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1. Introduction

Though subjective expected utility (SEU) theory continues to be the dominant model of choice under uncertainty, it has
been assailed at both normative and descriptive levels for being unable to accommodate a role for ambiguity, or confidence
in beliefs, such as illustrated by the Ellsberg Paradox. This critique motivated development of a number of generalizations of
SEU; a prominent example is maxmin expected utility theory due to Gilboa and Schmeidler (1989). The popularity of SEU is
due in part to its appealing and elegant axiomatization by Savage (1972). However, its prominence, particularly in statistical
decision-making and in learning models, is due also in large part to De Finetti (1937) who considered settings with repeated
experiments (or random events–coin tossing is a common example) and introduced added structure that is intuitive for
such settings. De Finetti showed that the simple property of exchangeability characterizes beliefs for which outcomes of
experiments are i.i.d. conditional on an unknown parameter; learning is then modeled by Bayesian updating of beliefs about
the parameter. This celebrated result is the cornerstone of Bayesian learning theory, and Kreps (1988) refers to it as “the
fundamental theorem of (most) statistics” because of the justification it provides for the analyst to view samples as being
independent and identically distributed with unknown distribution function.

However, de Finetti's specialization of SEU, typically called the Bayesian exchangeable model, is also subject to criticisms.
To describe them introduce some formalism. Consider a countable number of experiments, each of which yields an outcome
in the (finite) set S. Thus Ω¼ S1 is the set of all possible sample paths. An individual must choose between bets, or more
generally between acts over Ω, where an act is a mapping f from Ω into a set of payoffs. She maximizes expected utility
subject to her beliefs about the outcomes of experiments, where beliefs are represented by a probability measure P, called
her predictive prior.1 Say that P is exchangeable if the probability of a finite sequence of outcomes does not depend on the
order in which they are realized. De Finetti showed that exchangeability is equivalent to the following “conditionally i.i.d.”
Venice. Published by Elsevier Ltd. All rights reserved.
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representation: There exists a probability measure μ on ΔðSÞ, the set of probability laws on S, such that

Pð�Þ ¼
Z
ΔðSÞ

ℓ1ð�Þ dμðℓÞ; ð1:1Þ

where, for any probability measure ℓ on S, ℓ1 denotes the corresponding i.i.d. product measure on Ω. Here ℓ is the
unknown parameter and μ describes prior beliefs about the parameter. Thus P is an average, (or expectation, or mixture) of i.
i.d. measures. Though intuitively appealing and elegant, the representation (1.1) is suggestive of features that might be
viewed as overly restrictive in both statistical analysis and in decision-making more broadly. First, uncertainty about the
probability law ℓ is expressed via the single prior μ, and thus, as is familiar from the literature inspired by the Ellsberg
paradox, the model precludes ambiguity about the true parameter. There are other senses in which the Bayesian
exchangeable model assumes self-confidence that may strike one as excessive or extreme in complicated environments.
Though there is uncertainty about the true law describing any single experiment, the individual is certain that experiments
are both identical (the same law ℓ applies to every one) and independent. Moreover, assuming Bayesian updating, under
well-known conditions the model implies that the individual is certain that she will learn the true probability law ℓn

asymptotically given enough data (Savage, 1972, Ch. 3.6). Thus she will learn also the law describing the sequence of
experiments–the i.i.d. product ðℓnÞ1–which is everything she needs to know in order to make decisions given that
experiments are inherently random and only the governing probability law is knowable at best. Accordingly, the theory
leaves no room for doubt about what is well understood or for more modest ambitions about what is learnable.

This paper proceeds as follows. First, Section 2 provides economic motivation for the preceding critique through
examples taken from the applied literature where we understand researchers to have expressed similar concerns (to varying
degrees and possibly in different language). We also consider Ellsberg-style urns as a canonical example that we use
subsequently to illustrate and interpret the issues and models. Though the paper is largely informal and the treatment of
models is not axiomatic, we nevertheless translate the above critiques into behavioral terms; Section 3 does this in the
context of the urns example. This is the decision-theoretic component of the paper: interpretations and arguments about
preference specifications are made precise by expressing them behaviorally.

The core of the paper outlines a model that generalizes the Bayesian exchangeable model and that is designed to relax
the strong assumptions noted above.2 Our view is that the above critique is unrelated to the assumption of exchangeability–
as will be amply demonstrated, symmetry is often a natural assumption–but stems rather from the assumption in SEU that
beliefs can be represented by a probability measure.3 Accordingly, the model we describe combines the inspirations of
Ellsberg and de Finetti in that it adapts to a setting of repeated experiments models of ambiguity averse preferences
(specifically, the maxmin model of Gilboa and Schmeidler, 1989) that were designed to accommodate the behavior pointed
to by Ellsberg, thus paralleling de Finetti's adaptation of SEU. Just as de Finetti's model is generally thought of in prescriptive
terms, the model we describe is primarily normative4: it is intended to guide choice by sophisticated thoughtful individuals
who are aware of the limits of their understanding of a complex environment (these are not boundedly rational or
behaviorally biased individuals). Section 4 models ex ante choice, Section 5 illustrates its application, and Section 6
considers how to expand the model to include updating and inference. In the latter connection our objective is not to model
econometricians per se, but rather to help decision-makers who, as part of their decision-making process, may wish to draw
inferences from available data in order to lead to more informed choices. Accordingly, we take preference as the primitive
and rules for inference are derived from assumptions about preference. It is well known that ambiguity poses difficulties for
updating and that there is no consensus updating rule analogous to Bayes' Rule. The thrust of this section is two-fold. First,
we employ Epstein and Seo (2011, Theorem 2.1) to describe the precise modeling trade-off between dynamic consistency in
updating, exchangeability (or symmetry) and ambiguity aversion. This gives a unifying perspective on various updating
rules that have been proposed, including the dynamically consistent rule in Epstein and Schneider (2003a, 2007), and also
suggests alternative directions for further study. Second, we outline an updating rule axiomatized in our (2010) paper that
satisfies dynamic consistency in a limited but important class of environments, and that has a number of interesting
features: It models learning that is less ambitious–some but not necessarily all unknown features will be learned–and it
prescribes inference when signals are difficult to interpret.

Though the paper describes significant progress towards addressing the critiques of the exchangeable Bayesian model, a
message we would like readers to take away is that there remain interesting projects for future research, including both
applications of the generalized exchangeable model to applied questions in IO, for example, and also further theoretical
developments, particularly in modeling updating.
2 The model is a convenient special case of the general axiomatic model in Epstein and Seo (2012); related axiomatically founded models appear in
(2010, 2013). We borrow also from Epstein and Schneider (2007); for example, our running example of a sequence of Ellsberg urns is adapted from one of
their examples. The latter paper is designed for dynamic applications typical in macroeconomics and finance, while our focus is (and has been) on cross-
sectional applications.

3 Thus the culprit in our view is probabilistic sophistication (Machina and Schmeidler, 1992).
4 There is a descriptive component to such modeling given the experimental evidence in Epstein and Halevy (2013).
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2. Motivating examples

2.1. Entry games: multiple equilibria

A policy maker (PM) must choose a policy for a number of markets, the consequences of which depend on how firms in
these markets behave. Her view is that in the ith market, i¼ 1;…; I, two firms (who differ across markets) play the entry
game with payoffs (in utils) given by the following matrix:

The parameter θ¼ ðθ1; θ2ÞAΘ does not vary across markets, but the random factor ɛi ¼ ðɛ1i; ɛ2iÞ does vary. The set of
possible outcomes in each market is S¼ f0;1g � f0;1g, where (1,0) indicates that firm 1 chooses in and firm 2 chooses out,
and so on. Obviously, an experiment in our earlier language is identified here with a market.5

For concreteness adapt the set up in Ciliberto and Tamer (2009) by taking firms to be airlines and markets to be trips
between pairs of airports. The decision maker is the government who is contemplating constructing one small or a large
airport. An important consideration is that one airline is large (firm 1) and the other is small (firm 2) in every market. Thus,
were the airport to serve only one market, then a small airport would be preferable if serving only the small airline and the
large airport would be superior if the large airline were to enter, either alone or with the smaller one. In this case,
construction of a small airport could be thought of as a bet on the outcome (0,1) and choice of a large airport would amount
to a bet on {(1,0), (1,1)}. More generally, the value of the airport is tied to all markets that begin or end at that airport, and
thus a construction plan is an act, that is, a mapping from SI′ to the space of payoffs, where I′ indexes markets that begin or
end at the constructed airport.6

A key element of PM's theory is that both θ and ɛi are known to the firms and that they play a mixed strategy Nash
equilibrium, simultaneously in all markets. She knows the structure of the game but not the values of θ or the ɛi's. She views
the latter as distributed i.i.d. across markets according to the measure mAΔðEÞ, for some set E; and she has some
information about θ, perhaps from past experience in other markets, and is able to form a set of priors about its values.
However, her remaining uncertainty is more problematic. Importantly, there may be multiple Nash equilibria in any market,
and she does not understand at all how selection occurs and thus how it may differ or be related across markets. In other
words, ignorance of the selection mechanism creates uncertainty (or ambiguity) about possible heterogeneity and
correlation across markets that she cannot describe but that she may suspect is important. As a consequence, she would
be unable to make probabilistic predictions of market outcomes even if she knew the parameter θ; when knowledge of all
parameters of a theory are inadequate for making probabilistic predictions we refer to the theory as incomplete. How should
she choose between available policies?

There are data, consisting of outcomes in markets that have previously played out, that can be used to inform choice.
Specifically, PM will generally try to infer what these data say about the unknown parameter θ, which is assumed to be
constant across markets. However, the multiplicity of equilibria and ignorance of selection also make the inference problem
nonstandard. That is because they make it difficult to interpret what observed outcomes imply about θ. In general, an
outcome, say (1,0) for example, could mean that θ and the realized ε s take on values that make (1,0) very likely to arise from
a unique mixed strategy equilibrium, or it could be that their values are consistent with multiple equilibria and that (1,0) is
very likely given the selected equilibrium. Given also PM's general unwillingness or inability to assign a probability to (1,0)
being selected, the question “what is the likelihood of (1,0) given θ?” does not have a unique answer, which makes
inapplicable inference procedures that come to mind. However inference is conducted, two properties are intuitive. First, it
will lead to updated beliefs about θ but, because data can be interpreted in more than one way, posteriors do not necessarily
converge to certainty about the truth. Second, PM will not learn about selection: Given that she does not understand
selection well enough even to theorize about it, she cannot, nor does she expect to, learn about it. Thus even asymptotically
with unlimited data, ignorance of selection will persist.

The above example is indicative of the class of complete information entry games studied in the applied IO literature;
see, for example, Tamer (2003, 2010), Ciliberto and Tamer (2009) and the references therein. This literature has focussed on
identification, estimation and inference with the novel feature being that parameters are only partially identified–for
example, in general a (nonsingleton) set of values for θ is consistent with a sample even asymptotically. We take from much
of that literature the view expressed most forcefully by Manski (2003) and Tamer (2003, 2010), that modelers should avoid
assumptions that are driven by convenience (for example, adding an ad hoc assumption about the selection mechanism in
order to permit point identification) rather than by economic theory. These authors often have in mind an empirical
5 All of the axiomatizations to which we refer, including de Finetti's seminal result, assume infinitely many experiments. That does not require that
there literally be infinitely many markets, for example; it is enough that the PM view the actual set of I markets as a subset of an infinite set where she
would satisfy exchangeability and other relevant axioms. Of course, even that is not necessary if one wishes only to apply the functional forms. Accordingly,
we assume below in both the model description and in all examples that Ir1.

6 The example assumes that the size of the new airport does not affect the payoff of the players. In Section 5, we demonstrate how to accommodate
also policies that affect payoffs of the airlines.
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modeler, but the same principle has merit when applied to a decision maker such as our PM, who is therefore seen as
seeking to make decisions that are robust to model uncertainty, say to the i.i.d. assumption across markets.7

Conclude this example by noting that it can be generalized in many directions. A broader class of entry games can be
considered (Section 5). More significantly, the PM may be unwilling to commit to the hypothesis of Nash equilibrium. For
example, she may be confident only that observed play is rationalizable, which makes multiplicity even more prominent.
Finally, she may not be certain of the game form and seek robustness also with respect to this uncertainty. For example,
Haile and Tamer (2003) point to the free-form nature of most English auctions in practice and advocate making weak
assumptions about bidders' behavior. Then equilibrium behavior in each auction is multiple-valued and can be narrowed
down and related across auctions only via heroic and often unjustifiable assumptions. Haile and Tamer are concerned with
an empirical modeler who is trying to draw inferences about primitives from data on outcomes in a set of related auctions.
However, ambiguity about the game form has implications also for an auctioneer who is choosing reserve prices for
forthcoming auctions (Aryal and Kim, 2013).
2.2. Cross-country growth and modeling residuals

Suppose that payoffs to an action depend on the realization of multiple random events. For example, let the outcome si of
the i-th experiment be given by an equation of the form

si ¼ β � xiþεi; i¼ 1;2;…; I: ð2:1Þ

Experiments may differ and the vectors xi describe the observable heterogeneity. The key issue is the decision-maker's
model of the residuals or unobserved heterogeneity εi, which are the source of the uncertainty she faces. If all sources of
heterogeneity of which she is aware are included in the xis, then it is natural, as in the exchangeable Bayesian model, that
she be indifferent between any two bets on the realization of residuals that differ only in a reordering of experiments.
However, the decision-maker may not be confident that the xis describe all relevant differences between experiments, in
which case she may not be certain that residuals are identical, or that they are related in any particular way. Though she may
not be able to describe further forms of heterogeneity, she may be worried that there are gaps in her understanding that
could be important and thus she may wish to take into account their possible existence when making choices.

Brock and Durlauf (2001) emphasize the appropriateness of such a lack of confidence in the context of the cross-country
growth literature; an experiment corresponds to a country and the outcome is its growth rate. They point to the open-
endedness of growth theories as a reason for skepticism that all possible differences between countries can be accounted for
(p. 231), and they emphasize the importance of “heterogeneity uncertainty.” Their remarks can be understood to apply both
to an econometrician who is trying to identify the sources of differential growth rates, and also to a policy maker who must
choose between policies that will affect growth rates.

The model of residuals is also a concern in robust statistics where the εi s are regression residuals and nonrobustness of
standard statistical procedures is a motivation (Huber, 1981). This literature focuses primarily on robustness with respect to
the prior, and much less so on robustness with respect to the likelihood which will be at least as important in the work we
describe. In particular, limited confidence in the assumption that residuals are i.i.d. is not addressed. This is also true in most
of the robust Bayesian literature (Kitagawa, 2012, for example). However, Menzel (2011) studies a computational method to
efficiently perform robust Bayesian inference in games while relaxing the assumption that equilibrium selections are i.i.d.
Because it is closest to our model, we discuss it further in Section 7 after describing our model. None of the preceding
literature addresses explicitly the connection to preference and choice.
2.3. Urns

As a running example, consider a sequence of I Ellsberg urns. You are told that each contains 100 balls that are either red
or blue. You may also be given additional information, symmetric across urns, but it does not pin down either the precise
composition of each urn or the relationship between urns. In particular, the information is consistent with the urns differing
in composition. One ball will be drawn from each urn with all draws being simultaneous. You must choose between bets on
the outcomes of the sequence of draws.

The ranking of bets depends on how the urns are perceived. One conceivable view of the urns is that they all have
identical compositions, with the unknown proportion θ of red balls. In the de Finetti model, beliefs would be represented by
a single prior over possible values of the parameter θ. More generally, θ may be ambiguous. Regardless, it is part of a
complete theory of the experiments–knowledge of the parameter θ would imply a unique (probabilistic) prediction of the
outcomes of draws from all urns. However, there is no reason to be confident that the urns are identical except in the
isolated case where you are told that they are.

At the other extreme is extreme ignorance, both about the composition of each urn and about how urns are related. In
this case, the only common factor is that the proportion of red balls lies in (0,1) for each urn, which interval thus constitutes
7 The connection between partial identification and axiomatic models of ambiguity averse preference is due to Epstein and Seo (2013).
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the (here known) parameter. The parameter is trivial in the sense that knowing it does not help to predict outcomes,
reflecting the perception of extreme heterogeneity.

More generally, consider an intermediate perception. For example, one might perceive that the fraction λ of the 100 balls
is selected once and for all by a single administrator and then placed in each urn, while the other ð1�λÞ100 vary across urns
in a way that is not understood (as in the extreme perception above). If θ denotes the proportion of red in the common
group of balls, then the probability of drawing red from any urn lies between λθ and λθþð1�λÞ. Thus the unknown
parameter that is common across urns can be thought of as the probability interval for red given by J ¼ ½λθ; λθþð1�λÞ�.
In general, there will be ambiguity both about the degree λ of commonality across urns and about the color composition of
the common group. Thus ambiguity about the correct interval J is to be expected. Note that knowledge of J would be useful
for prediction, though it does not yield a unique probability. In addition, since no information is provided about the
relationship between urns, one would expect ambiguity also about the color composition of the variable component
consisting of ð1�λÞ100 balls, and about how that color composition varies across urns. The bottom line is that outcomes of
experiments depend on both common factors (parameters), about which prior beliefs may be imprecise, and on factors that
vary across experiments in some unknown or poorly understood fashion and that could render experiments heterogeneous.
3. Motivating behavior

Thus far, both in the critique of the exchangeable Bayesian model and in descriptions of the examples, our language has been
informal and vague, and we have been referring to unobservables such as “perceptions.” Here we describe behavior that is in
principle observable and that gives more precise meaning to expressions such as “aversion to ambiguity about how experiments
may differ” and so on. In a normative context, one would pose the choices below to the decision-maker in order to elicit whether
ambiguity is a concern and subsequently whether the model described in the next section captures it adequately. We describe
behavior in the simplest context possible–the sequence of urns example–and leave it to the interested reader to refer to the cited
sources for more general treatments. Later we use the behavior identified here as a measuring stick for evaluating models. We note
at the outset that the exchangeable Bayesian model is inconsistent with all of them.

The set of outcomes for each draw is fR;Bg, and the set of possible sequences of draws is Ω given by

Ω¼ S1 � S2 �⋯� SI ¼ SI ; where Si ¼ S¼ fR;Bg for all i:

To emphasize that the draw is from urn i, we sometimes write Si ¼ fRi;Big. Consider the choice between bets on the colors
drawn. A bet on drawing red from urn i is also denoted Ri; the interpretation is that the individual receives 1 util if red is
drawn and 0 utils otherwise. Payoffs are denominated in utils as in game theory.8 Similarly, RiBj denotes both the obvious
event and the corresponding bet. Given any two (events and) bets A′;A�Ω, we consider also their mixture 1

2A′þ 1
2A, which

is the bet (or in more common usage, the act) that yields the following payoffs:

1
2
A′þ 1

2
A�

1 A′ \ A

0 Ω\ðA′ [ AÞ
1=2 A′\A
1=2 A\A′

2
66664

3
77775:

The interpretation is that after all draws have been completed, an unbiased coin is tossed to determine whether one receives
the payoff determined by A′ or that determined by A. This randomization induces a lottery with prizes denominated in utils.
Therefore, if vNM theory is applied to lotteries, one can simply average payoffs as indicated. Randomizing between bets thus
smooths out some of the uncertainty associated with the individual bets. Gilboa and Schmeidler (1989) adapt finance
terminology and refer to uncertainty being hedged through randomization.

We suggest several intuitive properties of preference over bets and their mixtures. Each is interpretable as expressing
aversion to a particular form of ambiguity.

Consider first bets on the color of the ball drawn from the first urn. Because there is no information about the
composition of the urn, an individual might value randomization and exhibit the ranking9

1
2
R1þ

1
2
B1≻R1 � B1: ð3:1Þ

This is the intuitive “ambiguity averse” behavior pointed to by Ellsberg in his two-urn example, as expressed by Gilboa and
Schmeidler (1989). The mixture hedges all uncertainty and gives the outcome 1

2 with certainty, while the bets on red and
blue, though indifferent to one another, are ambiguous and hence strictly less attractive than the sure bet. The remaining
rankings reflect the perceived relation between urns and thus relate specifically to repeated experiments.
8 Justification in our context can be provided by adopting an Anscombe and Aumann domain, where it is assumed that: (i) the individual can rank bets
that deliver state-contingent lotteries as payoffs; and (ii) lotteries (acts that are constant over states) are ranked by von Neumann–Morgenstern theory.
From (ii), one can infer a vNM index that can be used to measure util payoffs.

9 The indifference R1 � B1 is intuitive in the absence of any information that distinguishes between colors.
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A more novel ranking to consider is

1
2
R1þ

1
2
B1≻

1
2
R1þ

1
2
B2: ð3:2Þ

If urns are thought to be identical, there is no meaningful difference between mixing bets on the same urn versus bets on
different urns. Thus one would expect indifference. However, if there is (aversion to) ambiguity about heterogeneity, then the
strict preference indicated is intuitive. The mixture on the left eliminates all ambiguity, (indeed, its payoff is 1

2 with
certainty), while the mixture on the right moderates ambiguity about factors that are common across experiments, that is,
about parameters, but it does not hedge ambiguity about how urns may differ.

We emphasize that even if urns are not viewed as identical, they are naturally taken to be indistinguishable in the sense
of indifference between any two bets on sequences of draws that differ only in the numbering of urns–this is the preference
version of de Finetti's exchangeability property for probability measures. The conceptual distinction between indistinguish-
able and identical experiments is due to Epstein and Schneider (2003b). It reflects the difference between “symmetry of
evidence” and “evidence of symmetry” (Epstein and Seo, 2010).

The following ranking is also interpretable in terms of a concern about heterogeneity:

1
2
B1R2þ

1
2
R1B2≻R1B2 � B1R2: ð3:3Þ

The latter indifference says that urns are indistinguishable (or exchangeable). The strict ranking is the main point. A good
scenario for B1R2 is that the first urn has more blue than red balls and the second has the opposite bias, while the opposite
biases constitute a bad scenario. These “good” and “bad” scenarios are reversed for R1B2. Thus 1

2 B1R2þ1
2 R1B2 smooths

ambiguity about differences, which motivates (3.3).
Finally, consider

1
2
R1þ

1
2
B2≻R1 � B2: ð3:4Þ

Information about the urns gives no reason for distinguishing between bets on the same color in different urns, or between bets on
different colors in the same urn. Therefore, it is intuitive (even compelling) that R1 � R2 � B2, and transitivity implies the
indifference in (3.4). Turn to the strict preference. The mixture on the left mixes bets on distinct urns and thus does not hedge
ambiguity about idiosyncratic variations across urns. However, it may be valuable if there is a perception that there exists a
common factor, (for example, the interval J ¼ ½λθ; λθþð1�λÞ� in the perception of urns described earlier), and if there is ambiguity
about the correct interval. Then mixing between bets on red and blue is valuable, as in the classic Ellsberg experiment, evenwhere
the bets are on the draws from different urns. Thus we interpret (3.4) as indicating aversion to ambiguity about parameters.

The exchangeable Bayesian model contradicts each of the behaviors (3.1)–(3.4). Next we describe a non-Bayesian model
that accommodates them all.
4. A non-Bayesian exchangeable model

4.1. Utility

There are Ir1 experiments, indexed i¼ 1;…; I. The ordering of experiments is not temporal, nor is it important. One
should think of a cross-sectional setup, where experiments are conducted simultaneously. It is convenient to fix an order,
which we do, but it is arbitrary. Each experiment yields an outcome in the finite set S. The payoff to any chosen physical
action depends on the entire sequence of outcomes and thus on the realized state in the state space Ω given by

Ω¼ S1 � S2 �⋯� SI ¼ SI ; where Si ¼ S for all i:

The decision-maker chooses between acts, where each act f is a function from Ω into real-valued payoffs denominated in
utils.10 The set of all acts is F . To describe choice between acts, we adopt as a primitive the preference ≿ on F . In this section
we describe ≿ through its utility function U : F-R. It is to be thought of as describing preference conditional on a fixed and
suppressed sample of outcomes for related experiments; ex ante preference corresponds to the case where the sample is
empty. Dependence on the sample, that is, inference, is treated explicitly in Section 6.

The benchmark is de Finetti's model, which we rewrite more fully here in terms of utility:

Uðf Þ ¼
Z
Ω
f dP; and Pð�Þ ¼

Z
ΔðSÞ

ℓIð�Þ dμðℓÞ: ð4:1Þ

Following Gilboa and Schmeidler (1989), we generalize by allowing the individual to entertain a nonsingleton set P of
predictive priors. The conditionally i.i.d. representation suggests that the multiplicity of predictive priors can arise in two
ways: (i) the single prior μ is replaced by a set M of priors; and (ii) the (uncertain) single likelihood is replaced by a (closed
10 Technical details are completely ignored.
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and convex) set L of likelihoods.11 More precisely, for any L� ΔðSÞ, define

LI ¼ fℓ1 	 ⋯ 	 ℓI : ℓiALg; ð4:2Þ

the set of all product measures that can be constructed by taking selections from L. Then we adopt the following functional
form for P and the corresponding utility function12:

Uðf Þ ¼min
PAP

Z
Ω
f dP and P ¼

Z
LI dμðLÞ : μAM

� �
: ð4:3Þ

De Finetti's model is the special case where M¼ fμg is a singleton and where μ attaches positive probability only to sets L
that are singletons.

It is useful to write utility in the form

Uðf Þ ¼ min
μAM

Z
VLðf Þ dμðLÞ; ð4:4Þ

where

VLðf Þ ¼ min
PALI

Z
Ω
f dP

� �
: ð4:5Þ

Each utility function VL is computed as though there is certainty about the set of likelihoods. The Bayesian special case has i.
i.d. beliefs. For this reason (and others that we won't give here), refer to each VL as an I.I.D. utility function.13 It can be
thought of as the special case of U for which M¼ fμg where μðLÞ ¼ 1 for some set L, and thus14

P ¼LI : ð4:6Þ
For such a utility function VL, the interpretation is that each experiment is believed to be driven by some probability law

in L where L, but not necessarily the probability law, is common to all experiments. Put another way, LI contains many
nonidentical product measures and different measures from L may apply to different experiments, which suggests that
heterogeneity is admitted as a concern. Next, just as the de Finetti representation generalizes i.i.d. to exchangeability, admit
uncertainty about which set L applies. If that uncertainty can be represented by a prior μ, then P is an “average.” If there is
ambiguity about the correct set L, then the expression for P in (4.3) is obtained. Being concerned that the outcomes of
experiments may not be i.i.d. and having limited prior information about the factor common to all experiments, the
individual seeks to make decisions that are robust in both dimensions.

The role of the multiplicity of likelihoods in the form of the sets L merits emphasis. Because of de Finetti, we are
accustomed to thinking of experiments (or random events) as being parametrized by a probability law, or by a probability
level when the experiment is binary. Here they are parametrized instead by a set of probability laws, or by a probability
interval in the binary case. One should think of there being ignorance within each set L–there is no distribution within L.
As a result, unlike in the Bayesian model, certainty about the parameter still leaves scope for some ignorance about the state
space (as reflected by maxmin utility with P ¼LI).

Consider also two special cases of the model. Refer to the single likelihoodmodel if each μ in M attaches positive
probability only to sets L that are singletons. Then, in the obvious notation, we can express the corresponding set of
predictive priors in the form

P ¼
Z
ΔðSÞ

ℓI dμðℓÞ : μAM
� �

: ð4:7Þ

The representation suggests ambiguity about the true probability law for each single experiment, but certainty that
experiments are i.i.d. Refer to the single prior model if M¼ fμg is a singleton, in which case (4.3) simplifies to

P ¼
Z

LI dμðLÞ: ð4:8Þ

The de Finetti model equals the intersection of these two special cases.
11 Throughout each L lies in KðΔðSÞÞ, the set of all closed and convex subsets of the probability simplex ΔðSÞ. Priors μ over these sets are taken to be
defined on a (suitably defined) Borel sigma algebra of KðΔðSÞÞ. Finally, when I¼1 one has to replace L1 by its closure in order to ensure existence of
minima; alternatively, one could use infima.

12 If μ has finite support fL1 ;…;LNg and μn ¼ μðLnÞ, then

P ¼ ∑
N

n ¼ 1
μn � ðLnÞI � ∑

N

n ¼ 1
μnPn : PnAðLnÞI

� �
:

More generally, integration is in the sense of Aumann.
13 We reserve the lower case acronym i.i.d. for probability measures.
14 This special case can be found in Walley and Fine (1982).
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Though the functional forms suggest interpretations, these call for behavioral justification. First note that the model
satisfies the natural symmetry condition, thus justifying the descriptor “exchangeable.” To elaborate, let π be any finite
permutation of f1;2;…Ig. Given an act f, define the permuted act πf by ðπf Þðs1;…; sIÞ ¼ f ðsπð1Þ;…; sπðIÞÞ. Then

Uðπf Þ ¼ Uðf Þ: ð4:9Þ

The other implied behaviors we consider are those given in (3.1)–(3.4) for the urns example. Thus the next section
describes how the model works in that example.

Remark 1. The above model is intended to give a flavor of the models that have been developed. We mention some
variations or generalizations. In the single prior model as defined above, maxmin is used to aggregate over the set of priors
in (4.7), but one could adapt other forms of aggregation from the literature on ambiguity averse preferences. See Al Najjar
and de Castro (2010), Klibanoff et al. (2012), and Cerreia-Vioglio et al. (2013), for example. However, none of these
generalizations affects the observation below that a model with single likelihoods cannot rationalize (3.2) or (3.3). There is
also an alternative way to model multiple likelihoods (Epstein and Seo, 2013). Roughly, it differs from (4.8) by expanding the
set LI of product measures to include also some measures that are not products, thereby modeling ambiguity about the
correlation between experiments.

4.2. The Urns example revisited

Take S¼ fR;Bg. The binary case permits a simplified description. Each set L can be identified with a unique closed interval
J of probabilities for red:

J ¼ min
ℓAL

ℓðRÞ;max
ℓAL

ℓðRÞ
� �

� ½0;1�;

Therefore, utility is defined given a prior μ, or a set of priors M, over the set of all subintervals of [0,1].
Any of the three alternative perceptions described in Section 2.3 can be accommodated. Certainty that the urns are

identical is modeled by the single likelihood special case. If also there is a single prior, M¼ fμg, then there is no ambiguity
about the common composition and one obtains the exchangeable Bayesian model. Alternatively, complete ignorance is
modeled by certainty that the interval J ¼ ½0;1� applies; one obtains an I.I.D. utility function corresponding to (4.6) and
L¼ ΔðfR;BgÞ. Finally, the intermediate perceptions described in Section 2.3 can be accommodated by suitable specifications
of the set of priors M.

Excluding knife-edge specifications, the non-Bayesian model delivers all of the rankings (3.1)–(3.4) described in the last
section, which fact comprises the normative case for the model provided herein.15 In addition, these rankings discriminate
between the single priors and single likelihoods special cases and thus make the distinction between them empirically
meaningful.

We give some details supporting these claims. The expression (4.4) for utility indicates that Uðf Þ is a suitable aggregate of
I.I.D. utilities. Therefore, it is enough (with one exception below) to understand what I.I.D. utility functions imply for the
rankings of interest. For bets on a single urn, as in (3.1), VL accommodates Ellsbergian ambiguity averse behavior exactly as
shown by Gilboa and Schmeidler (1989). The second ranking, which amounts to 1

2≻
1
2R1þ 1

2B2, is satisfied because utility is
evaluated via the worst-case scenario and because the functional form for utility allows urns to differ. In particular, the
mixture 1

2R1þ 1
2B2 is evaluated as if the first (second) urn has the smallest (largest) proportion for red consistent with the

probability interval corresponding to L. Here are some details:

VL
1
2
R1þ

1
2
B2

� �
¼ min

ℓ1 ;ℓ2 AL
1
2
ℓ1 R1ð Þþ 1

2
ℓ2 B2ð Þ

� �

¼ 1
2

min
ℓ1 AL

ℓ1 R1ð Þþ 1
2

min
ℓ2 AL

ℓ2 B2ð Þ

¼ 1
2

min
ℓ1 AL

ℓ1 R1ð Þþ 1
2

min
ℓ1 AL

ℓ1 B1ð Þ

¼ 1
2
� 1

2
max
ℓ1 AL

ℓ1ðR1Þ�min
ℓ1 AL

ℓ1ðR1Þ
� �

;

which is strictly less that 1
2 unless L is a singleton. The explanation of why (3.3) is accommodated is similar. The worst-case

for R1B2 is that the first urn is biased towards blue and the second towards red; the opposite pattern is also possible and is
given equal weight (R1B2 and B1R2 are indifferent by exchangeability), but the mixture hedges this uncertainty and thus is
preferable.
15 A more complete normative argument would demonstrate that the intuitive behavior also implies the model. Such a characterization of the model
would require an axiomatic treatment that is beyond the scope of this paper. See Section 4.3 for more on the normative case for the model.



L.G. Epstein, K. Seo / Research in Economics 68 (2014) 11–26 19
Finally, for (3.4), it is not enough to focus on I.I.D. utility functions, and therefore we offer the following elementary proof:

U
1
2
R1þ

1
2
B2

� �
¼ min

μAM

Z
VL

1
2
R1þ

1
2
B2

� �
dμ

¼ min
μAM

Z
1
2
VL R1ð Þþ 1

2
VL B2ð Þ

� �
dμ

Z
1
2
min
μAM

Z
VL R1ð Þ dμþ 1

2
min
μAM

Z
VL B2ð Þ dμ

¼ 1
2
U R1ð Þþ 1

2
U B2ð Þ

¼ 1
2
U R1ð Þþ 1

2
U B1ð Þ ¼ U R1ð Þ: ð4:10Þ

It remains to see when the weak inequality is actually strict and also R1 � B1. To illustrate how both conditions may arise,
suppose that only two probability intervals for red are thought relevant–I¼ 7

16 ;
11
16

� 	
and its reflection about 1

2, I′¼ 5
16 ;

9
16

� 	
.

(Formally, they correspond to sets L and L′ respectively; less formally, they are the two values thought possible for the
parameter that is common to all urns.) Roughly, every urn is seen as being consistent with a color composition that is either
biased towards red (in the case of I), or towards blue (in the case of I′). For simplicity, suppose further thatM¼ fμ; μ′g, where
μðfI; I′gÞ ¼ μ′ðfI; I′gÞ ¼ 1, and

μðIÞ ¼ μ′ðI′Þ:
Thus there is ambiguity about the intervals, but the ambiguity is symmetric in colors: it is easily seen that R1 � B1.
Furthermore, if μ Ið Þ4 1

2, then the weak inequality above is strict because the worst-case prior for R1 is μ′ and that for B2 (or
equivalently for B1) is μ, and μaμ′.

The two special cases of the model perform differently with regard to (3.1)–(3.4). Both can accommodate the standard
Ellsberg experiment (3.1). However, of the remaining behaviors, the single likelihood model can rationalize only (3.4) and
the single prior model can rationalize only (3.2) and (3.3).16

4.3. Prior beliefs and the LLN

It seems like a daunting task to form priors over sets L or equivalently when the experiment is binary, over
corresponding probability intervals. A normative exercise should assist the decision-maker to form priors. In the Bayesian
context, guidance is provided by the classical law of large numbers (LLN) through the connection it affords between beliefs
about parameters (ℓAΔðSÞ) and the willingness to pay for various bets on limiting empirical frequencies; the presumption is
that the latter is more readily accessible to introspection. A similar result can be established here, through use of a LLN for
nonidentical product measures (Hall and Heyde, 1980, Theorem 2.19), for the single prior special case of our model.17

Naturally, arguments based on a LLN presume infinitely many experiments (I¼1).
Denote by Φnð�ÞðωÞ the empirical frequency measure given the sample ω; ΦnðAÞðωÞ is the empirical frequency of the event

A� S in the first n experiments. A decision-maker who is certain that experiments are identical and independent maximizes
subjective expected utility with an exchangeable predictive prior; denote by μ her prior on ΔðSÞ. Then the classical LLN for
exchangeable measures implies that, for any K and events Ak � S, k¼ 1;…;K , and for any real numbers ak,18

μð\K
k ¼ 1fℓAΔðSÞ : ℓðAkÞZakgÞ ¼ U ω : lim

n
ΦnðAkÞðωÞZak8k

n o
 �
: ð4:11Þ

Thus the prior probability assigned to the sets indicated on the left hand side equals the utility, indeed the certainty
equivalent, of the right hand side bets on limiting empirical frequencies. Because μ is completely determined by its values on
the former sets, a decision-maker can calibrate her prior μ if she can arrive at certainty equivalents for the indicated bets.

Such a calibration method extends to a decision-maker who satisfies the single prior version of our model. Because she is
uncertain about how experiments may differ, she is not certain that empirical frequencies converge. Nevertheless, there
exists the following connection between prior beliefs and certainty equivalents for suitable bets on empirical frequencies:

μ \K
k ¼ 1 L� ΔðSÞ : inf

ℓAL
ℓðAkÞZak

� �� �
¼U ω : lim inf

n
ΦnðAkÞðωÞZak8k

n o
 �
: ð4:12Þ

For example, imagine the decision-maker in the sequence-of-urns context struggling with the formation of a prior, and in
particular with assessing the prior probability of the collection of all sets L for which the minimum probability of red is at
least a. According to (4.12), that prior probability should equal her certainty equivalent of the bet that, for all δ40, the
empirical frequency of red is at least a�δ in all sufficiently large samples.
16 For the single prior model, the weak inequality in (4.10) is actually an equality. Therefore, the model implies indifference throughout (3.4). Details
are left to the reader.

17 An extension to multiple priors is the subject of current research and will be reported elsewhere. The result we outline here is modeled on a result in
Epstein and Seo (2013) which also assumes a single prior but differs in that multiple likelihoods are as described in Remark 1.

18 fω : limΦnðAkÞðωÞZak 8kg denotes both the event and the bet on the event with winning and losing prizes 1 and 0. Similarly below.
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To obtain a fuller counterpart of the Bayesian calibration result, one needs to consider not only bets on events as in (4.12),
but also more general acts, as described in the following theorem. For any ω¼ ðs1;…; siþ1; siþ2;…ÞAΩ¼ S1, Tiω�
ðsiþ1; siþ2;…Þ, the i-fold shifted sequence. The next theorem, proven in the appendix, provides a way to calibrate a prior.

Theorem 1. Let utility correspond to the single prior special case of (4.3). Then, for any f 1;…; f K acts over S1 ¼ S, and for any real
numbers a1;…; aK ,

μ ⋂
K

k ¼ 1
L : min

ℓAL

Z
f kdℓZak

� � !
¼U ω : lim inf

n

1
n

∑
n

i ¼ 0
f k Tiω

 �

Zak 8k
( ) !

: ð4:13Þ

Moreover, if μ′ satisfies the same condition for all fk and ak, then μ′¼ μ.

5. Modeling the entry game

Our objective here is to demonstrate, using the entry game example from Section 2, that our model can be applied
naturally to concrete settings that have been of interest in the empirical IO literature.

As before take the state space S¼ f0;1g � f0;1g to describe outcomes in any single market. Any policy yields a payoff as a
function of the state realized in every market i¼ 1;…; I; denote by I also the set f1;2;…; Ig. For example, payoffs in utils
might be constructed by aggregating the payoffs accruing from individual markets. Then any policy is associated with an act
f in F . Thus policy choice can be determined by maximizing the utility function U of the form in (4.3) over the set of feasible
acts. It remains to adopt and motivate a particular specification of the set P of predictive priors underlying U.

The presence of multiple equilibria is key. For each θ and ɛ, denote the set of equilibrium mixed strategy profiles in any
single market by ΨθðɛÞ. Thus outcomes in any single market are summarized by the equilibrium correspondence Ψθ : E⇝ΔðSÞ,
for each possible θ. Because the outcomes in all markets are relevant, consider the correspondence Ψ I

θ : EI⇝ΔðS1Þ, where

Ψ I
θðɛ1;…; ɛIÞ ¼ 	I

i ¼ 1
ΨθðɛiÞ � fℓ1 	 ⋯ 	 ℓI : ℓiAΨθðɛiÞ for all ig:

Accordingly Ψ I
θðɛ1;…; ɛi;…:Þ is the set of all probability distributions on the sequence of market outcomes induced by taking

all possible selections of equilibria in the different markets - corresponding to the policy maker's ignorance of the selection
mechanism and how it varies across markets - and by assuming that randomizations in different markets are stochastically
independent. Beliefs on EI are described by the i.i.d. product measure mI. Thus the set of possible likelihoods for SI (given θ)
is LI

θ � ΔðSIÞ given by

LI
θ ¼

Z
EI
Ψ I

θðɛ1;…; ɛIÞ dmI ;

the set of all mixtures, using m and all possible selections from the sets ΨθðɛÞ.19
If we define

Lθ ¼
Z
E
ΨθðɛÞ dm; ð5:1Þ

then

LI
θ ¼

Z
EI
Ψ I

θðɛ1;…; ɛIÞ dmI ¼ ðLθÞI ; ð5:2Þ

where the latter is defined in (4.2). The following special case illustrates

¼
Z
E

Z
E
fℓ1 	 ℓ2 : ℓiAΨθðɛiÞ for i¼ 1;2g dmðɛ1Þ dmðɛ2Þ

¼
Z
E
fp 	 ℓ2 : pALθ ;ℓ2AΨθðɛ2Þg dmðɛ2Þ

¼ fp 	 q : p; qALθg:
Thus the current specification corresponds to the I.I.D. model of beliefs in (4.6).

Finally, θ is unknown. Let beliefs about θ be given by the (possibly singleton) set of priors M� ΔðΘÞ. Each prior μ in M
leads to the set

R LI
θ dμðθÞ of predictive priors. Hence, for general M, one obtains the following set P of predictive priors:

P ¼ ⋃
μAM

Z
LI
θ dμðθÞ

� �
:

The corresponding utility function is defined as in (4.3).
If the (mixed strategy) equilibrium is unique for all ɛ and θ and if there is no prior ambiguity about θ, then P reduces to a

singleton consisting of a mixture of i.i.d.'s, and one obtains de Finetti's exchangeable Bayesian model. Note that it is only through
19 The meaning of this notation is as in (4.3). If m has finite support, then the integral over EI reduces to a finite sum; in general, integration of the
random correspondence is in the sense of Aumann.
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the nonsingleton sets LI
θ that our specification reflects the policy maker's unwillingness to take a stand on the equilibrium

selection mechanism and, in particular, her view that selection can vary across markets in a way that she does not understand.
The exchangeable Bayesian model does not do so. Admittedly, here we are arguing based on functional forms rather than in
terms of behavior, but the argument can be translated into behavioral terms as was done in the urns example.

A number of generalizations are possible. First it is important to recognize that the specification (5.1) corresponds to a
very special case of our model. Recall that ΨθðɛÞ denotes the set of all distributions over outcomes in a single market that can
be generated by varying over all (mixed strategy) Nash equilibria for the given ɛ and θ. Setting each Lθ to be an average over
ε of these large sets ΨθðɛÞ builds in complete ignorance about selection and thereby also precludes differences between
policy makers in how they regard selection. Neither property is required by the model in Section 4; in particular, the set of
priors M can vary with the policy-maker, and so also can the sets L to which some prior μ in M assigns positive probability.
In particular, for the entry game one can modify the utility specification by taking

Lθ ¼
Z
E
Ψ θðɛÞ dm;

where Ψ θ : E⇝ΔðSÞ, is a sub-correspondence of Ψθ , that is, for each ε and θ,

Ψ θðɛÞ � ΨθðɛÞ:
At the extreme of no ignorance, each Ψ θðɛÞ consists of only a single measure on S, say pθ;ε, which models a policy-maker who
is certain about the probabilistic selection mechanism at work in each market, and thus is able to accommodate multiplicity
by the usual rule for reducing multistage lotteries. For each given θ, her beliefs are described by pθ �

R
Epθ;ɛ dm for each

market and i.i.d. across markets. In the absence of ambiguity about θ, she behaves as in the de Finetti model using the single
predictive prior

R ðpθÞI dμðθÞ. More generally, she might view pθ;ɛ as a focal distribution, but not being completely confident
in its validity, she might use Ψ θ given by

Ψ θðɛÞ ¼ ð1�aÞfpθ;ɛgþaΨθðɛÞ
¼ fð1�aÞpθ;ɛþaq : qAΨθðɛÞg; ð5:3Þ

where a lies between 0 and 1. The two extremes of complete ignorance and no ignorance correspond to a¼1 and 0
respectively. Because each set Ψ θðɛÞ expands as a increases, intermediate values for a provide a simple way to parametrize
differences in ambiguity aversion between policy-makers.

Turn to other generalizations. Any finite number of firms is easily accommodated. So is an incomplete information game with
Bayesian–Nash equilibria because multiplicity of Bayesian–Nash equilibria generates multiple likelihoods just as the complete
information game does. The assumption that ɛi follows a particular measure m can be relaxed. Instead of assuming a known
distribution m on E, we could allow m¼mκ to depend on a finite dimensional parameter κ that would be appended to θ.

Another generalization is to permit differences both between markets and between players. Accordingly, suppose that
payoffs in the entry game for market i depend also on a variable xi that is a characteristic of the market and/or the players
and is observable to both players and the analyst. For example, consider the following payoff matrix:

ð5:4Þ

The numbers δ1 and δ2 reflect the effect of competition. The variable xi ¼ ðx1i; x2iÞ can represent the size of the airlines,
aviation regulations or the sum of the populations of the two cities connected by market i. If xi includes the size of the
airport, then airline payoffs are allowed to depend on airport size. For each i, xi lies in the finite set X. Now define the state
space S for each market by

S¼ ðf0;1g � f0;1gÞX ;
the set of functions from X to outcomes. This specification makes intuitive sense: uncertainty regarding market i concerns
which outcomes will be realized for each given xi.

To complete the specification, assume that beliefs about ðɛ1i; ɛ2iÞ are described by mκ , where κ is an unknown parameter.
Let θ¼ ðβ1; β2; δ1; δ2; κÞ. For each xiAX and ɛiAE, denote the set of equilibrium mixed strategy profiles by
Ψθ;xi ðɛiÞ � Δðf0;1g � f0;1gÞ. Thus we have the equilibrium correspondence

Ψθ : E⇝ðΔðf0;1g � f0;1gÞÞX ;
where ΨθðɛiÞ ¼ ðΨθ;xi ðɛiÞÞxi . However, ðΔðf0;1g � f0;1gÞÞX can be identified with a subset of Δððf0;1g � f0;1gÞXÞ. (Identify
p¼ ðpxÞxAX , pxAΔðf0;1g � f0;1gÞ, with the product measure 	xAXpx, an element of Δððf0;1g � f0;1gÞXÞ.) Thus we arrive at the
equilibrium correspondence

Ψθ : E⇝Δððf0;1g � f0;1gÞXÞ ¼ ΔðSÞ:
Finally, the set P and the utility function U can be constructed as above.

Just as in the simpler set up discussed earlier, objects of choice correspond naturally to acts. For example, a bet on
the outcome fð1;0Þ; ð1;1Þg in market i, where xi ¼ x is given, corresponds to the act fi, f i : S-½0;1�, where for each
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sAS¼ ðf0;1g � f0;1gÞX ,

f iðsÞ ¼ 1 if sðxÞ ¼ ð1;0Þ or ð1;1Þ
0 otherwise:

(

To illustrate the generality of the framework, consider a more complex and realistic version of the airport construction
decision problem. Let zji be the size of airline j in market i, let yji indicate whether airline j in market i plays in (yji ¼ 1) or out
(yji ¼ 0), and denote by I the set of markets that begin or end at the new airport. Then H¼∑jA f1;2g;iA Iyji � zji is the total size of
all airlines entering these markets. The government chooses d, the size of the airport, to maximize uðd=HÞ�cðdÞ where u and
c are increasing functions that represent the benefits and the costs of constructing an airport. Normalize u and c so that
uðd=HÞ�cðdÞA ½0;1� for all possible values of d and H. Another consideration is that airlines' payoffs may depend on the size
of the airport. Thus we take xji in payoff matrix (5.4) to be the vector ðzji; dÞ. Now we can translate the policy of constructing
an airport of size d into the act f d from SI to [0,1] defined by

f dðωÞ ¼ uðd=HÞ�d;
where H ¼∑iA Iyji � zji; and ðy1i; y2iÞ ¼ ωiððz1i; dÞ; ðz2i; dÞÞ:

(Again, for ωASI , each ωiAS is a function from X to f0;1g � f0;1g.) Given a finite feasible set of airport sizes, the choice
between them is modeled by maximizing the utility function U over the corresponding set of acts.

6. Updating

For simplicity, take I ¼1 in this section. Another difference adopted here is that we deviate from the pure cross-sectional
setting and permit some experiments (those generating the sample) to be resolved earlier than others. We study choice of
acts both ex ante and after observing the outcomes sn ¼ ðs1;…; snÞ of the first n experiments, where n is arbitrary.20 It is
helpful to picture an event tree, with generic node ðn; snÞ. To model both choice and inference, we adopt as primitives the set
of conditional preferences f≽n;sn : nZ0; snASng, where ≽n;sn is the preference on F conditional on being at node ðn; snÞ; ≽0,
corresponding to n¼0, denotes ex ante preference.

A normatively appealing criterion for updating is that the collection of preferences be dynamically consistent: For all
1rn, samples sn, and acts f ′; f AF ,

f ′≽n;sn f for all sn⟹f ′≽0f ;

and the latter preference is strict if, in addition, f ′≻n;sn f for some sn.21 It is well-known that there is a tension between
dynamic consistency and ambiguity aversion (or non-Bayesian models more generally). However, it will help to organize our
discussion of inference if we first outline a particularly stark result from Epstein and Seo (2011) that describes the modeling
trade-offs involved in a setting with repeated exchangeable experiments.

Suppose that: (i) ≽0 is exchangeable, that is, it satisfies the appropriate form of (4.9); (ii) unrealized parts of the tree do
not matter–f ′� n;sn f for any two acts that coincide on the continuation of the tree from node ðn; snÞ–a property commonly
called consequentialism; (iii) the collection of preferences is dynamically consistent; and (iv) every preference satisfies
extremely weak (we would say innocuous) continuity and monotonicity properties. Then ≽0 and all conditional preferences
are additive, that is, they can be represented by utility functions that are additive across states. The significance of additivity
is that if each conditional preference has the form in Section 4, then each must conform to SEU. Thus it is not possible to
extend the model so as to satisfy dynamic consistency and also consequentialism, without the model collapsing back to de
Finetti's and thus sharing its limitations. The same applies to all other non-Bayesian exchangeable models that we have
cited. One can also point to a behavioral functional-form-free implication of the noted additivity: Given the latter, then
aversion to ambiguity about heterogeneity in the sense of (3.2) implies also that22

1
2
R1þ

1
2
R2≻R1: ð6:1Þ

A positive value for randomizing between the bets R1 and R2 is intuitive in some special scenarios–for example, recalling the
perceptions described in Section 2.3, if it is thought that there is only one urn for which the variable component contains a
red ball but where the identity of the urn is unknown. However, one would expect indifference in (6.1) if there is no reason
for believing that the variable components of urns are related in any particular way. In sum, therefore, for the setting we are
modeling, given exchangeability and consequentialism, then dynamic consistency and aversion to ambiguity about
heterogeneity imply counterintuitive behavior in the form (6.1).

The lesson is that “one can't have everything.” The theorem tells the modeler that if she insists on capturing uncertainty
about how experiments may differ, then she must decide which of the three key properties–exchangeability, consequenti-
alism and dynamic consistency–she is willing to relax. This perspective unifies some existing and potential future work.
20 We remind the reader that experiments have been ordered, though thus far and in the sequel, the specific order does not matter.
21 Dynamic consistency requires also that conditionals at any node ðk; skÞ be suitably consistent with conditionals at subsequent nodes. For notational

simplicity, we have stated the formal property only for k¼0.
22 See Section 2 in Epstein and Seo (2013).
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Epstein and Schneider (2003a, 2007) drop exchangeability, which is sensible in their temporal setting, but arguably not
when experiments are resolved simultaneously and thus where there is nothing at all, not even time of resolution, that
distinguishes between them. They formulate a recursive model which violates exchangeability but satisfies both dynamic
consistency and consequentialism. An alternative route that has yet to be explored formally is to relax consequentialism. For
example, frequentist statistical procedures employ an ex ante perspective whereby all potential data are used in evaluating a
procedure rather than just the realized sample, thus violating consequentialism (Berger, 1985). It remains to be seen
whether the present concern with robustness and ambiguity leads to specific violations of consequentialism and to specific
procedures as being optimal.

A third route, followed in our papers (2010,2013), is to relax dynamic consistency, the rationale being that a weaker
property is sometimes adequate. Specifically, consider situations where an individual first samples and observes the
outcomes of the first n experiments, and then chooses, once and for all, how to bet on the outcomes of remaining
experiments. In particular, the outcomes in markets 1 to n are ‘pure’ signals and are not payoff relevant, while outcomes in
markets nþ1 and beyond influence payoffs but are not a source of information for further updating (which is done only
once). In that case, it suffices to have the consistency between ex ante and ex post rankings that is expressed by restricting
the above dynamic consistency condition to apply only to acts f ′ and f that depend on the outcomes of experiments nþ1,
nþ2 and so on. Call this weaker property weak dynamic consistency.

In the cited papers, we assume also that f≽n;sn g satisfy consequentialism and another property called commutativity–each
conditional preference ≽n;sn is unchanged if the sample ðs1;…; snÞ is permuted. The rationale is that under the assumption
that experiments 1 though n are resolved simultaneously, that is, data are cross-sectional, then, because there is no natural
ordering of cross-sectional data, the order of past observations should not matter. Finally, we assume that every conditional
preference conforms to the single priors special case of (4.3).23 Thus the conditional utility function at ðn; snÞ is given by

Un;sn ðf Þ ¼
Z

VLðf Þ dμn;sn ðLÞ;

where VLð�Þ is defined in (4.5), and where μn;sn is the posterior belief over the sets L of likelihoods. The question at hand is
what can be said about how posteriors are derived from the prior μ0 for any sample sn.

As we have seen, in the urns example, (or more generally for any binary experiments), each set L can be identified with a
probability interval J for red, and thus the issue is how to update probabilistic beliefs about intervals. The difficulty is that there is
no obvious unique answer to the question “what is the likelihood of observing red given the interval J?” Every number in Jwould
seem to qualify equally as an answer. Based primarily on the preceding assumptions, we show that the individual should form a
unique likelihood by averaging over J and then use the likelihood constructed in this way and Bayes' rule to update μ0. More
precisely, for each J, she should adopt a probability measure λJ on [0,1], with λJðJÞ ¼ 1, to construct LðRjJÞ according to

LðRjJÞ ¼
Z
½0;1�

q dλJðqÞ;

and, more generally, for any finite sample sn, the constructed likelihood is

LðsnjJÞ ¼
Z
½0;1�

qψnðsnÞð1�qÞn�ψnðsnÞdλJðqÞ; ð6:2Þ

where ψnðsnÞ denotes the number of red balls drawn in the first n experiments. The measure λJ can depend on the interval J and,
importantly, also on the individual – because signals are difficult to interpret, individuals may interpret them differently and thus
the subjectivity of the measures fλJg is an appealing feature of the model.

Remark 2. The preceding extends in the obvious way to general (nonbinary) experiments. In that case, a likelihood is
constructed by using a measure λL on ΔðSÞ, λLðLÞ ¼ 1, to average over all i.i.d. measures that can be constructed using
measures in L. Formally,

LðsnjLÞ ¼
Z
ΔðSÞ

p1ðsnÞ dλLðpÞ:

It may be instructive to verify that weak dynamic consistency is implied. Let n40 and define

LðsnÞ ¼
Z

LðsnjLÞ dμ0ðLÞ:

Then, for any act f over experiments nþ1 and beyond,

∑
sn ASn

LðsnÞUn;sn ðf Þ ¼ ∑
sn A Sn

LðsnÞ
Z

VLðf Þ dμn;sn ðLÞ
� �

¼
Z

VLðf Þ ∑
sn ASn

LðsnjLÞ
" #

dμ0ðLÞ
 !
23 Thus ambiguity about parameters is excluded. It is an open question if and how the result outlined below may be extended.
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¼
Z

VLðf Þ dμ0ðLÞ ¼ U0ðf Þ;

where the second equality relies on Bayesian updating and on the assumption that the act f is constant with respect to sn

(hence the argument does not prove dynamic consistency). Weak dynamic consistency follows if LðsnÞ40 for all n and sn.
For greater clarity, we revert to the urns example below.

A unique likelihood measure on Ω¼ S1, denoted Lð�jJÞ, is induced by the construction in (6.2) given the λJ s. Note that this
likelihood is exchangeable (and generally not i.i.d.). Exchangeable likelihoods are used also by Acemoglu et al. (2009) to model a
difficult to interpret signal. We interpret the likelihood similarly: it is as if the individual is uncertain, in the way represented by λJ ,
what any given realized sample reveals about J. Moon and Schorfheide (2012) use a likelihood function of this form in their
Bayesian econometric approach to inference in partially identified models. A possibly surprising feature of our model is that
Bayesian inference is compatible with non-Bayesian choice that reflects an aversion to ambiguity about heterogeneity.

The fact that inference is Bayesian-like has the advantage that results from Bayesian learning theory can be adapted to describe
the nature of learning in our model. There is a difference in interpretation however. In our model updating takes place only once,
after observing sn for some given n. Thus, for example, statements about limiting posteriors describe beliefs if the single updating
stage takes place after a very large sample, and not the asymptotics of a dynamic process. With that in mind, consider briefly two
important features of learning assuming that each λJ is the uniform distribution over the interval J (see our (2010) paper for more
details and examples). First, beliefs need not converge to certainty about a specific interval: Where μ0 assigns positive probability to
overlapping intervals J′ and J, then along samples ω¼ ðsn; snþ1;…Þ for which the limiting empirical frequency of red limψnðsnÞ=n
lies in the intersection J′ \ J, the posterior probability of each interval is positive in general, even in the limit. Second, the sample
leads to inferences being drawn about intervals, which constitute the parameters which the individual attempts to learn, but there
is no learning within intervals. As described in Section 2.3, intervals with positive length reflect the poorly understood idiosyncratic
component of each urn; learning about this component is not attempted.

To illustrate the latter point more concretely, suppose, as in the intermediate perception described in Section 2.3, that the
individual believes that 100λ balls are selected once and for all by a single administrator and then placed in each urn, while
the other 100ð1�λÞ vary across urns in a way that is not understood. She is certain about the value of λ (for simplicity), but
she has a prior μ over θ, the proportion of red in the common group of balls. Then the relevant probability intervals for red
are Jθ ¼ ½λθ; λθþð1�λÞ�, 0rθr1, and μ induces a prior over these intervals. The sample is used to draw inferences about θ.
But the idiosyncratic nature of the 100ð1�λÞ balls precludes hoping to learn about them–the color compositions of the
100ð1�λÞ balls in the sampled urns do not provide any information on the remaining urns. Note that λ is subjective: If λ¼ 1,
intervals are degenerate and the individual views everything as learnable, while if λ¼ 0, she does not attempt to learn at all.

Similar features are present also when the above updating model is applied to the entry game. Let θ¼ ðβ1; β2; δ1; δ2; κÞ be the
parameter vector for the general entry game specification outlined in Section 5. Beliefs about θ are updated along a sample, but in
general, there will be certainty asymptotically only about a nonsingleton set of values for θ, corresponding to the parameter being
partially identified; this is due to the fact that multiplicity of equilibria and ignorance of selection imply that the message about
parameters inherent in any sample is not unique. In addition, just as in the urns example she views some aspects of her
environment as unlearnable, similarly here, the decision-maker has a limited understanding of selection and does not expect her
prior ignorance (which is subjective) to be informed by data. When ignorance is modeled as in (5.3), a captures the size of the
unlearnable component. If a¼0, then selection is described by a single probability law and there is certainty ex ante that all
parameters will be learned. If a40, then the individual perceives that to a degree selection is unrelated across markets and
therefore unlearnable.

7. Concluding remarks

An overview and summarizing comments may best be expressed through a comparison with Menzel (2011). He also addresses
robustness with respect to the i.i.d. assumption, but the focus of his paper differs from ours. As he states (p. 4), his paper “is mainly
aiming at providing computational tools,” while our primary objective (see particularly our papers dated 2010 and 2013) is to
formulate a model that has clear choice-theoretic axiomatic foundations. Note, however, that foundations do not come at the cost of
tractability at least for inference, which is Bayesian in our model and hence amenable to familiar computational methods. Another
difference in focus is that “choice” in our model refers to “economic choice,” where the payoffs to actions depend on the realized
outcomes of experiments (or markets), as opposed to Menzel's focus which we would term “statistical choice,” where payoffs are
assumed to depend on the true values of parameters (such as θ in the simple entry game). We emphasize that though economic
choice is our primitive, sharp implications for inference are derived, and accordingly, our approach is aptly described as providing a
unifying framework for (economic) choice and inference.

In terms of modeling details, consider the single-prior special case of our model for which we have modeled updating.
Then Menzel has in common with us the assumption of a single prior over parameters (such as over θ in the simple entry
game), and agnosticism about selection modeled through a set of likelihoods (our L).24 His inference method amounts to
applying Bayes' rule for each likelihood function separately and then using the worst-case posterior to evaluate any given
24 Menzel assumes complete agnosticism in the sense of a¼1 in (5.3).
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statistical action, that is, he minimizes Gamma-posterior expected loss. Though this class of statistical decision rules is
common in the robust Bayesian literature, to our knowledge it has no decision-theoretic foundations in exchangeable
models.25 There is an apparent formal connection to the Gilboa and Schmeidler (1989) maxmin model; but the latter deals
exclusively with a static context and its foundations are at best suggestive of the decision-theoretic meaning of the Gamma-
posterior expected loss criterion in a dynamic context that includes updating. In particular, as Menzel acknowledges, it leads
to dynamic inconsistency. In contrast, a weak form of dynamic consistency is in large part responsible for the implication in
our model that updating should be Bayesian using a likelihood that is constructed by averaging over L, or more precisely,
over LI . Finally, we note that it is the Gamma-posterior expected loss criterion that creates the tractability/computational
issues addressed by Menzel.
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Appendix A. Proof of Theorem 4.1

For an event E�Ω, write L1ðEÞ instead of infPAL1PðEÞ.
Step 1: L1ðfω : lim infn 1

n∑
n
i ¼ 0f ðTiωÞZagÞ ¼ 1 if minℓAL

R
fdℓZa: For any P ¼ ℓ1 	 ℓ2 	 ⋯AL1,

lim inf
n

1
n

∑
n

i ¼ 0
f Tiω

 �

¼ lim inf
n

1
n

∑
n

i ¼ 0
f Tiω

 �

� 1
n

∑
n

i ¼ 0

Z
fdℓiþ

1
n

∑
n

i ¼ 0

Z
fdℓi

" #

Z lim
n

1
n

∑
n

i ¼ 0
f Tiω

 �

� 1
n

∑
n

i ¼ 0

Z
fdℓi

" #
þ lim inf

n

1
n

∑
n

i ¼ 0

Z
fdℓi

¼ lim inf
n

1
n

∑
n

i ¼ 0

Z
fdℓiZa; P �a:s:

The last equality holds by Hall and Heyde (1980, Theorem 2.19).
Step 2: L1ðfω : lim infn1=n∑n

i ¼ 0f ðTiωÞZagÞ ¼ 0 if minℓAL
R
fdℓoa: This follows because Pðfω :

lim infn1=n∑n
i ¼ 0f ðTiωÞZagÞ ¼ 0 if P ¼ ℓ1 and

R
fdℓoa.

Step 3: (4.13) holds: It follows by Steps 1 and 2 because

L1 ⋂
K

k ¼ 1
ω : lim inf

n

1
n

∑
n

i ¼ 0
f k Tiω

 �

Zak

( ) !
¼

1 if min
ℓAL

R
f kdℓZak for all k

0 otherwise:

(

Step 4: Uniqueness: Equip KðΔSÞ, the collection of all closed convex subsets of ΔðSÞ, with the Hausdorff metric d, which
renders it compact and separable. Because each fk is a function on the finite set S, it is continuous and, by the Maximum
Theorem, so is L⟼minℓAL

R
f kdℓ. Therefore, all sets of the form

⋂
K

k ¼ 1
L : min

ℓAL

Z
f kdℓZak

� �

are closed and lie in ΣΔðSÞ, the Borel s-algebra of KðΔSÞ. Let Σ′� ΣΔðSÞ be the s-algebra generated by sets of the above form.
Claim 1: μ′¼ μ on Σ′, by Aliprantis and Border (2006, Theorem 10.10).
Claim 2: ΣΔðSÞ � Σ′. Let D be a countable dense subset of KðΔSÞ and consider the set N of all open balls centered at some point

in D and having a rational radius. Then N is a countable basis for the Hausdorff metric topology (Aliprantis and Border, 2006,
Lemma 3.4) and N generates ΣΔðSÞ. Therefore, it suffices to show that N � Σ′, or that

fL′ : dðL;L′ÞoɛgAΣ′ ðA:1Þ

for every ɛ40 and LAKðΔSÞ.
For each L, the support function sL : Φ-R (where Φ¼ fϕARn : JϕJ ¼ 1g and n¼ jSj) is defined by sLðϕÞ ¼minℓAL

R
ϕdℓ.

It is known that

dðL;L′Þ ¼ sup
ϕAΦ

jsLðϕÞ�sL′ðϕÞj � JsL�sL′ J
25 Epstein and Schneider (2003a) provide foundations for prior-by-prior Bayesian updating in a temporal recursive model where exchangeability is
violated.
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(Aliprantis and Border, 2006, Theorem 7.58). Fix ɛ40 and LAKðΔSÞ. Since Φ is separable, there is a countable set fϕ1;ϕ2;…g
that is dense in Φ. Let aj ¼ sLðϕjÞ�ɛ and bj ¼ sLðϕjÞþɛ, for each j¼ 1;…. Then

fL′ : ajosL′ðϕjÞobj; for all j¼ 1;…gAΣ′:

The noted denseness and the continuity of support functions imply (A.1).
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