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This paper unifies the two principal thrusts in the literature on axiomatic theories 
of transitive preferences which generalize expected utility theory; namely, the 
betweenness conforming theories and the rank-dependent theories. The unification 
is achieved in two respects. First, new axiomatizations are provided for the existing 
theories based on separability restrictions in outcome space. These axiomatizations 
bring into clear focus both the similarities and the differences between the existing 
theories. Second, an axiomatization is provided for a new class of preferences which 
includes existing classes as special cases. Journal of Economic Literature Classifica- 
tion Numbers: 022, 026. 0 I989 Academic Press, ~nc. 

1. INTRODUCTION 

There is a recent and growing literature on preferences beyond the 
received expected utility theory. The bulk of these works maintain a con- 
tinuity requirement. In addition to continuity, one may impose a smooth- 
ness requirement to examine whether “expected utility analysis” may be 
applicable in a “local” sense (Machina 1211). Another direction is to 
specifically weaken certain properties of expected utility to axiomatically 
characterize more general preference functionals. 

If transitivity is maintained, then there are two discernible approac 
within the axiomatic direction.’ One maintains the betweenness property 
-a probability mixture of two lotteries is intermediate in preference 

* This research was supported by NSF Grant SES 8607232. We are also indebted to Mark 
Machina, Uti Segal, Peter Wakker, and a referee for numerous suggestions and comments. 

’ For examples of’ axiomatic nontransitive theories, see Fishburn [14]. 
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between the individual lotteries-of expected utility. Recent works in this 
approach include Chew and MacCrimmon [7], Chew [3, 41, Fishburn 
[15], Nakamura [22], and Dekel [12]. We refer to these theories as 
implicit linear utility (ILU) theories. 

The other may be labeled the rank-dependent or rank-linear utility 
(RLU) approach. It is distinguished by the rank ordering of outcomes 
prior to the applying of the representation. Rank-linear theories have been 
proposed by Quiggin [23], Yaari [26], Segal [25], Chew [5], and Green 
and Jullien [18]. There is no intersection between the two approaches 
other than expected utility theory. 

Our paper is concerned with the unification of the two approaches. This 
is accomplished in two respects. First, new axiomatizations are provided 
for the ILU and RLU theories. The axiomatizations are based principally 
on separability restrictions in outcome space and on (a variation of) a well 
known result from demand theory regarding additive utilities [lo] and 
[17].’ Both ILU and RLU satisfy separability conditions, but on different 
domains. Thus both the similarities and the differences between the two 
theories are put into clear focus. In contrast, such a focus is not provided 
by the existing disparate axiomatizations. 

A second contribution of the paper is the axiomatization of a class of 
continuous preferences called implicit rank-linear utility (IRLU). Since this 
class includes both ILU and RLU as special cases, it provides a unifying 
framework for these existing theories. (See Fig. 3, which will be explained 
further below.) Moreover, IRLU contains several interesting new classes of 
preferences which are discussed in varying degrees of detail below. 

It is worth emphasizing the “practical” importance of the generality of 
IRLU. As things stand now, a modeler who wishes to specify a transitive 
non-expected utility preference ordering (possibly to explain behavioral 
paradoxes or for some other reason) must choose between the two alter- 
natives of ILU and RLU. Even if he finds some appeal in the axiomatic 
bases for each, the modeller must make the discrete choice between the 
two. On the other hand, the IRLU class retains elements of both theories. 
Thus it provides opportunities for adoption of “intermediate” specifications. 

In Section 2, we present some notation, a representation theorem for a 
continuous utility function on probability distributions, and several exam- 
ples of non-expected utility theories which have appeared in the literature. 
Section 3 presents some new utility functionals and corresponding 
separability axioms. Section 4 presents and discusses the main representa- 
tion theorem as well as further results on uniqueness and risk aversion. 
Some new specializations of the implicit rank-linear utility representation 
are provided in Section 5. Concluding remarks are offered in Section 6. 

2 For a corresponding axiomatization of expected utility theory, see [2]. 
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2. PRELIMINARIES 

We adopt the following notation. X is an interval in R. 
D(X) = (F, G, H, . ..} d enotes the space of c.d.f.‘s on X, endowed with tke 
weak convergence topology. A distribution function that is concentrated at 
a single point s E X is denoted by 6,, where 

We denote by D*(X) the set of c.d.f.‘s having finite supports. Elements of 
D*(X) can be written as 

FE i Pi&, (Pi’o)2 (2.2) 
i= 1 

where supp(F) = (x1, . . . . x,}. 
The following axioms apply to a binary relation $ on D(X). 

Axiom 0 (Ordering). =$ is complete and transitive. 

Axiom C (Continuity). VFfD(X), {GEL)(X): G=$F) and ICED(X): 
F=$ G) are closed. 

The existence of a numerical representation for =$ follows from Bebreu 
[Ill. 

THEOREM 1. There is a continuous utility function V: D(X) 4 R ifjf < 
satisfies Axioms 0 and C. 

Axiom M (Monotonicity). VHE D(X), p E (0, l] and s, t E X, s < I 
implies 

ps,+(l-p)H~pG,+(l-p)N. 

It is known that, on D*(X), Axiom M is equivalent to monotonicity in 
the sense of first order stochastic dominance. Therefore, any continuous 
utility V’ on D(X) satisfying Axiom M is monotone in the sense of first 
order stochastic dominance on D(X). In particular, V(cr=“=, (l/N) 6,) is 
continuous and increasing on XN. (Note that “monotonicity” and 
“increasingness” are intended in the strict sense.) 

The bulk of the literature in the economics of uncertainty restricts the 
utility function V further and requires that it have the form 

for some v that is increasing and continuous on X. (For the remainder of 
this section, we restrict ourselves to simple c.d.f.‘s. The formulations for 
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general c.d.f.‘s are delined in the natural fashion and will appear below.) 
Such expected utiZity (EU) or Zineur utility (LU) functionals imply parallel 
and linear indifference curves in the probability simplex corresponding to 
gambles with three possible outcomes (Fig. 1). It is convenient to work 
throughout with the certainty equivalent functional m(.), delined by 
V(hm) = I’(&‘), that is ordinally equivalent to V( .). Thus (2.3) takes the 
form 

A more general specification, called weighted utility (WU), has the form 
(Chew L31) 

where on X, PV is positive valued and v is increasing and both are con- 
tinuous. Its indifference curves in the simplex are also linear but they are 
all rays projected from a point 0 on the extension of the indifference ray 
through the intermediate outcome. If w = constant, EU is obtained and the 
projection point 0 is at inlinity. 

Finally, in order to provide further perspective for the analysis to follow, 
we deline rank-dependent expected utility (RDEU), which takes the form 

where the outcomes have been arranged so that xi G . . . < x,, , v is increas- 
ing and continuous on X, and g: [O, l] + [O, 1] is increasing, continuous, 
and onto. (See Quiggin [23], Yaari [26], Segal [25], and Chew [5].) 
When g(p) =p, EU is obtained. In general, however, m (or V) can be 
viewed as an expected utility function only with respect to the c.d.f. g(F) 
derived from F via the transformation function g. The consequences of the 
latter for indifference curves in the simplex are demonstrated in Fig. 1. The 
curves are generally nonlinear but they retain a form of parallelism-the 
tangents of the indifference curves along the s - 2 edge are parallel. 

The unifying perspective for these and other utility functionals which we 
propose in this paper is via separability properties in the space of state- 
contingent outcomes. The EU functional (2.4) has the well-known strong 
or additive separability structure. The WU and RDEU functionals also 
involve summation in fundamental ways which suggests that their essential 
nature may, at least in part, correspond to appropriate separability proper- 
ties. We will identify the latter in the next section where some more general 
classes of functionals will be introduced. 
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.5 

---- RDEU ---- RDWU 

3, UTILITY FUNCTIONAL~ AND SEPAIZABILITY AXIQM~ 

‘Three classes of utility functionals and their corresponding separability 
axioms are described here. In each case, the utility functional V as well as 
the corresponding certainty equivalent functional ITT is continuous and 
monotone. Functional forms are specified first for simple distributions. ‘I’ 
formulations for general c.d.f.‘s are given at the end of the section. 

We refer to m as an implicit linear utility (ILU) certainty equivalent if 
3: Xx X -+ R with r( ., y) continuous and increasing Vy E X and r(.zc, x) z 0 
such that m(F) is given by the unique implicit solution y to 

(See Dekel [12], for example.) If r(x, y) = MJ(x)[D(.x)-o(y)], then (3.1) 
admits an explicit solution y=m(F) which coincides with weighted utility 
(2.6)~3 ILU implies straight line indifference curves within the sim 
(Figs I) which need not all emanate from a single point as in WU. 

In order to formulate the separability axiom corresponding to ILU we 
need some further notation. For any partition Pi u 1; of ZN = { 1, . . . . Nj, let 
P = 3’) x XCr) be the corresponding decomposition of 3?‘. Let k = II& 11 
and N-k= ~/1~~~. Let T=(T', . . . . TN), where Tk is a correspondence from 
XN into Xk. All separability axioms in the paper have the form: 

3 Fishburn [16] axiomatized a different subclass of ILU for which T is skew-symmetric. 
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Axiom TS (T-Separability). For all x = (xi ,..., x,,,) E XN and all decom- 
positions Xc’) x Xcr) of XN, 

The interpretation of the axioms is as follows: The quantity c* is a 
certainty equivalent for xC, contingent on x”. The above condition is met if 
c* is invariant with respect to the change from x” to any yr in T’(X). 
Clearly, the specification of T determines the nature of the restriction 
imposed by the invariance requirement. Thus, we refer to the latter as 
T-Separability. 

Some examples will help to clarify this notion. First, if each Tk is delined 
so that Tk(x) = ,Xk, then c* is invariant with respect to any substitution of 
yr for xr that is consistent with the domain restriction that lottery out- 
comes lie in X. This yields the usual additive separability to which we refer 
simply as separability. 

Axiom S (Separability). T-Separatility where Tk(x) EE Xk. 

Axiom S is satisfied by linear utility functionals. The more general utility 
functions considered in this paper satisfy weaker axioms. Thus, for exam- 
ple, for ILU the invariance of the contingent certainty equivalent c* holds 
only if changes from xr to yr are required to preserve indifference as in the 
following axiom. 

Axiom IS (Indifference Separability). T-separability where 

To see the motivation for the latter axiom and those that follow, 
consider the choices represented in Fig. 2. There are 100 equally likely 
states. The outcomes L, Z, and H are in ascending order of preference. The 
contingent certainty equivalent c:(A) of A for states 1 to q, contingent on 
outcome 3 for states q + 1 to 100, is always Z. Axiom M implies that the 
contingent certainty equivalent c:(B) lies between L and H. Savage’s sure- 
thing principle (STP) or Axiom S requires that c:(Z?) be invariant 
to changes in s. However, the standard Allais paradox corresponds to 
c:(B) < Z when s = Z and c?(B) > Z when s = L. The original parameters 
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FIG. 2, The standard Allais paradox. 

were (L, Z, H;p, q) = (0, 1 million Fr, 5 million Fr; 1, 1 l).4 Since com- 
parisons of the state-contingent form in Fig. 2 do not involve timing or 
multiple stage considerations, the standard Allais paradox directly tests the 
invariance of c:(B) with respect to changes in x 

There have been several replications of the standard Allais paradox with 
different outcome and probability parameters (see, e.g., MacCrimmon and 
Larsson [20], Kahneman and Tversky [19], Chew and Wailer [9]). The 
consistent finding from the empirical studies is that c:(B) is higher when 
3 = L than when s = Z, thus violating the invariance implication of STP. 
This provides the motivation for our weakening of the STP by restricting 
the domain of invariance of c*. The empirical evidence is however 
consistent‘with IS (and each of the weaker axioms specific 
changing from s = L to s = Z violates the indifference restriction in IS (and 
the corresponding rank restrictions in the other axioms). 

The next class of utility functionals generalizes RDEU. Its representation 
is based on a function q: Xx [O, l] -+ R which is continuous in each 
argument> q( ., O)=O, and q satisfies 

WA P) - 9(X? q) - d.YY P) + YdY5 q) ’ Q Vx >y and p > q. (3.2) 

(For example, in the differentiable case, (3.2) is ecluivalent to the positivity 
of the cross partial derivative c,D~*.) The rank&war utiZity (RLU) certainty 
equivalent rn for FE ET=, pidx, is given by the solution to 

(3.3) 

where the X~S are arranged in ascending order. (See Segal [25] an 
Green and Jullien [ 181 for closely related functional forms.) Since v( .Y I ) 
is continuous and increasing, (3.3) provides an explicit representation. 
The LHS of (3.2) represents an increase in utility of (3.3) from 
F=(q-p)ax+(l-q+p)G to F’=(q-p)&,,-t-(1-q+p)G where 

‘Our exposition of the Allais paradox is due to Savage [24, p. 1031 who considered the 
validity of §TP self-evident once alternatives are represented in terms of state-contingent out- 
come vectors. 
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[x, y] n supp G = @. In this way, Condition (3.2) guarantees that the 
RLU certainty equivalent satisfies Axiom M on D’(X). The subclass 
RDEU corresponds to the case where q has the multiplicatively separable 
form ~(x, p) = U(X) g(p). The behavior of the indifference curves for RLU 
generalizes those of RDEU in that the parallelism noted earlier for the 
latter case is absent. 

To formulate the separability requirement for RLU, we introduce the 
notation Xy = {.x e XN: x1 < . . . < xNj and for any x, we denote by 
XT = cql,> . . . . xt,,,,) its increasing rearrangement. We say that x and y E XN 
are r~nkpre~eruhg if x[~]E [.~r~-ij,yti+ij] and yri]E [xci-iJ>xri+ij] Vi, 
where x0 = y. = -cc and xN+ 1 = yN+ i = co. The next secarability axiom, 
called rank separability, imposes the invariance of the contingent certainty 
equivalent only when the substitution of yr for xr does not change the rank 
ordering of the outcomes.5 

Axz&i RS (Rank Separability). T-separability where Vx E P’, Vk, 
T’(x) = { yr e X’: x and (xc, yr) are rank-preserving}. 

This axiom is consistent with the evidence cited earlier regarding the 
Allais paradox since changing from s = L to 8 = Z violates rank-preservation 
in RS. 

The final class of utility functionals, called imphcit rank lineur utiZity 
(IRLU), generalizes all of the above. The functional form is based on a 
function $: Xx [O, l] x X+ R that is continuous in each of the first 
two arguments; V(x, p, y) e Xx [O, 1] x X, $(x, 0, y) = $(y, p, y) = 0; and 
tj( ., ., y) satisfies (3.2) V~EX. For each F~~~~Ipi~x~, m(F) is the unique 
solution y to 

jl [* (xiYjclPj2Y)B* (xi9~$Pj>Y)]co2 

where x1 < ... <x~. ILU is the special case corresponding to 

kc% P? YJ = Pa Yh 

and RLU corresponds to 

(3.4) 

(3.5) 

for some a: X+ lQ+. Indifference curves in the simplex for general IRLIJ 
have no discernible special properties. 

The special structure of IRLU can be characterized by the following 
separability axiom which, naturally, weakens both IS and RS. 

’ In a income inequality context, Ebert [ 131 uses the same axiom to characterize the coun- 
terpart of RLU. 
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Thus, IRS requires that contingent certainty equivalents be invariant cmly 
when substitutions preserve both indifference and rank ordering. 

These classes of utility functionals and their interrelationships are 
represented in Fig. 3. The most general class is IRLLJ. Its representation is 
based on the function $ of the three variables X, p, and y. The specializa- 
tions of this $ indicated in the ligure lead to the other classes listed above 
as well as to other theories which have appeared in the literature. 

We now extend the delinition of IRLU utility function& from 

RLU 
dX,PJ 
-YCY >P) 

FIG. 3. SDecializations of IRLLJ 
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D(X), For the ILU subclass, the extension 
replace (3.1) by 

1 
x(x, y) dF(x) = 0. 

x 

is straightforward; simply 

(3.1’) 

That is, nz(F) is the unique solution y to the above equation. The LU 
representation is, of course, 

The extension is more complicated in cases where there is sensitivity 
to rank. We require the following construction: For any function 
q: Xx [O, 1] + lP which satisfies (3.2) and the conditions immediately 
preceding it, we define the putid expectation &(q, F) lirst on D’(X). 
Given a simple distribution F= zy= l pLbXl, x G $‘, 

where 

hi= i pj for ia 1 and hO=O. 
j=l 

Given a sequence {Fn} c D’(X) which converges weakly to F, we prove via 
Lemma A in Appendix 1 that Limn - ~ &(q, FJ exists and is independent 
of the choice of the sequence. Thus, for FED(X)\D’(X), we define 
&tq, Fl= Lb + m ,!$(q, F,J for any sequence {F* } in D’(X) which 
converges weakly to F. Condition (3.2) ensures that &(q, .) is monotone 
on D(X) in the sense of first degree stochastic dominance. 

To deline RLU, for any FED(X), replace (3.3) by 

If q(x, p) = u(x) g(p), then we obtain 

which defines the general RDEU corresponding to (2.6). 
Finally, for IRLU, if $ is a function satisfying the conditions surround- 

ing (3.4), then for each y, E*($( ., ., J), F) is well defined. Thus we can 
define IRLU on D(X) by requiring that ~(8’) uniquely solve 

J x4+k Wh ~1 = 0. (3.4’) 
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4. IWRESENTATI~N THEOREM 

The relation between the separability axioms and the classes of utility 
functionals delined above is summarized in Theorem 2; which is the central 
result in this paper. The proof, found in Appendix 4, makes use of Theorem 
A in Appendix 3 dealing with the existence of additive utilities. IIencefort 
with the exception of the end of this section, we assume that X is the 
compact interval [& Z]. 

THEOREM 2. Let 3’ be a compact interual. A binary relation .$ on D(X) 
satisfies Axioms 0, C, M, and 98 zjj” it can be represented by a utility jimc- 
tion satisfying &, where 

d LU ILU RLU IRLU 

t4f S IS RS IRS 

The necessity of the axioms given the appropriate functional forms is 
readily veritied using the definitions of the latter on the set of simple dis 
tributions. But their sufliciency is nontrivial and is the principal contribu- 
tion of the theorem. 

The theorem falls short of a complete description of the implications of 
the stated axioms in that we have not spelled out conditions for $ that 
correspond to the continuity and monotonicity of + Similarly, the defini- 
tion of IRLU asserts that m(F) is uniquely defined by the solution to (3.4) 
or (3.4’); but we have not provided an explicit condition on ti which is 
equivalent to uniqueness. (These deliciencies apply only to the ILU an 
IRLU classes. For LU and RLU, m(F) is explicitly delined as in (3S 
(3.3’) so that uniqueness holds trivially. The continuity and monoto 
of LU are well known. The continuity and monotonicity properties of 
follow from the corresponding properties for E2(q3 .) given the as 
tions made for q.) 

But we do provide, in Appendix 2, two sets of simple conditions cm $ 
that are sufticient for the IRLU functional m to satisfy the desired con- 
tinuity, monotonicity, and uniqueness of solution. They guarantee that 
.fx 4tik F(x)> Y) is d ecreasing in y, which is the key to proving unique- 
ness and monotonicity. Both sets of conditions reduce in the ILU case to 

VX E X, r(x, .) is continuous and decreasing. (4~11 

A class of IRLU functionals is described in Section 5. Another example 
is provided by taking 

(4.2) 
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where g: [O, 1 ] --+ [O, 1 ] is continuous, increasing, and onto, and where r 
satisfies (4.1), r(x, x)=0, r( ., y) continuous and increasing on X. (It is 
readily verified that $ in (4.2) satislies the conditions in Lemma B of 
Appendix 2.) Note that $ is the sum of $i and $Z, where $ 1 corresponds 
to an ILU functional and I/~ corresponds to an RLU functional; but the 
utility function corresponding to $ does not belong to any of the subclasses 
of IRLU described in Fig, 4. 

Given IRLU represented by $, it is clear, for any positive valued function 
u on X and $ delmed by 

that I,& represents the same ordering. In fact (4.3) delmes the uniqueness 
class of $. 

COROLLARY 1. The functions $ and $ represent the same IRLU ordering 
if and only if there exists a positive valued function rx on X such that 
44P>Y)~J-XW, llX~,~(X,P,Y)~~(Y)~(X,P,Y). 

Proof See Appendix 4. 

Since risk aversion is a basic hypothesis in uncertainty theory, we turn 
now to a characterization of risk aversion for IRLU in terms of I+$. A 
number of delinitions of risk aversion have appeared in the literature. 
Machina [21] provided a Frechet based characterization of the equiv- 
alence among the three delinitions of risk aversion-mean-preserving- 
spread, conditional risk premium, and conditional asset demand-based 
on the concavity of the Frechet derivative referred to as the local utility 
function. This result cannot be directly applied here because IRLU is not 
generally Frechet differentiable (see Chew, Karni, and Safra [6] for a 
demonstration in terms of RDEU). 

We apply the characterization of risk aversion for continuous utility 
functionals in Chew and Mao [8]. Given an elementary lottery 
Ey= i (l/N) aXi and a continuous utility functional V, V is risk averse (as 
defined in Machina [21]) if and only if, for each N, V(xy=i (l/N) dxi) is 
Schur-concave on XN, i.e., for (x1 ,..., x,,,) E X7, 

a+,+e+ E 
i#k,k+l 

is nonincreasing in s for values of s that do not alter the ranks of X~ - s and 
xk+l +&. 

The following is proved in Appendix 4. 
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THEOREM 3. 6iven an IRLU preference @, $ is risk averse if and only if 
V-~~x’,y~~,p,p’~[O,l), withx>x’,p>p’, 

$1x, p, y) - t/(x, p’, y) is cotzcave ifi x9 (4.4) 

arzd 

lf!l(x, p, y) - $(x’, p, z) is concave i?? p. (4~51 

Nate that (4.4) and (4.5) can be equivalently stated as 

be6 P> y) - $4, P’, Y) - $(X’> p, y) + $,(x’, p’, y) (4.61 

is concave in x and in p separately. Suppose t,l~ is di~ere~tiable in the first 
two arguments. Then the latter risk aversion condition is 

+J ., ., y) is nonincreasing, (4.7) 

Recall that the monotonicity condition (3.2) when applied to @ is 
equivalent to $I2 > 0 a.e. The above conditions are the counterpart for 
IRLU of the familiar restrictions for LU theories that marginal utility is 
positive (for monotonicity) and nonincreasing (for risk aversion) 

In the case of ILU, (4.6) specializes to the concavity of -c( ., y). If we 
specialize further to LU, we obtain the familiar result that concavity of the 
von Neumann-Morgenstern utility index characterizes risk aversion. For 

DEU, (4.6) is equivalent to the concavity of v an g, which is consistent 
with Yaari [26] and Chew, Karni, and Safra [6J 

We devote the remainder of this section to the case when Xis not restricte 
to being a compact interval. First we observe that the separability proof 
of Theorem 2 does not depend on the compactness of X. Consequent 
the construction of $ can be accomplished on a nonco 
resulting utility functional represents the preference ordering on 
Consider the following continuity requirement. 

Axiom CC (Compact Continuity). For every corn 
KCZ X9 =$ is continuous on D(K). 

When X is unbounded, the above is weaker than the continuity defined 
by Axiom C. By adopting CC, we can immediately obtain the extension 
below of Theorem 2 to W(X), the set of c.d.f.‘s in D(X) having compact 
supports. 

COROLLARY 2. Theorem 2 holds on D’(X) if Axiom C is replaced t!q 
Axiom CC. 

In this case, we may define the certainty equivalent of FG@X)\P(X) 
bY 

m(F) = Lim m(FKn), 
n-02 
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where {Kn} is an arbitrary increasing sequence of compact intervals which 
converges to X. Of course, as in the case of risk neutrality, the domain of 
m( .) may not be all of D(X). This means that the corresponding preference 
ordering is complete on P(X) but not necessarily complete on D(X). 

5. RANK-DEPENDENT SPECIALIZATIONS 

Theorem 2 provides axiomatizations for the classes of utility functionals 
contained in the larger boxes in Fig. 3. Some of the remaining boxes are 
considered here. 

In Sections 2 and 3, we referred to rank-dependent expected utility 
(RDEU). Here, we consider an implicit form for RDEU, called imphcit 
rank-dependent utdity (IRDU), which has not appeared in the literature. 
The relation between IRLU and IRDU parallels that between RLU and 
RDEU. This parallel is clear from the point of view of functional represen- 
tation since both specializations correspond to $‘s being multiphcatively 
separable in x and p. In other words, for IRLU, 

and for RLU, 

(5.1) 

where Vy e X, g( ., y): [O, 1 ] + [O, 1 ] is continuous, increasing and onto. In 
the former case, the mean value functional m( .) satisfies 

while the latter case, of course, leads to (3.6). 
For IRDU, the condition (4.6) for risk aversion specializes to 

g( ., y) and r( ., y) are both concave, VZEX. (5.4) 

This condition reduces easily to the risk aversion conditions for all other 
boxes in Fig. 3 with the exception of RLU. 

In the case of IRDU, we can also obtain an appealing condition for the 
unique existence of the implicit solution to (3.4’). IRDU is given by the 
solution to 
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§uppose that r satislies (4.1) and 

Then unique existence as well as continuity and monotonicity of the 
solution to (5.5) follows from Lemma C in Appendix 2. 

When 7(x, y) = o(x) - u(y) (we label the corresponding utility functional 
as implicit rank-dependent expected utility (IRDEU)), the certainty 
equivalent functional in solves 

This functional generalizes RDEU by permitting the transformation func- 
tion g to depend on the level of utility. Viewed in these terms, Condition 
(5.6) may be interpreted as the decision makers displaying a greater degree 
of ‘pessimism’ in transforming the given probability distribution F by 
g( ., y) when comparing gambles to which he assigns higher levels of utility. 
This interpretation is compatible with the Allais type behavior discussed in 
Section 3 and also below. 

The following is a simple class of g functions for IRDEU. Given 
continuous, increasing, and onto functions a: [O, I]--+ [O, A] an 
b: [O, l] + [O, B], detine for y E [O, co) 

It is clear that (5.6) is satisfied as long as a(p)/A < b(p)/B. As y increases 
from Q to co, the probability transformation function changes from a(. )/A 
asymptotically towards b(. )/B. 

A different subclass of IRDU, which is in a sense polar to (5.‘7), is calle 
rank-dependent implicit linear utility (RDILU). In it, the function r, but rmt 
the transformation function g, may depend on the utility level. Thus m(F) 
satisfies 

If g is the identity function, ILU is obtained. Since WU is the only explicit 
theory within ILU, it is of interest to consider the weighted utility spe- 
cialization of RDILU class given by +x, y) = +v(~)[u(x)- o(y)] w 
yields an explicit theory that integrates elements of RDEU and 1LX.J~ We 
term this rank-dependent weighted utility (RDWU); m(F) satisfies 

642149%2 
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The behavior of the specializations of IRLU on a three-outcome 
probability simplex is presented in Fig. I. The three outcomes z, x, and 3 
are arranged in ascending order of preference. We have already observed 
that the ILU specializations have straight indifference curves. The indif- 
ference curves for WU are projected from a point 0 on the indifference 
curve through x extended, and those of EU are parallel in alignment. 

The rank-dependent specializations have nonstraight indifference curves 
except when they coincide with ILU. (We sketch the indifference curves 
corresponding to a risk averse agent.) We can identify a property which is 
shared by the ILU and IRLU theories. The tangents of the indifference 
curves along the & - 2 edge behave exactly as their ILU counterparts. For 
IRDU, the only restriction is that these initial tangents do not intersect 
even though they are not themselves indifference curves. In general, IRLU 
does not satisfy such a restriction. 

It is known that Allais type choice behavior corresponds to indifference 
curves in the simplex becoming steeper as one moves along a direction of 
increasing preference. (This is often called the “fanning” property.) In 
Fig. 1, the natural classes of preferences displaying this property consist of 
WU and RDWU depending on whether having straight indifference curves 
is desirable. While RDEU has been shown to be compatible with the Allais 
paradox, the parallelism of the initial tangents makes fanning a possibility 
only if g is concave, which is compatible with risk aversion. 

The preceding discussion suggests that there is enough information based 
on the behavior on simplexes to characterize further specializations of 
IRLU. We do not pursue the possibility here. But we do provide an 
axiomatization, in a different vein, of the IRDU class. The axiom also 
serves to axiomatize RDEU in a parallel fashion, thus supporting the 
parallelism drawn at the beginning of this section. 

Axiom MS (Multiplicative Separability). VP, q, r, s E (0, 1) and m E X, 
3~ e (0,l) such that VFED(X), x, x’, y, y’ E J, an open interval of X with 
F(J)=O, F (infJ)=r,x<x’,y<y’, 

and VG e D(X) with G(J) = 0, G(inf J) = s, if 

then 
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THEOREM 4. Under Theorem 2, IRLU (RLU) is of theform (62) ((6.3)) 
lyand oniy if < satisfies additionally Axiom MS. 

ProofI See Appendix 5. 

6. CONCLUDING REMARKS 

The major contribution of this paper is the unification it provides, as 
illustrated in Fig. 3, of a number of generalizations of expected utility. The 
paper suggests several promising directions for future research, First, we 
have introduced a number of new classes of utility functions whose proper- 
ties and usefulness need to be explored further. For a rmmber of specilica- 
tions of IRLU, axiomatizations need to be provided. In a different vein, we 
may investigate the possibility of other generalizations of LU based cm 
different variations of the separability axioms than those considered in this 
paper. 

There is a well-known link between mean values and indices of income 
inequality via the notion of the representative income. For example? the 
special case of RDEU with $(x, p, y) = [ I- (I -pj2] [x - y] correspon 
to the Gini index, while Chew [3] applied WU to income inequality 
measurement. Our separability axioms have clear interpretations in this 
context. We intend to explore further the usefulness of IRLU an 
various subclasses for inequality measurement. 

APPENDIX 1: PARTIAL EXPECTATION QN D(X) 

LEMMA I. Let q be as in Section 3 and X= [g, 21. Suppose {Fmj in 
Do(X) converges weakly to Fe D(X). Then E2(q, F) = Limn ~ ~ E2(qz Fn) 
exists and is independent of the choice of {F,, 1. Moreover, E2(qY . ) is 
monotone in the sense of first-degree stochastic dominance if q~ satisfies (3.2). 

Prooj Define a finite signed measure ,? on the ore1 sets of Xx [O, 11 
by )4ty3 xl x Cs PII= dxT PI - V(T ql+ ICY, PI- dy, ql. rkfh *p= 
{(a, b)eXx [O, 1]: b>F(a)}. Ob serve that E2(p, F) = l(*F) + I&, I) IX 
D’(X). Consider a sequence {Fn } in Do(X) which converges weakly (in 
distribution) to FED(X)\D’(X). Let lA denote the indicator function for 
AcXx[O,l]. Then ~(*F\*F~)=~~~~o,~,[~*~-~*~~]d~4~ since leeFn 
converges to 1 *F a.e. with respect to 2 and iXX Lo, 1J is integrable. We define 
E2tq, Fl= Lb + m &(q, Fn) = I”( *F) + q(g, l. ). This limit is clearly not 
dependent on the choice of the convergent sequence. Thus, we have 
extended E2(q, . ) continuously from D’(X) TV D(X).6 

’ The observation that RLU can be viewed as a measure OII epigraphs of distribution fur- 
tions is due to Segal [25]. 
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If q satisfies (3.2) then J. is a positive measure. Thus, monotonicity of 
Ez(q, .) follows from the observation that *Fc *G if G dominates Fin the 
first degree. Q.E.D. 

It is clear that Lemma A can be extended to an unbounded X by 
requiring q( ., p) to be bounded for each p E [O, 11. 

APPENDIX 2: Sufficient Conditions for IRLU 

We provide two lemmas which describe sufficient conditions for $ to 
define an IRLU functional. The lirst lemma is applicable to Example (4.2). 
Numerous other such examples can be constructed, since if r/r and $* each 
satislies the conditions of Lemma B, then so does any positive linear com- 
bination. Lemma C is applicable to the IRDU class discussed in Section 5. 

LEMMA B. t+b defines an IRLU functional if 

(Sl) I): Xx [O, 1] xX+ R i,s contimdoz.0 in each of the first two 
arguments, and V (x,p,y)eXx [O, l]x~,~(x,O,~)=~(~,~,~)=O, and 
$( ., ., y) Yatisjies (3.2); 

(S2) Vx E Xandp, q G [O, 11, p > q, t,b(x, p, .) - t/(x, q, .) is continuous 
and decreasing. 

ProojI Note that for FE zr= l (l/N) dX, in D’(X), JX dz$(x, F(x), y) is 
given by 

jl {$lxi2 hi9Y)F$txi> hi-12.YJ}9 (A.2.1) 

where /zj= x;= 1 pj. Existence of a solution on D’(X) follows from the 
continuity of JX dzt+b(x, F(x), y) in y and its assuming opposite signs at the 
extreme points of the support of F. Uniqueness of the solution to (3.4) on 
D’(X) follows from the decreasingness in y of (A.2.1). 

To prove monotonicity on D’(X), note that a small increase in xi 
increases the ith term within the summation (A.2.1). In order to restore 
equality with 0, y has to be increased since each term in the summation is 
decreasing in y. 

Now, consider distributions in D(X). For y l X, deline as in Lemma A 
a linite measure A( ., y) on Bore1 subsets of Xx [O, l] by using Expression 
(3.2) for rj(., ., y). Denote Z(y)= {(a, b)&Yx [O, 11: a<y}. Observe 
from Lemma A that 
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x - Y x 

FIGURE 4. 

In terms of Fig. 4, the RHS of (A.2.2) equals the difference between the 
measure of A, the epigraph *F to the right of -Y? and the measure of the 
region B which lies to the left of y and below the given distribution P’. 
IRLU is delined by the value of y which equates A(A, y) and jW(& y). 

Let PE D(X) and let {FR} c Do(X) be a decreasing sequence which con 
verges weakly to F such that m,, = m(Fn) converges to ~2’. Let Jr: = 1 +Fn, 
K = ~~(rw”), h+ = l*F, h- = lp@q, PE(.)zA(.,rnn), and P(.)=A(.,m’). 
Clearly, Pn converges weakly to P given the continuity of $ in (S2). 
Theorem 5.5 in Billingsley [l, p. 34]> 

which implies that m’ solves (3.4’) for F. Uniqueness of the solution fohows 
since Jx &$(x9 F(x), y) decreases in y. 

Continuity of m( .) on D(X) follows from applying the preceding argu- 
ment without restricting the sequence {FE l to lie in DO(X). Monotonicity 
on D(X) is evident. 

LEMMA C. @ defines an IRLU functional zj” it satisfies (Sl) and the 
foZlowirzg: 3$: Xx [O, l] x X+ R such that $(x, p2 y) = $(x, 1, y) $(x9 P, y); 
%%P,Y)~xxm 11xX 

03) tk L .I ami -&,A .I are nonincreasing and at least one is 
decreasing, 

(S4) $(x, I, x) = 1 and $(x, 0, x) = 0, 

(S5) $(x, ., y) is increasing. 

(Se) tj(x,p, .) is continuozfs. 
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Prooj We will prove that jx d*$(x, F(x), .) decreases. The remaining 
arguments are similar to those in the preceding proof. 

First, let FE Do(X) and let y c JJ’. Then 

We know that ZI 20 by (S3) and (S5). By applying $(x, 1, z) = 1, 
$(x, 0, z) c 0, an summation by parts, we can rewrite d 

I2= f lI$Cxi-lt l~.Y’~~~~xi~ lYY’)l 
i=2 

Set p = 1 and q = 0 in (2.6) to deduce that $( ., 1, y’) is increasing. Then 
I1 > 0 by (S3). Moreover, II + Zz > 0. 

For FED(X), we can pass to the limit in the above argument and 
conclude that the difference in (A.2.3) is given by 

j 4h F(x)) + j [$CG F(x)> 14 - $k F(x), ~)144x> L Y’L x x 

where @(x,JI) = $(x, p, JJ)[$(x, 1, JJ) - I/(X, 1, y’)] and the second term is a 
Stieltjes integral with respect to $( ., 1, JJ’). Since 0(x, .) is nondecreasing, 
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the first term is nonnegative. The second term is nonnegative by (S3) an 
the increasingness of +( ., 1, y’). Moreover? the sum of the two terms rs 
strictly positive by (S3). 

APPENDIX 3: ADDITIVE UTILITY QN A §UBSET OF J? 

The additive utility theorem of Debreu [lOI and German [17] is 
usually stated in the setting of a product of arc-connected topological 
spaces. Here, we establish a variant for Euclidian domains that are not 
Cartesian products. The terminology-complete strict separabihty-is 
adopted from Gorman. For each i= 1, . . . . IV, 7~~ denotes the ith coordinate 
projection map. 

THEOREM A. Let Q c XN (N > 2) have a nonempty and connected 
interior and let V be a continuous and increasing utility function OH 
Suppose that for each 2 E Q, the corresponding indfference surface {x E Q: 
V(x) = V(Z)} is connected. Then V is completely strictly separable if and 
only $ there exist continuous, increasing functions 

and an increasing function 

ui: 7ci(Q) -+ R 

ProofI Necessity is obvious. We observe that the validity of the theorem 
for the case when Q = ny= r Ji is an interval in X) is well known. Therefore, 
for an open rectangle Q = nr= r (ai, bi) c Q, there are 

z2( ., 0): (aj, bj) -+ R 

such that V( ., 0) = xr= I ai( ., 0) is a utility function on Q. 
Suppose Q n 0’ # 4, where 0’ is another open rectangle in !2. We can 

extend V( .> 0) to 0 u Of by selecting those u’( ., O’ys such that 
u’( . 0) zz u’( ., 0’) on 0 n 0’. This can be done because the U% are unique 
up to similar affrne transformations (i.e., 12’s and 5”s are equivalent if there 
are c > 0 and d;s such that Gi = CU’ + di). We have 

Hence, V(x, 0 u 0’) =x ui(xj, 0 u 0’) is a utihty function on 0 u 0’. 
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By repeated applications of the above ‘piecing together’ of locally delined 
additive utility functions, we can construct, for each ZeQ, an additive 
representation on a strip of minimum thickness q >O centered on the 
indifference surface containing 2. We can further piece together these 
additive functions to obtain an additive function U, U(x) = xy= i z&(xi), 
defined on all of a. 

By the nature of the above construction, V and U are ordinally 
equivalent locally, i.e., on a sufficiently small neighborhood of any point 
in Q. Since indifference surfaces of V are connected, it follows that U is 
constant on each such indifference surface. Thus, U and I’ are ordinally 
equivalent on Q. Q.E.D. 

APPENDIX 4: REPRESENTATION, UNIQUENESS, AND RISK AVERSION 

Denote by P(X) the set of c.d.f.‘s in D’(X) for which the probability of 
each outcome is rational. Each such c.d.f. can be expressed in the form 
F = xy= I (l/N) 6.Xi for some A? 

Proof’ of Theorem 2. First, we make the following observation. For 
XEXN, if yeXN is obtained from x by a permutation of the components 
of x. then 

so that VN(x) = V(xy! 1 (l/N) dX,) is symmetric on XN. 
(Sufficiency) First, we establish the result for IRLU. Observe that 

rn(xf!= 1 6J, x e X7, is given by the unique solution to 

It follows that m is completely separable on the intersection of Xy and the 
indifference surface in P corresponding to rn(Zff= i (l/N) 6.J. Thus, IRS is 
satislied. 

The verilication of sufficiency for LU, RLU, and ILU is similar. 

(Necessity) Cuse i (&‘, ?8) = (LU, S). For XEP’ (N> 2), Axiom S and 
monotonicity imply that VN is completely strictly separable in the sense of 
[ 171. By Gorman [ 17, pp. 388-3891, there exist continuous and increasing 
functions 

u;:X-+lR, ,...,N i=l 
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and an increasing function 

such that 

Symmetry of VN implies that & = ui = U&J. 
Deline the certainty equivalence functional m by 

Then, for x E XN, 

yields 

Observe that each Us is unique up to affme transformations and any two 
different Us and tiK are equivalent to each other since they are each 
equivalent to gNK. Therefore, we can pick u = uj and define 

for any x E XN, and for N = 3, 4, 5, . . . . 
The extension of m from P(X) to D(X) is standard under continuity. 

Case ii (d, B) = (ILU, IS): For 2 6 XN (N> 3), detine 

Let 

JJ(ZZpl = {xEP-‘: (x,z)E$(%) for some zEX] 

be the projection of Y(2) on XN- ‘. Since V is symmetric, the RN- * projec- 
tion of 9(f) is not dependent on the location of the component deleted~ 
This is why we denote the projection by Y(Z) ~ i rather than Y(2)) j. 
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Define an ordering < t- ’ on Y(Z) - 1 by 

where c~(x) is delined by 

Axiom IS implies that <z- ’ is completely strictly separable on Ye 
and satislies the other hypotheses in Theorem A in Appendix 3. Therefore, 
there are continuous, increasing functions 

dh l( .; 2): 7ci(JJ(2)-l) -3 R 

(where rci is the ith-coordinate projection operator) and an increasing func- 
tion 

N-l 

(-,“: 1 Rng(uh-lJ+R 

i=l 

such that <i- ’ is represented by VN- i( .; g), where 

V,+-~(X~Z)~~N 5 
C 

u;- l(xi; 2) . 
I-=1 1 

Since VN-i(.;Z) must be symmetric, ~~~~(.;~)~~~~~(.;~)~~N~~(.;~). 
It remains to show that the ordering represented by xy= I u,,~ i(xi; 2) 

has 9(T) as an indifference set. Suppose there exists x E Fv with x - ,? such 
that 

j$l uN- lcxi> 2, > f uN- l(zi~ f). 
i=l 

(The reverse inequality may be handled similarly.) This is only possible 
if x and 5 have no common component (since if they have a common 
component, say the Nth, then x-,?~x~,,,-~-’ CN= 

N N 

1 uN-l(xi> 2)z x uN-l(2i, ?I). 
i=l i=l 

Pick (x~, xj) such that X~ > Zk and xj< Zj. Replace X~ by XL > Z~ such 
that xi+k UN- I&, 2) + uN- dx;, 2) = zr= r uNm i(Zj, 2). We can rule out 
XL < Zk. Otherwise, even if XL = z~, 

i#k i= 1 

since (xi, . . . . xh, . . . . xN) + 2. 
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Next we replace xj by XT < zj such that 

(A.4.2) 

Again, we rule out the possibility that xj 2 ij. Otherwise, at xj? = ij9 
LHS of (A.4.2) > RHS of (A.4.2) since zj+k,j u,+ r(xz> 2) + IJ.+ r(xL> 2) -!- 
u/&x;, Z)>ELl U&l& 2). 

We continue this process in order to construct a sequence {ykj CI XV 
with the property that, when m is odd, ym< 2 and xy’ I Us- t( yy, 2) = 
IEyI 1 u.M- ll%i> %I; when rn is even, ym-z? and ~~zI~,,-I(y~,.?)> 
xF= r Us- I(+fj, 2). Roth xr (m odd) and xJ? (m even) converge since they are 
monotone bounded sequences. Moreover, XT J .?Zk and x7 7 Zj. Therefore, 
hm y”’ = y - 2 -x. Since y shares two common components with 2 m-m. 
and N-2 common components with x, we have zr=r z~~-~(x~> Z)= 
ZL , uNPI(yj, Z)=~~=r ~~~r(z~, Z), which is a contradiction. 

Moreover, we can conclude that (A.4.1) holds if and only if x > 2 smce 
we can decrease the components of x untif it is indifferent to .% at whit 
point we have equality. 

As in the proof of Case (i), all the uNP r (N > 3) are equivalent. We can 
choose u = uX to generate the implicit equahty 

where z (l/N) hX, - x (l/N) 6.%, - dm,. A standard extension argument 
again yields VFED(X), m(F) as an implicit sohnion of 

z&n, m) = jx u(x, m) dF(x). (A.4.3) 

The above becomes 

i 7(x, m) dF(x) = 0 (A.4.4) 
x 

if we define 

+, yl= 4x5 Yl- 4Y? Yl. (A.4.5) 

The uniqueness of the solution m(F) follows as in Case (iv) below. 

Case iii (d, 99) = (RLU, RS). Axiom RS implies that VN is completely 
strictly separable on Xy. Theorem A in Appendix 3 is apphcabk an 
implies the existence of continuous increasing functions 

zlh:X-+R, ,...,N i=l 
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and an increasing function 

c,,,: f Rng(z&)-+lF!? 
i=l 

such that < is represented by V,,, where 

Moreover, 

Observe that zr= 1 z&(m) = xf! l d;(m) = xrfl z&m) for any K, N> 2. 
Deline q(x,p): Xx [O, 1]* -+ R (where [O, 1]* = (rational numbers in 
LO, WI by 

and cp(x, 0) 5 0. 

Then, given N, for any x E Xy, 

(A.4.6) 

We extend the domain of q continuously to Xx [O, 11. Consequently, we 
can extend the domain of m from De(X) to D(X) as in Lemma A in 
Appendix 1 so that VFELI(X), 

Finally, kt $(x9 P, Y) = &, P) - 40, P). 

Case iv (G?‘, ?8) = (IRLU, IRS). For 2 E Xy (N> 3), deline 

3qZ) = Y(X) n xy 

and 

9=&fpj= {XE y-1: (x, z) E Y(Z) and z is the ith-rank 
component of (x, z) 1. 
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Axiom IRS implies that the <z;; ordering defined by c(., L?)~ is com- 
pletely strictly separable on .$,(.F):~ for each i. By applying Theorem A in 
Appendix 35 we have that, for each i, there are continuous, increasing func- 
tions z.& i.i: z~(.J$(%) -i) -+ Fk? such that 

Extend the 4:;; ordering trivially to comparisons of x and y in 
Xy, where -x-~,~-~EY~(.%)~~ and xj = yz, by requiring x< y if and 
only if c(x-i, %)j< ~(y-~, ,Y)~. In the above extended sense, we observe 
that <c;; and <K;; coincide over comparisons of x, ye $‘, where 
x eL2~pi~Y’~(?ipi> X-jvY-j~~~(sf-j> arid (~;~XJ)=(.?Jz>.k’,). 

‘c-l.f(‘> z)zu~-~~j~'?f)~ 

where k and k’ refer to the same rank relative to 2 (i.e., k = k’ if i < (2 1 
k,j<(>)k;k=k’+l if i<k, j>k’; k=k’-1 f i>k,j<k’). In other 
words, the z&l i , (., i) = z.&i( ., 2) functions do not depend on L 
Construct 

Then J$&( ., 2) represents the conditional ordering $&r for each i. 
We need to show that the above representation coincides with J$(.F) 

whenever zr= 1 (l/N) dX, - xg) ~5~~. Suppose there exists x CC Xy with x - 2 
such that 

(The reverse inequality may be treated similarly.) This is only possible 
if xi#-fi for each i. Pick xk >Zk and xj< zj such that k = 1 or 
X&l-cZk and j=N or xj+i>Zj. Replace xk by xk>Zk such that 

z&(x. 2) + t&(x;, 2) =xYrl(iTL, 2). Next, replace xj by x~K%~ such 
~~~~i~~~(l,N)~~~,+(l/N)~.~~+(l/N)~~, z - xr= l (l/N)) 6+ ~o~ti~ui~~ 
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the process, we obtain a sequence (yk} c X7 with the property that, when 
m is odd, y”‘<.? and x7= 1 uh(yy, 2) = xr= r z&,(%~, 2); when m is even, 
ym = 2 and zr= r u’i (yy , 2) > zy= i z&(Zi, 2). Observe that xt”- ’ J Zk and 
xyTZj so that Lirnmdm y”=ymjZmx. This yields a contradiction. Note 
as in the proof of Case (ii) that (A.4.10) holds if and only if x>X 

For each m EX, we deline 3(m) = {FED(X): F- ijm}. For each N, we 
can go through the preceding construction to obtain the z&( ., m)‘s which 
represent the ordering on 9(m) n Xy. Construct i,k Xx [O, 1]* x X-+ iR by 

(A.4.11) 

and extend its domain for the second argument continuously to [O, 1). It 
follows that, VFeIY(X), the certainty equivalent m(F) is given by an 
implicit solution of 

To see that m(F) is the unique implicit solution, suppose there exists 
y’ G X satisfying IX d2$(x, F, y’) = 0 but y’ #m(F). Let F’ E W’(X) be 
such that y’= m(F’) and jX d2t,li(x, F’, y’) = 0. We conclude that 
JXd2$(x, F’,y’))=jXd2$(x, F, y’)). This implies F-F’ which is a con- 
tradiction. 

We have shown that tj represents m( .) on P(X) in the sense that, 
VFE P(X), m(F) is the unique solution to the equation JX d2$(x, F, y) = 0. 
We now show that in the same sense $ represents m( .) on all of D(X). Let 
{ Ffi} be an increasing sequence in P(X) which converges to FE D(X) so 
that yn = m(Fn) converges to y. Suppose 

Then the above would hold under a small lateral shift q in F denoted by 
. i.e., jX d2@(x, F (x), y) < 0. This implies that for ti suffkiently large 

[zii $(x, F’ (x), y)?O i.e Fn <b since {Ftq} cP(X). This in turn 
implies that +s+ ~ < F which ys a %ntrLdiction. 

Finally, we observe that the following properties of tj, which appear in 
the detinition of IRLU, hold. The continuity of @ in x and in p holds by 
construction. Condition (2.7) for $( ., ., y) is equivalent to the increasing- 
ness of the branch utility functions z&x, y). Q.E.D. 

Proof of Corollary 1. Sufficiency of (4.3) is obvious. To prove necessity, 
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suppose $ and $ both represent the same IRLU ordering. For each N, we 
construct 24k, fiL:XxX--+R via 

Since u$s and iZrs provide additive utility representations of the same 
ordering over XN, they are related by the similar positive affine trans- 
formation 

so that 

Clearly> aN cannot depend on N in the above expression. 
conclusion follows by continuous extension of $ in the secon 
from the rationais to [O, 11, 

Procf of Theorem 3. It is easier to proceed using the fo~~ow~~g state- 
ment of Condition (4.6): Given 8, 7 > 0, y E X. 

A(X,~,E,Y,~)=~(X+E~~+Y~Y)-~(X~E,~,Y) 

- $C& P + IJ, .Y) + $(x9 P, Yl (4.6’) 

is nonincreasing in (x, p), for [x, x + a] x [p, p + 71 c Xx [O, l]. In view 
of the equivalence between MRA and Schur-concavity on D’(X) for a con- 
tinuous, monotone utility functional on D(X) [g, Corollary 2]> it suffices 
to prove 

(i): (4.6’) implies that IRLU is Schur-concave cm P(X)> and 
(ii): IvIRA implies that (4.6’) holds. 

&se (i). To prove the necessity of (4.6’) for MRA, suppose Zlp7 .T, y G 
(0, I) and x, x’, y E X (x’ > x) such that A(x’~ JP, E? 7, y) > A(x5 J& a9 y9 y). Let 
x=mi, 
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and 

Note that f(O) =f’(O) = 0 and j-( 1) <f’( 1). 
For each N, we will show that 

f(h) -f(+l) > f’ (+)-ff ($) (i= 1, . . . . N- 1). (A.4.14) 

Pick any N and 1 < i < N. Consider 

(A.4.15) 

where F(x + JC) = JJ + ((i - l/N) y, F(x’) = p + (i/N) 7, and [x, x’ + K] n 
SUPP F= 4. Then the IRLU of (A.4.15) is given by an expression having the 
form 

where 

(A.4.17) 

In terms of IRLU, the above yields 

Subtracting (A.4.16) from (A.4.18) yields 

It foliows that VN, 
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Taking the limit as N tends to CC and by continuity of A in y, j( 1) <f’( 1) 
which is a contradiction. (The other case where A is strictly increasing in 
p is essentially the same.) 

Case (ii). Now we prove the sufficiency of (4.6’) for the Schur-concavity 
of V on P(X). For (x1, ..~, .x~) E Xy, consider WZ(~:= r (l/N) &~YA) = ye Let 
a>0 be such that x~~~~x~-&,x~+~+&~~~+*. Then (4.6’) implies that 

Kewriting the above yields 

which is equivalent to 

APPENDIX 5: MULTIPLICATIVE SEPARABILITY 

Proof of Theorem 4. We provide the proof for the IRLU case. The 
result for the RLU case follows. Necessity of the RLU case is implied by 
the existing proof. For sufficiency, observe that iff I$ is RLU and satisfies 
(5.1), then r(.~, y) = 9(x, I) - q( y, 1). Thus (5.2) is implied. 

To prove the necessity of the IRLU case, suppose $(X,JA y) = 
dp, Y 1 ~tx, Y 1. afine 

4% p> r, JJl = $(& t. + P> y) - $44 r> y). (A.5.1) 

Then u(x, r, y( = [g(r +p, y)-g(r, y)] 7(x, y). Note that u(.,p, r, y) is 
proportional to u( ., q3 s, y) for (q, S) # (p, r). 

642/49/S3 
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Given (JI, q, r, s, JI), the CZI in the hypothesis of Axiom MS will be given 
by the unique solution of bX/az = bl/al, where 

b2=g(s+q,m)-g(s+~q,m), a2=&+ef, ml-d.5 ml, 
bl =dr+p, mJ-dr+p/Z ml> al = & +P/& ml - &, m). 

Consider U(X, p/2, r +p/2, WZ), U(X, p/2, r, WI), u(x, (1 -LX) q, s + ccq, WZ) and 
0(x, cxq, 3, IH). The result follows from the observation that the certainty 
equivalent m given by 

~~.x+;dx~+(l-p)F4m ~ctqhx+(l-u)q8x,+(l+q)G, (A.5.2) 

where F(x) = r, G(x) = s, and x, x’ I# supp F u supp G, is respectively of the 
form 

and 

A2 + azT(x, m) + bzT(x’, m) + Bz = 0. 

To prove sufticiency, define 

Note that multiplicative separability of $ is equivalent to u( ., p, r, m)‘s 
being proportional to u( -, q, s, m) for (p, r) # (q, s). Given XE J, 
p E (0, 11, r E [O, 1 ), define the function c by 

4~ -e, P, r +plA ml + $x + 4~ 4 p, rl, P/Z r, ml = 4~ p, r, ml. 

Axiom MS implies that for any qE (0, 11, SE [O, l), &I c (0, 1) such that 

4x - 8, q, s + q, ml + 4x + 46, 4 p, rL q, s, ml = 44 q, s, m), 

i.e., c is not dependent on (q, 3). Thus 

4 ., q, s + q, ml + f~( ., cq, s, m) (A.5.3) 

and 

u(.,p,r~pl2,m)+~(.,pl2,r,m) (A.5.4) 

define the ‘same’ indifference curve through (x, x) F J2. By varying the 
choice of XE J and F, GE D(X) while maintaining the constancy of m, 
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we conclude that (A.5.3) and (A.5.4) are equivalent additive utility repre- 
sentations for the orderings induced on (x, x’) G Jz via (A.5.2). Since 
additive utility is unique up to a positive afflne transformation and. 
ti(m, p, m) = 0 b’m, it follows that 
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