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Asset Pricing with Stochastic 
Differential Utility 

Darrell Duffie 
Stanford University 

Larry G. Epstein 
University of Toronto 

Asset pricing theory is presented with represen- 
tative-agent utility given by a stochastic differen- 
tialformulation of recursive utility. Asset returns 
are characterized from general first-order con- 
ditions of the Hamilton-Bellman-Jacobi equation 
for optimal control. Homothetic representative- 
agent recursive utilityfunctions are shown to imply 
that excess expected rates of return on securities 
are given by a linear combination of the contin- 
uous-time market-portfolio-based capital asset 
pricing model (CAPM) and the consumption-based 
CAPM. The Cox, Ingersoll, and Ross characteriza- 
tion of the term structure is examined with a recur- 
sive generalization, showing the response of the 
term structure to variations in risk aversion. Also, 
a new multicommodityfactor-return model, as well 
as an extension of the "usual"discounted expected 
value formula for asset prices, is introduced. 
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In this article we explore asset pricing theory, conventionally based 
on additive intertemporal von Neumann-Morgenstern utility, under 
a continuous-time version of recursive utility. 

The conventional asset pricing model in financial economics, the 
consumption-based capital asset pricing model (CCAPM) of Lucas 
(1978) and Breeden (1979), assumes that agents' preferences have a 
time-additive von Neumann-Morgenstern representation. The model 
has been criticized for two (possibly related) reasons. First, it does 
not perform well empirically [see, e.g., Hansen and Singleton (1983); 
Mehra and Prescott (1985); Mankiw and Shapiro (1986); and Breeden, 
Gibbons, and Litzenberger (1989)]. Second, the above specification 
of utility confounds risk aversion and intertemporal substitutability 
within the instantaneous felicity function, while it would be clearly 
advantageous to the modeler to be able to disentangle these two 
conceptually different aspects of preference. 

Motivated by these two drawbacks of the standard model, Epstein 
and Zin (1989) and Weil (1990) study recursive intertemporal utility 
functions in a discrete-time setting. These utility functions permit a 
degree of separation to be achieved between substitution and risk 
aversion [this separation having been used to advantage by Epstein 
(1988), Campbell (1990), and Kandel and Stambaugh (1990)], and 
also imply relations between asset returns and rates of consumption 
that match data more closely [see, e.g., Epstein and Zin (1991a, 1991b), 
Giovannini and Weil (1989), and Bufman and Leiderman (1990)]. 
Moreover, these objectives are achieved at a reasonable "cost" in 
terms of the required relaxation of the axioms of intertemporal 
expected utility theory. The principal relaxation is to allow nonin- 
difference to the temporal resolution of consumption risk in the sense 
first discussed by Kreps and Porteus (1978). On introspective grounds, 
such nonindifference seems to us at least reasonable, if not compel- 
ling. [For relevant axiomatizations of recursive utility, see Kreps and 
Porteus (1978), Chew and Epstein (1991), and Skiadas (1991); for 
further discussion of the reasonableness of recursive utility, see Epstein 
(1992, sec. 3).] 

In a precursor to this article [Duffie and Epstein (1992)], we for- 
mulate and analyze a continuous-time form of recursive utility, which 
we call stochastic differential utility. In this article, we demonstrate 
the tractability and usefulness of these utility functions by applying 
them in a representative-agent framework to derive a number of new 
asset pricing models. We take full advantage of the analytical power 
afforded by continuous time-our asset pricing results are sharper 
and simpler than those achieved in a discrete-time framework. 

We derive two alternative extensions of Breeden's CCAPM. In the 
first, assuming that the representative agent's utility function is homo- 
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thetic, we show that expected excess returns on assets are given by 
a linear two-factor model, in which the factors are aggregate con- 
sumption growth and the return on the market portfolio. That is, one 
has a linear combination of the CCAPM and the static CAPM of Sharpe 
(1964) and Lintner (1965). In a discrete-time setting, such a two- 
factor model has been derived only as an approximation under the 
assumption that consumption and asset returns are jointly lognormally 
distributed [Epstein and Zin (1991a)]. 

The above two-factor model is susceptible to the Roll (1977) cri- 
tique of CAPM-the aggregate portfolio presumably includes non- 
traded assets, so returns to this portfolio are imperfectly observable. 
Therefore, we describe an alternative extension of the CCAPM that 
is immune to this criticism. We require that consumption at each 
instant has at least two components, and thereby derive (under spec- 
ified assumptions) a multifactor model of expected excess returns 
that is distinguished from the CCAPM by the inclusion of a relative 
price factor. For example, if consumption consists of "ordinary" con- 
sumption and leisure, then the covariance of an asset's return with 
the real wage is one of the determinants of the systematic risk of the 
asset. For another example, if the agent is representative of a small 
open economy, and if the consumption vector consists of one traded 
good and one nontraded good, then covariation with the real exchange 
rate is one explanatory factor for the excess mean return of an asset. 

In our final asset pricing model, we highlight the theoretical advan- 
tages of the flexibility provided by stochastic differential utility in 
disentangling risk aversion and intertemporal substitution. This is 
done by examining a generalization of the Cox, Ingersoll, and Ross 
(1985a) model of the term structure of interest rates in which one 
can characterize the response of the term structure to variations in 
risk aversion. We emphasize that such a characterization is not pos- 
sible given the additive von Neumann-Morgenstern utility specifi- 
cation adopted by Cox, Ingersoll, and Ross-a change in the concavity 
of the instantaneous felicity function affects both risk aversion and 
the degree of intertemporal substitution and thus the interpretation 
of the corresponding comparative statics results is ambiguous. 

We include one further asset pricing result of note-an extension 
of the "usual" expected discounted value formula for pricing a stream 
of dividends. This formula is used in our analysis of the term structure, 
but it is of broader interest. 

To conclude this introduction, we relate our work to a body of 
literature that studies alternative generalized preference structures 
and the asset pricing implications that they deliver [see, e.g., Singleton 
(1990), Sundaresan (1989), Constantinides (1990), Hindy and Huang 
(1990), Detemple and Zapatero (1989), and Heaton (1991)]. These 
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authors study utility functions that relax intertemporal additivity in 
an attempt to model, for example, habit formation or the durability 
of consumption goods. A consequence is that past consumption "mat- 
ters" directly in affecting current preferences, while, for recursive 
utility, past consumption influences current choices only via its effect 
on current wealth.1 While these alternative routes to generalizing 
intertemporal utility have considerable intuitive appeal, they do not 
deliver a separation between substitution and risk aversion [see Epstein 
(1992)], nor do they yield the new asset pricing models described 
below. It is a still unresolved empirical question whether recursive 
utility or one of the above alternatives, or perhaps a suitable com- 
posite, best explains and helps to organize the observed behavior of 
consumption and asset returns. There are of course other research 
directions that may also serve to better explain equilibrium asset 
prices, such as incomplete markets, transactions costs, and so on. 

We proceed as follows: In Section 1, we provide a brief and user- 
oriented outline of stochastic differential utility. Asset pricing impli- 
cations are described in Section 2. 

1. Stochastic Differential Utility 

1.1 Background 
In this section, we describe an extension of the standard additive 
utility specification, in which the utility at time t for a consumption 
process c is defined by 

Vt =Et e-#(s-t)u(cs) ds t> 0 (1) 
s2 t 

where Et denotes expectation given information available at time t. 
The more general utility functions, called stochastic differential utility 
(SDU), exhibit intertemporal consistency and admit Bellman's char- 
acterization of optimality. Much of the tractability of (1) is therefore 
preserved. The SDU model is a continuous-time analogue of the 
Epstein-Zin discrete-time utility, in which the utility is defined recur- 
sively by 

V = W(ct, mQ#Vt+1 I Ye)), (2) 

where W is a function in two variables, f Vt+ Y 1 t denotes the dis- 
tribution of the utility Vt+j at time t + 1 conditional on the information 

I Another difference between the two classes of utility functions is that, for the class in which the 
past matters, it is assumed that the von Neumann-Morgenstern model describes attitudes toward 
gambles in consumption, while the recursive utility class admits more general risk preferences. 
However, there exist recursive utility functions that conform with the von Neumann-Morgenstern 
axioms, for which past consumption does not influence current preferences, but which are not 
intertemporally additive (see Example 2 in Section 1.3). 
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Yt available at time t, and m is a certainty-equivalent functional. For 
example, a version of the Kreps-Porteus (1978) model can be obtained 
by taking the special case of the expected-utility certainty-equivalent 
m defined by m(-X) = h-1(E[h(X)]), where h is a von Neumann- 
Morgenstern utility function. 

The outline of stochastic differential utility provided here is designed 
to provide adequate background for understanding the asset pricing 
applications. For further details and for proofs of some of the asser- 
tions made below, the reader is referred to our companion article 
[Duffie and Epstein (1992)]. 

1.2 The definition 
We begin with a typical setup for continuous-time asset pricing: a 
standard Brownian motion B in Rd on a given probability space, and 
information given by the standard filtration {-t} of B. That is, Yt is 
the a--algebra generated by {B,: 0 < s < t} and augmented [see Karatzas 
and Shreve (1988) or Chung and Williams (1991) for technical def- 
initions that we do not provide here]. The time horizon TE (0, oo] is 
finite unless otherwise indicated. Consumption processes are chosen 
from the space D of square-integrable2 progressively measurable pro- 
cesses valued in C = pi , for some number 1 of commodities. (We 
take 1= 1 except where indicated.) 

The stochastic differential utility U: D - G is defined as follows by 
two primitive functions, f: C x G - G and A: G -> P. When well 
defined, the utility process Vfor a given consumption process c is 
the unique Ito process Vwith VT = 0 having a stochastic differential 
representation of the form 

dVt = [-f(ct, Vt) -A VA ) ()I-, (t) 112] dt + -,(t) dBt, 

where o-V is an Rd_valued square-integrable progressively measurable 
process, and where the dependence of Von c is suppressed in the 
notation. We think of Vt as the continuation utility for c at time t, 
conditional on current information, and A( Vt) as a variance multiplier, 
applying a penalty (or reward) as a multiple of the utility "volatility" 
IIa- (t) 112. If, for each consumption process c, there is a well-defined 
utility process V, the stochastic differential utility function U is defined 
by U(c) = VO, the initial utility. The pair (f A) generating Vis called 
an aggregator. Roughly speaking, the connection between (f A) and 
the pair (W, m) employed in the discrete-time formulation (2) of 
recursive utility is that f is a differential counterpart of W, while A is 
a measure of the local risk aversion of m. 

2 The square-integrability requirement on a process c is that E(fT 11 c,jI2 dt) < oo, or when T= +00, 
the requirement is that E(fo eVtIj c,tl2 dt) < oo, where v is a constant characterized in Appendix C 
of Duffie and Epstein (1992). (This appendix is co-authored with Costis Skiadas.) 
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Since VT= 0 and f av(t) dBt is a martingale, we can equally well 
write 

(T[ 
Vt= Etj f(C,s V) + -A(Vs)11 /V(S)II2 ds (3) 

where Et denotes expectation given Yt. In special situations, we may 
vary from the convention taken here of having zero terminal 
utility VT. 

On occasion (Section 2.4), we will consider the infinite horizon 
case. For each consumption process c, the infinite horizon utility 
process Vt is defined as the pointwise limit, as T - oo, of VT, where 
we let VT denote the solution of (3). That is, 

V = lim VT. (3') 

In Appendix C of Duffie and Epstein, co-authored with Costis Skiadas, 
it is shown that the utility process Vt defined in this way is the unique 
solution V, satisfying a suitable transversality condition, to 

/TF 
Vt = Et, [ f(c,, V1) + -A(V,) joy(s)l VS ds + dST ?V t 

The special case (1) of additive utility is obtained by letting A = 

0 and f(c, v) = u(c) - flv, as can be checked with an application of 
Ito's Lemma. Though (3) seems considerably more complicated than 
(1), a principal thrust of our earlier article and a major objective here 
is to show that (3) is nevertheless "as tractable" as (1). This is accom- 
plished by establishing a number of desirable properties for the defin- 
ing relation (3). 

First, under specified assumptions on the aggregator, there exists 
a unique Ito process V satisfying (3). Thus, the stochastic differential 
utility function U is well defined by (3), though an explicit closed- 
form representation for U generally does not exist. Second, under 
natural conditions on the aggregator, U has a range of natural prop- 
erties. For example, Uis monotonic and risk averse if A(-) ' 0 and 
iff is jointly concave and increasing in consumption. A third desirable 
property is the existence of a number of canonical parametric func- 
tional forms, in addition to the standard specification (1), two of 
which are described below. Fourth, Bellman's characterization of 
optimality can be applied in such a way that state variables reflecting 
past consumption are unnecessary. The fact that past consumption 
does not matter, in the sense that the continuation utility Vt is inde- 
pendent of consumption prior to t, is a consequence of the forward- 
looking nature of (3). The Bellman equation is described in Section 2. 

A final attractive feature of stochastic differential utility, and one 
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that distinguishes it from the additive expected utility form (1), is 
the flexibility to partially disentangle intertemporal substitution from 
risk aversion. It is apparent from (3) that, for deterministic con- 
sumption processes, the variance multiplier A is irrelevant since it 
multiplies a zero variance. Thus "certainty preferences," including 
the willingness to substitute consumption across time, are determined 
by f alone. We conclude that only risk attitudes are affected by a 
change in A (holding ffixed). In particular, let 

A*(.) < A(-), (4) 

and suppose that U and U* are the intertemporal utility functions 
corresponding to (f A) and (f A*), respectively. Then U* is more 
risk averse than Uin the sense that any consumption process c rejected 
by Uin favor of some deterministic process c would also be rejected 
by U*. That is, 

U(c) '< U(c) X U*(c) -< U*(c). (5) 

We emphasize that this establishes the significance of the variance 
multiplier for comparative rather than absolute risk aversion and that 
this significance arises only for a given f [That is, the comparison 
above is between (f A) and (f A*) with fcommon.] In particular, if 
A* is everywhere negative, then it is correct to say that U* corre- 
sponding to (f A*) is more risk averse than U corresponding to (f 
0), but it is not necessarily true that U* is risk averse [in the sense of 
preferring any c to the mean consumption process for which time t 
consumption equals E(ct)]. 

1.3 Examples 
We offer the following examples, which are also found in Duffie and 
Epstein (1992). 

Example 1 (StandardAdditive Utility). The standard additive expected 
utility function (1), with the utility process 

Vt = Et u(cs) e-#(s-t) ds], 
st 

corresponds to the aggregator (f A), where 

f(c, v) = u(c) - v, A= O. (6) 
If C = D<+ and u has the usual properties, then we can also define the 
aggregator 

f(c, v) = A (c) u(v) A(v) = u (v) (6') 

Ito's Lemma applied to u(Vt) shows that the corresponding utility 
process V satisfies 
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Vt= U1(f3Vr) = U-(Et[ u(cj)e-h6(st) dsj) 

In particular, the utility functions U defined by (f A) and Udefined 
by (f A) are ordinally equivalent and thus represent the same pref- 
erence ordering of consumption processes. Therefore, in a sense 
clarified further below, the aggregators (f A) and (f A) are "equiv- 
alent." 

Example 2 (Uzawa Utility). Let the aggregator (f A) be defined by 

f(c, v) = u(c) - (C)V, A(v) = 0, (7) 

which extends (6) by allowing 3 to vary with c. Then an application 
of Ito's Lemma yields the stochastic differential utility U: 

U(c) = Eo[ u(cs)exp[-f (c7) dj dsl (8) 

This functional form was proposed by Uzawa (1968) in the context 
of certainty, and was subsequently studied in a setting of uncertainty 
by Epstein (1983) and applied to asset pricing issues by Bergman 
(1985). Restricted to deterministic consumption processes, Uviolates 
the strong intertemporal separability of (1) if f(l) is not constant. In 
particular, the marginal rate of substitution [see (35) below and the 
ensuing discussion] between consumption at two instants s and t, 
with s < t, is independent of consumption at times preceding s, but 
depends on consumption at all other times. Since the variance mul- 
tiplier A is fixed in (7), however, there is no scope for changing risk 
attitudes without at the same time affecting certainty preferences or 
the willingness to substitute across time. The next example provides 
such flexibility. 

Example 3 (Kreps-Porteus Utility). Let C = IR+, 0 ' p < 1, 0 ' f, 0 
# a < 1, and define, for v > 0, 

f(c C)V) = d , A(v) = - (9) 
p VP-1 V 

Although a closed-form expression for the corresponding utility func- 
tion is not available, this example has some nice features. First, the 
functionfcoincides with (6') if u(c) cp/p. Thus, for deterministic 
consumption processes, the utility function is of the additive CES 
form, with elasticity of intertemporal substitution (1 - p)-1. If a = p, 
then the standard additive and Kreps-Porteus utilities coincide even 
for random processes since the aggregators defined by (6') and (9) 
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are identical. This is not so, however, if a =# p. It can be shown (by 
applying Ito's Lemma and taking limits as the length of a time interval 
goes to zero) that the corresponding stochastic differential equation 
for the utility process V is the continuous-time limit of the homo- 
geneous CES specification examined in discrete time by Epstein and 
Zin (1989). It is shown there that risk aversion of the intertemporal 
ordering increases as a falls. A corresponding result for our contin- 
uous-time framework is implied by the discussion surrounding (4) 
above, since A(-) falls as a does. In a well-defined sense, therefore, 
p and a can be interpreted as intertemporal substitution and risk 
aversion parameters, respectively. 

1.4 Ordinally equivalent utility processes 
Only the ordinal properties of a utility function are of interest and, 
as illustrated in Example 1 above, there may exist different aggregators 
generating ordinally equivalent utility functions. Moreover, for ana- 
lytical convenience we may wish to employ a particular representation 
of intertemporal utility and the corresponding aggregator. In order 
to explore this, we consider a change of variables in the form of a 
twice continuously differentiable 'P: [R - [R that is strictly increasing 
with SP(0) = 0. Two utility functions Uand Uare ordinally equivalent 
if there is a change of variables SP such that U = SP o U. Two aggregators 
(f A) and (f) A) are then defined to be ordinally equivalent if they 
generate ordinally equivalent utility functions. 

With the aid of Ito's Lemma, it can be seen that two aggregators 
(f A) and (f) A) generating utility functions are ordinally equivalent 
if there is a change of variables SP with 

f(c, z)= f[',( (z) (c, z) E C X D, 

(10) 

A(x) = ' P(x)A[SP(x)] + <P> (x) 

For example, beginning with (f A), an often simplifying change of 
variables is some such 'P that eliminates the variance multiplier A 
from the formulation. That is, consider the possibility of choosing SP 
so that the new variance multiplier A defined by (10) is zero. It is 
enough that S? satisfies the differential equation (P'(x) = A(x)'P'(x). 
Solutions are defined by 

SP(V) = C2 + C1 f exp A(x) dx] du, (11) 

where v0 is arbitrary and C2 and C1 are constants, with C1 > 0, chosen 
so that (P(0) = 0. 
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If V = S? o Vis integrable, it follows that Vsatisfies (3) if and only if 

Vt = Et{ f(cs, Vs) dsj, tE [0, T]. (12) 

By the above construction, any aggregator (f A) has an ordinally 
equivalent aggregator ((f A) whose variance multiplier A is zero. 
We refer to (f A), or fitself, as the normalized version of (f A). 

Since normalizing an aggregator yields the substantial simplifica- 
tion of (3) represented by (12), this is advantageous for proving the 
existence of stochastic differential utility [see, for existence results, 
Duffie and Epstein (1992) as well as Duffie and Lions (1990)]. In this 
article, the primary reason for being interested in the normalized 
version of an aggregator is that it leads to a simpler form for the 
Bellman equation. 

We emphasize that the reduction to a normalized aggregator (f, 0) 
does not mean that intertemporal utility is risk neutral (even though 
A = 0) or that we have lost the ability to disentangle substitution from 
risk aversion. Such disentangling is not easily expressed in terms of 
f however, since both components of the original aggregator (f A) 
are involved in f and the exercise of "keeping f fixed while changing 
A" is not readily expressed in terms of falone. Thus, we suggest the 
following two-step procedure to the modeler: 

1. Specify an unnormalized aggregator (f A) such as (9); each 
component admits an unambiguous interpretation as in the Kreps- 
Porteus example. 

2. In order to solve intertemporal optimization problems via the 
Bellman equation, apply the change of variables (11) to obtain the 
normalized version (f, 0), keeping in mind the interpretation of the 
components of f provided by Step 1. For example, the normalized 
aggregator fcorresponding to (9) is given by 

a cP - (ae v) Pla 
f(C, v) =~ - (v) ffC )p (alv) (Pla-1) 

where the parameters p and a have been previously interpreted. 

1.5 Homotheticity 
We will make use of the following definition in the asset pricing 
discussion. A utility function Uis homothetic if, for any consumption 
processes c and c' and any scalar X > 0, 

U(Xc') > U(Xc) U(c') - U(c). 

The SDU function generated by an aggregator (f', A') is shown in 
Duffie and Epstein (1992) to be homothetic if (and in a natural sense 
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only if) there is an ordinally equivalent aggregator (f A) satisfying 
(i) f is homogeneous of degree 1, and (ii) the variance multiplier A 
is linearly homogeneous of degree -1 in that, for some k, A(v) = 
k/v for all v > 0. In fact, the nonordinal utility function Ugenerated 
by such an (f A) is homogeneous of degree 1-that is, U(Xc) = XU(c) 
for all c and X > 0. An example is the Kreps-Porteus utility generated 
by the aggregator (9). 

2. Asset Pricing Results 

Following the approach of Merton (1973) and Breeden (1979), as 
well as Cox, Ingersoll, and Ross (1985b), we can explore the impli- 
cations for asset returns of the Bellman equation determining optimal 
consumption and portfolio choice. Svensson (1989) has done inde- 
pendent work on the portfolio choice problem with a class of recur- 
sive utility functions. [The more abstract approach of Duffie and Skia- 
das (1990) mentioned below can be used to obtain the same results 
in a non-Markovian setting and with weaker differentiability assump- 
tions.] 

We take as given an n-dimensional Markov state process X satisfying 
the stochastic differential equation 

dXt = b(Xt, t) dt + a (Xt, t) dBh, X0 E pn, (13) 

where b: F n x [0, T] - Win and a: F n x [0, T] f lnxd. (It is enough 
for the existence and strong uniqueness of X that a and b are Lip- 
schitz.) We follow the line of exposition in Duffie (1988, exercise 
25.12), and assume that the value function for optimal utility is a C2'1 
function J: pn X D X [0, T] - D<, withJ(x, w, t) denoting the maximum 
utility in state x with wealth w at time t. In state x at time t, let 
X(x, t) E RN denote the vector of expected rates of return of the N 
given risky assets in excess of the riskless instantaneous return 
r(x, t), and let o(x, t) denote the N x dmatrix of diffusion coefficients 
of the risky asset prices, normalized by the asset prices, so that U(x, 
t)of(x, t)T is the "instantaneous covariance" matrix for asset returns. 
The combined state process { (Xt, W) } is defined by the underlying 
Markov "shock" process X and by the wealth process Wsatisfying 

dWt = [WtztTX(Xt, t) + Wtr(Xt, t) - ct] dt + WtztTo(Xt, t) dBt, (14) 

where { (ct, zt) } is the consumption-portfolio control process, with Zt 

E RN representing the fractions of wealth Wt invested in the N risky 
assets at time t. 

For a normalized aggregator f Duffie and Epstein show that the 
Bellman equation for optimal control is 
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sup D(cz)J(x, w, t) + f[c, J(x, w, t)] = 0, (15) 
(c,Z)ECX RN 

where 

D(cz)J(x, w, t) = jt + Jxb + Jw(wzTX + wr - c) + 1tr(l), 

with 

(za) (JXx J,t wza) 

This reduces to the familiar Bellman equation if f is given by (6), 
corresponding to the additive expected utility model of preferences. 
The simplicity of (15) is notable, especially in light of the complexity 
of (3) and even (12). 

2.1 A two-factor CAPM 
We will continue to adopt, without explicit mention, differentiability 
assumptions suggested by our line of attack. The first-order condition 
for the Bellman equation for optimal interior c is fc = Jw. Assuming 
that the optimal consumption policy is given by a smooth function 
C of states [i.e., ct = C(Xt, Wt, t)], we can differentiate Jw = fc with 
respect to w and obtain Jww = fccCw + fc,Jw. Likewise, differentiating 
with respect to x leaves 

=wx fcccx + fclJx (16) 

The first-order condition with respect to the portfolio vector z is 

JWX + Jww qTZW2 + oaTJxww = 0. (17) 

Simplifying, the vector X of excess expected rates of return satisfies 

-A = ICCaaT + f cyooTzw + fc 
aaTjl, (18) 

Jw - Jw 

where 

ac= Cxa + CwwzTa (19) 

is the diffusion function for consumption. Assuming a single repre- 
sentative agent, ,RC -a-T is the vector of "instantaneous covariances" 
of asset returns with aggregate consumption increments. Likewise, 
since market clearing implies that ztWt is the vector of total market 
values of the securities, we can view IRm 0--TztWt as the vector of 
instantaneous covariances of asset returns with increments in the 
value of the market portfolio. For the third term on the right-hand 
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side of (18), however, it is difficult to give an observable interpretation 
without further assumptions. 

Suppose, for example, that Cx and J. are co-linear. This is true, for 
instance, under homothetic preferences, for which Jis homogeneous 
with respect to wealth-that is, of the form J(x, w, t) = j(x, t) w- for 
some j and y.3 By (16), therefore, 

fcc, = (eyt - fC)J,. (20) 

In this case, using (19), the third term of (18) is a linear combination 
of ,RC and 1, and we are left with a restriction on asset returns of 
the form 

X = kl'RC+ k2 IRM, (21) 

for scalar-valued functions k, and k2 on Gn X [0, T]. In other words, 
we have a linear two-factor model for excess expected returns that is 
a linear combination of the consumption-based CAPM of Breeden 
(1979) and the market-portfolio-based CAPM of Sharpe (1964), Lint- 
ner (1965), Merton (1973), and Chamberlain (1988). 

It can be shown, as one would expect, that the functions k1 and k2 
are invariant under the ordinal transformation (10). It is convenient 
to adopt the linearly homogeneous utility function U to represent 
preferences corresponding to an aggregator (f A) such that f is lin- 
earlyhomogeneous andA(v) = (a - 1)/vfor some a < 1 (see Section 
1.5). In that case, one can derive that 

k = ya , 2 w(1-)a (22) 

where y =- cfc/f. We have seen [via (4) and (5)] that a can be 
interpreted as a comparative risk-aversion parameter. On the other 
hand, Epstein (1987) shows that y provides an inverse measure of 
the degree to which consumption is substitutable across time in a 
deterministic setting. [For the Kreps-Porteus utility example (Exam- 
ple 3), y = 1 - p, the reciprocal of the constant elasticity of inter- 
temporal substitution.] Thus, both intertemporal substitution and risk 
aversion determine the "factor premiums" k1 and k2 in (21). 

The assumptions underlying our two-factor model-the existence 
of a representative agent and homothetic utility-are special. Under 
homotheticity, demand aggregation in the strong sense of Gorman 

I We are given the homothetic utilityfunction Uand aggregator (f 0). We apply Section 1.5 repeatedly 
to argue as follows: First, there exists an aggregator (f' A'), ordinally equivalent to (fi 0), such 
that the implied utility function U' is homogeneous of degree 1 and such that A'(v) = k/v. If k = 
0, then A' = 0, and by (10) and (12), U' = KUfor some constant K If k # 0, then U = (U/)k/k has 
aggregator (J; 0), implying (as above) that U = KU. In either case, U is homogeneous of some 
degree y-that is, U(Xc) = X-U(c), for all X > 0 and all c. The desired homogeneity property of J 
now follows from the fact that the consumption process c is optimal given initial conditions (x, 
w, t) if and only if the rescaled process w- c is optimal given (x, 1, t). 
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(1953) can be invoked to derive a representative agent, but only by 
assuming that individuals are identical in terms of preferences and 
information. In contrast, the single-factor CCAPM is valid even with 
heterogeneity across individuals; neither does it require homothet- 
icity, though that is frequently assumed in empirical implementa- 
tions. On the other hand, the two-factor model performs better empir- 
ically, as illustrated by the references cited in the introduction, and 
also by Mankiw and Shapiro (1986) and Bollerslev, Engle, and Woold- 
ridge (1988). 

Bergman (1985) derives a form of (18) corresponding to the Uzawa 
special case of recursive utility (see Example 2 of Section 1.3). He 
points out that, with nonseparability across time via endogenous dis- 
counting, Breeden's consumption-beta model does not apply. We find 
the Uzawa utility function to be better suited to a multicommodity 
setting as we now explain. 

2.2 A multicommodity-factor model of returns 
The preceding two-factor model assumes not only the homotheticity 
of utility, but also that all income is investment income. For example, 
labor income and exogenously endowed consumption were excluded 
in order to guarantee homogeneity (with respect to wealth) of the 
value function, which homogeneity was critical in deriving (21). One 
can view exogenous income streams as the dividends of some shadow 
asset, in which case (21) is still valid if the market portfolio is expanded 
to include the new asset. However, if the latter is not traded, then 
the return to the market portfolio is not readily observable or com- 
putable from available data. 

Here, we describe an alternative set of assumptions, allowing one 
to replace the shadow pricesJ.,in (18) with observables. The resulting 
model of asset prices can accommodate the features noted above. In 
particular, a labor-supply decision could be part of the decision prob- 
lem of the representative agent, and only returns to traded assets 
enter into the pricing formula. 

Reconsider the basic consumption-portfolio choice model, but let 
the consumption rate at time t be in the form of a vector (ct, qt) E IR 
x 1, > - 1. The first good is the numeraire; the remaining relative 
prices are defined by some smooth p: pRn X [0, T] -+ DRI. One of the 
components of q, could represent leisure and the corresponding com- 
ponent of p(Xt, t) would be a real wage rate. The wealth process W 
given by (14) is reformulated as 

dWt [r(Xt, t) Wt + WtZTX(Xt, t) - Ct- p(Xt, t)Tqt + y(Xt, t)] dt 

+ WtZTv(Xt, t) dBt, (23) 
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where y is an exogenous income process, which could include the 
value of the agent's skill and time endowments. 

Suppose, as before, that the optimal consumption choice qt is given 
in feedback form as Q(Xt, Wt, t), for some smooth function Q. With 
MRQ o-J, where ofQ-Q a + QwWZTY, the first-order conditions on 
the portfolio choice z as well as market clearing imply that 

A C,? + RQ fT fc (Rm + 7a ). (24) 

Consumption choices at each instant must satisfy 

fc ( ct, qt, J) = Jw (25) 

and 

fq(ct, qt, J) = PTJw. (26) 

Under an additional assumption, which we now describe, we can 
use (25) and (26) to replace the term in (24) involving oaTJi/Jw by 
a more readily interpretable expression. Evidently, for each com- 
modity i E {1,...,1}, 

(ct, qt, J) = pi, (27) 

which suggests that fq /fc is the marginal rate of substitution between 
ct and qt. (This equilvalence can be established rigorously.) In the 
standard specification [replacing c by (c, q) in (25)], this marginal 
rate of substitution is independent of J since (ct, qt) is weakly sepa- 
rable from consumption at all times t' 7# t. In contrast, here we assume 
the opposite, in the form of the following assumption: There exists 
at least one j E {1,...,1} such that, for each (c, q), the function 

f-q (c, q, ) 

has a differentiable inverse '-1. In this case, we refer to c and qj as 
being invertibly nonseparable (from the future). This is true, for 
example, if 

' cq, v)1 d v pfc ] 

is everywhere strictly positive, in which case an increase in future 
prospects (as represented by "slightly larger utility Vt") shifts pref- 
erences toward consumption of commodity j and away from the 
numeraire commodity, given fixed levels of the other commodities. 

Since invertible nonseparability is an assumption regarding f that 
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is invariant to the transformation (10), it can be interpreted as a 
restriction on certainty preferences, that is, on the preference order- 
ing of deterministic consumption processes. In particular, it is com- 
patible with a utility function that conforms with von Neumann- 
Morgenstern theory in the ranking of stochastic consumption pro- 
cesses, though it is not compatible with the standard additive form 
(1). For example, invertible nonseparability is satisfied by the Uzawa 
utility function if the aggregator (7) satisfies, after an obvious change 
in notation and for all (c, q), 

UqIc # UcIq3. 

Moreover, invertible nonseparability is satisfied also by the generated 
utility function Ueven if the variance multiplier A in (7) is not restricted 
to be zero. In that case, U generally violates the von Neumann- 
Morgenstern axioms (in the same way that the Kreps-Porteus function 
does), and a closed-form expression for U is not available. On the 
other hand, expanding the functional form by allowing the specifi- 
cation of A to vary is advantageous, since this provides the flexibility 
needed to disentangle substitution and risk aversion in the sense of 
(4) and (5). 

Given an invertibly nonseparable pair (c, qj), we can differentiate 
(with respect to x) the first-order condition 

fq(C, Q, J) = P1fc(C, Q, J), (28) 

and obtain 

(Pjfcv - fqjv) Jx = (fqjc - Pjfcc) Cx + (fqjq - Pjfcq) Qx - fcPjx, (29) 

where pjx denotes the (row) vector of partial derivatives of p1 with 
respect to x. A corresponding equation is obtained for J,, if (28) is 
differentiated with respect to w: 

(Pjfcv - fqjv)Jw = (fqjc - Pjfcc) Cw + (fqjq - Pjfcq) Qw - fcPjw1 (30) 

Substituting (29) and (30) into (24), simplifying, and letting 
I% 

oaTpjT, we can rewrite the asset return restriction (24) as 

-X = YRCfc 1[fcc + fcv(fqjc - Pjfcc) (Pjfcv - fq3v)l] 

+ zRQfc [fcq + fcv(fqjq Pjfcq) Pjfcv -fqv)1] 

-Rp fcv(Pjfcv - fqj)1) (31) 

Covariances with all consumption levels and with the price of com- 
modity number j are therefore important in determining mean excess 
returns. The intuition underlying (31) is apparent from its deriva- 
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tion-the relative price factor appears because pj serves as a proxy 
for unobservable future utility. 

With the additive expected utility model (25), we have 

AX = (YRCfCc + YRQ fCTj)1/fc. 

[This can be compared with the results of Breeden (1979, sect. 7), 
in which price factors enter but only if an asset return's covariance 
with each of the consumption quantities is replaced by the single 
covariance with total real expenditure.] In a cross-sectional regression 
of mean excess returns of the various securities, the appearance of 
the covariance term 2Rp, (of returns with the price increments of 
commodity j) as an additional explanatory variable can therefore be 
interpreted as evidence against the weak separability of (c, q) and 
for the alternative of invertible nonseparability of (c, qj). On the other 
hand, given the presence of 

IRp,j 
the addition of IRPk' k # j, to the 

regression should not lead to greater explanatory power if our model 
is valid. 

Finally, suppose that, for any commodity k #] j, 

fcqk 
= 

fqjqk 
= 0. 

Then we have the three-factor model 

-X = k lRC + k2 
Rqj 

+ k3 
IRpj 

(32) 

and zRqk does not enter if k # j. This theoretical rationale for focusing 
on a subset of consumption betas in an empirical analysis may be 
useful if consumption data are limited. 

The assumption of invertible nonseparability originated with Epstein 
and Zin (1990), although the factor structure of (31) was not evident 
in their discrete-time formulation. There is no empirical evidence yet 
available regarding (31). 

2.3 An asset pricing formula 
In this subsection, we present a map from the space of stochastic 
processes for security dividends, in units of the numeraire consump- 
tion commodity, to the space of stochastic processes for the corre- 
sponding security price. Merely the absence of arbitrage and some 
mild technical assumptions [as reviewed in Duffie (1992, chap. 6)] 
imply the existence of a positive "state-pricing process" ir, defined 
by the property that, for any security promising a dividend rate process 
6, the stochastic price process S for the market value of the security 
satisfies 
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St = -Etz J vsbs lis t E [O, T]. (33) 

(We suppose that both 6 and ir are square integrable, and maintain 
our finite time horizon T.) More generally, a security promising a 
cumulative dividend process D of finite variation has a price process 
S given by 

St =-Et rs dDs). (34) 

For example, the price of a pure discount bond paying 1 unit of 
consumption at time s is, at any time t < s, equal to Et(irs/rt). 

In the additively separable case (1), the state-price process ir is 
identified within a representative-agent framework by -xt = e-ltu/(ct) 
[assuming that u is differentiable and that u'(ct) is square-integrable]. 
This is well understood from the discrete-time work of Rubinstein 
(1976) and Lucas (1978); the continuous-time result is derived by 
Huang (1987) and Duffie and Zame (1989). 

Here, we will informally identify a state-price process ir for a single- 
agent economy with our stochastic differential utility formulation. 
Under technical regularity conditions and in terms of the normalized 
aggregator f a state-pricing process Xr is defined by 

7rt= expLJ fv(cs Vs) dsjfc(ct, Vt), (35) 

which coincides with the additively separable case if f(c, v) = u(c) 
- fv. The interpretation of 7rt/7rs from (35) in terms of intertemporal 
substitution of income between dates t and s is rather clear. We will 
derive (35) from an analysis of the Bellman equation, under assumed 
regularity of the value function. This representation (35) of the state- 
price process -r has, subsequent to this approach, been derived directly 
from the infinite-dimensional first-order conditions for optimal con- 
sumption and portfolio choice by Duffie and Skiadas (1990). This is 
true even without Brownian information and leads to an alternative 
derivation of all our asset pricing results, without relying on the 
Bellman equation and its associated smoothness assumptions and 
Markovian information structure. 

In order to derive (35) from the Bellman equation, we first derive 
a preliminary result of independent interest. The Bellman equation 
(15) implies that 

= a_ fvJw = - DJ 

= -DJw - Jw(ZTX + r) - wJwwzTuuTz - zTaaTJ1W. (36) 
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From (17), 

-ZTXJ = 
ZTOTZJWWW 

+ 
zTo-aTJx. 

(37) 

Letting ir be defined by (35), we can use Ito's Lemma to write d rt = 

Al,( t) dt + o,(t) dBt for appropriate g, and a-. In fact, substituting (37) 
into (36) and using the fact that Jw = fc 

,u,(t) = --xtr(Xt, t). (38) 

That is, the real short-term interest rate r(Xt, t) is equal to the expo- 
nential rate of decline of the discounted marginal utility for wealth, 
extending the characterization of short-term interest rates by Cox, 
Ingersoll, and Ross (1985b, p. 373). 

Consider a security with consumption dividend rate process {6(Xt, 
t) } and price process S relative to the consumption numeraire. By 
definition of X and a., 

dSt = (St[r(Xt, t) + Xi(Xt, t)] - 6(Xt, t)) dt + Stai(Xt, t) dBt, 

where Xi and o-i are the appropriate components of X and a., respec- 
tively. Let Yt = St7rt, t E [0, T]. From (38), (17), Ito's Lemma, and 
simple algebraic manipulation using the fact that fc = Jw, we have dYt 
- ,Y(t) dt + oy(t) dBt, where 

YW t)= -irt,(Xt, t). (39) 

Since ST = 0, we know that YT = 0, and therefore (provided o-y is 
square integrable), we have Yt = Et[fT - ,uy(s) ds], or equivalently, 

St= Et i r6(Xs, s) dsl, 

which matches (33). Since the security is arbitrary, we have confirmed 
that ir is indeed the state-price process, at least for this Markov state- 
space setting and under our smoothness and integrability assump- 
tions. [Duffie and Skiadas (1990) show more details.] 

2.4 Term structure: CIR extension 
We now study the effect of varying risk aversion, holding intertem- 
poral substitution fixed, on the term structure of interest rates, extend- 
ing the spirit of the model by Cox, Ingersoll, and Ross (1985a, sect. 
3) (hereafter CIR). 

State variable process. Let B be a standard Brownian motion in D2. 

Consider a "shock" process X defined by 

dXt = (aXt- b) dt + Vtq vdBt, 
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where a < 0 and b < 0 (mean reversion), while q E P2 has k 
> 0. An endowment process c is defined as the solution to the sto- 
chastic differential equation 

dct = ct(hXt - f3) dt + ctV v dBt, 

where co > 0, while h > 0 is a constant and v E P2 has e llvll > 0 
and h > c2. The correlation coefficient A1 v-/(kE) is arbitrary. 

Utility. Consider first the limiting form of the Kreps-Porteus utility 
model (9) corresponding to p = 0. As p - 0, the aggregator in (9) 
approaches the aggregator (f A) with 

f(c, v) = j3v(log c - log v), A(v) = (a - 1)/v. (9') 

The normalization VT= 0 (see Section 1.2) can cause technical dif- 
ficulties for this specification. In order to avoid them, we adopt the 
alternative normalization VT = (, where t is a positive constant whose 
precise value will be of no consequence below. Equivalently, the 
utility process Vt - t satisfies the zero terminal condition and [by an 
appropriate form of (10)] is generated by the aggregator fgiven by 

f(c, v) = 3(Q + v)[log(c) - log(Q + v)], A(v) = al 
+V' 

This modification of (9') is appealing for several reasons. First, it 
follows from (4) and (5) that risk aversion declines with a, as in the 
"unmodified" Kreps-Porteus model (9'). Second, we show below 
that, in the limit as a -> 0, this yields the standard log-utility speci- 
fication used by CIR. Finally, since the results to follow are valid for 
all t > 0, they are in a sense more robust than those that could be 
derived using the aggregator (9'). 

If we apply the transformation S? defined by 

(P() 
+ v)-t 

as described in (10), we obtain the normalized aggregator 

f(c, v) = Q(ta + av)[log c - a-1 log(Qa + av)], j > 0, a < 1. 

We note that, as a -> 0, we get f(c, v) converging to #[log(c/) -v], 
which yields 

VO = IEoLJ' e-t log () dtl, 

which is ordinally equivalent to the standard log-utility specification 
used by CIR. We will be limiting ourselves to values of a near zero 
and thus to small perturbations of the CIR specification. 

An application of Ito's Lemma shows that, if utility process Vfor 
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the given endowment process is of the form Vt = J(t, Xt, ct), then the 
Bellman equation (15) implies thatJsolves the semilinear parabolic 
partial differential equation: 

Jt + Jjax-b) + cjc(hx-f3) 

+ 2X[Jxxk2 + JccC2E2 + 2Jc.,iikE]+ f(c, J) = 0, 

J(T, x, c) 0, (40) 

suppressing arguments of functions from the notation wherever con- 
venient. Likewise, a solution Jto (40) determines the utility process 
V, since Vis uniquely characterized by (15). For more details on PDE 
solutions of stochastic differential utility, see Duffie and Lions (1990). 

Our trial solution for J is given by 

a-1 log( a + aJ(t, c, x)) = qtlog c + mtx + nt, 

where q, m, and n are differentiable functions on the time interval 
into the real line. (Note that the left-hand side has limit J + log t as 
a -& 0.) This candidate solution for J solves our PDE if and only if 

qt= 1 - e O(T-t) 

rht + (a - + 
aqt4lke)mt 

+ la mk2 + qth + lqt(aqt - 1)E2 = 0, 

mT= 0, 

nt- bmt - f3qt - Ont= 0, nT log . (41) 

Short rate process. Let 7r t= exp(f t(cQ, V1) ds) fc(ct, Vt) denote the 
state-price process, defined as in Section 2.3, with Vt = J(t, Xt, ct). 
The short-term riskless rate r is defined by rt = -A(t)/1rt, where g, 
denotes the drift process associated with ir, as explained in Section 
2.3. If we do the calculations, we obtain 

rt = [h + (aqt -1)E2 + am,t'kE]Xt QtXt, t E [0, T]. (42) 

For a sufficiently close to zero, we note that %t > 0, and hence rt > 
0. In addition, E[r, I rt] = Q,E[X, I Xt] and var[r, I rt] = U2 var[Xs l 
Xt], with the obvious notation for conditional variance given Xt. We 
can show by elementary means that QU increases with a if the instan- 
taneous correlation between the state process Xand the endowment 
process c is not excessively negative, in the sense that 

A1 > 2ac/k(2h - 62). (43) 

It follows that both the conditional mean and the conditional variance 
of the interest rate process decline with increased risk aversion, pro- 
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vided (43) is satisfied, which is certainly the case with A = 0. The 
opposite qualitative effects are also possible under conditions on the 
parameters. For example, in the infinite horizon version of the model 
(described below), greater risk aversion increases both the condi- 
tional mean and variance of the interest rate if At < (a - 3)ck-1/(h 
-62/2). 

Bond prices. Consider an equilibrium with a representative con- 
sumer as above. We will price discount bonds of varying maturities 
in this economy and thus determine the term structure. 

We are interested in calculating the price Pt,s at time t of a pure 
discount real bond maturing at s. By the definition of the state-price 
process, 

1 E E= c(cs, Vs)exp[Bfs(c7, V,)dT]) 
PA 

rt 
, 

f,(ct, V~) 

Since { (Xt, ct) } is a Markov process, we can immediately write pt, s= 
P(t, s, Xt, ct) for some measurable function P. In fact, however, 
we show that P does not depend on ct, given Xt. To see this, first 
note that the stochastic differential expression for c also implies that, 
for any times X and t ' , 

cr = Ct exp( . 
[hX2- 

j3 2 ] ds? fVi sv dB,) 

Substituting 

fc(c, v) = 3(Qa + av)/c 

and 

f,(c, v) = fla[log(c) - a1 log(Qa + av)]- 

and our expression for Vs = J(s, cs, Xs) into the above expression for 
Pt, s then implies that pt, s = Et (ZxZc), where Zx depends on X but 
does not involve terms in c, and where 

Zc = exp[log(ct) (aq5 - qt) + 1aJ' e-f(T- u) du)1 

A calculation shows that Zc = 1, implying that pt,s is the expectation 
of a measurable function of the distribution of {X: t ' r ' s} con- 
ditional on Xt, and can therefore (since X is Markov) be written in 
the form P, = F(t, s, Xt) for some measurable F. In fact, we can use 
the stochastic differential equation for Xand the boundary condition 
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F(t, t, x) = 1 to obtain a PDE for F, as in CIR. We will write this PDE 
instead for the function P defined by 

P(t, s, rt) F(t, s, Qt 1rt). 

We have 

704(t)rPrr + K(6, - r)Pr + Pt - XtrPr - rP= 0, 
(44) 

P(S,s,r) = 1, 

where, from (42), 

drt K(t- r) + rt]t dt + Vgitrt dBt, 

and 

0 Qtb/a, k = -a, U2(t) = Q ( 
At--(1 - aqt)Ek4 - amtk2 - t 

When a = 0 and when ?t and mt are both independent of time, 
(44) and (45) have the forms derived by CIR. To obtain the CIR forms 
of a =# 0 and to facilitate further analysis, we consider an infinite 
horizon model. We will show later that, in the infinite horizon model, 
qt 1 and mt m*, where m* is the smaller positive root of 

2am2k2 + (a - # + ai/ke))m + h + '(a -1)c2 = 0 

We make these substitutions and also substitute 9(a) [h + (a - 

1)62 + am*lI,kE] into (44) and (45) in place of Qt. The interest rate 
process and the PDE for bond prices are exactly of the CIR form [their 
(17) and (22)]. Thus, their bond price formula (23) also applies, with 
0, K, o2, and X defined as above in terms of primitive parameters. 

Finally, we consider the effect of risk aversion on the yield to 
maturity R(t, s, rt). By the CIR equation (28), the "long term" rate is 
given by 

R(t, ??, rt) = 2K 2 (K + X)2 + 2G2. (46) 

We can show that R(t, oo, r) decreases with risk aversion locally near 
a = 0, provided that the instantaneous correlation between the state 
process and the endowment process is not excessively negative, in 
the sense that At satisfies (43) and 

41> -K(2(b 
- 2) *(47) 
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In order to investigate short-term yields we note that R(s, s, rt) = rt 

and focus on the partial derivative R,(t, s, rt) I s=t We compute 

R (t, s, rt) | t = '[KO- (K + ) rt. 

[See Vasicek (1977, p. 184).] It follows that increasing risk aversion 
induces short-term yields to fall, locally near the expected-additive- 
log-utility model, if the exogenously specified instantaneous corre- 
lation between consumption and the "shock" state is not too negative, 
in the sense of (43) and (47). 

It remains only to justify our claims regarding the solution of the 
infinite horizon model. The only nontrivial claim is that regarding 
m*. Infinite horizon utility is defined as the pointwise limit of the 
finite horizon utilities as in (3'). Thus, we need to show the following: 
Denote by m(, T) the solution to the ODE (41), depending on the 
horizon T. We must show that mQ-, T) - m* as T - oo. By elementary 
means we can show that, for all a sufficiently near 0, 

(i) m(-, T) '- O, 
(ii) m(t, ) is increasing, 
(iii) m(, T) < m*, for all T > 0. 

Finally, m(O, T) m* as T - oo. (Details can be provided upon 
request.) The desired conclusion follows. 
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