Recursive Utility Under
Uncertainty

Soo H. Chew and Larry G. Epstein-

Abstract. This paper provides an axiomatization of recursive utility functions
in an infinite horizon stochastic setting. In addition, some recently developed
atemporal non-expected utility theories are integrated axiomatically into an
intertemporal framework. The key axioms deal with intertemporal consistency
and attitudes towards the temporal resolution of uncertainty.

1. Introduction

Consider intertemporal utility functions defined for consumption pro-
grams which extend over an infinite horizon. In deterministic models, the
specification which dominates the capital theory literature is the intertem-
porally additive function with a constant rate of time preference, while
generally in stochastic models the latter specification is adopted for the
von Neumann-Morgenstern index and expected utility theory is assumed.
For a framework of certainty, Koopmans (1960) has provided an axiomatic
basis for a class of utility functions which weaken additivity over time.
In this paper, we extend his axiomatic framework to admit uncertainty
and a broad new class of intertemporal utility functions is characterized.
These functions are called recursive and a key axiom is called recursivity,
because of the recursive functional relation which defines intertemporal
utility. Various subclasses of recursive utility are identiﬁed in Figure 1,
which is clarified below. ‘ .

Recursive utility functions need not conform with expected utility
theory even in ranking restricted pairs of consumption programs, such as
those in which all uncertainty is-resolved immediately. Rather, the rank-
ing of such “timeless gambles” may conform with one of several atempo-
ral non-expected utility theories which have recently been proposed (e.g.,
Chew (1983) and (1989), Dekel (1986), Chew, Epstein and Segal (1990)).

* We are grateful to the Social Sciences and Humanities Research Council

of Canada and to the National Science Foundation for financial support and
to Tan Wang for pointing out an error in an earlier draft of the paper.
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Indeed, the paper provides an axiomatic integration of the Chew and
Dekel theory into an infinite horizon temporal framework.!

Two limiting features of the (expected) additive utility model which
have been identified in the literature are: (i) the constancy of the rate
of time preference (see Lucas and Stokey (1984) and Epstein and Hynes
(1983) for recent discussions), and (ii) the fact that the two conceptu-
ally distinct aspects of preference, intertemporal substitutability and risk
aversion, are intertwined in the within-period felicity function. Koop-
man’s generalization of additivity endogenizes the rate of time preference
and thus rectifies (i). The recursive utility functions developed here go
further and also permit the disentangling of substitution from risk aver-
sion. Moreover, this is accomplished in a framework where intertemporal
consistency of choice prevails and dynamic programming techniques may
be applied to solve optimization problems. (For an example of such an
application see Epstein and Zin (1989).) The property of the expected
additive utility model which is dropped in order to make the above sep-
aration possible is indifference to the way in which uncertainty resolves
over time, in the sense of Kreps and Porteus (1978). We propose two
weaker postulates regarding attitudes towards the timing of resolution,
which are pivotal in the characterization of the subclasses of recursive
utility considered below,

The stationarity provided by the infinite horizon framework plays an
important simplifying role in our representation theorems (e.g., contrast
with Chew and Epstein (1989)). But the infinite horizon and the need to
distinguish between consumption programs which differ only in the way
some common uncertainty resolves over time, requires that we adopt a
domain for utility that has a complicated mathefnatical structure. The
domain resembles the space of the infinite hierarchy of beliefs of players
in Bayesian games (for example, see Mertens and Zamir (1985) and My-
erson (1985)). In the literature on intertemporal utility theory, related
domains have appeared in Kreps and Porteus (1978) in the finite horizon
case and in Epstein and Zin (1989) for the case where consumption. in the
initial period is deterministic.

We proceed as follows: The domain is described in Section 2. The

1 For a related analysis in a two-period model see Chew and Epstein (1989).




354 Recursive Utility Under Uncertainty
general class of recursive utility functions is defined and characterized in

Section 3. A number of subclasses are explored in Section 4. Proofs are
collected in an appendix.

2. Consumption

Adopt the following notation: For any metric space Y, B(Y') denotes
the Borel o-algebra and M (Y') is the space of Borel probability measures
~on Y endowed with the weak convergence topology. The probability
measure which assigns unit mass to {y} is denoted 6[y]. As a result
of the map y — §[y], Y may be identified as a subspace of M(Y). We
write Y’ C Y if Y’ is homeomorphic to a Borel subspace of Y. In that
case M(Y') can be identified with a subspace of M (Y') via the map which
takes m’ € M(Y') into m € M(Y), m(B) = m'(BNY')VB ¢ B(Y).
Consumption in each period ¢, t = 0,1,..., is restricted to lie in a
compact metric space X.> Deterministic programs (¢, ¢y,...,¢,...) lie
in §, the infinite Cartesian product of X. Under the product topology,
{1 is also a compact metric space.
The domain D of consumption programs is constructed inductively.
Let D_; = Q=X x © and then for each ¢ > 0 define?

D, = M(X x D,_,). (2.1)

By Parthasarathy (1967, p. 43), each D, is a compact metric space. El-
ements of D, are probability measures on € and can be interpreted as
consumption programs in which the gamble underlying the probability
measure is played out, and all uncertainty is resolved, at ¢ = 0. Similarly,
elements of D, can be interpreted as programs in -which all uncertainty
is resolved at or before time ¢. Since X x @ ¢ M (X x ), it follows by
induction that

D,C Dy, t=-1,0,....

L (4 “compact metric” is everywhere replaced by “separable metric,” the
principal result (Theorem 2. 1) remains valid. Compactness is, however, ~conve-
nient for the subsequent utlhty analysis.

3 The counterpart definition in the construction of belief spaces (see refer-

ences in the introduction) has the form Dy = M(X) and D; = M(X x Dy1)
fort > 1.
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The set g® D, contains all consumption programs for which uncer-
tainty persists only for finitely many periods. But we would like D to
contain also programs in which uncertainty is resolved only asymptoti-
cally. For that purpose proceed as follows: Given any d; € Dy, we can
“collapse” the uncertainty in dy s0 that it is resolved completely by ¢ =0
rather than ¢ = 1. Formally, define the map

fo: Dy = Dy = M(Q), fo(d1)(B) = E.Tg(-,), BE B(Q),
where Tg : X x M(Q) - R1, N

Tg(c,v) = v{w € ! (e,w) € B}.
We inductively define
ft:Dt+1“’Dta t>1
by fi(dyp1)(B) = diyi{(e,dy) € X x D, : (c, f,_1(dy)) € B}, where
dyy1 € M(X X Dy) and B € B(X x D,_y). Then dyy and f,(d,yq)
induce the identical probability measure fof; ... fi(dyyq) on €2, but they
differ in the temporal resolution of the common uncertainty. Of course, if
dy4q already lies'in D;, then fildypr) = digr; in fact, for each t > 0 and
dyp1 € Digrs
Fi(deyy) = dypy & diyy € Dy (2.2)
We are now ready to define the space of consumption programs D.
Let
D = {(dg,dy,...): d; € Dy and dy = fi(dipq) VE2 0}. (2.3)

The following intuition underlies this definition: Elements of D are in-
tended to represent infinite probability trees in which each branch corre-
sponds to an element in . Picture such a tree d and for each ¢ imag-
ine “collapsing” everything beyond ¢ in the sense that all uncertainty
which in d resolves at t or later is now completely resolved at t. This
transformation generates a new tree d;,. Ast increases, d, provides a
better approximation to the initial tree d and the approximation error
vanishes asymptotically. Thus the infinite sequence of such approxima-
tions (dy,...,dy,...) accurately represents d.

Each D, is a compact metric space and thus so is X§°D,. Endow
D with the relative topology it inherits as a subspace of X¢°D,. Then
we can prove (by adapting the arguments in Epstein and Zin (1989)) the
following result:
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Theorem 2.1. The Space D is a compact metric space such that D is

homeomorphic to M(X x D). Moreover, s~ D, is homeomorphic to a
dense subset of D.

As aresult of the indicated homeomorphism each d € D can be iden-
tified with a probability measure on X x D. This is a reflection of the fact
that as one moves along an infinite probability tree, the “future” remain-
ing conditional on information received at time 0 is also an infinite tree
in D. Such “stationarity” of the domain is essential for the investigation
of recursive utility functions (see the stationarity and recursivity axioms
and the functional structure in Theorem 3.1).

We interpret the denseness of Uo® D, in D as the statement that for
programs in D all uncertainty is resolved asymptotically.

3. Recursive Utility

We begin with a (complete and transitive) preference ordering 2> on
D. A number of axioms are proposed. They imply a utility function
representation for 2 which has a recursive structure.

By Theorem 2.1 we can identify each element of D with a measure
on X x D. By (¢,d) € D we mean the degenerate measure 6[c,d] in which
initial consumption ¢ is certain and the uncertain future is represented

by d. Of course, deterministic programs (¢, ¢y, ...) may be identified as
elements of D.

First we impose continuity.

Continuity. For each d € D, the sets {deD:d2d}and {d' € D:
d 2 d'} are closed. E

The next two axioms parallel Koopmans’ Postulates 3b and 4 respec-
tively.

Risk Separability. For al (e;c') € X? and (d,d') € D?, (¢,d) >
(c,d") & (c,d) > (c',d".

Stationarity. For some ¢ € X and all (d,d') € D?, (5,d) > (5, ") &
d>d.
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Consider the comparison between two programs sharing a common
deterministic period 0 consumption. Risk separability requires that the
rankings of such programs and the uncertainty about the future which
they embody, be independent of the level of initial consumption. If sta-
tionarity is also adopted, then the relative ranking of any pair of programs
(¢,d) and (¢, d’) is not only independent of ¢, but is also the same as would
prevail if > were applied at ¢t = 1 as though time began then. In this
sense the passage of time and past consumption do not affect preferences.

The situation dealt with in the stationarity axiom is special in that
there is no uncertainty resolved between ¢ = 0 (when the choice between
(¢,d) and (c,d') is made) and ¢t = 1 when the choice between d and d’
is possibly reconsidered. Typically, some new information is forthcoming
to an agent in the interval between two instants at which decisions are
taken. Thus in a model with uncertainty the above axioms are not suffi-
cient to imply the intertemporal consistency of preferences. The latter is
guaranteed by the following important axiom:

Recursivity. For all o; € (0,1) and (¢;d;) and (¢}, d}) in X x D,

1 )

i =1,...,n, such that Y o; = 1, if (c;,d;) 2 (e, dl) for all i, then

2oable;,d)] 2 3 a;6lch, dl]. Moreover, the latter preference is strict if
(¢ind;) > (ck,db) for some i.

The numbers a4, ..., o, represent the probabilities corresponding to
an experiment conducted at ¢ = 0. If the i*h outcome of the experiment
occurs, then (¢;, d;) or (c}, d}) will follow depending upon the choice made
at t = 0 between the probability mixtures 3" a;6[c;, d;] and Y a;8[c!, d!)].
If the former leads to a preferred program ex post regardless of the out-
come which is realized, then recursivity requires that the former lottery
should be chosen ex ante. Otherwise, the ex ante choice would be regret-
ted ex post with probability 1 and would be revised if possible.*

If 2 satisfies all of the above axioms, we refer to it as a recursive
preference ordering. Any utility function which represents > is called
a recursive utility function. We turn now to the functional structure of
recursive utility.

Recursivity is essentially identical to the notion of consistency explored
by Johnsen and Donaldson (1985). For an alternative view-of consistency see
Machina (1989).
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Our representation theorem requires the following definition and no-
tation. Let M C M(R') and let p: M — R Say that yis a certainty
equivalent if (i) p1 is increasing in the sense of first degree stochastic domi-
nance, and (ii) 4(8[v]) = v for all §[v]in M. Secondly, forany V ;: D — R!

and d € D, denote by my (d) that probability measure on V(D) defined
by

my(d)(B) = d{(c,d") € X x D : V(c,d') € B}, B e B(V(D)). (3.1)

We have identified d with a probability measure on X x D under the
homeomorphism between D and M (X x D). Thus my (d) describes the
probability distribution of utility V(c,d’) induced by d.

Theorem 3.1. > satisfies continuity, risk separability, stationarity and

recursivity if and only if it can be represented numerically by a continuous
function V' which satisfies

V(d) = p(my(d)) | (3:2a)

and ,
V(e,d) = W(e, V(d)) | (3.2b)

V(c,d) € X x D, where my(d) is defined in (3.1), p : M(V(D)) —
R, M(V(D)) = {my(d) : d € D}, p is continuous and is a certainty
equivalent, W : X x V(D) — R! is continuous and W(e,+) is increasing
on V(D) for every c € X.

The functional representation of V has two components—a certainty
equivalent function 4 and an aggregator W.5 They define the following
recursive relation, obtained by combining (3.2a) and (b), which V must
satisfy:

Ve, d) = W{(e, p(my(d))). (3:3)

5 Both # and W are degenerate if V(D) consists of a single point, which
occurs if and only if all programs in D are indifferent according to 2. Such
degeneracy could be ruled out by a sensitivity axiom similar to Postulate 2 of
Koopmans (p. 291). Note also that W and x change if V is replaced by an
ordinally equivalent utility function. Thus there exist many (W, u) pairs that
represent the identical ordering in the sense of (3.2).
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The recursive relation (3.3) is readily interpreted. Given a program

(¢, d), period 0 consumption c is nonrandom but the future, represented -

by d, is uncertain, Consequently, the value of intertemporal utility at
t = 1 is uncertain from the perspective of the initial period. According
to (3.3), V(ec,d) is computed in two stages: (i) the certainty equivalent

~ of random future utility is computed, and then (i) it is combined with

current consumption via the aggregator W. If there is no uncertainty, u
drops out and (3.3) reduces to the recursive relation derived by Koop-
mans:

V(Co’cbcz, c) = W(CO>V(CI’C2?"'))'

One desirable feature of the structure of recursive utility functions,
particularly of (3.3), is that dynamic programming techniques may be
applied to solve optimization problems (see Epstein and Zin (1989)). The
other important feature is that a degree of separation is achieved between
intertemporal substitutability (encoded in W) and risk aversion (encoded
in p) in the sense which we now describe. ‘

Definition. If >* and 2, are preference orderings on D, 2* is more

risk averse than > if any gamble rejected by 2, is also rejected by >*, i.e.,
Vd € D and VC = (cy,¢4,...) € 9,

C2d= C>*d

For the result regarding comparative risk aversion we need one ad-
ditional assumption.

Postulate 1. For every d € D 3C and ¢’ (deterministic programs) in
2, such that C > d > C". ' :

Theorem 3.2, Let 2 and 2* be two recursive preference orderings on
D which also satisfy Postulate 1. Then 2* is more risk averse than 2> if
and only if there exist corresponding utility functions V* and V satisfying:
VN Q=V [Q; (i) W* =W and p* < p, where (W*, u*) and (W, p)
satisfy the appropriate forms of (8.2a) and (b) for 2* and > respectively.

Roughly speaking, given a recursive utility function V, we can in-
crease risk aversion without changing the rankings of deterministic pro-
grams, by keeping the same aggregator and adopting a new certainty
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equivalent function p*; the latter should assign lower certainty equiva-
lents to probability measures in its domain than does p.

Besides Koopmans (1960), other papers which have studied aggre-
gators include Lucas and Stokey (1984) and Boyd (1990). For examples
of aggregator functions, see Koopmans, Diamond and Williamson (1964)
and Epstein (1983); for the latter example see also (4.1) below. The next
section describes a number of classes of certainty equivalent functions and
also relates the general recursive utility specification to the standard ex-
pected additive utility form and another specification ((4.3) below) which
has appeared in the literature.

4. Attitudes Towards Temporal
Resolution

We will consider a number of subclasses of recursive utility corre-
sponding to different hypotheses about attitudes towards the way in which
uncertainty resolved over time, in the sense first formalized by Kreps and
Porteus (1978). It is convenient to define the projection m from D onto
Dy, _ ,

w(d) = 7(dgy...,dyy...) = dy. (4.1)

Interpret m(d) € M(Q) as representing the “marginal” distribution of
consumption inherent in the program d, where information about the
temporal resolution of uncertainty has been eliminated.

The first and most common hypothesis is that temporal resolution
is a matter of indifference.

Timing Indifference. For all o € [0,1], c € X and (d,d") € D?,

| | able, d] + (1 - @)8[e, d] ~ ble, ad + (1 — @)d'].

The two programs in the statement of the axiom involve the same
uncertainty about the future in the sense that they have identical images
under the projection 7. But in 6[c, ad+ (1 —a)d'] one learns only at ¢ = 1,
after the realization of the random variable corresponding to the (a,1—a)
probability distribution, whether it is d or d’ that is to be faced. In the
other lottery, that information is forthcoming at t = 0. In the absence of
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an ability to exploit earlier information to improve planning, and planning
advantages are not an issue in this section, one may wish to hypothesize
timing indifference.

The timing indifference axiom has strong implications for recursive
preferences.

Theorem 4.1. The preference ordering > is recursive and satisfies tim-
ing indifference if and only if it can be represented by a continuous utility
function V' for which the aggregator and certainty equivalent functions of
Theorem 3.1 take the form: |

W(c,v) = u(c) + B(e)v, (4.1)

for some u: X — R! and B: X —» RY,, and ‘

p(m) = E(m), (42)
the expected value of m, for m € M(V(D)).

The aggfegator (4.1) is the discrete-time version of the function pro-

posed by Uzawa (1968). In conjunction with (4.2) it implies the expected
utility model

V(d)= By S w(e)B(eo) -+ Bley), (4.3)
0

where E,; is the expected value with respect to the measure 7(d) €
M(Q). (An alternative axiomization of (4.3), under the maintained hy-
pothesis of expected utility theory, may be found in Epstein (1983).) The
specification (4.3) is the most general recursive utility function consistent
with expected utility theory. But it does not permit comparative risk
aversion in the sense of Definition 3.1 and Theorem 3.2, since if W* = W
(= (4.1) without loss of generality), then p* = p (= (4.2)).

For completeness we also describe an axiomatic basis for the stan-
dard additive model which consists of (4.1)—(4.3) with B constant. It is
straightforward to show that the following additional axiom, similar to
Postulate (3'a) of Koopmans (p. 307), will suffice.

Future Independence. For all (¢;,c;,ch,c;) € X* and determinis-
tic programs C' and C' in Q, (cg,¢1,C) 2 (ch,c},C) & (cg,¢4,C") 2
(cp,e1,C"). ’
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This axiom deals only with deterministic programs and requires that
trade-offs between consumptions in periods 0 and 1 be independent of
consumption levels in later periods.

In view of the unfortunate consequence of timing indifference noted
above, we are led to reconsider that axiom. We would argue that it is
perfectly “rational” for an individual to care about the temporal resolu-
tion of uncertainty. For example, early resolution might be preferred by
a “nervous” or “edgy” person who does not like living with uncertainty.
On the other hand, an affinity for surprises or the pleasure derived from
hope, for, or anticipation of, favorable events which have some chance of
occurring in the future, could lead to a preference to defer the resolution
of uncertainty.® Thus we turn to a number of axioms which admit limited
forms of nonindifference to timing. In all cases, the implied utility func-
tions are sufficiently flexible that comparative risk aversion analysis in
the sense of Definition 3.1 becomes possible. The subclasses of recursive
utility obtained in this way and their interrelationships are indicated in
Figure 1.

Suppose that the uncertainty to be resolved is whether d or d' will
be faced in the future and suppose further that d and d’ are indifferent to
one another. Then the psychic costs or benefits of early resolution are less
apparent and timing indifference is plausible. More precisely, consider the
following axiom:

Quasi-Timing Indifference. For all a € [0,1], c € X and (d,d’) €
D%, if d ~ d' then ablc,d] + (1 — @)élc,d'] ~ b[c,ad + (1 — a)d].

Next suppose that d > d’ and that

able,d] + (1 — a)blc,d'] ~ b[c,fd+ (1 — ﬂ)’d’]

6 1t is difficult to find direct evidence on attitudes towards timing, since
people’s observed choices invariably reflect both the planning advantages of
early resolution and the psychic costs or benefits upon which we focus here. But
revealed preference for late resolution, in spite of the planning cost that entails,
would constitute an a fortiori case for psychic preference for late resolution. An
example would be a preference for not resolving early uncertainty about date
of death. Some experimental evidence regarding attitudes towards timing is
provided in Cook (1989).
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for f > a. Then the fact that indifference holds only when the preferred
prospect d is given a large weight 3 in the late resolution case, reflects a
preference for early resolution. In fact, the difference between 8 and a,
or alternatively the normalized expression [3(1 —)/a(1 - B)] -1, can be
interpreted as a probability premium which would be demanded if late
resolution were substituted for early resolution. It is intuitive that the
premium should be unaffected if d and d' are replaced by respectively
indifferent programs. Thus consider the following axiom:

Constant Timing Premium. For all (a,8) € [0,1]%, ¢ € X and
(d,d',e,e') € D* withd ~e and d' ~ €, if

able,d] + (1 — a)ble,d] ~ b[c, Bd + (1 — B)d'],
then
able,e] + (1 — a)é[c, €] ~ é[c, Be + (1 — B)e'].

The above axioms have no implications for the aggregator function
of a recursive ordering, but they do restrict the certainty equivalent func-
tion p, albeit not as much as does (4.2). We now describe the implied

. functional forms for u, all of which have been studied in the atemporal

literature on non-expected utility theories.
Let p be defined on M(S) where S C RY. Say that p is a betweenness
function if 3 continuous ¢ : S X Rng(p) — R' such that ¢(s,s) = 0, ¢

is increasing in its first argument and Ym € M(S), p(m) is the unique
solution to

/S 8(s, p(m))dm(s) = 0. (4.4)

(See Dekel (1986) and Chew (1989).) The special case where ¢(s,) is
linear in u(-) leads to an explicit expression for . of the following form:

pm) =™ [[uopwian(s) [ [wisyimes|, 45)

for suitable. v and w. Such p’s are called weighted utility functions
(Chew (1983)). If w is constant, the latter specializes to the ezpected
utility uncertainty equivalent

pim = o7 ([ am(a)) . (46)
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Our final result telates these functional forms to the timing ax-
joms (see also Figure 1).

lordering, continuity

V:D—R!
continuous

l risk separability,
stationarity and recursivity

recursive utility:

V(d) = u(my(d))
V(e,d) = W(e, V()

lquasi-timing indifference

i is a betweenness

function

lconstant timing premium

p is expected utility;
Kreps-Porteus structure

ltiming indifference

V(d) = Ea) > u(e)B(eo) * *B(ey_1)
intertemporal expected utility

lfuture independence

V(d) = Erq) > Btuley)

Figure 1

Theorem 4.2. The preference ordering 2, is recursive and satisfies re-
spectively

| " A timing axiom characterization of the weighted utility certainty equiva-
lent is not included here. See Chew and Epstein (1989) for a characterization

in a two-period model.




he timing ax-

/’
Tsivity

;nce

1Hum

wnd satisfies re-

sertainty equiva-
characterization

Soo H. Chew and Larry G. Epstein 365

(i) quasi-timing indifference,

(ii) quasi-timing indifference and constant timing premium,
if and only if it can be represented by an aggregator W and certainty
equivalent 1 as in Theorem 3.1, where in addition p lies in the following
functional form classes respectively:

(7') betweenness,
(i') expected utility.

The last case corresPonds to the functional structure first explored
by Kreps and Porteus (1978) Note that even though p is expected utility
based, the corresponding intertemporal utility function V' does not satisfy
the independence axiom on D and does not conform with (4.3).

Both of the intertemporal utility theories described in the theorem
are sufficiently flexible to model comparative risk aversion. For example,
in the expected utility case, if in the appropriate forms of (4.6) u* is more
concave than u, then p* < u. For the betweenness case, let u and p* be
represented by ¢ and ¢* respectively as in (4.4). Suppose that ¢* is a
concave transform of ¢ in their first arguments, i.e.,

#(5,2) = h(as(s,z);z),

for (s,#) in the domain of ¢, where h is deﬁned on an appropriate domain
and is an increasing and concave function of its first argument there. (The
function h must also satisfy h(0,2) = 0 in order that #(s,8) = 0 and
¢*(s,8) = 0.) Then, by Jensen’s inequality applied to (4.4), p* < p.

It would clearly be of interest to exploit the flexibility of the in-
tertemporal utilities described in the Theorem, and indeed of the general
recursive utilities in Theorem 3.1, to reexamine standard issues in capital
theory, such as asset pricing or optimal stochastic growth. Some results
in the asset pricing context may be found in Epstein (1988) and Epstein
and Zin (1989).

Appendix

Proof of Theorem 3.1. The necessity of the axioms is clear. We

prove their sufficiency.
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By Debreu (1954), > can be represented numerically by a continuous
real-valued function V defined on D. Define W on X x V(D) by

W(c,v) = V(c,d) forany d€ V1(v). (A1)

Risk separability and stationarity imply that W is well-defined and that
W(e, ) is increasing on V(D) for each ¢ € X. Since D is compact and V
is continuous, we can show that W is continuous on X x V(D). Evidently,
(3.2b) is satisfied. |

Let 9 be the map which takes d € D into my(d) € M(V(D)). If
f is any continuous (and therefore also bounded) real-valued function on
V(D) then f(V(:))is continuous (and bounded) on D. It follows that
is a continuous map.

Define p on M(V(D)) by

u(m) =V(d), forany deD such that m = my(d).
We need to show that p is well-defined, i.e., that
my(d) = my(d') = V(d) = V(d). (A2)

The functions % and V are continuous and the subset of M(X x D) con-
sisting of measures having finite support is dense in M(X x D). Therefore,
it suffices to prove (A2) for the case where d and @, identified as elements
of M(X x D), each has finite support. In that case, if my (d) = my(d'),
then 3a;,¢;,d;y ¢l and df, ¢ = 1,...,n, such that V(e d;) = V(e d}) Vi,
d = ¥ o;éle;,d;] and d' = Y ;6(c}, di]. Thus recursivity implies that
v(d) = V(d).

Since D is compact and ¢ is continuous, we can show that p is
continuous. Recursivity implies that p is increasing in the sense of first
degree stochastic dominance. The definition of p immediately implies
that p(8[v]) = v Vv € V(D), and so p is 2 certainty equivalent. Finally,
it is clear that (3.2a) is satisfied. Q.E.D.

Proof of Theorem 3.2. Suppose 2* is more risk averse. Then 2*
and > must rank deterministic programs identically. Thus the represen-
tations V and V*, provided by Theorem 3.1, can be chosen so that

vie=v*|Q - (A3)
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By Postulate 1, V(D) = V*(D). By the construction of the aggrégator ’

(see (A2)), W = W*, Inlight of (A3), 2" being more risk averse amounts
to V* < V on D. Thus p* < p follows from the appropriate forms
of (3.2a).

Consider the converse. We need only show that

V*<V onD. : (A4)

Prove the inequality first on D, (recall (2.1)). Any d € D, can be viewed
as a measure on (1. Since V | @ = V* | @, my(d) = my.(d). Therefore,
we can use (3.2a) and p* < p to show that V*(d) < V(d). Proceed
inductively, (exploiting also (3.2b)), to prove that V™ < V on Uy D,
Since the latter is dense in D, (A4) follows. Q.ED.

Proof of Theorem 4.1. Let V represent 2 on M(X x D) as provided
by Debreu (1954). We show first that V satisfies the independence axiom,
ie., Va € [0,1],

V(d)=V(d)= V(ed+ (1 - a)e) = V(ad + (1 - ae).
Consider the following four programs, where ¢ € X is arbitrary:

d* = able,d] + (1 — a)élc,e], d* = able,d]+(1— a)ble, €],
d® = b[e,ad + (1 — a)e], d* = b[c,ad + (1 — a)el.

Then
V(') =V(d)
V(') =V(d)
V(d?) = V(d*)
= V(d®)=V(d) > ' by (3.2b)

by timing indifference,
by recursivity,

by timing indifference,

V(ad + (1 - a)e) = V(ad' + (1 — a)e), as desired.
We conclude that, after redefining V' if necessary,

V(d)= E,U(-) Vde M(X x D), (A5)

where U : X x D — R! is a von Neumann-Morgenstern utility index.
Since U(c,d') = V(8[c,d]), we see that (4.2) is a restatement of (3.2a).
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To show that W defined in (A1) satisfies (4.1), i.e., is linear in its second

argument, apply (3.2b), the mixture linearity of V represented by (A5)
and timing indifference as follows:

W(e, V(d)) + (1 - a)W(e,V(d")) = aV(e,d) + (1 — a)V(c,e)
' = V(able,d] + (1 — a)d[e, d'])
= V{(e, ad + (1-a)d")
= W(c,aV(d) + (1 - a)V(d")).

Q.E.D.

Proof of Theorem 4.2, The sufficiency of the functional forms
is readily verified. For necessity, adapt the proof of Theorem 4.1. For
example, show that (i) implies that V satisfies the betweenness axiom
of Chew (1989) and Dekel (1986) and then invoke their representation
results. In the case of (ii), show that V satisfies the independence ax-

iom. More details for the two-period context may be found in Chew and
Epstein (1989). Q.E.D.
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