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INTERNATIONAL ECONOMIC REVIEW 
Vol. 30, No. 1, February 1989 

THE STRUCTURE OF PREFERENCES AND 
ATTITUDES TOWARDS THE TIMING OF THE 

RESOLUTION OF UNCERTAINTY* 

BY CHEW S. H. AND LARRY. G. EPSTEIN' 

This paper is concerned with the phenomenon of preference for timing in the 
temporal resolution of uncertainty and its implications for the structure of utility 
functionals defined on multiperiod consumption programs. Several postulates 
concerning attitudes towards timing are stated using a new definition of timing 
premium for early resolution of uncertainty. The analysis provides an axiomatic 
basis for the specifications of expected utility and the more general weighted 
utility and implicit weighted utility functionals in temporal models. 

1. INTRODUCTION 

This paper is concerned with the phenomenon of preference for timing in the 
temporal resolution of uncertainty and its implications for the structure of utility 
functionals defined on uncertain consumption programs in a multiperiod frame- 
work. A series of postulates is considered, beginning with indifference to timing 
and then proceeding to various forms of nonindifference. Some of the latter 
postulates are formulated in terms of a new definition of timing premium for 
early resolution of uncertainty. In the former case expected utility functionals are 
implied (given other axioms) while nonexpected utility functionals are admissible 
when indifference to timing is weakened. In particular, a rationale is provided for 
the specification of implicit weighted and weighted utility functionals in multi- 
period contexts. These functionals have been axiomatized in atemporal frame- 
works in Chew (1983, 1989) and Dekel (1986), where it is shown that they are 
capable of explaining Allais-type violations of expected utility (see also Machina 
1983). 

Our analysis is axiomatic. The first central axiom is the intertemporal consist- 
ency of preferences. The issue of consistency has been recognized as important in 
dynamic analysis since the seminal paper by Strotz (1956) and consistency is 
maintained in the vast majority of studies in economic dynamics. Expected utility 
specifications are intertemporally consistent but Johnsen and Donaldson (1985) 
show that consistency alone does not imply an expected utility ordering. 

The other key axioms below concern attitudes towards the way in which 
uncertainty resolves over time. It is recognized (Kreps and Porteus 1979; Machi- 
na 1984) that this timing is generally significant when considering a preference 
ordering for random income streams induced from preference for consumption 
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a I probability tree for deD, 
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FIGURE 1 

streams, since in such contexts earlier resolution can improve planning. But the 
desirability of earlier resolution is not at all clear at the primitive level of con- 
sumption streams. Indeed, indifference to the timing of resolution is widely main- 
tained, e.g., in expected utility specifications where the expected value is com- 
puted with respect to the joint distribution of consumption levels, the latter 
distribution determines the ranking of the consumption program independently 
of the way in which uncertainty resolves over time. 

Some of our axioms are closely related to those that have appeared in atempo- 
ral axiomatizations. For example, consistency and timing indifference are closely 
related to the well-known key axioms of expected utility theory-the indepen- 
dence axiom (IA) and the reduction of compound lotteries axiom (ROCLA). But 
they are nonetheless distinct sets of axioms. In this regard it is important to 
distinguish between the formal axioms IA and ROCLA and the informal verbal 
explanations which often accompany them. The former are atemporal but the 
latter frequently introduce sequential variants of the original single period choice 
setting (see Raiffa 1970, p. 82; and McClennen 1983). Thus mixtures of probabil- 
ity measures are often described as "two stage lotteries" where time is assumed to 
pass between stages. Even in such informal discussions, time is conceptual rather 
than real. In particular, monetary prizes realized at the final stage of the sequen- 
tial lottery, rather than intertemporal consumption profiles, are the ultimate 
source of utility. The consistency and timing indifference axioms of this paper are 
the formal hypotheses which correspond to the Raiffa argument, extended to a 
real time framework where consumption-savings decisions can be modelled. 
Moreover, in our real time framework, nonindifference to timing is plausible and 
an analysis of related issues (e.g. the definition of premia for early resolution) can 
be undertaken. 

Just as in the case of the atemporal literature, our interest in nonexpected 
utility orderings is motivated by the evidence against the empirical validity of 
expected utility theory which has accumulated in the behavioural experimen- 
tation literature originating with the Allais paradox. (See Machina 1982 for a 
discussion of this evidence.) But in a multiperiod setting there is an additional 
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reason for considering more general utility theories-the expected utility specifi- 
cation is too rigid to permit the separation of intertemporal substitution from the 
degree of risk aversion. Such a separation is important, for example, in life-cycle 
based asset pricing models (Hansen and Singleton 1983) where some researchers 
have conjectured that it could improve the poor empirical performance of these 
models.2 

Section 2 contains the body of the paper. Some concluding remarks are offered 
in Section 3. Proofs are collected in the Appendix. 

2. PREFERENCE ORDERINGS 

Our formal analysis is conducted in a two period model since that suffices to 
convey the crux of our argument. The extension to an arbitrary number of 
periods is described briefly. 

Consumption ct in either period t = 1, 2 is constrained to lie in X, a bounded 
interval in the nonnegative real line. The space of Borel probability measures on 
X, endowed with the weak convergence topology, is denoted M(X). Let 
D -M(X x M(X)), the space of Borel probability measures on X x M(X), again 
endowed with the weak convergence topology. Elements of D are intertemporal 
consumption lotteries (or programs). They can be represented by probability trees 
as in Figure 1. (Note that for i = a, b, 5[ci, mi] E D denotes the measure which 
assigns all mass to {(cl, mi)}.) In Figure 1, think of cx and (1 - cx) as describing the 
probability distribution of a random variable which is correlated with consump- 
tion levels in both periods and whose realization is observed at the start of period 
1. The t = 1 consumption level is also observed at the start of period 1, after 
which the remaining future is described by a probability measure m' E M(X) for 
second period consumption. 

At t = 1, the utility function Ul: D--+ R represents the preference ordering on 
consumption programs. At the start of period 2, preferences on the remaining 
future, namely random period 2 consumption, are represented by U2: 
X x M(X)-> R. The utility functions U' and U2 are related by some of the 
axioms below, but at this stage they may be specified independently of one 
another. The dependence of U2(cl; m) on cl reflects the dependence of the t = 2 
preference ordering on the consumption level cl realised in the previous period. 
But note that (in common with Johnsen and Donaldson 1985) it is assumed that 
preferences are independent of unrealised past alternatives. 

2 In the empirical literature, Hall (1985) and Zin (1986) have argued for the importance of such 
separation. They achieve it by adopting the preference specification of Selden (1979) and Selden and 
Stux (1978). Other non-expected utility specifications which permit the disentangling of ordinal and 
risk properties of preferences can be found in Kocherlakota (1986) and Chew and Epstein (1987). The 
inadequacy of multiperiod expected utility theory in this regard is demonstrated in the latter paper. 
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We now consider several axioms for these utility functions. The first is a 
common technical assumption. 

Continuity (C). For each c1 E X, U2(Cl; *) is continuous on M(X). 

The existence of such utility functions could be proven from more basic postu- 
lates on preference orderings (Debreu 1954). 

The first key axiom is consistency. It parallels that adopted by Johnsen and 
Donaldson (1985) in their contingent commodity framework. 

Consistency (CS). For all c E X, oc E (0, 1) and m, m' and p in M(X), 

(1) U2(c; m) > U2(c, m'). Ul(ox5[c, m] + (1 - C)6[c, p]) 

> U'(0cx[c, m'] + (1 - 0c)[c, p]). 

The two consumption programs ranked on the right side of (1) are represented 
in Figure 2. Both involve certain consumption c at t = 1 and a "coin flip" at 
t = 1 which determines whether m or p (m' or p resp.) is the probability distri- 
bution corresponding to t = 2 consumption. If the equivalence in (1) were viol- 
ated, then with probability a > 0 the choice made at t = 1 would be regretted at 
t = 2. 

Notice that (1) is not the independence axiom. For instance, the latter is a 
statement regarding one utility function, while (1) involves the utility functions in 
both periods. The precise link between IA and CS depends on which of the 
remaining alternative axioms is adopted. 

Timing Indifference (TI). For all oc E [0, 1], c E X and m and m' in M(X), 

(2) U'(ocx[c, m] + (1 - oc)6[c, m']) = U'(6[c, oxm + (1 -o)m']). 

The two consumption lotteries in (2) are portrayed in Figure 3. They share a 
common certain period 1 consumption level and a common probability distri- 
bution ocm + (1 - oc)m' for period 2 consumption. But they differ in the timing of 
the resolution of uncertainty as defined in Kreps and Porteus (1978). In one 
lottery, a "coin flip" is performed at t = 1 to determine whether m or m' applies 
for t = 2, while in the other lottery the "coin flip" does not occur until t = 2. 

As mentioned in the introduction, TI is widely maintained, if only implicitly; 
for instance, that is the case whenever M(X x X) rather than D is taken to be the 
choice space since the former identifies the two lotteries in (2). (A specific example 
is the specification in Selden and Stux 1978; see footnote 1.) But TI leads back to 
expected utility theory as described in the following theorem and the ensuing 
discussion. 

THEOREM 1. Let U' ancd U2 satisfy continuity, conzsistency anzd timing indiffer- 
ence. Then for each c, E X, U2(cl; ) is an expected utilityfunctional on M(X). 

The Theorem implies that period 2 preferences, but not necessarily period 1 
preferences, conform to expected utility theory. But the multiperiod extension of 
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mc m 

FIGURE 2 

the Theorem, which we now describe, presents a more striking picture: Consump- 
tion lotteries which extend over T > 2 periods may be defined as in Kreps and 
Porteus (1978), henceforth KP (1978). The C, CS and TI axioms have natural 
extensions to this larger domain.3 Then it is immediate that the preference order- 
ings prevailing at each period t, t = 2, ..., T, must conform to expected utility 
theory. Note that if the model at t = 1 is a snapshot of an ongoing modelling 
process, then it follows from the t = 0 version of the Theorem that an expected 
utility ordering prevails at t = 1 also and hence in all periods. Finally, it follows 
from KP (1978, Corollary 3) that utility in any period (say t = 1) is the expected 
value of some utility index of remaining consumption, where the expected value is 
computed with respect to the joint probability distribution of consumption that is 
induced by the consumption lottery. In particular, there exist functions A(-) and 
B( ), the latter positive, such that 

(3) U'(oc6[c,in]+(l-c)3[c,in'])=A(c) + B(c)UN(c; cxm + (1 -cx)m') 

= A(c) + B(C)[OcEm u2(c; ) +(I -c)Em,U2(C, )]. 

This leads to the standard intertemporal expected utility specification on the 
choice space M(XT).4 The recursive structure in (3) reflects the CS axiom while 
the linearity of the right side with respect to U2 reflects TI. (Contrast with (4) 
below.) 

If, for the reasons mentioned in the introduction for example, one wishes to 
admit more general preference specifications, then the axioms in Theorem 1 must 

3 See Epstein (1986) for more details and also for an infinite horizon analysis. 
4 Kreps and Porteus (1978) provide an axiomatization for this intertemporal expected utility 

specification. But one of their axioms (Axiom 2.3 or 4.3) imposes the substitution axiom of expected 
utility theory on a subset of consumption lotteries, which unduly biases the analysis against non- 
expected utility specifications. In our analysis, this substitution axiom is a consequence of CS and TI. 
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FIGURE 3 

be weakened. One possibility is to weaken TI. It is, after all, perfectly "rational" 
for an individual to prefer either early or late resolution of uncertainty. To 
illustrate, consider the following example: A Ph.D. student is committed to 
spending a fully paid for, month long, vacation in France. His comprehensive 
exams have been graded but the results have not yet been publicized. If the 
individual wishes, he can learn the grade before embarking on his trip. Otherwise, 
he will discover it upon his return. Some people may prefer to know the test 
result before departing, others may prefer to live with the uncertainty, while still 
others may be indifferent. 

A central feature of this example is that future consumption prospects are 
presumably influenced by the test result, i.e., prospects are brighter if a passing 
grade has been achieved than otherwise. But suppose instead that the student has 
actually completed his Ph.D. program and is awaiting job offers from two schools 
between which he is indifferent. An offer arrives before his departure but he is not 
certain fr-om which school. It seems plausible that in these circumstances indiffer- 
ence to the time at which the facts are learned will be more common than in the 
case above. This example describes the intuition underlying the following wea- 
kening of TI: 

Quiasi-timiing Indifference (QTI). The equality (2) holds for all a E [0, 1], c E X 
and in, mn' E M(X) such that UNc; i) = U2(c; i'). 

The following is a weaker version of TI which makes use of the notion of a 
timing premium. For each a E (0, 1) and (c, m), (c, m') in X x M(X), U'(f[c, 
/II)] ? U1(V[c, n']), we define the timing premium correspondence for early resolu- 
tion by: 
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7T(c, m, iW', c)-(1 - ) -1 

for any / e (0, 1) such that 

U1(L'1[c, m] + (1 -a)[c, I]) = U(E[c, fBm + (1 -Bm]. 

Note that m is not measured in units of consumption and may more accurately be 
termed a "timing probability premium" or a "timing odds ratio premium". (See 
the discussion at the end of this section.) 

Existenice of Timing Premium (ETP). For each os E (0, 1), c E X and m, 
in' e M(X) such that U1(E[c, nil) ? Ul(E[c, In']), t(a, m, m', c) is nonempty. 

TI is the special case of ETP where i- 0. ETP permits the timing of resolu- 
tionl to matter, but it requires that for any early coin flip there exist some other 
coin which yields an indifferent consumption lottery if it is flipped late. Note that 
(by Lemma A in the Appendix) mr can be taken to be single-valued whenever it is 
nonempty. Also by Lemma A, if U2(c; i) > U2(c; In'), then early resolution is 
preferred iff /> c~ iff ic > 0. Thus i can be interpreted as a premium for early 
resolution, where the premium is measured in probability units. 

If TI is replaced by QTI or ETP, then expected utility theory is no longer 
implied. Rather, preferences will lie in a more general class which is characterized 
primarily by the following weakening of the independence axiom: If v: 
MJ(X)- R, then L1 satisfies betweenness if for all Li E [0, 1] and m, in' in M(X), 

v(m) = v(m') > v(Lxin + (l-x)m') = v(m).5 

Chew (1989) and Dekel (1986) describe the functional structure of such utilities. A 
utility functional v: M(X) -? R is implicit weighted if 3 0: M(X) x Rng(v) -> R 
such that 0 is linear in its first argument, and V m E M(X), 0(m, v(m)) = 0. If we 
define O/(x, a)= O(/[x], a-), then continuity implies that v(m) is given by the 
solution "a" to 

T (x, a) dm(x) = 0. 

For the next theorem we require a weak monotonicity property. 

Elementary Monotonicity (EM). For all c, a and b in X, a < b, 

c2 < fl> UN(c; (1 - 4)6[a] + oci5[b]) < UN(c; (1 - f3)6[a] + f36[b]). 

This axiom is weaker than the requirement that U2(c; ) be increasing in the 
sense of first degree stochastic dominance. 

' This is a weaker form of betweenness than appears in Chew (1983) and Dekel (1986) who assume 
that the "better than"' and "worse than' sets are both convex in the mixture sense. See Lemma A in 
the Appendix. 
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THEOREM 2. Let U1 and U2 satisfy continuity, consistency and either 

(i) elementary monotonicity and quasi-timing indifference, or 
(ii) ETP. 

ThenJor each c, E X, U2(C1; *) is an implicit weightedfunctional on M(X). 

As in the case of Theorem 1, a multiperiod extension is straightforward. That 
extension (formulated at t = 0) implies that the preference orderings prevailing at 
each t = 1, ..., T can be represented by implicit weighted functionals. 

The following is a stronger version of ETP. 

Constant Timing Premium 1 (CTP1). For each c E X and m, m' E M(X), such 
that U'((5[c, m]) 2 U'(6[c, m']), 7(a, m, m', c) is nonempty and constant in a on (0, 
1). 

The constant timing premium axiom will lead to weighted utility functionals 
(e.g., Fishburn 1983; Chew 1983), where v: M(X)-> R is a weighted utilityfunction- 
al if there exist real valued functions v and w on X such that w > 0 and 

v(m) = w(x)v(x) dm(x) w(x) dm(x) V m C M(X). 

The above corresponds to the special case of implicit-weighted utility with 4(m, 
a) = w(m)[L7(m) - a], where w(m) = f w(x) dm(x). In the above, we adopt the con- 
vention that v(x) = v(6[x]) and w(x) = w(b[x]). 

THEOREM 3. Let U' and U2 satisfy continuity, consistency and CTP1. Then for 
each c, E X, U2(Cl; *) is a weighted utility functional on M(X). 

The multiperiod extension of the Theorem provides a rationale for the specifi- 
cation of weighted utility functions in temporal models. 

Finally, we consider an alternative and intuitively plausible form of constancy 
for the timing premium, in which 7r(a, m, m'c) depends on m and m' only through 
the period 2 utility levels which they imply. 

Constant Tinming Premium 2 (CTP2). For each c E X, oc E (0, 1) and m, m', p, 
p' E M(X), n(ca, m, in', c) is nonempty; in addition, if U2(c; m) = U2(c; p) and 
UNc; mi') = U2(c; p') then 7t(a, m, m', c) = 7t(a, p, p', c). 

THEOREM 4. Let U' and U2 satisfy continuity, consistency and CTP2. Then for 
eachc1 e E X, U2(Cl; *) is an expected utility functional on M(X). 

As in the case of Theorem 1, an expected utility functional is implied. But there 
is a significant difference between the implied functional structures which be- 
comes evident when the multiperiod extensions of the theorems are considered. 
The extension of Theorem 4 implies that utility functionals in all periods conform 
with expected utility theory. Thus the hypotheses of KP (1978, Theorem 1) are 
satisfied and we can conclude, for example, that there exists a function D, with 
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suitable domain and increasing in its second argument, such that 

(4) Ul(b[c, n]) = (F(c, U2(c; m)) = $D(c, EmU2(C, j)' 

and 

U1(Lx6[c, m] + (1 -a))[c, m']) = a(D(c, Emu2(C, )) + (1 - a)(D(c, Em, u2(c, )). 

(See also KP 1979, Proposition 1.) The structure in (3) is the special case where 
(D(c, ) is linear. The more general recursive structure in (4) admits nonindifference 
to timing but necessarily conforms with CTP2. KP (1979) have termed the prefer- 
ence ordering corresponding to (4) as temporal von Neumann-Morgenstern to 
distinguish it from the von Neumann-Morgenstern structure corresponding to 
(3).6 

KP identify the curvature of (D(c, ) as the determinant of attitudes towards 
timing, with convexity (concavity) corresponding to a preference for early (late) 
resolution. This identification is consistent with our timing premium approach to 
measuring attitudes towards timing. Thus, for example, if the convexity of (D(c, ) 
is increased by means of an increasing and convex transformation, then ir(a, m, 
m', c) rises for all a E (0, 1), c E X and m, m' E X such that U2(c; m) > U2(c; m'). 
Indeed 7r can be interpreted as a probability premium measure of the curvature of 
PF(c, ) as in Pratt (1964, p. 126). If z and h are defined by means of 

U2(c; m) = z + (1- )h, U2(c; m') = z - /ih, 

then 

h [-)22 

7r(ax, M, in' c) = 2-2(C, Z + o(h). 

3. CONCLUDING REMARKS 

We have explored some axioms underlying the specification of intertemporal 
utility functionals in a stochastic setting. First, we identified consistency and 
timing indifference as the basis for expected utility theory. One of them must be 
weakened if non-expected utility specifications are to be admissible. In this paper, 
the weakening of timing indifference has been explored. An alternative route, of 
course, is to weaken consistency which is the approach taken in Chew and 
Epstein (1987). 

The choice of which route to follow in modelling consumption-savings behav- 
iour could be enlightened if some empirical evidence could be brought to bear on 
the validity of timing indifference. There is a need to determine whether wide- 
spread and systematic violations of timing indifference can be uncovered in 

6 Note that CTP2 and our remaining axioms provide an alternative basis for temporal von 
Neumanln-Morgenstern preference. Kreps and Porteus (1978) simply assume that each U' is an 
expected utility functional. 
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various experimental or market settings. We have suggested several specific forms 
of timing nonindifference which should be explored empirically. 

Johns Hopkins University, U.S.A. and ISER, Osaka University, Japan 
University of Toronto, Canada 

APPENDIX 

PROOF OF THEOREM 1. Show that U2(c; ) satisfies IA on M(X), i.e., 

U2((c; m) = U2(C; m') => U2(c; aXm + (1 - x)p) = U2(c; cam' + (1 -)p). 

Consider the following four consumption lotteries: 

d ciab[c, in] + (1 -a)b3[c, p], d2 _ a[c, i'] + (1 - x)3[c, p], 

d3-(5[c, cxm + (1 - a)p], d4- 6[c, am' + (1 - a)p]. 

Then 

Ul(dl) = U1(d3) by TI 

Ul(dl) = U1(d2) by CS 

U1(d2) = U1(d4) by TI 

=> U1(d3) = U1(d4) 

=t U2(c; aCm + (1- aL)p) = U2(c; cam' + (1- aC)p) by CS. 

Finally, apply the continuity of U2(c; ). Q.E.D. 

It is clear that betweeness is implied by the following: 

Strong Betweenness (SB). For every c e X, m, m' e M(X), 

U2(C; m) < U2(c; mi') => U2(c; aXm + (1- X)m') 

e (U2(c; m), U2(c; m')) for all a E (0, 1). 

The above is equivalent to: 

Mixture-Monotonicity (MM). For every c E X, m, m' E M(X), 

U2(c; m) < U2(C; m') => U2(C; aim + (1 - x)m') 

< U2(c; Am + (1-O /)m'), ifO? /< <a < 1. 

LEMMA A. Axioms C, ETP and CS imply SBfor U2(C; ). 

PROOF. Suppose to the contrary that U2(c; a?m + (1- 
X)m') < U2(c; m), for 

some a? E (0, 1). (The other case is similar.) It follows from Axiom C that 3 ,I e (0, 
1] such that U2(c; m)-U2(c; w0m + (1_- p?)m'). Since the set {y E (0, 1]: 
U2(c; 1) = U2(c; jtx0M + (1 - ja0)m')} is closed and nonempty, it contains a least 
element ?tt Let ,BO = ,oLxoO Then U2(C; m) = U2(C; f3m + (1 - f30)m'). It is a 
consequence of the beginning of the proof of Theorem 3 (see note in bracket) that 
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CS and ETP imply the existence of y0 E (0, 1) such that 

U2(c; p/3nm + (1-,?)m') = U2((; y0?[/30m + (1- ,B?)m'] + (1- _0)m) 

= U2(C; 0jt%toc?m + (10-? ucO)m'). 

This gives rise to a contradiction since y?ot < ,u?. Q.E.D. 

PROOF OF THEOREM 2. Repeat the argument in the proof of Theorem 1 but fix 
p = m. Then QTI can be used in place of TI to establish that U2(c1; ) satisfies 
betweenness. Alternatively, ETP can be used according to Lemma A to establish 
that U2(c; ) satisfies strong betweenness. The implicit weighted functional struc- 
ture follows from Dekel (1986, Appendix A). The separate proof presented here, 
which is adapted from Chew (1989), is shorter and more elementary. By the 
preceding argument and Lemma A, each of hypotheses (i) or (ii) implies that 
U2(c; ) satisfies EM and betweenness, which properties are sufficient for the 
following argument. 

Denote by > the ordering represented by U2(c; ). Let [A, B] = X. Construct 
V: M([A, B]) [0, 1] via: V m Ec M([A, B]), m - Sv(m) where Sp = POB + (1 
- P)6A. Construct )A: M([A, B]) x [0, 1] -+ R below. 

For a E [0, )(rn)], Sa )4A(m, a)m + (1 - )(m, a))A 

For a E (v(rn), 1], Sa ,(in, a)m + (1 - t(m, a))5B. 

The existence of ;I follows from continuity and EM, the latter of which implies 
that 

JA a S S in for a E [0, v(m)], 

and 

m,S-a<B for a E (v(m), 1]. 

Define 5: rn([A, B]) x [0, 1] R via: 

[1- ](m, a, a E [O, v(m)] 

5(int, a) = 
- 

[l-(mr a)aLK a), a E (v(m), 1] 

Clearly, 0(rn, v(m)) = 0. It suffices to show that b is linear in its first argument. 
Let 0 </3 < 1 and consider the unit tetrahedron Bm'mA where m m'. (See Figure 
4.) Any point Q(ql, q2, q3, q4) in the tetrahedron represents a probability mixture 
q1A + q2m + q3m' + q4B where q,, q2, q3 and q4 denote the volumes of the 
sub-tetrahedrons Qmm'B, Qm'BA, QBAm and QAmm' respectively. 

For a E [v(mn), v(,Bm' + (1 - fl)m)], consider the indifference plane given by (a, 0, 
0, 1 - a), (1 - ,, 0, ,, 0), (0, fl,f, (1 - fi) X,l, 1 - ;Lf) and (0, i', 0, 1 - '). (Note 
that Betweenness of U2 guarantees that indifference surfaces on simplexes are 
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P Ca,0,0, 0 -a ) 0) 

AC00,0,0,1) 

FIGURE 4 

planes.) We can solve for T = (t1, t2, t3, t4) given by: 

T = MR + (1 - u)P = -S + (1 - u)Q. 

It follows thiat: 

t, = (I1-,ut)a = 1-)(1i) t2 = ,t,BAfl = CA' 

t3 = tl(l - fl)Afl = -O) t4=j (1 -)l + (l- )(1-a)=o(1 

where A = A(in, a), ' = A(m', a), ?# = A(f3m' + (1 - /3)m, a). 

Dividing t2 by t3, we obtain: 

PA= N./(f) + (1 - MA, 

Multiplying by Y//3 yields: 

PIB = AAit/(f + (1 - 0i'), 

From t1, we have: 

,BA + (1-(, 
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Finally, from t4, we obtain: 

p(I~ ~ ~ ~~~~~( - Ad= O ') + (I - 01l - G ) ' 

#41 Al + (1 - I ,B - - ( - U 

Observe that 

/J(/3m' + (1 - /3)ni, a) = () a 

{13(I - Ai) + (1 - /3( -A' - (1 - Y) + (1 -M 

( i' ( ?( j )0 A'Aa 

=l 7, ~+)a -(1- ( 7 -a) 

= o(rn', a) + (1 - fl)o(m, a). 

For a e (0, v(m)), we can solve for: 

(0, /N213, (1 - 1 - Afl) = (0, A', 0, 1-') + (1- )(0, 0, A, 1-A). 

It follows that: fl?, = uAi and (1 -,B)' = (1- u) so that 

a = L/[flA + (1 -A]- 

Observe that: 

M(/m' + (1- )m, a) = [' > 1a 

-l + (1 - )' A 

-Li' [B j?](1 ,[ jj 
a 

- /3(m', a) + (1 - 3)oq(m, a). 

The corresponding demonstration for a in the other intervals is similar. Q.E.D. 

PROOF OF THEOREM 3. Let U2(c; m) = U2(c; m') and consider the following: 

d' ca[c, m] + (1 - a)6[c, p], d2' 5[c, m'] + (1- a)[c, p], 

d3 6 [c, fim + (1 - /)p], d [c, yi' + (1-y)p]. 

CS = U'(d') = U'(d2). 

CTP Ul(dl) = U1(d3) for = 
a 

and some constant -. 
L-r + (1- ) 
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CTP => UI(d2) = U'(d4) for 2 
- 2 and some constant r2 

OCT2 + (1 a~) 

Therefore, Ul(d3) = U1(d4) whenever 

(A l) /( l - 2) _ ? 

By CS, U2(c; /Jm + (1- /)p) = U2(c; -yi' ? (1-y)p) whenever (Al) holds. (Note 
that if we assume ETP in place of CTP, then we can conclude that for every 
ft e (0, 1), there is a y e (0, 1) such that U2(c; ,in + (1- ,B)p) = U2(C; 
'mn' + (1- )p).) If we let p = m, it follows from Lemma A that U2(c; ) satisfies 
strong betweenness or mixture-monotonicity. 

As in the proof of Theorem 2, U2(c; ) is ordinally equivalent to v(-), where 

4(m1, V(m1)) = (x, v(m)) dm(x) = 0. 
11x 

Defiine wv(in, a1) = 5(n, a)/[v(m) - a]. Then 

v(/mn + (1 - /p)) = a= /w(m, a)v(m) + (1- w(p, a)v(p) 
/3w(m, a) + (1 -/)w(p, a) 

nw(m', d)v(m') + (1- )w(p, a^)v(p) 

yw(m', a) + (1- )w(p, d) 

v(ym' + (1 - p). 

The condition (Al) implies that: 

/(l - ) w(rn, J^) 
- ) w(, = constant 

for d e [v(p), v(rn)] (or [v(m), v(p)] if v(p) > v(m)). Since the choice of p is arbitrary, 
it follows that w(m, a) is of the form w(m)f(a), which is equivalent to weighted 
utility where 0(m, a) = w( -)[ (m)-a]. Q.E.D. 

PROOF OF THEOREM 4. Adopt the notation in the statement of CTP2 and 
define 

d' = c-[c, in] + (1 -a)6[c, mn'], d2 = c4[c, p] + (1 -_ )6[c, p'], 

d3= [c, f/m + (1 - /3)m'], d4 = 5[c, f/p + (1 - p)/T]. 

By CS, U1(d') = U'(d2). By ETP (which is implied by CTP2), U'(d') = U'(d3) for 
some /B e (0, 1). Then CTP2 = U'(d2) = U'(d4) for the same /3. Thus, U'(d3) = 

U'(d4) which implies, by CS, U2(c; f,m + (1- ,B)m') = U2(c; fp + (1- ,B)p'). 
Q.E.D. 
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