) be the dual of C(£2) endowed with the weak* topology. Then .Z(2) is a compact
subset of C*(42). Since C({2) is separable, there exists a countable family {f,} that is a dense subset
of the closed unit ball of C(£2). Let Z be the closed ball with radius 4 in C*(2), i.e.,

Z={meC*(2):Imll<4},

where the norm is the usual norm on the dual space. Define a metric on Z by

1
d(P,Q)=Y, o

ff,,dP—ffndQ].

This metric induces the weak* topology on Z. In particular, it induces the weak convergence
topology on #({2), which is a subset of Z. Under this metric, Z is a convex and compact metric
space. Define

1
BE{meZ:Za
n

and apply Lemma B.1.
Part (c): Follows from the dynamic consistency of the utility process under the assumption of full
support for . Q.E.D.

1
ff,,dm’<1}, B,= B,

Proor oF THEOREM 4: See text.

_ Proor or THEOREM 3: Part (b): (i) Proof of (3.3.3) and (3.3.4): Define contraction mappings
T,:9-> 9 and T;: 9 9 by, for each f€ Z,

(Tif)z("”)=ﬂ Max Em{f,+1+u’(e,+1)d,.,,+1},
meQ(w,)

(L;f)(e')=B Min Em{ft+1+u,(et+1)di,t+1}'
meQ(w,)

Denote their unique fixed points by f; and f; and define g; , and g; , by g; (') = fi @) /u'(e ")
and ¢; (") =f; (0")/u'(e(0"). By construction, {g; ,} and {g;, ) € 2 and satisfy (3.3.3).

Given g € &, let {¢,} be as in (3.3.7) and (3.3.8). Denote by T the set of processes satisfying the
requirements in the definition of 2 with the possible exception of continuity. Define contraction
mappings T;: 9 9 by

(Tif)z("’l) = ﬁEg,(w', ~){fz+1 +u'(e,41) di,t+1}'

Its unique fixed point is f; € 9. By (3.3.8) and the uniqueness of the fixed point, '(e,)q; ,=f; , on
0'. Now (3.3.4) follows from the monotonicity of the three maps T}, T;, and 7; and the observation
that (T; ), < (T, f), < (T;f),- Q.E.D.

For the next step, we need the following lemma concerning the existence of -optimal continuous
policies. Bertsekas and Shreve (1978, Section 8.2) contains a parallel result for measurable policies.

Lemma B.2: Suppose that X is paracompact, Y is a topological linear space, and Z is a convex
closed subset of Y containing O that has a base {B,} for the neighborhoods of 0, consisting of
symmetric and convex sets such that B, C 1B,. Suppose ' : X —» Z CY is a continuous, compact and
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convex-valued correspondence such that y(X)+ B, CZ. Suppose further that for each y €T" (X),
y+B, isopenin Z. Let F: X X Z — R be continuous. Define f,g: X = R by

f(x)= min F(x,y); and g(x)= max F(x,y).
yel'(x) yel(x)

(a) If F(x, y) is convex in y, then for any & >0 there exists a continuous function h: X =Y such
that h(x) € T'(x) and F(x, (x)) <f(x)+¢ for allx €X.

(b) If F(x,y) is concave in y, then for any £ >0 there exists a continuous function h: X —'Y such
that W(x) € ['(x) and F(x,h(x)) > g(x)—¢ for allx € X.

Proor: We prove (a). Fix ¢ > 0. Define a correspondence ¢: X - Z CY by
v(x)={yel(x):F(x,y) <f(x)+e}.

By the convexity of F(x,y) in y,(x) is convex. Suppose y € ¥(x,). Then F(x,,y) <f(xq) +e. By
the continuity of f(x) + ¢ (via the Maximum Theorem) and F, there exists a neighborhood N(x,) of
x, such that Vx € N(x,), F(x,y) < f(x) + ¢, which implies that ¥x € N(x,), y € ¢:(x), which in turn
implies that for any open set V/, the set {x:¢(x)NV D} is open. Therefore y is lower
semicontinuous. By Lemma B.1, ¢ admits a continuous selection, say h. Since Y(x)c{ye
I'(x): F(x,y) <f(x) + &}, we have F(x,(x)) <f(x)+e¢ forall x € X. Q.E.D.

Lemma B.3: If ¢, € 9 and satisfies (3.3.8) for some {£,}, then

, u(llelhBd
u (e,)q, <b T-BT

Proor: Apply (3.3.8) and the concavity of u. Q.E.D.

(ii) Proof of (3.3.5): We show the existence of q'. The existence of g2 can be shown similarly. In the
following, the superscript 1 is suppressed and, without essential loss of generality, we set £ =0.
Choose T such that

, (B0) ulllel)Bb
YTV €.
w'(llell)(1 —Bb)
By Lemma B.2 (with X ={2‘, Z as in the proof of part (b) of Theorem 2, I'=Q, F(o',m)=
E, {u'(e, . Xd; ;41 +4;,+1)} and noting that the right side of the last expression is a continuous

function of (!, m)), there exists, for each ¢, m,: 2" — .#(£2) continuous such that 7 (o) € 0(w,)
and

! ’ ’ 2
BE. (o, ~){“ (el+1)(di,t+1 + Qi,t+1)} <u (el(wl))gi,t(w') +u/ (lle*I)(1 - B)e.
By the proof of Theorem 2(b), there is a unique equilibrium price process g in & associated with

{m,} as in (3.3.8) with ¢, replaced by m,. Now we show that g; , satisfies the appropriate form of
(3.3.5). For this purpose, define g7 € & by ¢/ ,=0for t>T+1, ‘IET+1 =g; 741 and

w(e 1)

u'(e,)

Then we claim for ¢t < T,

q£t=ﬁE”‘{ (di,,+1+q£,+1)} fort<T.
(B.4) w'(e)al, <u'(e)g;,, +u(lle*lD(1- B)Z(e +Be+ -+ +BT 7).
This is true when ¢ =T, since

u’(er)qiT,T=BEnT{u'(eT+1)(di,T+1 + Qi,T+1)} <u'(e)q,r+ W' (lle*lhe(1 - B)2~
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Assume that (B.4) is true for some ¢ + 1 < T. Then
w(e)al, =BE7,{“’(31+1)(di,z+1 +‘1iT,t+1)}
< ﬁE-n-,{u,(et+1)di,l+1 +u(e 1)1
+u (le*l)(1 - B)2(e +Be + -+ +BT~'"1e)}
<u(e)g;, +u(le*)(1—-B) (e +Be+ -+ +BT ).

Thus (B.4) is established.
Setting ¢ = 1 and letting T — « on the right side of (B.4), we obtain

afi < g1 +te(1—pB).
Now by Lemma B.2 and straightforward calculation,

RPN ) (N
\qi,l qi,l\ ul(”e()”) I—Bb

Then by our choice of T, g; 1 < qu +Be<g;,te. Q.E.D.

(iiii) Proof of (3.3.6): “Only if” follows from (3.3.4). For the converse, assume (3.3.6). By choosing
¢ sufficiently small in (3.3.5) and noting the proof of the latter, it follows that there exist two
equilibria ¢° and q!, with q?+#q} and corresponding (in the sense of (3.3.2)) sequences of
continuous functions {7} and {r}} from Q' to .#(2) with (') € Q(w") for i=0,1 and all
'€ 0. For each a €[0,1], define w¥=aw?—(1 — a)m}. By the proof of Theorem 2(b), there
exists a unique g(a) € & such that

w(e 1)

q;, (@, 0") =BE a0, —,_-_(qi,t+1(a)+di,t+l) .
u'(e,)

If it can be shown that for each i and ¢, the map a+—g; (@) € C(0?) is continuous, then the
proposition is proven because q,? . #q; , implies that q,-? (o' # q,-l, (") for some w'. Then g; (a, ')
as a continuous function of o assumes at least two distinct values and hence must assume a
continuum of distinct values.

It remains to show that g; (a) is continuous in a. Let & > 0. By Lemma B.3,

B5)  Nai(@) —a (@) <l (o) - gl ()] +]aF (a) ~a (a0)]
+||qiT,:(a0) _qi,t(aO)“

b'(8b)" " u(llel) Bb
<
u'(lle (1 —Bb)
where g7(a) € 9 is defined by g} (a) =0 for t>T and

+|laF (@) - aF (ap)],

u'(e 1)
u'(e,)
The continuity of q{ (a) as a function from [0,1] to c(n?) follows by straightforward induction.

This implies that the second term of (B.5) can be made less than & /2 by choosing |a — al
arbitrarily small. Finally, choose T such that the first term of (B.5) is less than & /2. Q.E.D.

qg:t(a)=Bwa'{ qu+1(a)+di,t+1)} fort<T.

Part (a): Let g" € & and g" - g € 9" Then, by the Maximum Theorem, (3.2.2) is satisfied for
g. Therefore, g € & and & is closed.

Define PEC & to consist of those equilibria g for which (3.3.8) is satisfied by some sequence (¢}
as in (3.3.7), except that “measurability” is strengthened to “continuity.” As in the proof of (3.3.6),
P& can be shown to be path-connected and hence also connected. Secondly, P& is dense in &.
(The argument is similar to the proof of (3.3.5); in particular, e-optimal continuous policies are used.
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A detailed proof is available from the authors upon request.) We conclude (Dugundji (1966,
Theorem 1.6, p. 109)) that & is connected. Q.E.D.

APPENDIX C: AGGREGATION IN A HETEROGENOUS AGENT EcoNomy

We provide the details to support the example in Section 3.4 dealing with heterogeneous agents.

First define the subclass of our model of utility that corresponds to Schmeidler (1989) where
beliefs are represented by a capacity. Say that the probability kernel correspondence & is
capacity-based if for each » € 2: (i) the mapping 4 - P(w, A), from Z() into [0, 1], defines a
convex capacity; and (ii) P(w) = {m € M(2): m(A4) > P(w, A), VA € #(0)}. In that case we have
the following convenient Choquet integration formula for any f & C,(2):

[fdP(w)= fomg’(w,{» 1)) dt.

Moreover, and this is critical for what follows, for any two such functions f and g:

(c.1) [(f+8)dP(0)> [fdP(w)+ [gdP(w)
and equality prevails if f and g are comonotone, that is, if

(€2) [f(o') - f(@)][g(e) —g(0)] >0, Vo', 0e€n.

Note that the s-contamination and belief function kernel examples are capacity-based. For these
and other examples in a static setting, see Wasserman and Kadane (1990). Suppose further that &
has full support and that #(w) is constant in .
Let B, {u"}, {¢"}, and e be as in the text. For each ¢ and o' assign consumption to agent & given
by the solution to (3.4.11) with x = e*(w,). Denote the consumption processes defined in this way by
¢" and the associated utility processes by V", Then

VM (w") = u"(x"+(e*(w,))) + constant,

where x"*(x), h=1,..., H, is the solution to (3.4.11). Since the latter functions are all nondecreas-
ing, we see that

(%) for each ¢, the functions {I7,h h=1,...,.H } are pairwise comonotone.

That is, given the allocation {c"}, agents agree (weakly) in their induced rankings of states. This
occurs because the i.i.d. assumption restricts the dependence of beliefs on the current state so that
it does not offset the comonotonicity of current felicities u”(x”*(e*(-))).

We now show that {¢”} solves (3.4.10) umquely and in particular is Pareto optimal: For any other
feasible utility processes {V,"}°_, for h = 1,..., H, (2.4.1), (C.1), and (3.4.11) imply

YaVi(o') = Laut(ch(@)) +B L ay [Vii(e', ) dP(w,, ")

< Leuh(ei(a")) + B[ LaVli(e', ) dP (o, )
whereas
(€3)  Tabhe') = Taut(el(w) +B[ LanZlii(o', ) dP(ay, ).
By the contraction mapping arguments in Appendix A, it follows that

(C4) Y a V(o) < Yab (o).

The full support assumption for & guarantees that {¢"} is the unique solution to (3.4.10).
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In terms of the candidate representative agent’s intertemporal utility U* defined by (3.4.10), it
follows from (C.3) and (C.4) that

Uta(e;w') = u"‘(e*(wl)) +BfUto-‘!—l(e;wt’ ‘)d@(w,, )

Moreover, a corresponding equality holds also if e is replaced by an arbitrary ¢ € 9, since the
preceeding arguments extend to arbitrary endowment processes e. Therefore, U® is generated by B3,
Z, and u®, completing the arguments sketched in the text.

Finally, note that the assumption of i.i.d. beliefs was used above only to guarantee (). Indeed,
the latter condition, assumed to hold not only for the given e but for all endowment processes in an
open neighborhood of e in the norm topology of 2, suffices for our aggregation result.
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