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Abstract

The Ellsberg paradox suggests that people’s behavior is different in

risky situations—when they are given objective probabilities—

from their behavior in ambiguous situations—when they are not

told the odds (as is typical in financial markets). Such behavior is

inconsistent with subjective expected utility (SEU) theory, the stan-

dard model of choice under uncertainty in financial economics.

This article reviews models of ambiguity aversion. It shows that

such models—in particular, the multiple-priors model of Gilboa

and Schmeidler—have implications for portfolio choice and asset

pricing that are very different from those of SEU and that help to

explain otherwise puzzling features of the data.
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1. INTRODUCTION

The first part of this article (Section 2) recalls the Ellsberg-based critique of subjective

expected utility theory and then outlines some of the models that it has stimulated. Our

coverage of preference models is selective—we focus only on models that have been applied

to finance or that seem promising for future applications: multiple priors (Gilboa &

Schmeidler 1989), “smooth ambiguity” preference (Klibanoff et al. 2005), multiplier utility,

and related robust-control-inspired models (Hansen & Sargent 2001, Maccheroni et al.

2006a). We provide a unifying framework for considering the various models. A confusing

aspect of the literature is the plethora of seemingly different models, rarely related to one

another, and often expressed in drastically different formal languages. Here we put several of

these models side-by-side, expressed in a common language, and we examine the properties

of each with respect to implications both for one-shot-choice and for sequential choice. In

particular, we provide thought experiments to illustrate differences in behavior implied by

the various models. We thereby hope to facilitate a more informed choice between models.

The second part of the article (Section 3) derives implications of the models for finance.

One common theme shared by all models is that ambiguity-averse agents choose more

conservative positions and, in equilibrium, command additional “ambiguity premia” on

uncertain assets. Ambiguity aversion can thus help to account for position and price be-

havior that is quantitatively puzzling in light of subjective expected utility (SEU). A second

common theme is that, in dynamic settings, ambiguity-averse agents may adjust their

positions to account for future changes in ambiguity, for example, due to learning. This

adds a new reason for positions to differ by investment horizon, and, in equilibrium,

generates time variation in premia.

Models of ambiguity aversion differ in how ambiguity aversion compares with risk

aversion and, thus, in how implications for portfolio choice and asset pricing differ from

those of SEU. On the one hand, many of the qualitative implications of multiplier utility and

of the smooth ambiguity model are identical to those of SEU. In all three models, with

standard specifications, agents are locally risk neutral, portfolios react smoothly to changes

in return expectations, and diversification is always beneficial. Consequently, in many set-

tings, the multiplier and smooth models do not expand the range of qualitative behavior that

can be explained by SEU. Instead, they offer reinterpretations that may be quantitatively

more appealing (for example, ambiguity aversion can substitute for higher risk aversion).

On the other hand, most applications of the multiple-priors model have exploited

qualitative differences from SEU. These arise because the multiple-priors model allows

uncertainty to have first-order effects on portfolio choice and asset pricing. Thus the model

can give rise to selective participation, optimal underdiversification, and portfolio inertia

at portfolios that hedge ambiguity. In heterogeneous agent models with multiple priors,

portfolio inertia has been used to endogenously generate incompleteness of markets and to

account for markets “freezing up” in response to an increase in uncertainty. Finally,

uncertainty has a first-order effect on average excess returns, which can be large even if

the covariance of payoffs with marginal utility is negligible.

2. MODELS OF PREFERENCE

This section is divided into two major parts. In Section 2.1, we consider static or one-

shot-choice settings where all choices are made at a single instant prior to the resolution of

uncertainty. Models of preference under uncertainty are typically formulated first for such
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static settings. However, just as in Epstein & Zin (1989), which studies risk preferences,

any such model of static preference can be extended uniquely into a recursive dynamic

model of preference. Therefore, the discussion of static models is also revealing about their

dynamic extensions, which are outlined in Section 2.2. In addition, a dynamic setting,

where choice is sequential, raises new issues—dynamic consistency and updating or learn-

ing—and these are the major focus of Section 2.2.

2.1. Static or One-Shot Choice Settings

The first subsection (Section 2.1.1) reviews the Ellsberg paradox and the formal setup.

Then, the further subsections introduce the different models of preference.

2.1.1. Ellsberg and the formal set up. Ellsberg’s (1961) classic experiments motivate the

study of ambiguity. In a variant of one of his experiments, you are told that there are 100

balls in an urn and that each ball is either red or blue. You are not given further informa-

tion about the urn’s composition. Presumably you would be indifferent between bets on

drawing either color (take the stakes to be 100 and 0). However, compare these bets with

the risky prospect that offers you, regardless of the color drawn, a bet on a fair coin, with

the same stakes as above. When you bet on the fair coin, or equivalently on drawing blue

from a second risky urn when you are told that there are 50 balls of each color, then you

can be completely confident that you have a 50-50 chance of winning. In contrast, in the

original “ambiguous” urn, there is no basis for such confidence. This difference motivates

a strict preference for betting on the risky urn as opposed to the ambiguous one.

The preference described above is incompatible with expected utility. Indeed, suppose

you had in mind a subjective probability about a blue draw from the ambiguous urn.

A strict preference for betting on the fair coin over a bet on a blue draw would then reveal

that your probability of blue is strictly less than one-half. At the same time, a preference for

betting on the fair coin over a bet on a red draw reveals a probability of blue that is strictly

greater than one-half, ergo a contradiction. It follows that Ellsberg’s choices cannot be

rationalized by SEU. Thus SEU cannot afford a distinction between risk and ambiguity.

Such a distinction is sometimes alternatively referred to as one between risk and

“Knightian uncertainty” or, in terminology introduced by Hansen & Sargent (2001), as

the distinction between payoff uncertainty and model uncertainty.

Ellsberg’s choices have been confirmed in many laboratory experiments. But this exper-

iment did not need to be run to be convincing—it rings true that confidence, and the

amount of information underlying a likelihood assessment, matter. Such a concern is not a

mistake or a form of bounded rationality—to the contrary, it would be irrational for an

individual who has poor information about her environment to ignore this fact and behave

as though she were much better informed. The normative significance of Ellsberg’s message

distinguishes it from that emanating from the Allais paradox contradicting the vNMmodel

of preference over risky prospects.

We need some formalities to proceed. Following Savage (1954), adopt as primitives a

state space O, representing the set of relevant contingencies or states of the world o2O and

a set of outcomes C � Rn
þ. (Little is lost by assuming that both O and C are finite and have

power sets as associated s-algebras; however, considerable generalization is possible.) Prior

to knowing the true state of the world, an individual chooses once and for all a physical

action. As in Anscombe & Aumann (1963), suppose that the consequence of an action is a
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lottery over C, an element of D(C). Then, any physical action can be identified with a

(bounded and measurable) mapping h : O!D(C), which is called an Anscombe-Aumann

(AA) act. Thus to model choice between physical actions, we model preference � on the set

of AA acts.

To model the Ellsberg experiment above, take O ¼ {R, B} as the state space, where a

state corresponds to a draw from the ambiguous urn. The relevant bets are expressed as AA

acts as shown in Table 1.

Bets on a red and a blue draw correspond to acts fR and fB, respectively. A bet on the fair

coin corresponds to a constant AA act fC that delivers the same lottery (100, 1
2) in both

states; throughout, we denote by (c, p) the lottery paying c with probability p and 0 with

probability 1 � p.

Two special subsets of acts should be noted. Call h a Savage act if h(o) is a degener-

ate lottery for every o; in that case, view h as having outcomes in C and write h : O!C.

Both fR and fB above are Savage acts. For the second subset, we can identify any lottery

‘ 2 D(C) with the constant act that yields ‘ in every state. An example is the fair-coin

lottery above. Consequently, any preference on AA acts includes a ranking of risky

prospects. This makes clear the analytical advantage of adopting the large AA domain,

because the inclusion of risky prospects makes it straightforward to describe behavior

that would reveal that risk is treated differently from other uncertainty. This is a major

reason that all the models of preference we discuss have been formulated in the AA

framework.

Another analytical advantage of the AA domain is the simple definition it permits for

the mixture of two acts. The mixture of two lotteries is well defined and familiar. Given

any two AA acts h0 and h, and a in [0,1], define the new act ah
0 þ (1� a)h by mixing their

lotteries state by state, that is,

ah
0 þ (1� a) h

� �
(o) ¼ ah

0
(o)þ (1� a) h(o),o 2 O: ð2:2Þ

A key property of the Ellsberg urn is that 1

2
fR þ 1

2
fB ¼ fC, and thus a mixture of the bets

fR and fB gives a lottery that no longer depends on the state. Ellsberg’s choices can now be

written as

1

2
fR þ 1

2
fB � fR � fB: ð2:3Þ

From this perspective, Ellsberg’s example has two important features. First, randomization

between indifferent acts can be valuable. This is a violation of the independence axiom and

thus a key departure from expected utility. Second, randomization can be valuable because

Table 1 Model of the Ellsberg experiment

Ellsberg’s urn: R þ B ¼ 100

R B

fR 100 0

fB 0 100

fC 100, 12
� �

100, 12
� �
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it can smooth out, or hedge, ambiguity. The negative comovement in the payoffs of the

ambiguous acts fB and fR implies that the act 1

2
fR þ 1

2
fB is not ambiguous; it is simply risky.

One can be confident in knowing the probabilities of the lottery payoffs, even if one is not

confident in those of the underlying bets fR and fB.

The literature has identified the first property—a strict preference for randomization

between indifferent acts—as the behavioral manifestation of (strict) ambiguity aversion.

Accordingly, say that the individual with preference � is (weakly) ambiguity averse if, for

all AA acts h0 and h,

h
0 � h ) ah

0 þ (1� a)h � h: ð2:4Þ

For a related comparative notion, say that individual 1 is more ambiguity averse than

individual 2 if, for all AA acts h and lotteries ‘2D(C),

‘�2 h ) ‘ �1 h: ð2:5Þ

The idea is that if individual 2 rejects the ambiguous act h in favor of the risky prospect ‘,

then so should the more ambiguity-averse individual 1. The uncertainty-aversion axiom

(Equation 2.4) is satisfied by all the models reviewed below.

Models of ambiguity aversion differ in why randomization is valuable, in particular,

whether it can be valuable even if it does not hedge ambiguity. To see the main point,

consider the following extension of the Ellsberg experiment. Let c denote the number of

dollars you are willing to pay for the bet fR. Next, imagine a lottery that delivers either the

bet fR or its certainty equivalent payoff c, each with probability 1

2
. How much would you

be willing to pay for such a bet? One reasonable answer is c—randomizing between an

asset (here a bet) and its own subjective value cannot be valuable. Intuitively, if you

perceive the value of an asset to be low because you are not confident in your probability

assessment of its payoff, then your confidence in your assessment should not change just

because the asset is part of the lottery. As a result, the asset, its subjective value, and the

lottery should all be indifferent.

The above view underlies the MP model of Gilboa & Schmeidler (1989). According to

that model, preference for randomization between indifferent acts is valuable only if it

hedges ambiguity and thus increases confidence, as in the Ellsberg experiment. When there

is no opportunity for hedging—as in the last example where one of the acts (the subjective

value of the asset) is constant—then randomization is not valuable. In contrast, “smooth”

models of ambiguity aversion, in particular multiplier preferences (Anderson et al. 2003)

and the smooth ambiguity model (Klibanoff et al. 2005), assume a pervasive value for

randomization. Those models can rationalize Ellsberg’s choices only if randomizing

between an asset and its subjective value is also valuable.

2.1.2. Multiple-priors utility. When information is scarce and a single probability mea-

sure cannot be relied on to guide choice, then it is cognitively intuitive that the decision

maker think in terms of a set of probability laws. For example, she might assign the interval
1
3 ,

2
3

� �
to the probability of drawing a red ball from the ambiguous urn in the Ellsberg

experiment. Being cautious, she might then evaluate a bet on red by using the minimum

probability in the interval, here 1
3, which would lead to the strict preference to bet on the

risky urn. Similarly for blue. In this way, the intuitive choices Ellsberg highlights can be

rationalized.
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More formally and generally, the MP model postulates the following utility function on

the set of AA acts:

UMP(h) ¼ min
p2P

Z
O
u(h)dp: ð2:6Þ

Here, u : D(C) ! R is a vNM functional on lotteries that is affine, that is,

u(a‘þ (1� a)‘
0
) ¼ au(‘)þ (1� a)u(‘

0
),

for all lotteries ‘, ‘
0
in D(C). In the following, identify c with the degenerate lottery giving

c and write u(c). Also, assume that u is strictly increasing for deterministic consumption.

The vNM assumption for u excludes risk preferences exhibiting the Allais paradox—

ambiguity is the only rationale admitted for deviating from SEU in the MP model as well

as in all the other models we discuss. The central component in the functional form is the

set P � D(O) of probability measures on O—the set of priors. The special case where P is a

singleton gives the AA version of SEU.

Ambiguity aversion, as defined in Equation 2.4, is the central assumption in

axiomatization of the MP functional form by Gilboa & Schmeidler (1989). Another

important axiom is certainty independence: For all AA acts h
0
and h, all constant acts

c and a2(0, 1),

h
0 � h , ah

0 þ (1� a)c � ahþ (1� a)c: ð2:7Þ

In other words, the invariance required by the independence axiom holds so long as

mixing involves a constant act. This axiom ensures that Ellsberg-type choices are moti-

vated by hedging. Essentially, moving from expected utility to MP amounts to replacing the

independence axiom by uncertainty aversion and certainty independence.

Furthermore, comparative ambiguity aversion is simply characterized: Individual 1 is

more ambiguity averse than individual 2 if and only if

u1 ¼ u2 and P1 � P2: ð2:8Þ

Thus the model affords a separation between risk attitudes, modeled exclusively by the

vNM index u, and ambiguity attitudes, modeled in the comparative sense by the set of

priors P. Put another way, expanding P leaves risk attitudes unaffected and increases

ambiguity aversion.

The MP model is very general because the set of priors can take many different forms.

Consider briefly two examples that have received considerable attention and that offer

scalar parametrizations of ambiguity aversion. Refer to e-contamination if

P ¼ f(1� e)p*þ ep : p 2 P0g, ð2:9Þ

where P0 � D(O) is a set of probability measures, p* 2 P0 is a reference measure, and e is a
parameter in the unit interval. This equation is used heavily in robust statistics (see, e.g.,

Huber 1981). Epstein & Wang (1994) apply it to finance, whereas Kopylov (2009) pro-

vides axiomatic foundations. The larger e is, the more weight is given to alternatives to p*

being relevant and the more ambiguity averse the individual is in the formal sense of

Equation 2.5. An act is evaluated by a weighted average of its expected utility according

to p* and its worst-case expected utility:

U(h) ¼ (1� e)
Z
O
u(h)dp*þ emin

p2P0

Z
O
u(h)dp: ð2:10Þ
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In the second example, P is an entropy-constrained ball. Fix a reference measure

p*2D(O). For any other p2D(O), its relative entropy is R(p k p*) 2 [0,1], where

R(p kp*) ¼
Z
O

log
dp

dp*

� 	
dp, ð2:11Þ

if p is absolutely continuous with respect to p*, and1 otherwise. Though not a metric, for

example, it is not symmetric, R(p k p*) is a measure of the distance between p and p*; note

that R(p k p*) ¼ 0 if and only if p ¼ p*. Finally, define

P ¼ fp : R(p kp*) 	 �g: ð2:12Þ

The MP model is sometimes criticized on the grounds that it implies extreme aversion

or paranoia. But that interpretation is based on the implicit assumption, not imposed by

the model that P is the set of all logically possible priors. Gajdos et al. (2008) nicely clarify

the difference between the subjective set of priors P and the set of logically possible

probability laws. For example, in the Ellsberg example, it is perfectly consistent with the

model that the individual use the probability interval 1
3 ,

2
3

� �
, even though any probability in

the unit interval is consistent with the information given for the ambiguous urn. Ultimately,

the only way to argue that the model is extreme is to demonstrate extreme behavioral

implications of the axioms, which has not been done.

2.1.3. The “smooth ambiguity” model of preference. Klibanoff et al. (2005), henceforth

KMM, propose the following utility function over AA acts:

UKMM(h) ¼
Z
D(O)

f
Z
O
u h(o)ð Þdp(o)

� 	
dm(p): ð2:13Þ

Here m is a probability measure on D(O), u : D(C)! R is a vNM functional as before, and f
is continuous and strictly increasing on u(C) � R. For simplicity, suppose that u is contin-

uous and strictly increasing on C. Identify a KMM agent with a triple (u,f,m) satisfying
the above conditions. By comparison, the MP functional form is a limiting case: If P is the

support of m , then, up to ordinal equivalence, Equation 2.6 is obtained in the limit as the

degree of concavity of f increases without bound.

This functional form admits an appealing interpretation. If the individual were certain

of p being the true law, she would simply maximize expected utility using p. However, in

general, there is uncertainty about the true law, or “model uncertainty,” represented by the

prior m. This uncertainty about the true law matters if f is nonlinear. In particular, if f is

concave, then the individual is ambiguity averse in the sense of Equation 2.4, and greater

concavity implies greater ambiguity aversion in the sense of Equation 2.5. By contrast,

ambiguity (as opposed to the attitude toward it) seems naturally to be captured by m.
Hence, a separation is claimed to be provided between ambiguity and aversion to ambigu-

ity. This separation is highlighted by KMM as an advantage of their model.

Although the above interpretation is intriguing, its validity and, more broadly, the model’s

appeal depend on the plausibility of the model’s axiomatic foundations. Epstein (2010)

points out a problematic feature of the foundations provided by KMM, which can be sum-

marized by referring to the Ellsberg paradox we use for intuition. [For other criticisms of the

smooth ambiguity model, see Baillon et al. (2009) and Halevy & Ozdenoren (2008).] Given

the urn with red and blue balls, and with no information given about their numbers,
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the smooth model can rationalize a strict preference for betting on the toss of an unbiased

coin. However, it has a counterintuitive prediction when we enrich the setting slightly.

Suppose now that there are two urns, I and II, constructed as above, except that for urn II

you are told something further about the composition—the specifics are not

important except that the information treats red and blue symmetrically and it is not enough

to determine the number of red and blue balls, so that you would still strictly prefer to bet on

an unbiased coin. Now compare the urns—how much would you be willing to pay for a bet

on drawing red from urn I as opposed to a bet on drawing red from urn II? Because there is

no information about red versus blue in urn I, whereas some information is provided in

urn II, one would expect the willingness to pay to be at least as large for the bet in urn II.

However, KMM’s axiomatic foundations lead to the prediction that, in many such instances,

an individual would be willing to pay strictly more for the bet on drawing red from urn I

(and similarly for bets on drawing blue)! The reader is referred to Epstein (2010) for details

and also for an explanation of why the preceding calls into question interpretations put forth

by KMM, including the noted separation between ambiguity and ambiguity attitude.

Seo (2009) provides alternative foundations for UKMM. In his model, an individual can

be ambiguity averse only if she fails to reduce objective (and timeless) two-stage lotteries to

their one-stage equivalents. Thus the rational concern with model uncertainty and limited

confidence in likelihoods is tied to the failure to multiply objective probabilities, a mistake

that does not suggest rational behavior. Such a connection severely limits the scope of

ambiguity aversion as modeled by Seo’s approach.

Both MP and the smooth model satisfy ambiguity aversion (Equation 2.4) and thus can

rationalize Ellsberg-type behavior. However, they represent distinct, indeed, “orthogonal”

models of ambiguity aversion—the only point of intersection is SEU. One way to see this,

and to highlight their differences, is (following Epstein 2010) to focus on what the models

imply about the value of randomization. The MP model satisfies (because of certainty

independence) the following: If f� c, then 1

2
f þ 1

2
c � f . Thus mixing with a certainty

equivalent is never valuable. By contrast, the smooth model satisfies the following

(restricting attention to the special case where f is strictly concave): If f � c � 1

2
f þ 1

2
c,

then for all acts h, 1

2
f þ 1

2
h � 1

2
cþ 1

2
h. In effect, if mixing with a certainty equivalent is not

beneficial, then neither is mixing with any other act. To see why this is so, argue as follows,

using the functional form of Equation 2.13 and strict concavity and monotonicity of f:
If f � c � 1

2
f þ 1

2
c, then

R
O u(f )dp ¼ u(c) with m-probability 1, and the expected utility of

f is certain in spite of model uncertainty. Thus

UKMM 1

2
f þ 1

2
h

� 	
¼
Z
D(O)

f
Z
O

1

2
u(f )þ 1

2
u(h)dp

� 	
dm(p)

¼
Z
D(O)

f
Z
O

1

2
u(f )þ 1

2
u(h)dp

� 	
dm(p)

¼
Z
D(O)

f 1

2
u(c)þ 1

2

Z
O
u(h)dp

� 	
dm(p)

¼ UKMM 1

2
cþ 1

2
h

� 	
:

Accordingly, the two properties together imply the independence axiom and hence SEU.

To illustrate the effect of smoothness in applications it is helpful to abstract briefly from

risk. Assume that the agent is risk neutral or, equivalently, restrict attention to acts that come

with perfect insurance for risk. Formally, take u to be linear and rewrite the utilities as
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UKMM(h) ¼ Em f Ep h½ 
ð Þ½ 
,
UMP(h) ¼ min

p2P
Ep h½ 
:

For risk-neutral agents, ambiguity matters only if it affects means. Under the smooth

model, ambiguity about means is reflected in a nondegenerate distribution of Ep [h] under

the prior m. For a risk-neutral, ambiguity-averse KMM agent, an increase in ambiguity (in

means) works like an increase in risk. Under the MP model, ambiguity about means is

reflected in a nondegenerate interval for Ep [h]. For a risk-neutral MP agent, an increase in

ambiguity (in means) can thus work like a change in the mean. The latter is a first-order effect.

2.1.4. Robust control, multiplier utility, and generalizations. Fix a reference measure

p* 2 D(O) and define relative entropy R(p k p*) 2 [0,1], for any other measure p, by

Equation 2.11. Multiplier utility is defined by

UMU(h) ¼ min
p2D(O)

Z
O

u(h)dpþ yR(p k p*)

2
4

3
5, ð2:14Þ

where 0 < y 	 1 is a parameter.

This functional form was introduced into economics by Anderson et al. (2003), who

were inspired by robust-control theory, and it was axiomatized by Strzalecki (2010). It

suggests the following interpretation: Though p* is the individual’s “best guess” of the true

probability law, she is concerned that the true law may differ from p*. To accommodate

this concern with model misspecification, when evaluating any given act h she takes all

probability measures into account, weighing more heavily those that are close to her best

guess as measured by relative entropy. Reliance on the (weighted) worst-case scenario

reflects an aversion to model misspecification or ambiguity. In particular, multiplier utility

is ambiguity averse in the sense of Equation 2.4, and ambiguity aversion increases with y�1

in the sense of the comparative notion (Equation 2.5). At the extreme where y ¼ 1, the

minimum is achieved at p ¼ p*, and UMU(�) ¼
R
O u(�)dp*, reflecting complete confidence

in the reference measure.

A key difference between multiplier utility and other models of ambiguity is that for

choice among Savage acts—that is, acts that do not involve objective lotteries—it is obser-

vationally indistinguishable from SEU. Indeed, utility can be rewritten as

UMU(h) ¼ �y log
Z
O

exp � 1

y
u(h)

� 	
dp*

0
@

1
A ð2:15Þ

(see Dupuis & Ellis 1997, proposition 1.4.2; Skiadas 2009b). Thus, on the domain of

Savage acts h, for which outcomes are elements of C, UMU conforms to SEU with prior p*

and vNM index

uy(c) ¼ exp � 1

y
u(c)

� 	
, c 2 C:

For Savage acts, introducing robustness (y < 1) is thus indistinguishable from increas-

ing risk aversion by moving from u to the more concave uy. Observational equivalence

holds in the strong sense that even if one could observe the entire preference order over

Savage acts, and not only a limited set of choices associated with more realistic sets of

financial data, one could not distinguish the two models. This observational equivalence
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matters for applications because most empirically relevant objects of choice in financial

markets are Savage acts—objective lotteries are rare. In many settings, multiplier utility

may thus help reinterpret behavior that is also consistent with SEU, but it does not expand

the range of behavior that can be rationalized. Reinterpretation can be valuable, for

example, if there is an a priori bound on the degree of risk aversion. Of course, any exercise

along these lines requires taking a stand on u or y—from choice behavior alone, one can

hope to identify, at most, the composite function exp � 1
y u(�)

� �
. Thus, for example, Barillas

et al. (2009) and Kleschelski & Vincent (2009) fix u(c) ¼ log c and then arrive at estimates

of the robustness parameter y.
Multiplier utility has restrictive implications for choice in urn experiments. With one

ambiguous urn, it can rationalize the intuitive choices in Ellsberg’s experiment surrounding

Equation 2.1: Take p* ¼ 1
2 ,

1
2

� �
and y < 1. However, consider an experiment with two

ambiguous urns: In urn I you are told that R þ B ¼ 100 and R, B � 40, whereas in urn II

you are told only that R and B sum to 100. Because there is more information about the

composition of urn I, we would expect a preference to bet on red in urn I to red in urn II,

and similarly for black. But this is impossible given multiplier utility. To see this, take the

state space S ¼ fRI,BIg 
 fRII,BIIg. The ranking of bets would be determined by how

multiplier utility ranks Savage acts over S, but it conforms to subjective expected utility on

the Savage domain. Thus, bets would have to be based on a probability measure p on S,

which assigns higher probability to RI than to RII, and similarly for BI and BII, which is an

impossibility.

There is a parallel with constant elasticity of substitution (CES) utility functions in

consumer theory that is useful for perspective. The CES utility function is a flexible

specification of cross-substitution effects between goods when there are only two goods,

because then the elasticity is a free parameter. However, when there are more than two

goods, it also imposes the a priori restriction that the noted elasticity is the same for all

pairs of goods. Although CES utility remains a useful example, applications may call for

more flexible functional forms (translog utility, for example). Analogously, multiplier

utility can rationalize intuitive choice with one risky and one ambiguous urn. Once there

are two or more ambiguous urns, it imposes additional a priori restrictions that need not be

intuitive in applications.

Finally, briefly consider generalizations. Maccheroni et al. (2006a) introduce and axi-

omatize the following generalization, called variational utility:

Uvar(h) ¼ min
p2D(O)

Z
O

u(h)dpþ c(p)

2
4

3
5, ð2:16Þ

where c : D(O) ! [0,1] is a cost or penalty function. Multiplier utility is the special

case where c(p) ¼ yR(p k p*). The above model is very general; it even encompasses MP

utility, which corresponds to a cost function of the following form: For some set of priors

P � D(O),

c(p) ¼ 0 if p 2 P
1 otherwise:




Such a general model has no difficulty accommodating any number of ambiguous urns,

and Maccheroni et al. (2006a) describe a number of interesting functional forms for c and

hence utility. It remains to be seen whether they are useful in applications.
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2.2. Dynamic or Sequential Choice Settings

Here we outline how the preceding models of preference can be extended to recursive,

hence dynamically consistent, intertemporal models. Further extensions to accommodate

learning are then discussed.

2.2.1. Recursive utility. The formal environment is now enriched as follows. In addition

to the (finite) state space O, let T ¼ f0,1, . . . ,Tg be a time set and fStgTt¼0 a filtration,

where S0 ¼ f�, Og and ST ¼ 2O. Each St can be identified with a partition of O; St (o)
denotes the partition component containing o. If o is the true state, then at t the decision

maker knows that St (o) is true. One can also think of this information structure in terms

of an event tree, with nodes corresponding to time-event pairs (t,o).
For simplicity, assume consumption in any single period lies in the interval C � Rþ. We

are interested primarily in C-valued consumption processes and how they are ranked.

However, we again enlarge the domain in the AA way and consider the set of all D(C)-
valued processes. Each such process H is the dynamic counterpart of an AA act; it has the

form H ¼ (Ht), where Ht : O ! D(C) is St -measurable.

The new aspect of the dynamic setting is that choices can be made at all times. To

model sequential choice, we assume a preference order at each node in the tree. Formally,

let �t,o be the preference prevailing at (t,o), thought of as the ordering conditional

on information prevailing then. The primitive is the collection of preferences

f�t,og � f�t,o : t,oð Þ 2 T 
Og. The corresponding collection of utility functions is

fVt,og � fVt,o : t,oð Þ 2 T 
Og. They are assumed to satisfy a recursive structure that

we now describe [for more detailed formal presentations, see Epstein & Schneider (2003)

for the MP-based model and Skiadas (2009a, ch. 6) for the general case, which relaxes

the intertemporal additivity that we assume in Equation 2.18 below]. Define

Bt � 1þ bþ . . .þ bT�t
� �

. In the infinite-horizon case, these discount terms simplify and

each Bt is equal to (1 � b)�1.

To evaluate the act H from the perspective of node (t,o), observe that it yields

the current consumption (lottery) Ht (o) and a random future payoff Vtþ1,. (H). Here � in
the subscript indicates that future utility is a function of o

0 2 St(o), the realized node in the

continuation of the tree from (t,o). For each such node o
0
(and only such nodes matter), let

Vtþ1,o0 (H) ¼ Btþ1u cH
tþ1,o0

� �
: ð2:17Þ

Thus, cH
tþ1,o0 is a certainty equivalent in the sense of being the (unique) level of con-

sumption that, if received in every remaining period, would be indifferent from the per-

spective of (t þ 1,o
0
) to H. Because this certainty equivalent varies with the continuation

o
0
, it defines a “static” act, of the sort discussed above, and whose utility can be computed

using one of the static-ambiguity models discussed previously. Finally, the latter utility is

aggregated with current felicity in the familiar discounted additive fashion to yield Vt,o(H).

To be more precise, let * denote any of the models of ambiguity preference discussed

above. Let fU*
t,og be a collection of utility functions conforming to the model *, one for

each node in the tree, having fixed risk preferences: U*
t,o(�) ¼ u �ð Þ on D(C) for every (t,o).

(Some obvious measurability restrictions are also assumed.) Refer to fU*
t,og as a set of one-

step-ahead utility functions. Say that preferences f�t,og, or the corresponding utilities

{Vt,o}, are recursive if there exist u : D(C) ! R affine, a discount factor 0 < b < 1, and a
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set fU*
t,og of one-step-ahead utilities such that for all acts H: (a) VTþ1,� (H) ¼ 0 and

(b) utilities Vt,o (H) are evaluated by backward induction according to, for each (t,o),

Vt,o(H) ¼ u Ht(o)ð Þ þ bBtþ1U
*
t,o cHtþ1,�
� �

: ð2:18Þ

The primitive components of the recursive model are u(�), modeling attitudes toward

current consumption risks (and intertemporal substitutability1), a discount factor b, and
the set fU*

t,og. Accordingly, U*
t,o represents preference, conditional on (t,o), over the set

of one-step-ahead acts, i.e., acts H for which Ht(�) ¼ Htþ1(�) for all t > t, that is, H

produces a constant stream (of lotteries) for times t þ 1, t þ 2, . . . and, in particular, all

ambiguity (though not risk) is resolved at t þ 1. Thus, U*
t,o models preferences over bets on

the next step.

There are simple restrictions on preferences, specific to the dynamic setting, that are the

main axioms characterizing recursive utility. First, preference at any node depends only on

available information. Second, when evaluating H at any node, the individual cares only

about what H prescribes in the continuation from that node—unrealized parts of the tree

do not matter, an assumption that is commonly called consequentialism. Third, the ranking

of risky prospects (lotteries) is the same at every node, i.e., a form of state independence.

Finally, the collection of preferences is dynamically consistent; (contingent) plans chosen at

any node remain optimal from the perspective of later nodes.

Next we discuss the recursive utility specifications corresponding to each of the static

models discussed above. All previous comments remain relevant, as they relate to the

ranking of one-step-ahead acts. We add comments that relate specifically to the dynamic

setting. As shown from the connections drawn to the applied literature, the recursive model

unifies a range of dynamic utility specifications that have been pursued in applications. It

excludes specifications adopted in Hansen & Sargent (2007, 2009), Barillas et al. (2009),

and in several other papers in the robust-control-inspired literature, which violate either

consequentialism or dynamic consistency.

We refer also to continuous-time counterparts of the recursive models. In that case, the

recursive construction of utility functions via Equations 2.17 and 2.18 is replaced by

backward stochastic differential equations. Duffie & Epstein (1992) introduced these into

utility theory in the risk context, and Chen & Epstein (2002) extended them to ambiguity

aversion (modeled by MP). See Skiadas (2008) for a nice exposition, original formulations,

and references to the technical literature on backward stochastic differential equations.

Recursive SEU. If one-step-ahead acts are evaluated by expected utility, then, from Equa-

tions 2.17 and 2.18,

Vt,o(H) ¼ u Ht(o)ð Þ þ b
Z
O
Vtþ1,o0 (H)dpt,o(o

0
), ð2:19Þ

where pt,o 2 D(O,Stþ1) gives (t,o) -conditional beliefs about the next step. This is the

standard model.

1The confounding of risk aversion and substitution in u can be improved upon via a common generalization of

Equation 2.18 and Epstein & Zin (1989). The resulting model can (partially) disentangle intertemporal substitution,

risk aversion, and ambiguity aversion. Skiadas’ (2009, ch. 6) treatment is general enough to admit such a three-way

separation. Hayashi (2005) describes such a model where the ranking of one-step-ahead acts conforms to the MP

model.
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Recursive multiple priors. Let Pt,o � D (O,Stþ1) be the set of (t,o)-conditional probability
measures describing beliefs about the next step (events in Stþ1), and let

U*
t,o(h) ¼ minp2Pt,o

R
u(h)dp for any h : (O, Stþ1)!D(C). Then Equations 2.17 and 2.18

imply

Vt,o(H) ¼ u(Ht(o))þ b min
p2Pt,o

Z
O
Vtþ1,o0 (H)dp o

0
� �

: ð2:20Þ

Epstein &Wang (1994) first put forth this model; Epstein & Schneider (2003, 2007, 2008)

axiomatize and apply it. The special case where each set Pt,o has the entropy-constrained

form in Equation 2.12 was suggested in Epstein & Schneider (2003) and has subsequently

been applied by a number of papers in finance (described in Section 3 below). For a

continuous-time formulation of recursive MP, see Chen & Epstein (2002).

Recursive smooth ambiguity model. Definef∘U*
t,o by Equation 2.13, where m, but not u or

f, varies with (t,o). One obtains

Vt,o(H) ¼ u(Ht(o))þ bBtþ1f
�1

Z
D(O)

f B�1
tþ1

Z
O
Vtþ1,o0 (H)dp(o

0
)

� 	
dmt,o(p)

 !
: ð2:21Þ

This is closely related to the recursive version of the smooth ambiguity model described in

Klibanoff et al. (2009) and the specifications in the applied papers by Chen et al. (2009)

and Ju & Miao (2009).

Skiadas (2009b) shows that in Brownian and Poisson environments, the continuous-

time limit of the recursive smooth ambiguity model is indistinguishable from the one in

which the function f is linear, that is, ambiguity aversion vanishes in the limit. He assumes

that f is invariant to the length of the time interval. Other ways of taking the continuous-

time limit include, for example, allowing the concavity of f to increase suitably as the

interval shrinks. However, keeping f fixed seems unavoidable if one sees ambiguity aver-

sion as (separate from ambiguity and as) subject to calibration across settings.

(Recursive) multiplier utility and generalizations. Following Equation 2.15, define

exp � 1

yt,o
U*

t,o(h)

� 	
¼

Z
O

exp � 1

yt,o
u hð Þ

� 	
dp*t,o

0
@

1
A, ð2:22Þ

where p*t,o 2 D(O,Stþ1) is the reference one-step-ahead measure. For simplicity, and

because it is assumed universally, let yt,o ¼ y, which is a constant. Then Equations 2.17

and 2.18 imply

Vt,o(H) ¼ u(Ht(o))þ bBtþ1log �y
Z
O

exp � 1

y
B�1
tþ1Vtþ1,o0 (H)

� 	
dp*t,o(o

0
)

0
@

1
A

2
4

3
5:

This is a special case of recursive utility as defined by Epstein & Zin (1989), where y�1

parametrizes risk aversion separately from u, which also models intertemporal sub-

stitution. In continuous time, one obtains a special case of stochastic differential utility

(Duffie & Epstein 1992).

To see the connection to robustness as proposed by Hansen & Sargent (2001), let

p* 2 D(O, ST) be the reference measure corresponding to fp*t,og and p any other measure
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on ST, and denote by pt and p*t the restrictions of p and p* to St. Define the time-averaged

entropy by R(p kp*) ¼ St�0bt Ep log dpt
dp*t

� �h i
, if pt is absolutely continuous with respect to

p*t for each t, and R(p kp*) ¼ 1 otherwise. Then, [see Skiadas (2003) for a general proof

for continuous-time], the recursive utility functions above can be written alternatively in

the following form paralleling Equation 2.14:

Vy
0(H) ¼ min

p2D(O)

Z
O

ST
t¼0b

tu Ht(o
0
)

� �� �
dp(o

0
)þ yR (pPp*)

2
4

3
5: ð2:23Þ

Similar expressions obtain for the conditional utility functions Vy
t,o(H). This reformulation

parallels the equivalence of Equations 2.15 and 2.14 in the static context. This permits

a reinterpretation of existing risk-based models, [such as the Barillas et al. (2009) reinter-

pretation of Tallarini (2000) in terms of robustness], but does not add new qualitative

predictions.

To accommodate behavior toward several urns, of interest is to extend the model to

allow “source dependence,” that is, several driving processes and a concern for robustness

that is greater for some processes than for others. However, this is hard to square with

dynamic consistency and consequentialism. Indeed, let O ¼ Pn
i¼1Oi and think of n-driving

processes. To capture source dependence, extend Equation 2.23 so that for each Oi, relative

entropy measures distance between Oi -marginals with a separate multiplier yi for each i.

However, unless yi are all identical, such a model is not recursive and thus precludes

dynamic consistency.

This is in stark contrast to the recursive framework (Equations 2.17 and 2.18) that

accommodates a wide range of ambiguity preferences, while having dynamic consistency

built in. For example, Skiadas (2008) formulates recursive models that feature source

dependence and that are special cases of our general framework (Equations 2.17 and

2.18). Maccheroni et al. (2006b) axiomatize a recursive version of variational utility that

is the special case of our recursive model for which one-step-ahead acts are evaluated using

variational utility (Equation 2.16).

Skiadas (2009b) derives continuous-time limits for a subclass of recursive variational

utility containing the multiplier model (Equation 2.23). He shows that, in a Poisson

environment (though not with Brownian uncertainty), these models, with the single excep-

tion of multiplier utility, are distinguishable from stochastic differential utility (providing

another sense in which multiplier utility is an isolated case). Skiadas also suggests that

some of these models have tractability advantages and are promising for pricing, particu-

larly because of the differential pricing of Brownian and Poisson uncertainty.

2.2.2. Updating and learning. The one-step-ahead utility functions fU*
t,og are primitives

in the recursive model (Equations 2.17 and 2.18) and are unrestricted except for technical

regularity conditions. Because they represent the individual’s response to data, in the sense

of describing his view of the next step as a function of history, they are the natural vehicle

for modeling learning. Here, for each of the specific recursive models just described, we

consider restrictions on fU*
t,og. Remaining within the recursive utility framework means

the dynamic consistency is necessarily satisfied. The central issue is whether the specifica-

tion adopted adequately captures intuitive properties of learning under ambiguity.

Learning is sometimes invoked to criticize models of ambiguity aversion. The argument

is that, because ambiguity is due to a lack of information and is resolved as agents learn,
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it is at best a short-run phenomenon. Work on learning under ambiguity has shown that

this criticism is misguided. First, ambiguity need not be due only to an initial lack of

information. Instead, it may be generated by hard to interpret, ambiguous signals. Second,

there are intuitive scenarios where ambiguity does not vanish in the long run. Note,

however, the literature has not provided compelling axioms, beyond those underlying

recursivity of Equations 2.17 and 2.18, to guide the modeling of learning under ambiguity.

Thus, to assess various models, we rely on thought experiments, the following of which is

based on Epstein & Schneider (2008).

A thought experiment. You are faced with two sequences of urns. One sequence consists

of risky urns and the other of ambiguous urns. Each urn contains black and white balls. At

every period, one ball is drawn from each of that period’s urns and bets are offered on the

draws from next period’s urns. The sequence of risky urns is constructed (or perceived) as

follows: First, a ball is placed in each urn according to the outcome of a fair coin toss. If the

coin toss produces heads, a black “coin ball” is placed in each urn; if tails, then a white

coin ball. In addition to a coin ball, each risky urn contains four noncoin balls, two of each

color. The sequence of risky urns is thus an example of learning from i.i.d. signals. After a

sufficient number of draws, you will become confident about the color of the coin ball

from observing the frequency of black draws.

Each urn in the ambiguous sequence also contains a single coin ball with color deter-

mined as above (note the coin tosses for the two sequences are independent.) In addition,

you are told that each urn contains either n ¼ 2 or n ¼ 6 noncoin balls of which exactly n
2

are black and n
2 are white. Finally, n varies “independently” across ambiguous urns. The

ambiguous urns thus also share a common element (the coin ball), about which you can

hope to learn, but they also have idiosyncratic elements (the noncoin balls) that are poorly

understood and thus possibly unlearnable.

Ex ante, not knowing the outcome of the coin tosses, would you rather have a bet that

pays 100 if black is drawn from the first risky urn (and zero otherwise), or a bet that pays

100 if black is drawn from the first ambiguous urn? The intuition indicated by Ellsberg

suggests a strict preference for betting on the risky urn. In the risky urn, drawing black has

an objective probability of 1
2. For the ambiguous urn, the corresponding probability is

either in 4
7 ,

2
3

� �
or in 1

3 ,
3
7

� �
, each with probability 1

2. Averaging endpoints yields the interval
19
42 ,

23
42

� �
, which has 1

2 as its midpoint. Thus, ambiguity aversion suggests the preference for

the precise 1
2. However, the unambiguous nature of the bet on the risky urn can be offset by

reducing the winning stake there. Let z < 100 be such that you are indifferent between a

bet that pays z if black is drawn from the risky urn and a bet that pays 100 if black is drawn

from the ambiguous urn.

Now sample by drawing one ball from the first urn in each sequence. Suppose that the

outcome is black in both cases. With this information, consider versions of the above bets

based on the second-period urns. Would you rather have a bet that pays z if black is drawn

from the second risky urn or a bet that pays 100 if black is drawn from the second

ambiguous urn? Our intuition is that, even with this difference in stakes, betting on the

risky urn would be strictly preferable. The reason is that inference about the coin ball is

clear for the risky urn—the posterior probability of a black coin ball is 3
5. As a result, the

predictive probability of drawing black is 3
5

3
5

� �
þ 2

5
2
5

� �
¼ 13

25. In contrast, for the ambiguous

urn the signal (a black draw) is harder to interpret, leaving us less confident in our

assessment of the composition of that urn. We now elaborate on this point.
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Just as for the risky sequence, the only useful inference for the ambiguous sequence is

about the coin ball (because noncoin balls are thought to be unrelated across urns in the

sequence). But what does a black draw tell us about the coin ball? On the one hand, it could

be a strong signal of the color of the coin ball (if n¼ 2 in the sampled urn) and hence also of a

black draw from the second urn. On the other hand, it could be a weak indicator (if n ¼ 6 in

the sampled urn). The posterior probability of the coin ball being black could be anywhere

between 6=2þ1
6þ1 ¼ 4

7 and
2=2þ1
2þ1 ¼ 2

3, with a range of predictive probabilities for black ensuing.

The difference in winning stakes, z versus 100, compensates for prior ambiguity, but not

for the difficulty in interpreting the realized signal. Thus a preference for betting on the

risky urn is to be expected, even given the difference in winning prizes. By analogous

reasoning, similar rankings for bets on white are intuitive, both ex ante and ex post

conditional on having drawn black balls. Indeed, the lower quality of the signal from the

ambiguous urn makes it harder to judge any bet, not just a bet on black.

A multiple-priors model of learning under ambiguity. Epstein & Schneider (2008) pro-

pose a model of learning within the recursive MP framework (Equation 2.20) that accom-

modates the intuitive choices in the thought experiment. It is motivated by the following

interpretation of the experiment. The preference to bet on the risky urn ex post is intuitive

because the ambiguous signal—the draw from the ambiguous urn—appears to be of lower

quality than the noisy signal—the draw from the risky urn. A perception of low informa-

tion quality arises because the distribution of the ambiguous signal is not objectively given.

As a result, the standard Bayesian measure of information quality, i.e., precision, seems

insufficient to compare the two signals adequately. The precision of the ambiguous signal is

parametrized by the number of noncoin balls n: When there are few noncoin balls that add

noise, precision is high. A single number for precision cannot rationalize the intuitive

choices because behavior is as if one is using different precisions depending on the bet that

is evaluated. When betting on a black draw, the choice between urns is made as if the

ambiguous signal is less precise than the noisy one, so that the available evidence of a black

draw is a weaker indicator of a black coin ball. In other words, when the new evidence—

the drawn black ball—is “good news” for the bet to be evaluated, the signal is viewed as

relatively imprecise. In contrast, in the case of bets on white, the choice is made as if the

ambiguous signal is more precise than the noisy one, so that the black draw is a stronger

indicator of a black coin ball. Now the new evidence is “bad news” for the bet to be

evaluated and is viewed as relatively precise. The intuitive choices can thus be traced to an

asymmetric response to ambiguous news.

The implied notion of information quality can be captured by combining worst-case

evaluation with the description of an ambiguous signal via multiple likelihoods. To see

how, think of the decision maker as trying to learn the colors of the two coin balls, believing

that is all he needs to learn for the risky sequence. By contrast, for the ambiguous sequence,

his perception of noncoin balls as varying independently across urns means there is nothing

to be learned from past observations about that component of future urns. For both

sequences, his prior over these parameters places probability 1

2
on the coin ball being black.

More generally, the model admits MP over parameters. The intuition given above for the

choices indicated in the experiment suggests clearly a translation in terms of multiple

likelihoods. Signals for the risky sequence have objective distributions conditional on the

color of the coin ball and can be modeled in the usual way by single likelihoods. However,
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for the ambiguous sequence, the distribution of the signal is unknown, even conditioning

on the color of the coin ball, because it varies with n, suggesting multiple likelihoods.

Other models of learning. How do other models perform with respect to the thought

experiment? SEU is ruled out by the ex ante ambiguity-averse ranking (the situation is

ultimately analogous to Ellsberg’s original experiment). The same applies to multiplier

utility because it coincides with SEU on Savage acts. Recursive variational utility

(Maccheroni et al. 2006b) inherits the generality of variational utility. In particular, it

generalizes recursive MP and so can accommodate the thought experiment. The question

is whether the added generality that it affords is useful in a learning context. A difficulty is

that it is far from clear how to model updating of the cost or penalty function c(�).
The situation is more complicated for the smooth ambiguity model. It can accommo-

date the ex ante ambiguity-averse choices. To consider also the ex post rankings indicated,

it is necessary to specify updating for the recursive smooth model (Equation 2.21). We

assume that beliefs mt,o about the true law are updated by Bayes’ rule. Then the recursive

smooth model cannot accommodate the intuitive behavior in the thought experiment, at

least given natural specifications of the model (outlined next).

Consider the functional form for utility (Equation 2.13). For the risky urns, all relevant

probabilities are given; thus, bets on the risky urns amount to lotteries, which are ranked

according to u. To model choice between bets on the ambiguous urns, we must first specify

the state space O. Take O ¼ {B,W} so that a state specifies the color of the ball on any

single draw.2 Then a bet on B corresponds to the act fB, with fB(B) ¼ 100 and fB(W) ¼ 0.

The smooth model specifies prior beliefs m about the true probability of drawing B. Here

the latter is determined by the color of the coin ball y ¼ B orWand by the number n ¼ 2 or

6 of the noncoin balls, according to

‘(Bjy,n) ¼

2

3
y ¼ B, n ¼ 2

1

3
y ¼ W,n ¼ 2

4

7
y ¼ B, n ¼ 6

3

7
y ¼ W, n ¼ 6:

8>>>>>><
>>>>>>:

Thus, view m as a probability measure on pairs (y,n). Let m be uniform over the above

four possibilities and suppose that f is strictly concave (as in all applications of the

modeldiscussed). Then it is a matter of elementary algebra to show that the choices

described in the thought experiment cannot be accommodated.

A final comment concerns a theme we have emphasized throughout the discussion of

preference models: Appearances can be misleading. The only way to understand a model is

through its predictions for behavior, whether through formal axioms or thought experi-

ments. What could be more natural than to use Bayes’ rule to update the prior as in the

recursive smooth model? Foregoing the issue of how to update sets of priors as in Epstein

& Schneider (2007. 2008), one can import results from Bayesian learning theory. The

models in Hansen (2007), Chen et al. (2009), and Ju & Miao (2009) share this simplicity.

In all cases, updating proceeds exactly as in a Bayesian model, and ambiguity aversion

2An alternative is to take the state space to be {2, 6}, corresponding to the possible number of the noncoin balls.

However, with this state space, even the (ambiguity-averse) ex ante choices cannot be rationalized.
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enters only in the way that posterior beliefs are used to define preference. However, the

thought experiment illustrates what is being assumed by adopting such an updating rule:

Concern with “signal or information quality” is excluded.

3. AMBIGUITY IN FINANCIAL MARKETS

This section illustrates the role of ambiguity in portfolio choice and asset pricing. We

consider simple two- and three-period setups. Those setups are sufficient to illustrate many

of the effects that drive more elaborate (and now increasingly quantitative) models studied

in the literature. We also focus on the MP model. This is because the range of new effects—

relative to models of risk—is arguably larger for that model. Specific differences between

MP and smooth models are also highlighted.

3.1. Portfolio Choice

Begin with a two-period problem of savings and portfolio choice. An agent is endowed

with wealthW1 at date 1 and cares for consumption at dates 1 and 2. There is an asset that

pays the interest rate rf with certainty as well as n uncertain assets with log returns

collected in a vector r. The returns r could be ambiguous. Let P1 denote a set of beliefs

held at date 1 about returns at date 2. The agent chooses consumption at both dates and a

vector of portfolio shares y for the n uncertain assets to solve

max
C1,y

min
p2P1

f 1� bð Þu C1ð Þ þ bEp u C2ð Þ½ 
g
s:t:C2 ¼ W1 � C1ð ÞRw

2

Rw
2 ¼ exp rf

� �
þ
Xn
i¼1

yi exp rið Þ
 !

,

where Rw
2 is the return on wealth realized at date 2.

Now restrict attention to log utility and lognormally distributed returns. With u(c) ¼
log c, the savings and portfolio-choice problems separate. In particular, the agent always

saves a constant fraction b/(1þb) of wealth, and he chooses his portfolio to maximize the

expected log return on wealth. With lognormal returns, a belief in P1 can be represented by

a vector mr of expected (log) returns as well as a covariance matrix S. Throughout, we use

an approximation for the log return on wealth introduced by Campbell & Viceira (1997)

logRw
2 � r f þ y

0
rþ 1

2
diagS� r f i

� �
� 1

2
y
0
Sy; ð3:1Þ

where diag S is a vector containing the main diagonal of S and i is an n-vector of ones. In

continuous time, the formula is exact by Ito’s Lemma; in discrete time, it yields simple

solutions that illustrate the key effects.

It is convenient to work with excess returns. Define a vector of premia (expected log

excess returns, adjusted for Jensen’s inequality) by

me ¼ mr þ 1

2
diagS� r f i:

Let P1 denote the set of parameters (me,S) that correspond to beliefs in P1. This set can be

specified to capture ambiguity about different aspects of the environment. In general, the

size ofP1 reflects the agents’ lack of confidence when thinking about returns. For example,

worse information about an asset may lead an agent to have a wider interval of possible
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mean log returns for that asset. In a dynamic setting, the size of the sets P1 and P1 will

change over time with new information. Below we discuss the effects of such updating by

doing comparative statics with respect features of P1.

Using the approximation Equation 3.1, the portfolio-choice problem becomes

max
y

min
p2P1

Ep logRw
2

� �
� max

y
min

(me ,S)2P1

rf þ y
0
me � 1

2
y
0
Sy

n o
: ð3:2Þ

If there is no ambiguity—that is (me,S) is known and is therefore the only element of P1—

then we have a standard mean variance problem, with optimal solution y ¼ S�1me. More

generally, the agent evaluates each candidate portfolio under the worst-case return distri-

bution for that portfolio.

3.1.1. One ambiguous asset: nonparticipation and portfolio inertia at certainty. Assume

that there is only one uncertain asset. Its log excess return has known variance s2 and an

ambiguous mean that lies in the interval �me � �x, �me þ �x½ 
. Think of �me as a benchmark

estimate of the premium; �x then measures the agent’s lack of confidence in that estimate.

The agent solves

max
y

min
me2 �me��x, �meþ�x½ 


rf þ yme � 1

2
s2y2

n o
: ð3:3Þ

Minimization selects the worst-case scenario depending on the agent’s position:

me ¼ �me � �x if y > 0 and me ¼ �me þ �x if y < 0. Intuitively, if the agent contemplates going

long in the asset, he fears a low excess return, whereas if he contemplates going short, then

he fears a high excess return. If y ¼ 0, the portfolio is not ambiguous and any me in the

interval solves the minimization problem.

The optimal portfolio decision anticipates the relevant worst-case scenario. For a given

range of premia, the agent evaluates the best nonnegative position as well as the best

nonpositive position, and then chooses the better of the two. This leads to three cases. First,

if the premium is known to be positive (�me � �x > 0 ), then it is optimal to go long. In this case,

any long position is evaluated using the lowest premium and the optimal weight is

y ¼ (�me � �x)=s2 > 0. Similarly, if the premium is known to be negative (�me þ �x < 0 ),

then the optimal portfolio sells the asset short: y ¼ (�me þ �x)=s2 < 0. Finally, if

�me þ �x > 0 > �me � �x, then it is optimal not to participate in the market (y¼ 0). This is because

any long position is evaluated using the lowest premium, which is now negative, and any short

position is evaluated using the highest premium, which is positive. In both cases, the return on

wealth is strictly lower than the riskless rate, so it is better to stay out of the market.

Under ambiguity, nonparticipation in markets is thus optimal for many parameter

values. In particular, for any benchmark premium �me, a sufficiently large increase in uncer-

tainty will lead agents to withdraw from an asset market altogether. This is not true if all

uncertainty is risk. Indeed, the participation decision does not depend on the quadratic risk

term in Equation 3.3. That term becomes second order as y goes to zero, that is, agents are

“locally risk neutral” at y ¼ 0. In the absence of ambiguity (�x ¼ 0 ), agents participate,

except in the knife-edge case �me ¼ 0. Moreover, an increase in the variance s2 does not

make agents withdraw from the market; all it makes them do is choose smaller positions.

Ambiguity-averse agents exhibit portfolio inertia at y ¼ 0. Indeed, consider the response

to a small change in the benchmark premium �me. For �me <j�xj, an ambiguity-averse agent will

not change his position away from zero. This is again in sharp contrast to the risk case,
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where the derivative of the optimal position with respect to �me is everywhere strictly positive.

The key point is that an increase in ambiguity can be locally large relative to an increase in

risk. Indeed, the portfolio y ¼ 0 is both riskless and unambiguous. Any move away from it

makes the agent bear both risk and ambiguity. However, an increase in ambiguity about

means is perceived like a change in the mean and not like an increase in the variance.

Ambiguity can thus have a first-order effect on portfolio choice that overwhelms the first-

order effect of change in the mean, whereas the effect of risk is second order.

3.1.2. Hedging and portfolio inertia away from certainty. Nonparticipation and portfolio

inertia can also arise when the portfolio y ¼ 0 does not have a certain return, and when the

ambiguous asset can help hedge risk. The MP model is sometimes claimed to give rise to

inertia only at certainty. The claim is often based on examples with two states of the world,

where MP preferences exhibit indifference curves that are kinked at certainty and smooth

elsewhere. However, the example here illustrates that in richer settings inertia is a more

general phenomenon. To see this, assume that the interest rate is not riskless but instead

random with known mean mf, variance s2f , and cov(rf , r) ¼ sfr < 0. One interpretation is

that rf is the real return on a nominal bond and r the return on the stock market, which is

perceived to be an inflation hedge (stocks pay off more when inflation lowers the real bond

return). The agent solves

max
y

min
p2P1

Ep logRw
2

� �
� max

y
min

me2 �me��x, �meþ�x½ 

mf þ y me � sfr

� �
� 1

2
y2s2 þ s2r
� �

:




Investing in stocks is now useful not only to exploit the equity premium me, but also to

hedge the risk in a bond position. Moreover, the portfolio y ¼ 0 (holding all wealth in

bonds) is still unambiguous, but it is no longer riskless. Adapting the earlier argument, the

agent goes long in stocks if �me � �x� sfr > 0, he goes short if �me þ �x� sfr < 0, and he stays

out of the stock market otherwise. For a positive benchmark equity premium �me > 0, the

degree of ambiguity (measured by �x ) required to generate nonparticipation is now larger

(because of the benefit of hedging), but the basic features of nonparticipation and portfolio

inertia remain. The key point is that investing in stocks exposes investors to a source of

ambiguity—the unknown equity premium—whereas investing in bonds does not.

Portfolio inertia is a property that is distinct from, and more general than, nonparti-

cipation. This is because even away from certainty there can be portfolios where a small

change in a position entails a large change in the worst-case belief. To illustrate, consider

an agent who believes in a one-dimensional set of models of excess returns indexed by an

ambiguous parameter x 2 0, �x½ 
. In particular, the premium is me ¼ �me þ x and the variance

is s2 ¼ �s2 þ 2x=g, where g is known. Intuitively, the agent believes that risk and expected

return go together, but he does not know the precise pair (me, s2). Illeditsch (2010) shows

that such a family of models can obtain when agents receive bad news of ambiguous

precision: More precise bad news lowers both the conditional mean and the conditional

variance of returns. The agent solves

max
y

min
p2P1

Ep logRw
2

� �
� max

y
min
x2 0,�x½ 


mf þ y �me þ xð Þ � 1

2
y2 �s2 þ 2x=g
� �n o

:

There are now two portfolios that are completely unambiguous: y ¼ 0 and y ¼ g, and the

latter yields the higher return on wealth if �me > g�s2=2. If, moreover, ambiguity is large

enough so that �me < g�s2 þ �x, then it is optimal to choose y ¼ g.
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At y ¼ g, a small increase in y leads to the worst-case scenario x ¼ �x, whereas a small

decrease leads to x ¼ 0. Intuitively, risk is taken more seriously relative to expected return

at higher positions. Accordingly, the worst-case scenario changes with position size: At

high positions, agents fear high risk, whereas at small positions, they fear low expected

returns. At y ¼ g, the two effects offset. The presence of an unambiguous portfolio is a

knife-edge case driven by the functional form (or here by the approximation we are using).

More generally, even if no portfolio makes the objective function independent of x, there

can exist portfolios at which the minimizing choice of x flips discontinuously. Thus, it

follows that, at y ¼ g, any news that slightly changes the benchmark premium �me has no
effect on portfolio choice. Indeed, changing the portfolio to exploit news about �me would

require the agent to bear ambiguity. The resulting first-order loss from increased uncer-

tainty overwhelms the gain from a small change in �me:

3.1.3. Multiple ambiguous assets: selective participation and benefits from diversification.

With multiple assets, ambiguity gives rise to selective participation. To illustrate, consider a

set of n uncertain assets such that (a) returns are known to be uncorrelated, i.e., the

covariance matrix S in Equation 3.2 is diagonal, and (b) the premia me are perceived to be

ambiguous but independent, i.e., me lies in the Cartesian product of intervals

�mei � �xi, �mei þ �xi
� �

, i ¼ 1, . . .,n. From Equation 3.2, it is optimal to participate in the market

for asset i if and only if 0 =2 �mei � �xi, �mei þ �xi
� �

, that is, if the premium on asset i is nonzero

and not too ambiguous. Agents thus stay away from those markets for which they lack

confidence in assessing the distribution of returns. Introducing correlation among returns

will change the conditions for participation, but it will not rule out selective participation.

The argument is essentially the same as in the previous section.

If ambiguity about premia is independent across assets, then it cannot be diversified

away. To see this, specialize further to i.i.d. risk (S ¼ s2I) as well as i.i.d. ambiguity about

premia. In particular, let all premia lie in the same interval that is centered at �mei ¼ m̂e and
has bounds implied by �xi ¼ x̂. Assume also that it is worthwhile to go long in all markets,

or m̂e � x̂ > 0. Symmetry implies that the optimal portfolio invests the same share, say ŷ=n,
to each uncertain asset. Substituting yi ¼ ŷ=n for all i as well as me ¼ m̂� x̂ð Þi in

Equation 3.2, the return on wealth is

max
y

min
p2P1

Ep logRw
2

� �
� max

ŷ
r f þ ŷ m̂e � x̂ð Þ � s2

2n
ŷ
2


 �
:

As the number of independent uncertain assets becomes large, the quadratic term

becomes small and the effect of risk on the portfolio decreases. At the same time, the

effect of ambiguity on portfolio choice remains unchanged. Intuitively, ambiguity

reflects confidence in prior information about individual assets that is perceived as a re-

duction in the mean. Investing in many assets does not raise confidence in that prior

information.

Without independence, diversification may be beneficial, because assets hedge

ambiguity in other assets. For example, retain the assumption of i.i.d. risk, but suppose

now the agent believes premia are me ¼ m̂eiþ x with x
0
x 	 k2, where k < m̂e is fixed.

Intuitively, the agent perceives a common factor in mean returns such that if one mean is

very far away from the benchmark m̂e, then all others must be relatively close. The agent

solves
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max
y

min
p2P1

Ep logRw
2

� �
� max

y
min
x0x	k2

rf þ y m̂eiþ xð Þ � s2

2n
y2


 �
:

Symmetry again implies y ¼ iŷ=n for some ŷ. For ŷ > 0, minimization yields

x ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k=y

0
y

q
¼ k=

ffiffiffi
n

p
and the portfolio return is thus

max
ŷ

rf þ ŷ m̂e � kffiffiffi
n

p
� 	

� s2

2n
ŷ
2


 �
:

The effect of ambiguity on portfolio choice thus shrinks as n increases, although the

speed is slower than for risk.

An extreme case of cross-hedging ambiguity arises when an unambiguous family of

portfolios can be constructed. Suppose, for example, that there are only two assets with

i.i.d. risk and that me1 ¼ m̂e þ x and me2 ¼ m̂e � x, with x2 	 k2. Such a situation may arise

when there is pool of assets (e.g., mortgages) with relatively transparent payoff, which has

been cut into tranches in a way that makes the payoffs on the individual tranches rather

opaque. In this case, holding the entire pool or holding tranches in equal proportions

hedges ambiguity. In contrast, an agent holding an individual tranche in isolation bears

ambiguity.

3.1.4. Dynamics: entry and exit rules and intertemporal hedging. To illustrate new effects

that emerge in an intertemporal context, consider a three-period setup with one uncertain

asset. Beliefs can be described by sets of one-step-ahead conditionals. The date 1 one-step-

ahead conditionals for date 2 log excess return are normal with variance s22 and ambiguous

mean in the interval �me2 � �x2, �me2 þ �x2
� �

. As of date 2, the date 3 log excess returns are again

viewed as normal, now with variance s23. Moreover, there is a signal s2 that induces, via some

updating rule, an interval of expected log excess returns �me3(s2)� �x3(s2), �me3(s2)þ �x3(s2)
� �

. In

general, the signal can be correlated with the realized excess return re2. This will be true, for

example, if the agent is learning about the true premium, and the realized excess return is

itself a signal. Importantly, updating will typically affect both the benchmark mean return �me3
and the agents’ confidence, as measured by �x3.

Portfolio choice at date 2 works just like in the one period problem (Equation 3.3)

above. The value function from that problem depends on wealth W2 and the signal s2. Up

to a constant, it takes the form V2 W2,s2ð Þ ¼ logW2 þ h(s2), where

h(s2) ¼
1

2s23
maxf�me3(s2)� �x(s2),0g2 þminf�me3(s2)þ �x(s2),0g2
� �

:

The value function is higher for signals that move the range of equity premia away from

zero, so that worst-case expected returns higher than the riskless rate can be obtained. For

example, Epstein & Schneider (2007) show in a model of learning about the premium with

s2 ¼ re2 that the value function is U-shaped in the signal.

Because the value function V2 is separable inW2 and s2, the portfolio choice problem at

date 0 can still be solved separately from the savings problem. The agent solves

max
y

min
p2P1

fEp½logRw
2 þ h(s2)
g:

The difference to the one-shot problem (Equation 3.3) is that minimization takes into

account the effect on the expected return at the optimal portfolio to be chosen at date 2,
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captured by h. As a result, it is possible that the choice of p and the choice of the optimal

portfolio are different in the two-period problem from those in the one-period problem. In

other words, an investor with a two-period horizon does not behave myopically but

chooses to hedge future investment opportunities. This hedging is due entirely to ambigu-

ity: With a single prior, log utility guarantees that myopic behavior is optimal. In the

expected-utility case, hedging demand is linked to a nonzero cross derivative of the value

function V2. With ambiguity, hedging demand can arise in the log case, even though the

cross derivative is zero, because the minimization step creates a link across periods between

Ep logRw
2

� �
and Ep[h(s2)].

In the intertemporal context, the (recursive) MP model delivers two new effects for

portfolio choice. First, the optimal policy involves dynamic exit and entry rules. Indeed,

updating shifts the interval of equity premia, and such shifts can make agents move in and

out of the market. Second, there is a new source of hedging demand. It emerges if return

realizations provide news that shift the interval of equity premia. Portfolio choice opti-

mally takes into account the effects of news on future confidence. The direction of hedging

depends on how news affects confidence. For example, Epstein & Schneider (2007) show

that learning about premia gives rise to contrarian hedging demand if the empirical mean

equity premium is low. Intuitively, agents with a low empirical estimate know that a

further low return realization may push them toward nonparticipation and hence a low

return on wealth (formally this is captured by a U-shaped value function). To insure against

this outcome, they short the asset.

3.1.5. Differences between models of ambiguity. This section illustrates several phenom-

ena that can be traced to first-order effects of uncertainty under the MP model, in partic-

ular selective participation, portfolio inertia, and the inability to diversify uncertainty (at

least for some sets of beliefs). These effects cannot arise under SEU, which implies local risk

neutrality at certainty, smooth dependence of portfolios on the return distribution (at least

under the standard assumptions studied here), and benefits of diversification.

The smooth model and multiplier utility resemble SEU in the sense that they also cannot

generate the above phenomena. This is immediate for multiplier utility, which is observa-

tionally equivalent to SEU on Savage acts, as explained in Section 2.1.4. Moreover, for the

smooth model, if u and f are suitably differentiable, then so is UKMM. As a result, selective

participation is again a knife-edge property. A theme that is common to smooth models

and the MP model is the emergence of hedging demand due to ambiguity.

Some authors have argued that smoothness is important for tractability of portfolio

problems. It is true that smoothness permits calculus techniques to be used to solve

optimization problems. Moreover, in the expected utility case, closed-form solutions are

sometimes available in dynamic problems, and the same may be true for smooth models

that are close to expected utility. However, most applied portfolio choice problems consid-

ered in the literature today are solved numerically. Even in the expected utility case, they

often involve frictions that make closed-form solutions impossible. From a numerical

perspective, the additional one-step-ahead minimization step does not appear excessively

costly.

3.1.6. Discipline in quantitative applications. In the portfolio choice examples above as

well as in those on asset pricing below, the size of the belief set is critical for the magnitude
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of the new effects. There are two approaches in the literature to discipline the belief set.

Anderson et al. (2000) propose the use of detection error probability (for an exposition, see

also Barillas et al. 2009). These authors use detection error probabilities in the context of

multiplier preference, but the idea has come to be used also to constrain the belief set in

MP. The basic idea is to permit only beliefs that are statistically close to some reference

belief, in the sense that they are difficult to distinguish from the reference belief based on

historical data.

To illustrate, let A denote a reference belief (for example, a return distribution), and let

B denote some other belief. We want to describe a sense in which A and B are “statistically

close.” Let pA denote the probability, under A, that a likelihood ratio test based on the

historical data (of returns, say) would falsely reject A and accept B. Define pB similarly as

the probability under B of falsely rejecting B in favor of A. Finally, define the detection

error probability p by p ¼ 1

2
(pA þ pB). The set of beliefs is now constrained to include only

beliefs with p small enough. One may also choose to make additional functional form

assumptions (for example, serial independence of returns).

A second approach to impose discipline involves using a model of learning. For exam-

ple, the learning model of Epstein & Schneider (2007) allows the modeler to start with a

large set of priors in a learning model, resembling a diffuse prior in Bayesian learning, and

then shrinking the set of beliefs via updating. A difference between the learning and

detection probability approach is that in the former the modeler does not have to assign

special status to a reference model. This is helpful in applications where learning agents

start with little information, for example, because of a recent structural change. In con-

trast, the detection probability approach works well for situations where learning has

ceased or slowed down, and yet the true model remains unknown.

3.1.7. Literature notes. The nonparticipation result with one uncertain asset is due to

Dow & Werlang (1992). More general forms of portfolio inertia appear in Epstein &

Wang (1994) and Illeditsch (2010). Mukerji & Tallon (2003) compare portfolio inertia

under ambiguity and first-order risk aversion. Garlappi et al. (2007) characterize portfolio

choice with multiple ambiguous assets. Bossaerts et al. (2010) and Ahn et al. (2009)

provide experimental evidence that supports first-order effects of uncertainty in portfolio

choice.

A large empirical literature shows that investors prefer assets that are familiar to them

and that the extensive margin matters. One candidate explanation for nonparticipation is

that expected-utility investors pay a per-period fixed cost. Vissing-Jorgenson (2002) argues

that this approach cannot explain the lack of stock market participation among the

wealthy in the United States. Quantitative studies of familiarity bias using the MP model

thus seem a promising avenue for future research. Cao et al. (2007) summarize the evi-

dence and discuss ambiguity aversion as a possible interpretation. Most applications of

ambiguity to portfolio home bias (Uppal & Wang 2003, Benigno & Nistico 2009) and

own-company-stockholdings (Boyle et al. 2003) employ smooth models and do not focus

on the extensive margin.

Epstein & Schneider (2007) compute a dynamic portfolio choice model with learning,

using the recursive MP approach. They derive dynamic exit and entry rules as well as an

intertemporal hedging demand. They also show that, quantitatively, learning about the

equity premium can generate a significant trend toward stock market participation and

investment, in contrast to results with Bayesian learning. The reason lies in the first-order
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effect of uncertainty on investment. Roughly, learning about the premium shrinks the

interval of possible premia and thus works like an increases in the mean premium, rather

than just a reduction in posterior variance, which tends to be second order. Campanale

(2010) builds an MP model of learning over the life cycle. He shows that such a model

helps explain participation and investment patterns by age in the U.S. Survey of Consumer

Finances. Miao (2009) considers portfolio choice with learning and MP in continuous

time. Faria et al. (2009) study portfolio choice when volatility is ambiguous.

3.2. Asset pricing

We now use the above results on portfolio choice to derive consumption-based asset

pricing formulas. Our formal examples focus on representative agent pricing, because the

literature on this issue is more mature and has proceeded to derive quantitative results;

notes on new work on heterogenous agent models are provided below.

In equilibrium, a representative agent is endowed with a claim to consumption at date 2

and prices adjust so he is happy to hold on to this claim. Write date 2 consumption as

C2 ¼ C1 exp(Dc), where Dc is consumption growth. It is useful to distinguish between

consumption and dividends. In our two-period economy, we call the payoff to stocks

dividends. In a dynamic model, the second-period utility is a value function over wealth,

and the payoff on stocks includes the stock price. The basic intuition is the same. Now,

assume a share 1 � d of consumption consists of labor income that grows at the constant

rate ml and a share d consists of dividends that have a lognormal growth rate Dd with

variance s2d and an ambiguous mean md 2 �md � �x, �md þ �x½ 
. Using the same approximation

as for the return on wealth above, write consumption growth as

Dc ¼ (1� d)ml þ d Dd þ 1

2
s2d

� 	
� 1

2
d2s2d:

The consumption claim trades at date 1 at the price Pc and has log return

rc ¼ logC2 � logPc ¼ Dc� log(Pc=C1). The premium on the consumption claim is

me ¼ E rc½ 
 þ 1

2
var rcð Þ � rf ¼ (1� d)ml þ d md þ

1

2
s2d

� 	
� log(Pc=C1)� rf :

The representative agent solves a version of problem 3.3, given wealthW¼ Pc þ C1 and

a range of premia me generated by ambiguity in dividend growth md. At the equilibrium

price and interest rate, he must find it optimal to choose y ¼ 1 and C1 ¼ (Pc þ C1)/(1 þ b).
The latter condition pins down Pc. With log utility, the price-dividend ratio on a consump-

tion claim depends only on the discount factor.

The condition y ¼ 1 pins down the interest rate. Because y > 0, minimization in

Equation 3.3 selects the lowest premium, say me, by selecting the lowest mean dividend

growth rate �md � �x. Solving the condition y ¼ 1 for the interest rate we obtain

rf ¼ �log bþ (1� d)ml þ d �md þ
1

2
s2d

� 	
� 1

2
d2s2d


 �
� 1

2
d2s2d � d �x: ð3:4Þ

The interest rate depends on the discount factor, the mean consumption growth rate (in

braces), as well as a precautionary savings term. An increase in either risk or ambiguity

makes the agent try to save more, which tends to lower the equilibrium interest rate. If

d < 1, an increase in risk also raises the mean growth rate of consumption.
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The same price and interest rate would obtain in an economy where the agent is not

ambiguity averse but simply pessimistic: He believes that mean consumption growth is

�mc � �x with certainty. This reflects a general point made first by Epstein & Wang (1994):

Asset prices under ambiguity can be computed by first finding the most pessimistic beliefs

about the consumption claim and then pricing assets under this pessimistic belief. We

emphasize that this does not justify simply modeling a pessimistic Bayesian investor from

the onset. For one thing, the worst-case scenario implied by a MP setup may look absurd

when interpreted as a dogmatic Bayesian belief. Moreover, a form of the Lucas critique

applies: The pessimistic investor is no more than a convenient “reduced form”. Thus,

focusing on him can give misleading answers to comparative statics (e.g., policy) questions.

Turn now to the stock price and equity premium. If a claim to dividends D2 ¼ D1e
Dd

trades at the price Pd, absence of arbitrage opportunities requires that its premium satisfy

d �md � �xþ 1=2ð Þs2d � log Pd=D1ð Þ � rr
� �

¼ me. The price-dividend ratio on equity is thus

Pd=D1 ¼ exp �md þ
1

2
s2d

� 	
exp �rf � �xþ ds2d

� �� �
:

The price is the expected level of dividends under benchmark growth �md (the first term),

discounted at an uncertainty-adjusted rate that increases in both risk ds2d and ambiguity �x.

Importantly, the degree of ambiguity �x affects the discount rate one-for-one, but it affects

the interest rate (Equation 3.4) only d for one. For small d, changes in ambiguity (for

example, due to updating) have a large effect on stock prices but only a small effect on

interest rates. This is important for addressing the equity volatility puzzle.

To discuss premia observed in the market, we need to take a stand on the true data-

generating process. Suppose that dividend growth is drawn from a distribution with mean

m*d and variance s2d. An econometrician who observes many realizations of the economy

obtains a sample of excess returns Dd � log(Pd=D1)� rf . The average premium measured

by the econometrician is thus

md*� log(Pd=D1)� rf þ 1

2
s2d ¼ ds2d þ md*� (�md � �x): ð3:5Þ

It consists of a risk premium and an ambiguity premium. The risk premium is the covari-

ance of consumption growth and stock returns. For an asset that represents only a small

share of consumption, a large risk premium requires large payoff volatility s2d.
The ambiguity premium consists of the difference between true mean dividend growth

and the worst-case mean used by the agent to evaluate the asset. If the belief interval is

centered around the truth (�md ¼ md*), then it is equal to �x. In any case, the share of the

payoff in consumption does not matter for the ambiguity premium. If a lack of confidence

in the asset is reflected in a range of premia, it raises the premium one-for-one. Put together,

models of ambiguity aversion hold promise for resolving the equity premium and excess

volatility puzzles, especially if the distinction between consumption and dividends is made

explicit.

3.2.1. Amplification. With MP preferences, prices may depend very strongly—in fact,

discontinuously—on fundamentals that change the representative agent’s portfolio. This is

the flip side of the portfolio inertia discussed in Section 3.1.2, which says that portfolios

may not respond to small changes in prices. To illustrate, consider a family of models for

the growth of stock payoffs similar to that used for returns above: Let md ¼ �md þ x g� 1ð Þ=g
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and s2d ¼ �s2d þ 2x=g, where x 2 0, �x½ 
 is ambiguous and g 2 (0,1) is fixed. Intuitively, the

agent believes that high growth goes along with high volatility. While the log-growth rate

is decreasing in x, the adjusted-growth rate md þ 1

2
s2d is increasing. Mean consumption

growth now depends on x via the term xd(1�d/g), and the worst case is x ¼ 0 if d < g and
x ¼ �x if d > g. If dividends make up a small part of consumption, agents fear low growth.

As the share of dividends increases, concern with high risk eventually dominates.

The interest rate takes the form

rf ¼ �logbþ �mc �
1

2
d2s2d � d�xD,

where D ¼ 1 if d > g, D ¼ 0 if d < g and D2[0,1] if d ¼ g. Viewed as a function of d, the
interest rate has a discontinuity at the point d ¼ g. A small change in fundamentals—here

the share of stock payoffs in wealth—can have a large effect on asset prices. Intuitively, a

small drop in the share of stock payoffs in wealth redirects agents’ concern from high risk

to low growth. This results in a jump in interest rates (and a crash in asset prices).

3.2.2. The cross section of returns and idiosyncratic ambiguity. To examine the cross

section of stock returns, assume there is no labor income but that the consumption claim

consists of n trees of the same size with i.i.d. lognormal dividend growth rates with mean

md and variance s2d. Consumption growth is thus

Dc � 1

n

Xn
i¼1

Ddi þ
1

2
s2d

� 	
� 1

2n
s2d:

Assume that dividend growth rates are perceived as ambiguous but independent: The

vector of means md is drawn from a Cartesian product of intervals �md � �xi, �md þ �xi½ 
:
Although the center of the interval is the same for all trees, the agent views some trees as

more ambiguous than others.

In equilibrium, tree prices Pi and the interest rate are determined so that the agent is

willing to hold all trees. With a true dividend growth rate md* ¼ �md for all trees, similar

algebra as above delivers an interest rate and measured stock premia

r f ¼ �logbþ �md þ
1

2
s2d �

1

n

X
�xi �

1

2n
s2d

md*� log(Pi=Di)� rf þ 1

2
s2d ¼ 1

n
s2d þ �xi

As the number of trees increases, the effects of risk on asset prices vanish. Indeed, both

the precautionary savings term in the interest rate and the risk premium on a tree—the

covariance of the tree return with consumption growth—go to zero. The effect of ambigu-

ity on the interest rate also vanishes as aggregate consumption becomes less ambiguous.

However, the ambiguity premium on an individual tree does not depend on the number of

trees; it depends only on the ambiguity perceived about that individual tree.

3.2.3. Literature notes: representative agent pricing. Epstein & Wang (1994, 1995) first

studied representative agent asset pricing with MP in discrete time and pointed out the

possibility of amplification and price indeterminacy. Chen & Epstein (2002) character-

ize pricing in continuous time. Sbuelz & Trojani (2008) derive pricing formulas with

www.annualreviews.org � Ambiguity and Asset Markets 10.27



entropy-constrained priors. Gagliardini et al. (2008) show how to apply detection proba-

bilities in an MP setting. Epstein & Schneider (2008) consider the effect of learning, with a

focus on the role of signals with ambiguous precision. They show that such signals induce

an asymmetric response to news – bad news is taken more seriously than good news – and

contribute to premia for idiosyncratic volatility as well as negative skewness in returns.

Williams (2009) provides evidence that in times of greater uncertainty in the stock market

the reaction to earnings announcements is more asymmetric. Illeditsch (2010) shows how

learning from ambiguous signals can give rise to amplification, particularly in times when

bad news arrives.

Another key property of ambiguous signals is that the anticipation of poor signal

quality lowers utility. As a result, a shock that lowers the quality of future signals can

lower asset prices. In contrast, in a Bayesian setting, the anticipation of less precise future

signals does not change utility or prices so long as the distribution of payoffs has not

changed. Epstein & Schneider (2008) use a quantitative model to attribute some of the

price drop after 9/11 to the discomfort market participants felt because they had to process

unfamiliar signals. There is a related literature on “information uncertainty” in account-

ing. For example, Autore et al. (2009) consider the failure of Arthur Anderson as an

increase in (firm-specific) ambiguity about AA clients and document how the price effect

of this shock depended on the availability of firm-specific information.

There are now a number of quantitative studies that apply the recursive MP model to

different asset markets. Trojani & Vanini (2002. 2004) revisit the equity premium puzzle.

Jeong et al. (2009) estimate a model of stock returns with an emphasis on time variation in

equity premia. Drechsler (2008) studies the joint behavior of equity returns and option

prices. Both Jeong et al. and Drechsler use a general specification of RMP with separate

parameters for risk aversion and substitution as in Epstein & Zin (1989) and thus allow for

the interaction of ambiguity and “long-run risk.” Ilut (2009) addresses the uncovered

interest parity puzzle in foreign exchange markets using a model of regime switching under

ambiguity. Gagliardini et al. (2008) and Ulrich (2009) consider the term structure of

interest rates, focusing on ambiguity about real shocks and monetary policy, respectively.

Boyarchenko (2009) studies credit risk in corporate bonds.

There is also a growing literature on quantitative asset pricing with smooth models.

Barillas et al. (2009) use multiplier preferences to reinterpret the equity premium results

found by Tallarini (2000) in a model with Epstein-Zin utility. Hansen & Sargent (2009)

and Chen et al. (2009) consider the behavior of stock returns in models with learning about

hidden states, using multiplier and KMM utility, respectively. Kleschinski & Vincent

(2009) study the real term structure in a model with robustness. Liu et al. (2005) consider

the smirk in option premia.

3.2.4. Literature notes: heterogeneous agent models. Recent work has explored heteroge-

nous agent models where some agents have MP. Epstein & Miao (2003) consider an

equilibrium model in which greater ambiguity about foreign as opposed to domestic

securities leads to a home bias. Several models center on portfolio inertia as discussed

above. Mukerji & Tallon (2001) show that ambiguity can endogenously generate an

incomplete market structure. Intuitively, if ambiguity is specific to the payoff on a security,

as in 3.1.3 above, then no agent may be willing to take positions in a security with suffi-

ciently ambiguous payoffs. Mukerji & Tallon (2004) build on this idea to explain the scarcity

of indexed debt contracts with ambiguity in relative prices. Easley & O’Hara (2009)
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consider the welfare effects of financial market regulation in models whereMP agents choose

in what markets to participate.

A shock to the economy that suddenly increases ambiguity perceived by market partic-

ipants can drive widespread withdrawal from markets, a “freeze.” This is why MP has

been used to capture the increase in uncertainty during financial crises (Caballero &

Krishnamurthy 2008, Caballero & Simsek 2009, Guidolin & Rinaldi 2009, Routledge &

Zin 2009). Uhlig (2009) considers the role of ambiguity aversion in generating bank runs.

In heterogenous agent models price generally depend on the entire distribution of

preferences. An important point here is that if only some agents become more ambiguity

averse, this may not increase premia observed in the market. The reason is that the more

ambiguity averse group might leave the market altogether, leaving the less ambiguity averse

agents driving prices (Cao et al. 2005, Chapman & Polkovnichenko 2009, Ui 2009).

Illeditsch (2010) provides conditions on the distribution of preferences under which ampli-

fication effects (as discussed in Section 3.2.3) obtain with heterogeneous agents. Condie

(2010) considers conditions under which ambiguity-averse agents affect prices in the long

run even if they interact with SEU agents.

A number of papers have recently studied setups with ambiguity-averse traders and

asymmetric information. Condie and Ganguli (2009) show that if an ambiguity averse

investor has private information, then portfolio inertia (as in Equation 3.1.2) can prevent

the revelation of information by prices even there is the same number of uncertain funda-

mentals and prices. Ozsoylev & Werner (2009) and Caskey (2009) study the response of

prices to shocks when ambiguity-averse agents interact with SEU traders and noise traders.

Mele & Sangiorgi (2009) focus on the incentives for information acquisition in markets

under ambiguity.
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