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ROBUST CONFIDENCE REGIONS FOR INCOMPLETE MODELS

BY LARRY G. EPSTEIN1, HIROAKI KAIDO, AND KYOUNGWON SEO

Call an economic model incomplete if it does not generate a probabilistic predic-
tion even given knowledge of all parameter values. We propose a method of inference
about unknown parameters for such models that is robust to heterogeneity and de-
pendence of unknown form. The key is a Central Limit Theorem for belief functions;
robust confidence regions are then constructed in a fashion paralleling the classical ap-
proach. Monte Carlo simulations support tractability of the method and demonstrate
its enhanced robustness relative to existing methods.

KEYWORDS: Partial identification, entry games, incomplete models, belief functions,
central limit theorem.

1. INTRODUCTION

1.1. Objectives and Outline

IN A WIDE CLASS OF STRUCTURAL MODELS, when the analyst is not willing
to make assumptions that are driven by convenience rather than by economic
theory, the resulting economic structures are incomplete in the sense that they
do not yield unique reduced forms. In this paper, we consider the class of such
models that can be represented as follows: given a structural parameter θ ∈ Θ
and the realization u ∈ U of an unobservable random variable, the model pre-
dicts a nonsingleton set, denoted G(u|θ), of values for the outcome variable;
that is, G(u|θ) is a subset of the (finite) outcome space S. Importantly, the
model is silent on how the realized outcome s is selected from G(u|θ). The
object of interest is θ.

An important example (based on Jovanovic (1989)) is a discrete normal form
game where u is a latent variable, θ is a parameter in the payoff matrix, S is
the set of (pure) strategies, and G(u|θ) is the set of Nash equilibrium (pure)
strategy profiles for the given u and θ. The multiplicity of equilibria and the
absence of a theory of equilibrium selection lead to a multi-valued prediction.
Alternative solution concepts can also be adopted. For example, a refinement
of Nash equilibrium can be modeled via a suitable sub-correspondence; and
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a weaker solution concept such as rationalizability can be modeled via a suit-
able super-correspondence. Whichever solution concept is adopted, there is
complete ignorance about selection.

The lack of a unique reduced form implies that a conventional identification
analysis based on a (single) likelihood cannot be applied, which has motivated
recent research on identification and inference in incomplete models. An im-
portant objective of this literature has been expressed by Ciliberto and Tamer
(2009, p. 1800), who wrote in the context of entry games: “This [selection]
mechanism is not specified, and one objective of the methodology in this paper is
to examine the question of what can be learned when researchers remain agnostic
about this selection function.” Our starting point is to observe that agnosticism
about selection has implications that have been overlooked in the literature.
To elaborate, think of a number of experiments, or random events, indexed by
i = 1�2� � � � � each of which may be described as above, for a common Θ, G, and
S; for example, each experiment could correspond to a different market where
an entry game is played. Then, given θ, each infinite sequence of unobserved
variables u∞ ≡ (u1�u2� � � �) generates a sample (s1� s2� � � �) of outcomes, where
si ∈G(ui|θ) for all i. A prevalent assumption in the literature is the availability
of samples of outcomes that are well-behaved in the sense that sample av-
erages converge (ergodicity) and obey classical limit theorems. This restricts
heterogeneity and dependence of outcomes across experiments in an analyti-
cally convenient way because then the sampling distribution around the limit-
ing empirical frequency of any event can be approximated in large samples by a
normal distribution. A leading example is the assumption that samples are in-
dependent and identically distributed (i.i.d.). An alternative and more general
assumption is that samples are stationary and strongly mixing (Chernozhukov,
Hong, and Tamer (2004), Andrews and Soares (2010)).

Though seemingly standard and innocuous, the assumption that samples ad-
mit classical limit theorems becomes subtle given incompleteness of the model
and the declared agnosticism about selection. This is because if the selection
mechanism in each market is not understood, then there is no basis for taking
a stand on how such selections are related to each other across experiments.
To emphasize this point further, think of the nonsingleton nature of G(ui|θ) in
terms of “omitted variables”: a complete theory may exist in principle in that it
may be possible to explain and predict selection given a suitable set of explana-
tory variables. However, the analyst’s theory does not identify these omitted
variables. They are not only unobservable to her, as are the latent variables
captured by U ; more fundamentally, their identity is unknown. Consequently,
there is no basis for understanding how selection, and thus realized outcomes,
may differ or be related across experiments. In particular, one cannot be sure
even that empirical frequencies converge, thus limiting the applicability (or ro-
bustness) of existing inference methods. Accordingly, in this paper we develop
a new inference method that is robust to heterogeneity and dependence of an
unknown form.
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Before outlining our approach, we emphasize that our inference method
is not only of theoretical interest—it is applicable to a number of empirical
models in the literature. These models include: entry games with multiple
Nash equilibria (Bresnahan and Reiss (1990, 1991), Berry (1992), Jia (2008),
Ciliberto and Tamer (2009);2 first-price auctions (Haile and Tamer (2003));
innovation and product variety (Eizenberg (2014)); sincere versus strategic
voting (Kawai and Watanabe (2013)); municipal mergers (Weese (2015));
discrete-choice with social interactions (Soetevent and Kooreman (2007));
matching with externalities (Uetake and Wanatabe (2012)); and friendship net-
works (Miyauchi (2014)). In these models, incomplete structures arise for dif-
ferent reasons. For example, in discrete-game models, incompleteness arises
because of the modeler’s agnosticism about the mechanism for selecting from
among multiple equilibria; while in Haile and Tamer’s auction model, it is due
to the modeler’s agnosticism about the precise game form underlying the auc-
tion data in her sample, which leads her to adopt only weak assumptions about
bidders’ behavior. Solution concepts also vary; for example, in matching and
network formation models, pairwise stability or similar concepts are used.

Here is a sketch of how we proceed (leaving technical details and formal re-
sults for the sequel). The first step is to specify the set of outcome sequences
that are consistent with what is known according to the analyst’s theory. For
each given θ, robustness to an unknown form of dependence implies that if,
for each i, si is a conceivable outcome in the ith experiment (in isolation) given
ui, then (s1� s2� � � �) is a conceivable sequence given (u1�u2� � � �). Thus, without
further assumptions, the model predicts that the selected outcomes (s1� s2� � � �)
take their values in the Cartesian product of G(ui|θ), i = 1�2� � � � � and we de-
fine

G∞(u1� � � � � ui� � � � |θ)≡
∞∏
i=1

G(ui|θ)�(1.1)

Note that experiments are indistinguishable in the sense that the same cor-
respondence G(·|θ) applies to each experiment. However, even if G(ui|θ) =
G(uj|θ), as when ui = uj , any outcome in G(ui|θ) is possible in experiment
i and any possibly different outcome is possible in experiment j. Therefore,
the model, expanded in this way to sequences, does not restrict how selection
might differ or be related across experiments.

The second step is to add a suitable stochastic structure that again leaves
the heterogeneity and dependence structure of selections unrestricted. Fix θ.

2See Section 4.1 for a canonical example of such entry games due to Jovanovic (1989). Note
also that the Supplemental Material provides a detailed guide to implementing our method in
the context of the entry games in Bresnahan and Reiss (1990, 1991), Berry (1992), and Ciliberto
and Tamer (2009).
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Assume that u∞ jointly follows a parametric distribution m∞
θ , the i.i.d. prod-

uct of the measure mθ on U .3 For each given u∞, any probability distribution
Pu∞ supported on G∞(u∞|θ) is a valid conditional distribution of the sequence
of outcomes; and the implied distribution of outcomes is P = ∫

Pu∞ dm∞
θ . Ac-

cordingly, we consider the entire set Pθ of distributions over outcomes given
by

Pθ =
{
P ∈ Δ

(
S∞) : P =

∫
U∞

Pu∞ dm∞
θ

(
u∞)�

Pu∞ ∈ Δ
(
G∞(u∞|θ))m∞

θ -a.s.
}
�

Note that because Δ(G∞(u∞|θ)) equals the entire simplex of distributions on∏∞
i=1 G(ui|θ), including both nonidentical product measures and nonproduct

measures, the set Pθ accommodates many forms of heterogeneity and depen-
dence across experiments even given u∞.

Though sets of probability measures may not seem to be convenient vehi-
cles for conducting inference, the set Pθ has a special structure that makes it
tractable: its lower envelope ν∞

θ , defined, for every measurable B ⊂ S∞, by

ν∞
θ (B)= inf

P∈Pθ

P(B)�(1.2)

is a belief function on S∞.4 We exploit this and prove a (new) central limit the-
orem (CLT) for each belief function ν∞

θ and thus indirectly also for each set
Pθ. Then we show how, paralleling the classical analysis for complete models,
the CLT can be used to construct suitably robust confidence regions for the
unknown parameter θ.

A confidence region Cn is a set of parameter values constructed from a finite
number of observations s1� � � � � sn such that, for each θ, the coverage proba-
bility is asymptotically at least at a prespecified level 1 − α under any proba-
bility distribution in Pθ. We construct Cn using a statistic based on the empir-
ical frequencies n−1

∑n

i=1 I(si ∈ Aj) for a class {Aj}Jj=1 of subsets of S. Then
we use the CLT to prove that ν∞

θ ({θ ∈ Cn}) → 1 − α, which implies that Cn

controls the asymptotic coverage probability uniformly over Pθ. Furthermore,
we show that the coverage is uniform over the generalized parameter space
F = {(θ�P) : P ∈Pθ� θ ∈ Θ}; that is, our confidence region satisfies

lim inf
n→∞

inf
(θ�P)∈F

P(θ ∈ Cn)≥ 1 − α�

3In fact, as indicated below, more general probability laws on U∞ can be adopted.
4Belief functions are special cases of capacities (or “non-additive probabilities”), sometimes

referred to as totally, completely, or infinitely monotone capacities. They originated in Dempster
(1967) and Shafer (1976). Definitions for more general settings can be found, for example, in
Philippe, Debs, and Jaffray (1999), and Molchanov (2005).
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After describing some links to the literature in the remainder of this intro-
duction, the paper proceeds as follows. Section 2 lays out the formal frame-
work. The latter is used in Section 3 which presents our results regarding in-
ference. Examples and some Monte Carlo simulation results follow in the next
two sections. To this point, the analysis is carried out under the assumption
that there is no observable heterogeneity across experiments. Section 6 de-
scribes an extension to include covariates. Appendices contain proofs as well
as an outline of an extension that robustifies the treatment of latent variables.
The Supplemental Material (Epstein, Kaido, and Seo (2016)) provides details
regarding implementation.

1.2. Relation to the Literature5

The analysis of incomplete economic models dates back at least to Wald
(1950), who studied inference on parameters based on incomplete systems
of equations where the number of endogenous variables exceeds the number
of structural equations. He considered the special case where the inclusion
si ∈ G(ui|θ) can be inverted to solve for ui in the form ui = g(si|θ) for some
function g. This structure does not intersect any of the applied models (in-
cluding those based on multiple Nash equilibria) studied in the more recent
literature. Jovanovic (1989) highlighted the potential difficulty for identifica-
tion raised by model incompleteness and provided a theoretical framework for
studying the predictive content of such models. Bresnahan and Reiss (1990,
1991) and Berry (1992) considered an identification and estimation method
that is robust to the multiplicity of equilibria. Their strategy was to transform
the outcome variable so that the model becomes complete after the transfor-
mation. Since this transformation aggregates some of the outcomes that can be
selected from multiple equilibria, it incurs a loss of information. Tamer (2003)
showed that one can (point or partially) identify structural parameters and mit-
igate the loss of information by using inequality restrictions on the probabilities
of outcomes that are not predicted uniquely.

More recently, the theory of random sets (and induced capacities) has been
applied to address identification and inference. Capacities have been em-
ployed to characterize the set of parameter values that are identifiable from
the observed variable (Galichon and Henry (2011), Beresteanu, Molchanov,
and Molinari (2011), Chesher and Rosen (2014)). For example, Galichon and
Henry (2011) used the capacity defined by μθ(A) ≡ mθ(G(u|θ) ∩ A 	= ∅),
A ⊂ S, as a primitive object to conduct their identification analysis. This func-
tional gives, for each single experiment, the upper envelope of the probability
of A over the set of distributions compatible with the model. Here we use the
conjugate capacity whereby the capacity of A is measured by 1−μθ(S \A); this

5Those unfamiliar with the literature on partial identification may wish to skim or even skip
this section on first reading.
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defines a belief function which gives the lower envelope, and hence is directly
relevant for studying the robust control of the asymptotic coverage probability.
Another difference is that we focus explicitly on the entire sequence of experi-
ments jointly. Our approach to inference is related to Beresteanu and Molinari
(2008) in the sense that we both use generalized (albeit much different) limit
theorems. An important difference is that they assumed that the entire set of
outcomes is observed for each experiment rather than merely the selected out-
come (e.g., outcomes are interval-valued). Galichon and Henry (2006, 2009,
2013) studied inference using a statistic based on capacities, but they also
maintained the assumption that samples obey classical limit theorems. None
of these papers addresses robustness with regard to unknown forms of hetero-
geneity and dependence.

In various incomplete models, structural parameters often satisfy model re-
strictions that take the form of moment inequalities. Therefore, econometric
tools for moment inequalities have been used to do inference in incomplete
models (Chernozhukov, Hong, and Tamer (2007), Andrews and Soares (2010),
Bugni (2010), Andrews and Shi (2013)). As noted above, these methods com-
monly assume that data are generated across experiments in such a way that
classical limit theorems are applicable, which precludes robustness against un-
known forms of heterogeneity and dependence due to model incompleteness.
Though the method we develop here is applicable to the narrower class of in-
complete structural models, it has the advantage of being robust.

The only paper of which we are aware that explicitly allows outcome se-
quences that do not necessarily obey classical limit theorems is Menzel (2011).
He developed a computational tool to conduct robust Bayes inference assum-
ing that outcome samples are drawn from an exchangeable rather than i.i.d.
distribution, which delivers some robustness. However, he restricted selection
to depend only on variables that affect payoffs, and thus his method is not ro-
bust against unknown forms of heterogeneity and dependence.

A notable and desirable feature of our confidence region, besides robust-
ness, is that, in contrast to existing methods, its construction does not require
tuning parameters. This is due to the different procedure used to approximate
the (worst-case) probability that the confidence region covers θ. As we show
below, the model implies that asymptotically the probability of any set of out-
comes A ⊂ S lies in a probability interval [νθ(A)� ν∗

θ(A)] that depends on θ.
Under the assumptions adopted in existing methods, the empirical frequency
converges to a unique probability p(A). The pointwise limiting distribution of
the test statistic used to construct confidence regions changes depending on
whether p(A) equals νθ(A), or ν∗

θ(A), or is in the interior of the interval, with
the result that this limiting distribution depends discontinuously on the under-
lying data generating process.6 A sequence of tuning parameters is commonly

6For example, a commonly used test statistic is Tn(θ) = √
nmax{νθ(A) − n−1∑n

i=1 I(si ∈
A)�n−1∑n

i=1 I(si ∈A)− ν∗
θ(A)}. Let Z have the limiting distribution of

√
n(n−1∑n

i=1 I(si ∈A)−
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used to handle this discontinuity. However, though the choice of tuning pa-
rameters often affects the performance of existing methods in nontrivial ways,
it is also an arbitrary component of existing inference methods. We attribute
this arbitrariness to the assumption that the empirical frequency converges to
a unique limit. In contrast, we do not presume such convergence. Even so, in-
ference on the structural parameter is possible because if θ is the true param-
eter, then the empirical frequency cannot deviate from the above probability
interval asymptotically. Our CLT provides a normal approximation to the dis-
tribution of deviations from this restriction in finite samples. This normal ap-
proximation is expressed in terms of the lower envelope over all possible data
generating processes, and thus the true data generating process does not affect
the approximation given θ. Thus discontinuity of the limiting distribution does
not arise.

Another reflection of the difference in the approach to inference adopted
here is that while the notion of the “identified set” receives a great deal of
attention in the literature, it does not play a role here. A brief remark may
be helpful for readers familiar with the literature on partial identification.
Following Manski (2003), the identified set is taken to be the set of param-
eters compatible with what is revealed asymptotically by the sampling process.
Given the structure (S�U�G�Θ;m) augmented by the assumptions that the
outcome in each market is distributed according to some measure p ∈ Δ(S)
and that the outcome sequence is ergodic, then empirical frequencies converge
almost surely to p, rendering p observable. The identified set, denoted ΘI(p),
consists of all θ such that there exists a (suitably measurable) selection rule
u 
−→ pu ∈ Δ(G(u|θ)) satisfying

p(·)=
∫
U

pu(·)dmθ(u)�

which equates true and predicted empirical frequencies.7 A number of pa-
pers describe (finite sample) estimators for ΘI ; see, for example, Ciliberto
and Tamer (2009). From our perspective, such a focus on ΘI(p) is unjustified
since both its definition and interpretation presume that outcomes are ergodic,
which we have argued is problematic when the analyst’s model is incomplete.
When robustness with respect to unknown forms of heterogeneity and depen-
dence is sought, it is apparent that the appropriate definition of an identified
set should be formulated in the space of outcome sequences. However, we do
not pursue such a definition here because it does not seem vital for studying
inference about the true parameter.

p(A)) under the assumption that a classical CLT applies. Then Tn(θ) converges in distribution
to −Z, −∞, Z, or max{−Z�Z} according as νθ(A) = p(A) < ν∗

θ(A), νθ(A) < p(A) < ν∗
θ(A),

νθ(A) < p(A) = ν∗
θ(A), or νθ(A) = p(A) = ν∗

θ(A), respectively.
7See Beresteanu, Molchanov, and Molinari (2011) and Galichon and Henry (2011), for exam-

ple.
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Finally, belief functions play a central role in Epstein and Seo (2015), who
described a Bayesian-style approach to doing inference in incomplete models.
Besides their subjectivist as opposed to frequentist approach, their paper dif-
fers also in its focus on axiomatic decision-theoretic foundations.

2. THE FRAMEWORK

Consider a setting with an infinite sequence of experiments (or random
events), where Si = S denotes the set of possible outcomes for the ith exper-
iment; we assume throughout that S is finite. The economic model of each
single experiment is described by (S�U�G�Θ;m) with the following interpre-
tation and restrictions. Θ is a set of structural parameters. The true param-
eter is common to all experiments but is unknown to the analyst. Each u in
U describes the unobservable characteristics of the single experiment under
consideration. In alternative terminology, S and U capture endogenous and
latent variables, respectively; an extension to include covariates describing ob-
servable heterogeneity is provided in Section 6. We assume that U is a Polish
(complete separable metric) space. Latent variables are distributed according
to the Borel probability measure mθ, which is known up to the parameter θ; let
m = (mθ)θ∈Θ. Finally, for each θ ∈ Θ, G(·|θ) : U � S is a correspondence that
describes the set of outcomes for each given u and parameter θ. The multi-
valued nature of G gives one sense in which the analyst’s model (or theory)
is incomplete: for each single experiment, and given the structural parameter,
theory prescribes only a set of possible outcomes, with no indication of which
outcomes in the set are more or less likely to be selected. We assume that, for
each θ, G(·|θ) is weakly measurable.8

The analyst observes outcomes in some experiments and wishes to draw
inferences, via the construction of confidence regions for the structural pa-
rameters. To address inference, we extend the above formal structure to ac-
commodate the entire sequence of experiments.9 Accordingly, consider the
tuple (S∞�U∞�G∞�Θ;m∞). The meaning of and rationale for S∞ and U∞

are clear;10 they have generic elements s∞ = (s1� s2� � � �) and u∞ = (u1�u2� � � �),
respectively. By m∞, an abbreviation for (m∞

θ )θ∈Θ, we mean that, conditional

8A correspondence Γ : U � X , where X is metric, is weakly measurable if {u : Γ (u) ⊂ A} is
a (Borel) measurable subset of U for every closed A ⊂ X . If Γ is compact-valued, then weak
measurability is equivalent to the property that {u : Γ (u) ⊂ A} is measurable for every open
A⊂X (Aliprantis and Border (2006, Lemma 18.2)).

9Our formal model of a single experiment is adapted from Koopmans and Riersol (1950)
and Jovanovic (1989); a similar structure was employed by Galichon and Henry (2009, 2011).
However, we deviate from existing literature in adopting also the following formal model of the
sequence of experiments.

10For any metric space X , we endow X∞ with the product metric and corresponding Borel
σ-algebra. (Then, given that S is finite, S∞ is separable compact metric, and hence Polish.) We
denote by Δ(X) the set of Borel (countably additive) probability measures on X .
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on θ, unobserved variables are distributed i.i.d. across experiments according
to mθ. The parameter set Θ remains unchanged and parameters are assumed
to be constant across experiments. The remaining component G∞, a key to
our approach, is, for each θ, a correspondence G∞(·|θ) : U∞ � S∞ defined as
in (1.1). As described there, the Cartesian product structure in (1.1) imposes
no restrictions on how selection might differ or be related across experiments.
This is another important sense of model incompleteness. Note that G∞(·|θ)
is weakly measurable by Aliprantis and Border (2006, Lemma 18.4); it is also
compact-valued.

In seeking robust inferences, the analyst takes into account all proba-
bility distributions P ∈ Δ(S∞) that are consistent with the given (S∞�U∞�
G∞�Θ;m∞), that is, for each given θ, she considers the set Pθ defined in the
Introduction and repeated here for convenience:

Pθ =
{
P ∈ Δ

(
S∞) : P =

∫
U∞

Pu∞ dm∞
θ

(
u∞)�(2.1)

Pu∞ ∈ Δ
(
G∞(u∞|θ))m∞

θ -a.s.
}
�

Each indicated conditional distribution Pu∞ is assumed to be such that u∞ 
−→
Pu∞(B) is measurable for every measurable B ⊂ S∞, and is referred to as a
selection rule. When the analyst’s model is complete (G∞(·|θ) is single-valued),
then Pθ = {Pθ} is a singleton and Pθ is the i.i.d. product of the measure on
S induced by mθ and G(·|θ) : U → S. However, in general, she considers all
(including non-ergodic) selection rules consistent with her incomplete theory.

The structure of the set Pθ defined in (2.1) implies a form of symmetry across
experiments that warrants explicit mention. Roughly, it indicates that the or-
dering of experiments has no significance in the following sense. For any finite
permutation π of the indices 1�2� � � � � and any probability measure P on S∞,
denote by πP the unique probability measure satisfying (for all rectangles)
(πP)(A1 ×A2 × · · ·)= P(Aπ−1(1) ×Aπ−1(2) × · · ·). Then it is easy to see that Pθ

is symmetric, or “exchangeable,” in the sense that

P ∈Pθ ⇐⇒ πP ∈Pθ�(2.2)

Such symmetry seems more natural in a cross-sectional setting where experi-
ments are resolved simultaneously than in a time-series context where exper-
iments are differentiated because they are ordered temporally. Accordingly,
though the formal results that follow do not require the cross-sectional inter-
pretation, we think of our approach to inference as particularly relevant to
cross-sectional data. When considering symmetry, keep in mind that currently
we are ruling out observable differences between experiments. When these are
included and modeled via covariates as in Section 6, then the implied symme-
try is suitably conditional: roughly, (2.2) is weakened so as to apply only to
permutations that permute experiments having common covariate values.
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A feature of Pθ that we exploit heavily is its connection to a belief function,
which we now explain. Define ν∞

θ (·) to be the lower envelope of Pθ as in (1.2).
Then ν∞

θ can also be expressed in the form: For every measurable B ⊂ S∞,

ν∞
θ (B)≡m∞

θ

({
u∞ ∈ U∞ :G∞(u∞|θ)⊂ B

})
�(2.3)

Thus ν∞
θ is the capacity on measurable subsets of S∞ induced by the correspon-

dence G∞(·|θ) and the probability measure m∞
θ on U∞, which is in the form of

one of the common definitions of a belief function.

REMARK 1: Here are some technical details supporting the preceding
claims. Because these are well known in the literature (see, e.g., Aliprantis
and Border (2006, Chapter 18) and Philippe, Debs, and Jaffray (1999)), we
provide only an outline here rather than a formal lemma. The set {u∞ ∈ U∞ :
G∞(u∞|θ) ⊂ B} in (2.3) is, in general, not measurable for every Borel mea-
surable B. However, it is universally measurable, and moreover, each Borel
measure m∞

θ has a unique extension to a probability measure (also denoted
m∞

θ ) on the collection of all universally measurable subsets of S∞. This renders
the RHS of (2.3) well-defined. In addition, it follows from Philippe, Debs, and
Jaffray (1999, Theorem 3) that (2.3) and (1.2) provide equivalent definitions
of ν∞

θ .

One can proceed similarly to define a belief function when considering a
single experiment in isolation. Then the set of all probability laws on any single
experiment that are consistent with θ and the given structure (S�U�G�Θ;m)
is given by{

p ∈ Δ(S) : p=
∫
U

pu dmθ(u)�pu

(
G(u|θ))= 1 mθ-a.s.

}
�

If we define νθ on S as the lower envelope of this set, then

νθ(A) ≡mθ

({
u ∈ U :G(u|θ)⊂ A

})
� A ⊂ S�(2.4)

from which we can conclude that νθ is a belief function on S. The upper enve-
lope of the set of consistent measures is also of interest. Thus define also the
conjugate of νθ, denoted ν∗

θ , by

ν∗
θ(A) = 1 − νθ(S \A)�(2.5)

Then ν∗
θ(A) is the maximum probability of A consistent with the model. Of

course, for all measurable A⊂ S,

νθ(A) ≤ ν∗
θ(A)�

There is a relation between the belief function νθ on S and the belief func-
tion ν∞

θ on S∞ that is suggested by our notation and that is important below.
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Specifically, one can view ν∞
θ as an “i.i.d. product” of νθ because they satisfy:11

for every finite n, and for all subsets Ai of Si = S, i = 1� � � � � n,

ν∞
θ

(
A1 × · · · ×An ×

∞∏
i=n+1

Si

)
=

n∏
i=1

νθ(Ai)�(2.6)

Given the central role played by i.i.d. probability measures in the classical CLT,
it should not be surprising that a corresponding notion for belief functions
is important for the CLT derived in the next section. We caution, however,
that the parallel with the case of probability measures should not be carried
too far. The relation (2.6) does not express stochastic independence of selec-
tion across markets as such independence is usually understood. Rather, as
described when interpreting G∞(·|θ) defined in (1.1), which underlies (2.6), it
reflects agnosticism about how selection is related across markets in that igno-
rance about selection in one experiment is “independent” of, or unrelated to,
ignorance about selection in any other experiment.

We conclude this section with remarks about the scope of our framework.
First, we emphasize that Pθ is not a primitive—if one starts with an arbitrary
set Pθ and defines the lower envelope by (2.3), then ν∞

θ will typically not be
a belief function and the inference procedure that follows does not apply.12 It
is important to keep in mind that the primitive in our approach is the tuple
(S∞�U∞�G∞�Θ;m∞), the elements of which are used to define Pθ by (2.1).
The analyst must determine if a tuple of this form captures the problem at
hand, and if so, as is the case for the empirical studies cited in the Introduction,
then our procedure can be applied. We do not know if it is possible to extend
our CLT to accommodate sets Pθ constructed in some other way.

A related point of clarification is that our method provides robustness to
complete agnosticism about how selection operates, but is presumably overly
conservative if the analyst is confident in restricting the possible patterns of
selection across experiments. For example, one way to restrict patterns of se-
lection across experiments is to replace G∞(·|θ) in (2.1) by a correspondence
H(·|θ) :U∞ � S∞ such that H(·|θ) ⊂ G∞(·|θ). Denote by P ′

θ the set of proba-
bility laws defined in this way. Then the lower envelope of P ′

θ is a belief func-
tion, but not an i.i.d. product belief function, that is, it does not satisfy (2.6),
and our CLT does not apply. Though it is arguably regrettable that less than
“maximal robustness” is excluded by our analysis, we offer two (subjective)
justifications in defense: maximal robustness is what has often been called for

11The following is readily derived from the Cartesian product definition of G∞(·|θ) and the
i.i.d. nature of each measure mθ. See Epstein and Seo (2015) and the references therein for more
on i.i.d. products of belief functions.

12Also demonstrated in Philippe, Debs, and Jaffray (1999) is that the set Pθ defined by (2.1)
coincides with the core of ν∞

θ , core(ν∞
θ ) = {P ∈ Δ(S∞) : P(·) ≥ ν∞

θ (·)}, which shows again that Pθ

is special—it must be the core of a belief function.
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in the literature, as illustrated by the above quote from Ciliberto and Tamer;
and, if ignorance about selection in any single market is due to missing vari-
ables, whose identity is not even known by the analyst, then ignorance about
the cross-sectional variation in selection follows logically.

A final comment is that, in common with all the surrounding literature, our
framework treats asymmetrically the uncertainty generated by latent variables
as opposed to the uncertainty regarding selection—the former is described by a
single i.i.d. probability measure (for each θ), while there is complete ignorance
about the latter. One may question the assumption of extensive knowledge of
latent variables particularly since they are not observed by the analyst. How-
ever, we can do better in this regard. As explained in the discussion of our CLT
(Theorem 3.1), the assumption that each m∞

θ is i.i.d. can be relaxed. Further
and more fundamentally, our framework also permits the analyst to have an
incomplete model of latent variables in that one can take each mθ to be a be-
lief function on U , and the approach to inference that follows carries through.
See Appendix E for details.

3. INFERENCE

Here we construct confidence regions for the unknown parameters that are
robust to the limitations of the analyst’s model. The approach largely mimics
the classical approach used when Pθ is a singleton i.i.d. measure, where the
classical CLT can be used to construct desired confidence regions. We show
that a corresponding procedure can be adopted also when the analyst’s model
is incomplete. The first step is to establish (in Theorem 3.1) a CLT for belief
functions ν∞

θ . The coverage property of our confidence regions is then estab-
lished in Theorem 3.2.

3.1. A Central Limit Theorem

Belief functions aid tractability because they permit extensions of some basic
tools of probability theory, namely the LLN and CLT. The former is taken from
Maccheroni and Marinacci (2005), while the CLT is original to this paper and
is described shortly.

Let Ψn(s
∞)(·) be the empirical frequency measure in the first n experiments

along the sample s∞ = (s1� s2� � � �), that is,

Ψn

(
s∞)(A)= 1

n

n∑
i=1

I(si ∈ A)� for every A ⊂ S�

Though empirical frequencies need not converge, the LLN asserts certainty
that asymptotically Ψn(s

∞)(A) lies in the interval [νθ(A)� ν∗
θ(A)]:

ν∞
θ

{
s∞ : [lim infΨn

(
s∞)(A)� lim supΨn

(
s∞)(A)

]
(3.1)

⊂ [
νθ(A)� ν∗

θ(A)
]}= 1;
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and this condition is tight in the sense that

ν∞
θ

({
s∞ : νθ(A) < lim infΨn

(
s∞)(A)

})= 0� and(3.2)

ν∞
θ

({
s∞ : lim supΨn

(
s∞)(A) < ν∗

θ(A)
})= 0�

In light of the lower envelope condition (1.2), the LLN asserts that the event
in (3.1) has unit probability according to every measure in Pθ, while each event
appearing in (3.2) has arbitrarily small probability according to some measure
in Pθ.

Turn to the CLT. For any positive semidefinite matrix Λ ∈ R
J×J , NJ(·;Λ) de-

notes the J-dimensional normal c.d.f. with zero mean and covariance matrix
Λ—for any c = (c1� � � � � cJ) ∈ R

J , NJ(c;Λ) is the probability mass associated
with values less than or equal to c (in the vector sense), that is, with the closed
lower orthant at c. Of primary interest will be covariance matrices constructed
as follows. Fix J events, A1� � � � �AJ , subsets of S, and for any θ, let

covθ(Ai�Aj)= νθ(Ai ∩Aj)− νθ(Ai)νθ(Aj)�(3.3)

varθ(Ai)= νθ(Ai)
(
1 − νθ(Ai)

)= covθ(Ai�Ai)�

Denote by Λθ the J × J symmetric and positive semidefinite matrix (covθ(Ai�
Aj)).13

THEOREM 3.1: Suppose θn ∈ Θ and cn ∈ R
J , n = 1�2� � � � � and let Λθn → Λ ∈

R
J×J and cn → c ∈R

J . Then

ν∞
θn

(
J⋂

j=1

{
s∞ : √n

[
νθn(Aj)−Ψn

(
s∞)(Aj)

]≤ cnj
})→ NJ(c;Λ)�(3.4)

See Appendix A for a proof.14

Though the inequalities in (3.4) place only a lower bound on empirical fre-
quencies, upper bounds are also accommodated. To demonstrate this and to
facilitate interpretation of the CLT, suppose that J = 2I and that AI+i = S \Ai

for each i = 1� � � � � I, that is, each event Ai is accompanied by its complement
AI+i; in this case, we refer to {Aj} as being “complement-closed.” Then the
event appearing in (3.4) is

I⋂
i=1

{−cni/
√
n+ νθn(Ai)≤ Ψn

(
s∞)(Ai)≤ ν∗

θn
(Ai)+ cn(I+i)/

√
n
}
�(3.5)

13Positive semidefiniteness is proven in the theorem.
14Marinacci (1999, Theorem 16) proved a central limit theorem for a class of capacities that

he called “controlled,” which property neither implies nor is implied by being a belief function.
Thus the CLTs are not comparable. Marinacci did not study confidence regions.
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where ν∗
θn

is the conjugate belief function defined as in (2.5). For greater clar-
ity, suppose further that (θn� cn) = (θ� c) for all n. Then, rather than certainty
that the empirical frequency of Ai in an infinite sample lies in the interval
[νθ(Ai)� ν

∗
θ(Ai)], as in the LLN, the CLT describes, as an approximation, the

distribution of deviations from that restriction in finite samples. In particu-
lar, when ci and cI+i are positive, the empirical frequency can be smaller than
νθ(Ai) or larger than ν∗

θ(Ai), and the distribution of such deviations according
to ν∞

θ is approximately normal.
When each νθn is additive and hence a probability measure, then the vari-

ances and covariances defined in (3.3) are the usual notions applied to indica-
tor functions I(s ∈ Ai) and I(s ∈ Aj) and the CLT reduces to (a special case
of) the classical triangular CLT (see, e.g., White (2001, Theorem 5.11)). Other
special cases of the theorem are also immediate implications of classical re-
sults. For example, if J = 1, then the CLT provides an approximation to

ν∞
θn

({−cn1/
√
n+ νθn(A1) ≤Ψn

(
s∞)(A1)

})
�(3.6)

But it can be shown that, for this event, the minimum in (1.2) is achieved at an
i.i.d. measure P∗

n .15 Thus one can invoke a classical triangular CLT. However,
in general, reduction to the classical additive case is not elementary because
even if minimizing measures exist, they are not easily determined nor is there
any reason to expect that they are i.i.d. measures.

The proof of our general result exploits the close connection between belief
functions and probability measures expressed in (2.3), and also the Cartesian
product structure of G∞ given in (1.1). Together they permit, for each θn, trans-
forming our assertion about belief functions into one about i.i.d. probability
measures m∞

θn
as follows:

ν∞
θn

(√
n
(
νθn(Aj)−Ψn

(
s∞)(Aj)

)≤ cnj for each j
)

(3.7)

=m∞
θn

(
1√
n

n∑
i=1

(
νθn(Aj)−X

j
ni

)≤ cnj for each j

)
�

where for each j, Xj
ni = I(G(ui|θ) ⊂ A), i = 1� � � � � n, is an i.i.d. sequence of

random variables. Then the classical CLT can be applied. Note that despite
the fact that the distribution of the sequence of outcomes involves incidental
parameters Pu∞ describing selection, the fact that selection can vary arbitrarily
across markets does not affect our limit theorem. This is because each belief
function ν∞

θn
is a lower envelope (1.2) as one varies over all possible selections,

which set is described by the i.i.d. set-valued random variable G(·|θn). Conse-
quently, the (selection) incidental parameters do not enter into the represen-
tation of belief functions as in (2.3).

15P∗
n is the i.i.d. product of p∗

n ∈ Δ(S) such that p∗
n(A1) = νθn (A1). When a minimizer exists in

(1.2) for an event, refer to it as a minimizing or worst-case measure for that event.
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We also note that the assumption that m∞
θn

is i.i.d. (for each θn) may be re-
laxed, that is, one can establish a CLT similar to Theorem 3.1 while allowing
for heterogeneity and dependence of a known form for m∞

θn
. This is because, in

light of (3.7), as long as the sequence of random vectors Xni = (X1
ni� � � � �X

J
ni)

′,
i = 1� � � � � n, obeys a suitable central limit theorem under m∞

θn
, such an ex-

tended result becomes available.16

3.2. Confidence Regions

Fix 0 < α < 1 and A1� � � � �AJ , subsets of S. For each θ, let Λθ be the J × J
covariance matrix defined as above, and let

σθ ≡ (√
varθ(A1)� � � � �

√
varθ(AJ)

)
�(3.8)

Our confidence region Cn is given by

Cn = {
θ ∈Θ : νθ(Aj)−Ψn

(
s∞)(Aj)≤ cθ

√
varθ(Aj)/n� j = 1� � � � � J

}
�(3.9)

where17

cθ = min
{
c ∈ R+ : NJ(cσθ;Λθ)≥ 1 − α

}
�(3.10)

Note that Cn is based on a normalized Kolmogorov–Smirnov-type statis-
tic, because it equals {θ ∈ Θ : Tn(θ) ≤ cθ}, where Tn(θ) is the maximum
of the normalized empirical frequencies Tj�n(θ) ≡ (νθ(Aj) − Ψn(s

∞)(Aj))/√
varθ(Aj)/n� j = 1� � � � � J, where we take 1/0 = ∞, 0/0 = 0, and −1/0 = −∞.

Here, varθ(Aj) is equal to 0 if and only if νθ(Aj) = 0 or 1. If νθ(Aj) = 0, then
Tj�n(θ) = −∞ and event Aj does not provide any restriction on θ. If νθ(Aj)= 1,
then θ is excluded from the confidence region whenever Ψn(s

∞)(Aj) < 1
(Tj�n(θ) = ∞ in this case), while it is included in the confidence region if
Ψn(s

∞)(Aj)= 1 (Tj�n(θ) = 0 in this case) and Tk�n(θ) ≤ cθ for all k 	= j.
The asymptotic coverage property of Cn is established next.

THEOREM 3.2: Let 0 <α< 1. Then

lim inf
n→∞

inf
θ∈Θ

ν∞
θ

({
s∞ : θ ∈ Cn

})≥ 1 − α�(3.11)

Further, there is equality in (3.11) if α< 1/2 and Λθ 	= 0 for some θ ∈Θ.

16For example, Jenish and Prucha’s (2009) central limit theorem for arrays of random fields
allows variables to have spatial correlations.

17The proof of the next theorem shows that cθ is well-defined. If σθ = 0, then NJ(0;Λθ) refers
to a degenerate distribution at the mean, which is 0, and thus NJ(cσθ;Λθ) = 1 for all c ≥ 0, and
cθ = 0.
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Given θ, Pθ is the set of all probability laws consistent with the model and
ν∞
θ gives its lower envelope. Therefore, the theorem establishes that if θ is

the “true value” of the parameter, then, in the limit for large samples, Cn

contains θ with probability at least 1 − α according to every probability law
that is consistent with the model and θ. Moreover, (3.11) can also be stated
as lim infn→∞ inf(θ�P)∈F P(θ ∈ Cn) ≥ 1 − α, where F = {(θ�P) : P ∈ Pθ� θ ∈ Θ}.
Thus our coverage statement is uniform on the general parameter space F .
Finally, the noted coverage is tight in the sense of equality in (3.11) if (as one
would expect) α< 1/2, and if we exclude the very special case where σθ = 0 for
all θ ∈Θ, that is, where νθ(Aj) ∈ {0�1} for all j and θ.18

The confidence regions and their coverage properties are discussed further
in the next section in the context of examples.

4. EXAMPLES

4.1. Discrete Normal Form Games

A widely studied class of games in the applied literature is the class of entry
games with multiple Nash equilibria. Here we focus on the canonical example
from Jovanovic (1989), because it illustrates simply the main issues and be-
cause it is used widely for that purpose in the ambient literature. However, the
reader will likely realize that our analysis accommodates a much broader class
of games—more on this after outlining how the Jovanovic game is accommo-
dated.

In the Jovanovic entry game, in each market two firms play the entry game
described by the following payoff matrix:

out in

out 0�0 0�−u2

in −u1�0 θ1/2 − u1� θ
1/2 − u2

The parameter θ lies in [0�1] and u = (u1�u2) is observed by players but not
by the analyst. She views θ as fixed and common across markets and u as uni-
formly distributed on [0�1]2 and i.i.d. across markets. Her theory is that the
outcome in each market is a pure strategy Nash equilibrium. However, her
theory is incomplete because she does not understand equilibrium selection.
Thus the translation into our setup has: S = {0�1}, where 0 (1) indicates that
no (both) firms enter the market; Θ = [0�1]; U = [0�1]2; m independent of θ
and uniform on [0�1]2; and G equal to the (pure strategy) Nash equilibrium
correspondence given by

G(u1�u2|θ) =
{ {0�1}� if 0 ≤ u1�u2 ≤ θ1/2,

{0}� otherwise.
(4.1)

18Note that because Λθ is positive semidefinite, σθ = 0 if and only if Λθ = 0.
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The implied set of distributions over S consists of all probability measures for
which the probability of s = 1 lies in [0� θ]. This interval of probabilities is
equivalently represented by the belief function νθ, where

νθ(1)= 0� νθ(0)= 1 − θ� νθ
({0�1})= 1�

Turn to inference about θ. Suppose first that J = 1 and A1 = {1}. Then, for all
θ, νθ(1) = 0 and σθ = 0. It follows that Cn = Θ = [0�1]. Thus, without making
use of the (implied) sample frequency of s = 0, observations of s = 1 alone do
not provide any information about the unknown parameter θ.

Suppose, however, that (J = 2 and) we use also the sample frequency of
A2 = {0}. Then, for each θ, νθ(0)= 1−θ and σθ = (0� [θ(1−θ)]1/2), and there-
fore,

Cn = {
θ ∈ [0�1] : Ψn

(
s∞)(1)≤ θ+ cθ

[
θ(1 − θ)

]1/2
/
√
n
}
�

where cθ = 0 if θ = 0 or 1, and otherwise cθ is the critical value for the standard
normal variable and satisfies N1(cθ;1) ≥ 1 − α.19 Thus the interval constraint
imposed by the LLN (see the appropriate form of (3.1)), whereby asymp-
totically the empirical frequency of s = 1 is bounded above by θ, is relaxed
here to the degree expressed by cθ[θ(1 − θ)]1/2/

√
n. In particular, cθ = 1�645 if

α= 0�05.
It must be noted that the identical confidence region can arise also if the an-

alyst completes her model and assumes that selections are i.i.d. across markets,
and that when there are multiple equilibria, then the equilibrium where both
firms enter (s = 1) is selected with probability 1.20 Then si is a Bernoulli ran-
dom variable with parameter θ which is the largest (unconditional) probability
consistent with the incomplete model. The MLE for θ is then θ̂ ≡ Ψn(s

∞)(1).
Assuming that the CLT for i.i.d. samples applies, θ̂ has the limiting normal
distribution with mean 0 and variance θ(1 − θ), and the identical set Cn arises.

The preceding begs the questions “why does the noted procedural equiv-
alence arise?” and “when does incompleteness make a difference?” The key
observation is that in this example, for any given θ,

ν∞
θ

({
s∞ : θ ∈ Cn

})= ν∞
θ

({
s∞ :Ψn

(
s∞)(1)≤ θ+ cθ

[
θ(1 − θ)

]1/2
/
√
n
})

= min
P∈Pθ

P
({
s∞ :Ψn

(
s∞)(1)≤ θ

+ cθ
[
θ(1 − θ)

]1/2
/
√
n
})
�

19The reduction to a univariate distribution is a consequence of the fact that varθ({1}) = 0 for
all θ.

20We are not claiming that this is the most natural way to complete the model—just that the
identical confidence region can arise also with some complete model featuring i.i.d. selection.
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and that a minimizing (or worst-case) measure exists as pointed out in the
discussion surrounding (3.6)—a worst-case scenario for an event defined by
an upper bound on the frequency of s = 1 is that the probability that s = 1 in
each market is maximal (hence equal to θ) and is independent across markets.
Thus the confidence region generated by the ‘completed’ model as above is
also robust to all the scenarios arising from model incompleteness.

However, the scope of such procedural equivalence is limited. Indeed, it fails
once both upper and lower bounds on the empirical frequency are relevant as
in the next more general example.

Though we have focused on the Jovanovic game, it is evident that our anal-
ysis can be applied also to any normal form game having finitely many pure
strategies and where pure strategy Nash equilibria exist, that is, the equilib-
rium correspondence G(·|θ) is nonempty-valued for every parameter θ. The
framework accommodates also games where players do not necessarily play
equilibrium strategies. For example, if the analyst is willing to assume only
that outcomes correspond to rationalizable strategy profiles, then the corre-
spondence G(·|θ) can be defined accordingly and inference can proceed as
described above.21 However, the restriction to pure strategies is important.
If we allowed mixed strategies, then the equilibrium correspondence G(·|θ)
would map into subsets of the probability simplex Δ(S) and νθ would be a be-
lief function on Δ(S) rather than on S. Our formal results can be extended
to this case in principle (though we have not studied the generalization of the
CLT to infinite state spaces such as Δ(S)). However, the corresponding CLT
would refer to the empirical frequencies of mixed strategies, which are unob-
servable, rather than to the observable frequencies of realized pure strategies.
Thus it seems that mixed strategies are beyond the scope of our approach to
inference.

4.2. Binary Experiments

This is a slight generalization of the Jovanovic example where the minimum
probability is not fixed to equal 0; it corresponds also to a natural general-
ization of coin-tossing that incorporates an incomplete theory about the coin.
Thus take S = {0�1}. The set of structural parameters is Θ = {θ = (θ1� θ2) ∈
[0�1]2 : θ1 ≤ θ2}, where θ1 and θ2 are interpreted as the minimal and maximal
probabilities for the outcome s = 1. For (U�m), take any nonatomic probabil-
ity space (with U Polish and mθ = m for all θ). Finally, define G(·|θ) : U � S

21Every Nash equilibrium profile is rationalizable and the converse is false in general. All pro-
files are rationalizable in the Jovanovic example, but in some games rationalizability rules out
many profiles. See Chapters 4 and 5 of Osborne and Rubinstein (1994).



ROBUST CONFIDENCE REGIONS FOR INCOMPLETE MODELS 1817

by

G(u|θ) =
⎧⎨
⎩

{1}� if u ∈ Uθ1,
{0}� if u ∈ Uθ2,
{1�0}� otherwise,

where Uθ1 and Uθ2 are disjoint (Borel measurable) subsets of U such that
m(Uθ1) = θ1 and m(Uθ2) = 1 − θ2. Then each θ induces the belief function
νθ on S, where νθ(1)= θ1 and νθ(0)= 1 − θ2.

For inference about θ, take J = 2, A1 = {1}, and A2 = {0}. Then

Cn = {
θ : θ1 − cθ

[
θ1(1 − θ1)/n

]1/2 ≤Ψn

(
s∞)(1)(4.2)

≤ θ2 + cθ
[
θ2(1 − θ2)/n

]1/2}
�

which is the set of all θ1 ≤ θ2 in the unit square that are either consistent with
the interval restriction (3.1) due to the LLN (here asserting that all limit points
of Ψn(s

∞)(1) lie in [θ1� θ2]), or that permit the indicated small deviations from
it. The region excludes θ’s for which θ1 is “too large,” but all sufficiently small
θ1 satisfy the first indicated inequality. This is because θ1 is a minimum prob-
ability, and a small minimum cannot be contradicted by a larger empirical fre-
quency for s = 1 which is attributed by the model to the vagaries of selection.
Similarly, the confidence region excludes values of θ2 that are too small relative
to the empirical frequency, but all sufficiently large values are included.

A noteworthy feature of Cn, that reflects the robustness of our approach,
is that the critical value cθ is scaled differently on the two extreme sides of
the inequalities. The intuition is as follows. While (4.2) can be understood as
describing a relaxation of the LLN to accommodate finite samples, the issue
is how much to relax each inequality; for example, how much smaller than θ1

can the empirical frequency be and still be seen as consistent with θ1? This
amounts to deciding on how much sampling variability to allow for Ψn(s

∞)(1).
Since any probability law in Pθ may apply, a conservative approach is to use
the worst-case scenario, which, as in the Jovanovic example, is the i.i.d. law
with the minimum probability for s = 1, namely θ1. The associated variance
is thus θ1(1 − θ1), as above. Similarly, for the upper bound on Ψn(s

∞)(1), for
which the worst-case scenario has the maximum probability, namely θ2, for
s = 1, and thus a conservative approach leads to the variance θ2(1 −θ2) for the
second inequality in (4.2). The resulting difference in scaling factors is implicit
in the Jovanovic example because θ1 = 0 there.

There is another way to see why, in contrast with the preceding exam-
ple, model incompleteness makes a difference here for confidence regions.
Roughly speaking, our confidence regions provide coverage at least 1 − α ac-
cording to every measure in Pθ, and thus are driven by the least favorable
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scenarios for the events

{
s∞ : θ ∈ Cn

}
(4.3)

= {
s∞ : θ1 − cθ

[
θ1(1 − θ1)/n

]1/2 ≤Ψn

(
s∞)(1)

≤ θ2 + cθ
[
θ2(1 − θ2)/n

]1/2}
�

Because of the two-sided constraint on the frequency Ψn(s
∞)(1), these sce-

narios are not i.i.d., but rather feature “positive correlation” across markets,
which makes extreme values for the empirical frequency likely. We cannot be
more precise about the nature of these unfavorable scenarios; in particular,
we cannot identify particular parametric forms of dependence.22 However, our
confidence regions provide the desired coverage no matter what form that de-
pendence might take.

Fix α= 0�05. The critical value cθ depends on θ according to (3.10). Though
closed-forms are not available for all θ, the following can be shown by elemen-
tary arguments applied to the bivariate normal distribution (Appendix C):

c(0�0) = c(0�1) = c(1�1) = 0�(4.4)

c(θ1�1) = 1�645 if 0 < θ1 < 1�

c(0�θ2) = 1�645 if 0 < θ2 < 1�

c(θ1�θ2) = 1�96 if 0 < θ1 = θ2 < 1�

{cθ : 0 < θ1 < θ2 < 1} = {c : 1�955 < c < 1�96}�

In addition, c(θ1�θ2) is (strictly) increasing in θ1 and decreasing in θ2 on the
domain {0 < θ1 < θ2 < 1}.

One may compare our confidence region to those in the moment inequalities
(MI) literature. Below, we discuss a confidence region that assumes i.i.d. sam-
pling. Under this assumption, the standard LLN and CLT imply that Ψn(s

∞)(1)
converges in probability to p(1)= p(s = 1) and that the studentized empirical
frequency

√
n(Ψn(s

∞)(1)−p(1))/[Ψn(s
∞)(1)(1 −Ψn(s

∞)(1))]1/2 converges in
distribution to the standard normal distribution. Thus let

CMI
n = {

θ ∈ Θ : θ1 − c̃n�θ
[
Ψn

(
s∞)(1)(1 −Ψn

(
s∞)(1))/n]1/2

≤ Ψn

(
s∞)(1)≤ θ2 + c̃n�θ

[
Ψn

(
s∞)(1)(1 −Ψn

(
s∞)(1))/n]1/2}

�

22Dependence in a cross-sectional context is often modeled by various parametric copulas.
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The critical value c̃n�θ is given by:23

c̃n�θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1�645� if l̂1�n(θ) ≤ κn and l̂2n(θ) > κn,

1�645� if l̂1�n(θ) > κn and l̂2n(θ) ≤ κn,

1�96� if l̂1�n(θ) ≤ κn and l̂2n(θ) ≤ κn,

0� if l̂1�n(θ) > κn and l̂2n(θ) > κn,

(4.5)

where {κn} is a sequence of positive constants (tuning parameters) such that
κn → ∞ and κn/

√
n→ 0 and

l̂1�n(θ) ≡
√
n
(
Ψn

(
s∞)(1)− θ1

)
[
Ψn

(
s∞)(1)(1 −Ψn

(
s∞)(1))]1/2 �(4.6)

l̂2�n(θ) ≡
√
n
(
θ2 −Ψn

(
s∞)(1))[

Ψn

(
s∞)(1)(1 −Ψn

(
s∞)(1))]1/2 �

CMI
n is a confidence region based on moment inequalities.24 The studentized

moments l̂j�n are used to select those constraints to enter into calculation of
the critical value. For example, when l̂1�n(θ) ≤ κn, the MI approach interprets
this as indicating that the corresponding population constraint p(1) − θ1 ≥ 0
is close to being binding, and hence retains this constraint in calculating the
critical value; when l̂1�n(θ) > κn, this constraint is not used.

The two confidence regions Cn and CMI
n differ in terms of their critical values

and scaling factors. As opposed to our method, the MI approach scales its criti-
cal value by the square root of Ψn(s

∞)(1)(1−Ψn(s
∞)(1)). This is because their

inference is based on the LLN and CLT with the i.i.d. assumption, under which
the studentized empirical frequency converges in distribution to the standard
normal distribution. Second, while c̃n�θ and c(θ1�θ2) both take values between 0
and 1.96, the ways these critical values switch between distinct values are dif-
ferent: c̃n�θ switches between 0, 1.645, and 1.96 depending on the number of
constraints selected by the procedure, while c(θ1�θ2) changes its values depend-
ing on the covariance of the bivariate normal distribution.

The MI approach uses c̃n�θ = 1�96 when the two inequalities are locally bind-
ing, that is, l̂1n(θ) ≤ κn and l̂2n(θ) ≤ κn. This is likely to occur when the interval
[θ1� θ2] is short, meaning that its length is comparable to the order O(n−1/2) of
the sampling variation of Ψn(s

∞)(1). Heuristically, Ψn(s
∞)(1) can then fall on

23For comparison purposes, we use the critical value based on an asymptotic normal approxi-
mation instead of bootstrap approximations commonly used in the literature.

24One may view CMI
n as Galichon and Henry’s (2009) inference method with studentized mo-

ments. It also belongs to the general class of confidence regions studied by Andrews and Soares
(2010).
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either side of the interval, which motivates the two-sided critical value.25 The
value c̃n�θ = 1�645 is used when only one of the constraints is selected, which
occurs when Ψn(s

∞)(1) is close to one of the endpoints, say θ1 but not to θ2.
The MI approach interprets this as the length of the interval being large rela-
tive to the sampling variation and p(1) being close to θ1 but not to θ2. Hence,
if the empirical frequency is convergent to p(1), then asymptotically it may fall
to the left of θ1 but not to the right of θ2. Therefore, the problem reduces to a
one-sided problem, which motivates c̃n�θ = 1�645. Finally, c̃n�θ = 0 is used when
both constraints are considered slack, which occurs when the interval is long
and p(1) is not close to either endpoint. Since the MI approach assumes that
Ψn(s

∞)(1) converges to p(1) in the interior of the interval, the probability of it
falling outside the interval tends to 0, which motivates c̃n�θ = 0.

In our framework, Ψn(s
∞)(1) does not necessarily converge. Hence, except

in the special cases discussed below, Ψn(s
∞)(1) may fall on either side of the

interval even asymptotically. Using our CLT, we approximate the minimum
probability of the event where the empirical frequency is in an enlarged inter-
val (in (4.3)) by a bivariate normal distribution. Therefore, the critical value
c(θ1�θ2) depends on θ through the parameters in the bivariate normal distribu-
tion according to (3.10). Accordingly, as stated in (4.4), c(θ1�θ2) = 1�96 when
0 < θ1 = θ2 < 1. This is because the two moments have a perfect (negative)
correlation in this case, and the coverage probability reduces to Ψn(s

∞)(1)’s
two-sided variation around a common point θ1 = θ2. The value c(θ1�θ2) = 1�645
is used when either θ1 or θ2 is on the boundary of the parameter space. For
example, when θ1 = 0, there is no room for Ψn(s

∞)(1) to the left of θ1; hence,
it suffices to consider Ψn(s

∞)(1)’s variation around θ2, which motivates the
one-sided critical value. Finally, c(θ1�θ2) = 0 when both θ1 and θ2 are on the
boundary. For example, when (θ1� θ2)= (0�1), there is no room for Ψn(s

∞)(1)
on the left of θ1 or on the right of θ2, which motivates 0 as the critical value.
When (θ1� θ2) = (0�0) or (1�1), Ψn(s

∞)(1) does not involve any randomness
and there is no need to relax any of the inequalities.

5. MONTE CARLO SIMULATIONS

We conduct Monte Carlo simulations to illustrate the performance of our
inference method. For comparison purposes, we also include the results of ex-
isting procedures.26

Simulations are based on the binary experiment, slightly specialized so that
U = [0�1], m is uniform on [0�1], Θ = {(θ1� θ2) ∈ [0�1]2 : θ1 ≤ θ2}, and

G(u|θ) =
⎧⎨
⎩

{1}� if u < θ1,
{0}� if u > θ2,
{0�1}� if u ∈ [θ1� θ2].

25This was pointed out previously by Imbens and Manski (2004) and Stoye (2009).
26The MATLAB code for our simulations is available at: http://sites.google.com/site/seo8240.

http://sites.google.com/site/seo8240
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Thus each θ induces the belief function νθ on {0�1} given by

νθ(1)= θ1 and νθ(0)= 1 − θ2�(5.1)

We consider two specifications for the equilibrium selection mechanism. In
both specifications, si = 1 is selected from {0�1} when ui ∈ [θ1� θ2] and a binary
latent variable vi takes 1. The first specification is an i.i.d. selection mechanism,
in which vi is generated as an i.i.d. Bernoulli random variable independent of
ui with prob(vi = 1)= τ for some τ ∈ [0�1].

The second specification is a non-i.i.d. selection mechanism, which in fact
is non-ergodic. For this, let Nk, k = 1�2� � � � � be an increasing sequence of
integers. The set {i : Nk−1 < i ≤ Nk} defines a cluster of markets. We impose a
common selection mechanism within each cluster. Let h(i) = Nk if Nk−1 < i ≤
Nk and define

vi =

⎧⎪⎨
⎪⎩

1� ΨG
h(i)

(
u∞)> θ1

θ1 + (1 − θ2)
,

0� ΨG
h(i)

(
u∞)≤ θ1

θ1 + (1 − θ2)
,

(5.2)

where ΨG
n

(
u∞)=

n∑
i=1

I
[
G(ui|θ) = {1}]

n∑
i=1

I
[
G(ui|θ) 	= {0�1}]

�

The non-i.i.d. specification selects si = 1 from {0�1} when ΨG
n (u∞), the relative

frequency of the event where the model predicts {1} as a unique outcome,
crosses a threshold. Otherwise, si = 0 is selected. This mechanism applies to
all i belonging to the kth cluster for which multiple equilibria are present.

Our inference procedure is implemented as follows. Since the belief func-
tion has a closed form (see (5.1)), computing the statistic and components
of the covariance matrix Λθ is straightforward. To compute the critical value
cθ, one needs to evaluate a CDF of a multivariate normal distribution with
covariance matrix Λθ. We do so by using simulated draws from the Geweke–
Hajivassiliou–Keane (GHK) simulator and approximating the CDF NJ(·;Λθ)
by Monte Carlo integration.27 The critical value is then computed according to
(3.10), replacing NJ(·;Λθ) by its approximation. Throughout this section, we
denote our confidence region by CEKS

n .
We compare the performance of the robust confidence region with that

of existing methods. For each θ, let M̄n�θ ≡ (ν∗
θ(1) − Ψn(s

∞)(1)� ν∗
θ(0) −

27See simulation procedure 2 in the Supplemental Material for details on the implementation
of our procedure. In the present simulations, J = 2 and we need to compute bivariate normal
CDF values. There are faster and more accurate algorithms for the bivariate case (see Genz
(2004), e.g.), but we adopt the GHK method because it may be used for applications with larger J.
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Ψn(s
∞)(0))′. Confidence regions in the moment inequalities (MI) literature

take the form

CSn = {
θ ∈ Θ : Γ (

√
nM̄n�θ� Σ̂n�θ)≤ c̃n�θ(κn)

}
�

where Γ : RJ × R
J·J → R is a function that aggregates (normalized) moment

functions, and Σ̂n�θ is an estimator of the asymptotic variance of
√
nM̄n�θ. c̃n�θ is

a critical value that depends on a possibly data-dependent tuning parameter κn.
We consider two confidence regions that belong to this class. The first, de-

noted CMI
n , based on Galichon and Henry (2009) and Andrews and Soares

(2010), uses the following criterion function and estimator of the asymptotic
variance:

Γ (M�Σ)= max
j=1�����J

(−Σ−1/2
jj Mj

)
�

Σ̂n�θ = 1
n

n∑
i=1

(
Mθ(si)− M̄n�θ

)(
Mθ(si)− M̄n�θ

)′
�

where Mθ(s) ≡ (ν∗
θ(1)− I(si = 1)� ν∗

θ(0)− I(si = 0))′. We then compute c̃n�θ via
bootstrap combined with a generalized moment selection (GMS) procedure.
This method selects the moments that are relevant for inference by comparing
sample moments to a tuning parameter κn provided by the researcher. Specif-
ically, for each j, let l̂j�n(θ) = M̄j�n�θ/[Ψn(s

∞)(1)(1 −Ψn(s
∞)(1))]1/2 be the stu-

dentized moment and let ϕn�θ be a J × 1 vector whose jth component satisfies

ϕj�n�θ =
{

0� if l̂j�n(θ) ≤ κn,

∞� if l̂j�n(θ) > κn.

The critical value is then calculated as the 1 − α quantile of the bootstrapped
statistic Γ (M̄∗

n�θ + ϕn�θ� Σ̂
∗
n�θ), where (M̄∗

n�θ� Σ̂
∗
n�θ) is a bootstrap counterpart of

(M̄n�θ� Σ̂n�θ).28

The second confidence region, denoted CAB
n , based on Andrews and Barwick

(2012), uses the test statistic Tn(θ) = Γ (
√
nM̄n�θ� Σ̃n�θ) with the following crite-

rion function and regularized estimator of the asymptotic variance:

Γ (M�Σ)= inf
t∈R̄J+

(M − t)′−1(M − t)�

Σ̃n�θ ≡ Σ̂n�θ + max
(
0�012 − det(Ω̂n�θ)�0

)
D̂n�θ�

28See Andrews and Soares (2010) for details on general GMS procedures that include ϕn�θ

as a special case. The moment selection tuning parameter κn here corresponds to
√
n times the

tuning parameter hn in Galichon and Henry (2009).
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TABLE I

COVERAGE PROBABILITIES OF CONFIDENCE REGIONSa

MI MISample Size Robust Robust
Eq. Sel. n CEKS

n CMI
n CAB

n CEKS
n CMI

n CAB
n

A: (θ1� θ2) = (0�4�0�6) B: (θ1� θ2) = (0�49�0�51)

i.i.d. (τ = 0�5) 100 1.000 0.999 0.999 0.963 0.934 0.966
256 1.000 1.000 1.000 0.983 0.946 0.979
400 1.000 1.000 1.000 0.979 0.949 0.974

10,000 1.000 1.000 1.000 1.000 1.000 1.000
65,536 1.000 1.000 1.000 1.000 1.000 1.000

i.i.d. (τ = 1) 100 0.981 0.961 0.959 0.959 0.932 0.964
256 0.977 0.960 0.959 0.973 0.936 0.970
400 0.981 0.950 0.954 0.973 0.941 0.978

10,000 0.973 0.940 0.941 0.969 0.945 0.943
65,536 0.974 0.941 0.947 0.976 0.950 0.952

non-i.i.d. 100 0.952 0.919 0.926 0.952 0.905 0.954
256 0.955 0.919 0.914 0.949 0.893 0.938
400 0.984 0.967 0.964 0.962 0.923 0.959

10,000 0.973 0.953 0.946 0.962 0.922 0.923
65,536 0.969 0.918 0.925 0.958 0.909 0.913

aWe simulate 1000 data sets for each setting. For the non-i.i.d case, Nk = 22k ∈ {4�16�256�65,536}. CMI
n uses the

generalized moment selection procedure with the tuning parameter value κn = ln lnn. CAB
n uses the tuning parameter

values recommended by Andrews and Barwick (2012).

where D̂n�θ = diag(Σ̂n�θ) and Ω̂n�θ = D̂−1/2
n�θ Σ̂n�θD̂

−1/2
n�θ . Their critical value re-

quires three tuning parameters including κn, which we set following their rec-
ommendations.

Table I reports the coverage probabilities of the three confidence regions
CEKS
n �CMI

n , and CAB
n under alternative values of (θ1� θ2) for a nominal level of

0.95. We set τ = 0�5 and 1 for the i.i.d. selection mechanism, and Nk = 22k ∈
{4�16�256�65,536} for the non-i.i.d. selection mechanism. We report simula-
tion results based on samples of size n ∈ {100�256�400�10,000�65,536}. CMI

n

uses the generalized moment selection procedure with the tuning parame-
ter value κn = ln lnn. CAB

n uses the tuning parameter values recommended by
Andrews and Barwick (2012).29

We note that the non-i.i.d. selection mechanism becomes less favorable to
controlling the coverage probability when n is close to Nk for some k. This
can be understood as follows. When the empirical frequency of the event
G(ui|θ) = {1}, that is, 1 being predicted as a unique outcome, crosses the
threshold in (5.2), then the selection mechanism additionally selects si = 1

29The moment selection tuning parameter κn and size correction factors (η1n�η2n) are selected
from Table I in Andrews and Barwick (2012) based on the smallest off-diagonal element of Ω̂n�θ.
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across all markets in cluster k where multiple equilibria are predicted. This
increases the empirical frequency of {1}, and thus lowers the probability of the
statistic being dominated by the critical value.

Overall, our confidence region controls the coverage probability properly
across all specifications even in small samples. This confirms the robustness
of our procedure. The coverage probabilities of the two other confidence re-
gions depend on the equilibrium selection specifications. Panel A in Table I
shows the results for the case (θ1� θ2) = (0�4�0�6). Under the i.i.d. selection
mechanism with τ = 0�5, the coverage probabilities of all confidence regions
are close to 1. This is because, under this specification, the empirical frequency
converges to a point (p= 0�5) in the interior of the probability interval [θ1� θ2]
whose length is long relative to the sampling variation of the empirical fre-
quency. When τ = 1, the empirical frequency Ψn(1) converges to ν∗

θ(1). All
confidence regions control the coverage probabilities reasonably well under
this specification. Under the non-i.i.d. specification, the empirical frequency
does not have a unique limit point. As discussed above, size control becomes
more difficult when n is close to Nk for some k. The coverage probabilities
of CMI

n and CAB
n in such settings are below the nominal level, for example, they

equal 0.919 and 0.914, respectively, when n = 256. Even when n = 65,536, their
respective coverage probabilities equal 0.918 and 0.925, thus exhibiting size dis-
tortions even in large samples due to the non-i.i.d. (highly dependent) nature
of the selection mechanism.

Panel B in Table I reports coverage probabilities for (θ1� θ2) = (0�49�0�51).
In this setting, the probability interval has a shorter length. Overall, under the
i.i.d. specifications, existing methods control size reasonably well, although the
coverage probability for CMI

n is slightly below the nominal level in small sam-
ples.30 For the non-i.i.d. specification, however, we again see that they have
size distortions when the sample size equals Nk for some k. For example, the
coverage probabilities of CMI

n and CAB
n are 0.909 and 0.913, respectively, when

n = 65,536. In addition, there are size distortions even when sample sizes are
not close to Nk (e.g., their coverage probabilities are 0.922 and 0.923, respec-
tively, when n= 10,000).

Finally, we examine the cost of robustness by comparing the volume of the
robust confidence region to the volumes in existing methods. Table II shows the
average volume of the different confidence regions. Overall, the robust confi-
dence region has a slightly higher volume than the other methods especially in
small samples. However, this difference becomes very small as the sample size
gets large. These features hold under both i.i.d. and non-i.i.d. specifications.

30Under the i.i.d. specification with τ = 0�5, the coverage probabilities of all confidence regions
are now below 1 in relatively small samples due to the shorter length of the probability interval.
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TABLE II

VOLUME OF CONFIDENCE REGIONSa

MI MISample Size Robust Robust
Eq. Sel. n CEKS

n CMI
n CAB

n CEKS
n CMI

n CAB
n

A: (θ1� θ2) = (0�4�0�6) B: (θ1� θ2) = (0�49�0�51)

i.i.d. (τ = 0�5) 100 0.360 0.340 0.326 0.360 0.341 0.327
256 0.314 0.303 0.299 0.314 0.304 0.298
400 0.300 0.293 0.290 0.300 0.293 0.290

10,000 0.262 0.261 0.261 0.262 0.261 0.261
65,536 0.262 0.261 0.261 0.262 0.261 0.261

i.i.d. (τ = 1) 100 0.350 0.329 0.317 0.360 0.341 0.327
256 0.305 0.294 0.289 0.314 0.304 0.299
400 0.290 0.282 0.280 0.300 0.292 0.290

10,000 0.252 0.251 0.251 0.257 0.255 0.256
65,536 0.252 0.251 0.252 0.250 0.250 0.250

non-i.i.d. 100 0.346 0.326 0.314 0.359 0.340 0.326
256 0.300 0.290 0.285 0.314 0.303 0.298
400 0.293 0.285 0.283 0.300 0.292 0.290

10,000 0.252 0.251 0.251 0.257 0.255 0.255
65,536 0.252 0.252 0.252 0.250 0.250 0.250

aWe simulate 1000 data sets for each setting. For the non-i.i.d case, Nk = 22k ∈ {4�16�256�65,536}. CMI
n uses the

generalized moment selection procedure with the tuning parameter value κn = ln lnn. CAB
n uses the tuning parameter

values recommended by Andrews and Barwick (2012).

6. COVARIATES

This section describes an extension of our approach to accommodate co-
variates that model observable heterogeneity. Because interpretations follow
closely those for the stripped-down model, we keep discussions brief and fo-
cused on the new features.

The model of each individual experiment is now described by (S�X�U�G�
Θ;q�m), where S�U�Θ�m are as before, and X is the finite set of covariate
values. Covariates are stochastic and distributed according to the full support
measure q ∈ Δ(X), independently from u. Model predictions take the form
of a (weakly measurable) correspondence G(·|θ�x) : U � S, for each θ ∈ Θ
and x ∈ X . The latter and m induce the belief function νθ(·|x) on S, that is
conditional on each θ and x, and is given by

νθ(A|x) = mθ

({
u ∈U :G(u|θ�x) ⊂ A

})
� A ⊂ S�

To model the infinite sequence of experiments, consider (S∞�X∞�U∞�G∞�
Θ;q∞�m∞), where (xi�ui) are assumed to be i.i.d. and distributed according
to the product of q∞ and m∞. The outcomes for the entire sequence of exper-
iments are described by the correspondence, G∞(·|θ�x∞) : U∞ � S∞, where,
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for each θ and sequence of covariates x∞ ≡ (x1� � � � � xi� � � �) ∈ X∞,

G∞(u1� � � � � ui� � � � |θ�x∞)≡
∞∏
i=1

G(ui|θ�xi)�

This correspondence induces, for each θ ∈ Θ and x∞ ∈ X∞, the belief function
ν∞
θ (·|x∞) on S∞ given by

ν∞
θ

(
B|x∞)= m∞

θ

({
u∞ ∈ U∞ :G∞(u∞|θ�x∞)⊂ B

})
� B ⊂ S∞�

Then, ν∞
θ (·|x∞) gives the lower envelope of the set Pθ�x∞ , paralleling (2.1), of

all probability laws over S∞ that are consistent with the given theory and θ
and with agnosticism about selection. Consistent with such agnosticism, the set
Pθ�x∞ does not restrict how selection varies with the covariate.

For inference, we fix A1� � � � �AJ , subsets of S.31 Define, for each θ and x ∈ X ,

covθ(Ai�Aj|x) = νθ(Ai ∩Aj|x)− νθ(Ai|x)νθ(Aj|x)�(6.1)
varθ(Aj|x) = covθ(Aj�Aj|x)�(6.2)

Let Λθ�x be the covariance matrix, conditional on x: (Λθ�x)jj′ = covθ(Aj�Aj′ |x).
Let Λθ be the |X|J-by-|X|J block-diagonal matrix where Λθ�x1� � � � �Λθ�x|X| are
the blocks; the (k(J − 1) + j�k′(J − 1) + j′) element of Λθ is 0 if k 	= k′, and
equals covθ(Aj�Aj′ |xk) if k = k′.

Define cθ = min{c ∈ R+ : N|X|J(cσθ;Λθ) ≥ 1 − α}. Another way to express
cθ is as follows. Let Zθ = (Zθ�1� � � � �Zθ�|X|J) be multivariate normal with mean
0 and covariance Λθ, and let W = maxk=1�����|X|J Zθ�k/σθ�k with the conventions
1/0 = ∞, 0/0 = 0, and −1/0 = −∞. Then cθ is the critical value of W : cθ =
min{c ∈ R+ : Pr(W ≤ c) ≥ 1 − α}. It can be shown that, if 0 < α < 1/2 and
Λθ 	= 0, then Pr(W ≤ cθ)= 1 − α.

For each s∞ ∈ S∞, x∞ ∈ X∞, and A ⊂ S, denote by Ψn(s
∞�x∞)(A|x) the

empirical frequency of A in the first n experiments counting only those exper-
iments where xi = x:

Ψn

(
s∞�x∞)(A|x) =

(
n∑

i=1

I(xi = x)

)−1 n∑
i=1

I(xi = x� si ∈ A)�

Since q has the full support, Ψn is well-defined asymptotically. Define the statis-
tic

Tn(θ) = max
(x�j)∈X×{1�����J}

{
νθ(Aj|x)−Ψn

(
s∞�x∞)(Aj|x)√

varθ(Aj|x)/n

}
�(6.3)

where we adopt the conventions 1/0 = ∞, 0/0 = 0, and −1/0 = −∞.

31Below, the same collection {Aj} of events is used for each covariate value. This is only for
simplicity; we could alternatively use {Ak

j }Jkj=1 for covariate x= xk.
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Finally, define the confidence region:

Cn = {
θ ∈ Θ : Tn(θ) ≤ cθ

}
�

It is not difficult to verify that

Cn =
⋂

(x�j)∈X×{1�����J}

{
θ ∈ Θ : νθ(Aj|x)−Ψn

(
s∞�x∞)(Aj|x)

≤ cθ

√
varθ(Aj|x)/n

}
�

THEOREM 6.1: Suppose that each x ∈ X appears in the given sequence x∞ =
(x1�x2� � � �) infinitely many times. Then,

lim inf
n→∞

inf
θ∈Θ

ν∞
θ

(
θ ∈ Cn|x∞) ≥ 1 − α�

Moreover, equality prevails if 0 <α< 1
2 and Λθ 	= 0 for some θ ∈ Θ.

The main coverage property for the model with covariates follows as a corol-
lary. Define the unconditional belief function by

ν∞
θ (·) =

∫
ν∞
θ

(·|x∞)dq∞(x∞)�
COROLLARY 6.2: We have

lim inf
n→∞

inf
θ∈Θ

ν∞
θ (θ ∈ Cn) ≥ 1 − α�

Moreover, equality prevails if 0 <α< 1
2 and Λθ 	= 0 for some θ ∈ Θ.

APPENDIX A: PROOF OF CLT

Fix θ. A particular case of the conditional structure (U�G(·|θ)�mθ) occurs
when U = K(S), the set of all nonempty (and necessarily closed) subsets of S,
endowed with the discrete metric because S is finite, and G(·|θ) = Ĝ maps any
K ∈K(S) into Ĝ(K)=K ⊂ S. In fact, Choquet’s theorem (Philippe, Debs, and
Jaffray (1999), Molchanov (2005)) shows that the latter structure is without
loss of generality: a belief function νθ on S generated by any (U�G(·|θ)�mθ)

can also be generated by (K(S)� Ĝ� m̂θ) for some probability measure m̂θ on
K(S); and similarly for ν∞

θ . Because (K(S)� Ĝ� m̂θ) is typically viewed as the
canonical representation of a belief function, we adopt it in the following proof
of the CLT. We also denote the measure on K(S) by mθ rather than m̂θ. Then,
without loss of generality, suppose that νθ and ν∞

θ satisfy

νθ(A) = mθ

({
K ∈K(S) :K ⊂A

})
� A⊂ S�
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and

ν∞
θ (B) = m∞

θ

({
K1 ×K2 × · · · ∈ (K(S)

)∞ :
∞∏
i=1

Ki ⊂ B

})
� B ⊂ S∞�

Now we consider a sequence {θn}, which induces the sequence of structures
{(U�G(·|θn)�mθn)}. On the probability space ((K(S))∞�m∞

θn
), define random

variables Xj
ni by

X
j
ni = I(Ki ⊂Aj)

=
{

1� if Ki ⊂ Aj,
0� otherwise,

for each i� n= 1�2� � � � and j = 1� � � � � J�

Then (using m∞
θn

), EXj
ni = νθn(Aj),

cov
(
X

j
ni�X

l
ni

)=E
(
X

j
niX

l
ni

)−E
(
X

j
ni

)
E
(
Xl

ni

)
=
∫

I(Ki ⊂Aj)I(Ki ⊂ Al)dmθn(Ki)− νθn(Aj)νθn(Al)

=
∫

I(Ki ⊂Aj ∩Al)dmθn(Ki)− νθn(Aj)νθn(Al)

= νθn(Aj ∩Al)− νθn(Aj)νθn(Al)� and

var
(
X

j
i

)= cov
(
X

j
i �X

j
i

)= νθn(Aj)
(
1 − νθn(Aj)

)
�

Let Xni be the R
J-valued random variable with jth component Xj

i . Define

Y
j
ni =

(
X

j
ni −EX

j
ni

)
�

and let Yni be the corresponding R
J-valued random variable. Then, EYni = 0

and Yni has the variance-covariance matrix Λθn .
Compute that, for any β ∈ R

J ,

K1 ×K2 × · · · ⊂ {
s∞ : βj ≤ nΨn

(
s∞)(Aj) for each j

} ⇐⇒

K1 ×K2 × · · · ⊂
{
s∞ : βj ≤

n∑
i=1

I(si ∈ Aj) for each j

}
⇐⇒

βj ≤ min
s∞∈K1×K2×···

n∑
i=1

I(si ∈Aj) for each j ⇐⇒

βj ≤
n∑

i=1

min
si∈Ki

I(si ∈ Aj) for each j ⇐⇒
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βj ≤
n∑

i=1

I(Ki ⊂Aj) for each j ⇐⇒

βj ≤
n∑

i=1

X
j
ni for each j = 1� � � � � J�

Hence,

ν∞
θn

({
s∞ : βj ≤ nΨn

(
s∞)(Aj) for each j

})
=m∞

θn

({
K1 ×K2 × · · · ∈ (K(S)

)∞ : βj ≤
n∑

i=1

X
j
ni for each j

})
�

and consequently, for any cn ∈R
J ,

ν∞
θn

(√
n
(
νθn(Aj)−Ψn

(
s∞)(Aj)

)≤ cnj for each j
)

= ν∞
θn

(
nνθn(Aj)− √

ncnj ≤ nΨn

(
s∞)(Aj) for each j

)
=m∞

θn

(
nνθn(Aj)− √

ncnj ≤
n∑

i=1

X
j
ni for each j

)

=m∞
θn

(
−cnj ≤ 1√

n

n∑
i=1

(
X

j
ni − νθn(Aj)

)
for each j

)

=m∞
θn

(
−cnj ≤ 1√

n

n∑
i=1

Y
j
ni for each j

)
�

Thus, the assertion to be proven has been translated into one about indepen-
dent (triangular) random variables and classical results can be applied.

We prove that Ỹn ≡ cn + 1√
n

∑n

i=1 Yni →d Z, where Z is J-dimensional multi-
variate normal with mean c and covariance matrix Λ. Apply the Cramér–Wold
device: let a ∈ R

J and show that a′Ỹn →d a
′Z. Note that limn→∞ var(a′Ỹn) =

limn→∞ a′Λθna = a′Λa. If a′Λa = 0, then a′Ỹn →d c = a′Z. If a′Λa > 0, we can
apply a triangular CLT (White (2001), Theorem 5.11),32 to prove that

n∑
i=1

a′Yni

√
n
(
a′Λθna

) →d N(0�1)�

32The condition in the theorem that E|a′Yni|2+δ is bounded is satisfied here because Yni is
bounded.
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Since limn→∞ a′Λθna= a′Λa,

a′Ỹn = a′cn +

n∑
i=1

a′Yni

√
n

→d N
(
a′c�a′Λa

)
�

Thus a′Ỹn →d a
′Z for all a ∈ R

J , which implies that Ỹn →d Z.
The proof of (3.4) is completed by noting that

ν∞
θn

(
J⋂

j=1

{
s∞ : √n

[
νθn(Aj)−Ψn

(
s∞)(Aj)

]≤ cnj
})

=m∞
θn
(0 ≤ Ỹn) → Pr(0 ≤ Z) = Pr(−Z + c ≤ c)= NJ(c;Λ)�

APPENDIX B: PROOF OF THEOREM 3.2

A preliminary remark is that {s∞ : θ ∈ Cn} is measurable for each θ because
it equals

⋂J

j=1{s∞ : νθ(Aj)−Ψn(s
∞)(Aj)≤ cθ

√
varθ(Aj)/n} and because s∞ 
→

Ψn(s
∞)(Aj) is measurable for each j.

For any positive semidefinite matrix Λ ∈ R
J·J , let σ(Λ) ≡ (

√
Λ11� � � � �

√
ΛJJ)

and define

c(Λ) = min
{
c ∈ R+ : NJ

(
cσ(Λ);Λ)≥ 1 − α

}
�

We show shortly that c(Λ) is defined even if Λ /∈ {Λθ : θ ∈ Θ}. It will follow that
c(Λθ)= cθ for every θ.

Step 1: NJ(
√

J
α
σ(Λ);Λ)≥ 1 −α: Let X be multivariate normal with mean 0

and covariance matrix Λ. Then the Chebyshev inequality implies that, for
c > 0,

1 − NJ

(
cσ(Λ);Λ)= Pr

(
J⋃

j=1

{
Xj > cσj(Λ)

})

≤
∑
j

Pr
(
Xj > cσj(Λ)

)≤ J

c2 �

Set c2 = J
α

. (In particular, when σ(Λ) = 0, then NJ(
√

J
α
σ(Λ);Λ) = NJ(0;Λ) =

1 > 1 − α.)
Step 2: c(Λ) is well-defined for every 0 <α< 1: Note that c 
−→ NJ(cσ(Λ);

Λ) is upper semicontinuous and (weakly) increasing for all Λ, and (by Step 1)
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NJ(cσ(Λ);Λ) ≥ 1 − α for some c ≥ 0. It follows that c(Λ) is well-defined as a
minimum. Note also that, for c∗ ≥ 0,

NJ

(
c∗σ(Λ);Λ)≥ 1 − α ⇐⇒ c∗ ≥ c(Λ)�(B.1)

Step 3: (c�Λ) 
−→ NJ(cσ(Λ);Λ) is upper semicontinuous: Take (cn�Λn) →
(c�Λ) ∈ R × R

J·J . Let Xn and X be multivariate normal random vectors with
means −cnσ(Λn) and −cσ(Λ), and variances Λn and Λ, respectively. Then the
characteristic functions of Xn converge pointwise to the characteristic function
of X , which implies that Xn →d X by Lévy’s Continuity Theorem. Thus

lim sup
n→∞

NJ

(
cnσ(Λn);Λn

)= lim sup
n→∞

Pr(Xn ≤ 0)≤ Pr(X ≤ 0)�

Step 4: [Λn → Λ and c(Λn) → c∗] �⇒ c∗ ≥ c(Λ): By Step 3, NJ(c
∗σ(Λ);

Λ) ≥ 1 − α. Apply (B.1).
Step 5: Let Bel(S) be the set of belief functions on S equipped with the sup-

norm topology. Since S is finite, Bel(S) is compact. For ν ∈ Bel(S), let Λν be
the covariance matrix as defined in (3.3). Then ν 
−→ Λν is continuous and
hence {Λν : ν ∈ Bel(S)} is compact.

Step 6: Complete the proof of (3.11). Let {θn} be a sequence such that

lim inf
n→∞

inf
θ∈Θ

ν∞
θ (θ ∈ Cn) = lim inf

n→∞
ν∞
θn
(θn ∈ Cn)�

Since ν∞
θn
(θn ∈ Cn) is bounded, by taking a subsequence if necessary, we can as-

sume that lim infn→∞ ν∞
θn
(θn ∈ Cn) = limn→∞ ν∞

θn
(θn ∈ Cn). Moreover, by Step 5,

and by taking a further subsequence if necessary, we can assume that Λθn →
Λ ∈ R

J·J . By Step 1 and (B.1), 0 ≤ c(Λθn) ≤ [ J
α
]1/2. Therefore, a further subse-

quence allows us to assume that c(Λθn) → c∗. Thus, the CLT (Theorem 3.1)
implies that

lim
n→∞

ν∞
θn
(θn ∈ Cn) = NJ

(
c∗σ(Λ);Λ)

(by Step 4) ≥ NJ

(
c(Λ)σ(Λ);Λ)≥ 1 − α�

Step 7: If NJ(cθσθ;Λθ) = 1 − α, then limn→∞ ν∞
θ ({s∞ : θ ∈ Cn}) = 1 − α: The

CLT implies that

lim
n→∞

ν∞
θ

({
s∞ : θ ∈ Cn

})= NJ(cθσθ;Λθ)= 1 − α�

Step 8: If 0 < α < 1
2 and Λθ 	= 0, then NJ(cθσθ;Λθ) = 1 − α: Λθ 	= 0 �⇒

σ(Λθ) 	= 0. Wlog, let σ1(Λθ) > 0. Then c 
−→ NJ(cσθ;Λθ) is continuous and
strictly increasing on c ≥ 0.
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Argue that NJ(0;Λθ) < 1 − α: Let Z be multivariate normal with mean 0
and covariance matrix Λθ 	= 0. Then,

NJ(0;Λθ) = Pr(X ≤ 0)= Pr(X1 ≤ 0)Pr(X2� � � � �XJ ≤ 0|X1 ≤ 0)

≤ Pr(X1 ≤ 0)= 1
2 < 1 − α�

By Step 1, limc→∞ NJ(cσθ;Λθ) > 1 − α. Therefore, NJ(cσθ;Λθ) = 1 − α has a
solution c > 0, and c = cθ necessarily.

Step 9: If NJ(cθσθ;Λθ) = 1 − α for some θ ∈ Θ, then limn→∞ infθ∈Θ ν∞
θ ({s∞ :

θ ∈ Cn})= 1 − α: Note that

lim sup
n→∞

inf
θ∈Θ

ν∞
θ

({
s∞ : θ ∈ Cn

}) ≤ lim sup
n→∞

ν∞
θ

({
s∞ : θ ∈ Cn

})= 1 − α

≤ lim inf
n→∞

inf
θ∈Θ

ν∞
θ

({
s∞ : θ ∈ Cn

})
�

where the equality follows from Step 7 and the last inequality follows
from (3.11).

APPENDIX C: DETAILS FOR THE BINARY EXAMPLE

PROOF OF (4.4): For any λ in [−1�0], define Λ(λ) = [ 1
λ

λ

1

]
, and c(λ) by

N2

((
c(λ)� c(λ)

);Λ(λ)
)= 0�95�

Then λ 
−→ c(λ) is (strictly) decreasing on [−1�0] because N2(·;Λ(λ))↗λ.33 It

follows that c(λ)
λ↘. In addition, λ 
−→ c(λ) is continuous on [−1�0].34

Fix α = 0�05. For θ’s such that one or more of the variances varθ(A1) and
varθ(A2) vanish, then, as in the Jovanovic example, the dimensionality is re-
duced below 2 and closed-form expressions can be derived.

For θ’s satisfying 0 < θ1 < θ2 < 1, one has σθ � 0 and

N2(cσθ;Λθ) = N2

(
(c� c);Λ(λθ)

)
�

where

λ′
θ = −

[
θ1

1 − θ1
· 1 − θ2

θ2

]1/2

�(C.1)

Thus cθ = c(λ′
θ), and from the preliminary arguments above, c(θ1�θ2) is increas-

ing in θ1 and decreasing in θ2, and c(θ1�θ2) varies continuously with θ in this

33The simple intuition is that the probability of both component r.v.’s falling below (in a vector
sense) any given β ∈ R

2 is large when the components move together, or are less negatively
correlated. See Muller and Scarsini (2000, Theorem 4.2) for a formal result.

34A question may arise for λ = −1 because Λ(−1) is singular. Thus here are some details. By
the noted monotonicity, limλ↘−1 c(λ) ≤ c(−1); and the opposite inequality follows from Step 4 in
the proof of Theorem 3.2.
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“interior” region. In addition, because −1 < λ′
θ < 0, infer that

c(0) < cθ < c(−1)�(C.2)

and

c(0) = lim
θ1↘0

c(θ1�θ2)� lim
θ1↗θ2

c(θ1�θ2) = c(−1)�

Finally, note that: (1) c(−1) is defined by N2((c(−1)� c(−1));Λ(−1)) =
1 − α. Because Λ(−1) is singular, any underlying r.v. Z = (Z1�Z2) satisfies
Z1 = −Z2 a.s. Accordingly, c(−1) is such that a standard one-dimensional
normal variable Z1 satisfies −c(−1) ≤ Z1 ≤ c(−1) with probability 1 −
α; in other words, given α = 0�05, c(−1) = 1�96. (2) c(0) is defined by
N2((c(0)� c(0));Λ(0)) = 0�95 or N1(c(0);1) = [0�95]1/2 � 0�9747, which gives
c(0)= 1�955. Q.E.D.

APPENDIX D: PROOFS FOR COVARIATES

We outline the proof of Theorem 6.1, which adapts the arguments for the
no-covariate case. We use two lemmas that highlight the added steps needed to
accommodate covariates. The assumption that each x appears infinitely often
is maintained.

Write S∞ = S1 ×S2 ×· · ·, where Si = S for all i. For any I ⊂ {1�2� � � �}, denote
by ΣI the σ-algebra generated by (Borel measurable) cylinders of the form∏

i∈I Ai × ∏
i/∈I Si, where Ai ⊂ Si = S. Say that B1�B2 ⊂ S∞ are orthogonal if

they depend on different experiments in the sense that B1 ∈ ΣI1 and B2 ∈ ΣI2

for some disjoint I1 and I2.

LEMMA D.1: ν∞
θ (
⋂K

k=1 Bk|x∞) =∏K

k=1 ν
∞
θ (Bk|x∞) if B1� � � � �BK are pairwise

orthogonal.

PROOF: Let Bk ∈ ΣIk , k = 1� � � � �K, where I1� � � � � IK are pairwise disjoint.
Then

ν∞
θ

(
K⋂

k=1

Bk

∣∣∣x∞
)

= m∞
θ

({
u∞ ∈ U∞ :

∞∏
i=1

G(ui|θ�xi) ⊂
K⋂

k=1

Bk

})

= m∞
θ

(
K⋂

k=1

{
u∞ ∈U∞ :

∏
i∈Ik

G(ui|θ�xi)⊂ Bk

})

=
K∏

k=1

m∞
θ

({
u∞ ∈ U∞ :

∏
i∈Ik

G(ui|θ�xi)⊂ Bk

})

=
K∏

k=1

ν∞
θ

(
Bk|x∞)�

Q.E.D.
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LEMMA D.2: Let Λθn�xk → Λk ∈ R
J·J for each k = 1� � � � � |X|, and let Λ be

the |X|J-by-|X|J block diagonal matrix where Λ1� � � � �Λ|X| are the blocks. Also
assume cn → c ∈R

|X|J . Then

ν∞
θn

( |X|⋂
k=1

J⋂
j=1

{
s∞ : √n

[
νθn(Aj|xk)−Ψn

(
s∞�x∞)(Aj|xk)

]≤ cnkj
})

→ N|X|J(c;Λ)�

PROOF: The events
⋂J

j=1{s∞ : √
n[νθn(Aj|xk) − Ψn(s

∞�x∞)(Aj|xk)] ≤ cnkj},
k= 1� � � � � |X|, are pairwise orthogonal. Therefore, by the preceding lemma,

ν∞
θn

( |X|⋂
k=1

J⋂
j=1

{
s∞ : √n

[
νθn(Aj|xk)−Ψn

(
s∞�x∞)(Aj|xk)

]≤ cnkj
})

=
|X|∏
k=1

ν∞
θn

(
J⋂

j=1

{
s∞ : √n

[
νθn(Aj|xk)−Ψn

(
s∞�x∞)(Aj|xk)

]≤ cnkj
})

→
|X|∏
k=1

NJ(ck;Λk)= N|X|J(c;Λ)�

Here, cnkj ∈R, cn = (cnkj)k�j ∈ R
|X|J , ck ∈R

J and c = (ck)k ∈R
|X|J . Q.E.D.

The rest of the proof of Theorem 6.1 is similar to that for the no-covariate
case.

PROOF OF COROLLARY 6.2: Let X∞
inf be the set of all x∞ ∈ X∞ for which

each value in X appears infinitely often. Then,

ν∞
θ (·)=

∫
X∞

inf

ν∞
θ

(·|x∞)dq∞(x∞)� and

lim inf
n→∞

inf
θ∈Θ

ν∞
θ (θ ∈ Cn) ≥

∫
X∞

inf

lim inf
n→∞

inf
θ∈Θ

ν∞
θ

(
θ ∈ Cn|x∞)dq∞(x∞)

≥ 1 − α�

To show the equality assertion, let θ ∈ Θ satisfy Λθ 	= 0. Then,

lim sup
n→∞

inf
θ∈Θ

ν∞
θ (θ ∈ Cn) ≤ lim sup

n→∞
ν∞
θ
(θ ∈ Cn)

= lim sup
n→∞

∫
X∞

inf

ν∞
θ

(
θ ∈ Cn|x∞)dq∞(x∞)
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≤
∫
X∞

inf

lim sup
n→∞

ν∞
θ

(
θ ∈ Cn|x∞)dq∞(x∞)= 1 − α

≤ lim inf
n→∞

inf
θ∈Θ

ν∞
θ (θ ∈ Cn)� Q.E.D.

APPENDIX E: LATENT VARIABLES ROBUSTIFIED

Currently, we define models via primitives (S�U�G�Θ�m), including, in par-
ticular, the probability measures mθ on U for every θ. Model incompleteness
arises only because of the multiplicity of equilibria and ignorance of selection.
Here we follow up on the remarks at the end of Section 2 and consider another
source of incompleteness—limited understanding of the latent variables, which
seems intuitive for variables that are not observed by the analyst. Formally, we
suggest that this situation can be modeled as above except that every mθ is a
belief function rather than a measure. Also, in this case, we obtain belief func-
tions νθ on S that satisfy a CLT which in turn can be used to construct robust
confidence regions. Note that in the present context, robustness with regard to
(limited) ignorance about latent variables is desirable even if selection is well
understood, for example, if equilibria are unique.

Let S, U , G, and Θ be as before. Instead of adopting m as another prim-
itive, we derive it from more basic primitives. Thus let the tuple (Û�Γ� m̂)

describe the (limited) understanding of latent variables, where Û is Polish,
m̂ = (m̂θ)θ∈Θ, each m̂θ is a Borel probability measure on Û , and Γ (·|θ) : Û �U
is weakly measurable. (The assumption that the same parameters θ enter here
is without loss of generality since one could expand the parameter space Θ

as needed.) Thus probabilistic knowledge is assumed on Û which, via the cor-
respondence Γ , provides only coarse information about the latent variables
u ∈ U . Paralleling (2.4), the elements Û , Γ , and m̂ induce (for each θ) a belief
function on U , denoted by mθ and given by

mθ(Y)=m̂θ

({
û : Γ (û|θ)⊂ Y

})
� Y ⊂U�(E.1)

Consider now the model (S�U�G�Θ�m) where m = (mθ)θ∈Θ and each mθ is
a belief function on U . Define νθ on (subsets of) S exactly as in (2.4), that is,

νθ(A) = mθ

({
u :G(u|θ)⊂ A

})
� A ⊂ S�

Then νθ is a belief function: To see this, take Y = {u : G(u|θ) ⊂ A} in (E.1) to
derive

νθ(A) = m̂θ

({
û : Γ (û|θ) ⊂ {

u :G(u|θ)⊂ A
}})

= m̂θ

({
û :

⋃
u∈Γ (û|θ)

G(u|θ)⊂ A

})

= m̂θ

({
û : Ĝ(û|θ)⊂ A

})
�
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where Ĝ(·|θ) : Û � S is the “composition” of G and Γ defined by

Ĝ(û|θ) =
⋃

u∈Γ (û|θ)
G(u|θ)�(E.2)

Thus (Û� Ĝ� m̂) generates νθ exactly as in (2.4), which proves that νθ is a belief
function.

Because it depends only on having a belief function νθ on Sfor each param-
eter θ, the inference method described in Section 3 applies without modifica-
tion. Only the interpretation must be modified slightly to reflect the fact that
there are now two sources of model incompleteness or areas of ignorance:
in addition to ignorance of how outcomes are selected from G(u|θ), there is
also the coarse information about u due to Γ (·|θ) being set-valued. The (ex-
tended) inference method is robust to heterogeneity and dependence across
experiments in both selection and in the unknown fine details regarding latent
variables in U .

In a sense, there is nothing new above since one could take (S� Û� Ĝ�Θ� m̂)

as the model. However, in applications, the identity of Û , Γ , and m̂ under-
lying the modeling of latent variables in U may not be clear. In those cases,
the analyst might begin with the reduced-form model (S�U�G�Θ�m) where
each mθ is a belief function. One can view the preceding as providing a ratio-
nale for doing so when the underlying primitives are not clear. Specification
of mθmay involve some arbitrariness, but this is the case also when probability
distributions are adopted for latent variables.
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