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Some recent work on generalized Tonnetze has examined the topologies
resulting from Richard Cohn’s common-tone based formulation, while
Tymoczko has reformulated the Tonnetz as a network of voice-leading re-
lationships and investigated the resulting geometries. This paper adopts
the original common-tone based formulation and takes a geometrical ap-
proach, showing that Tonnetze can always be realized in toroidal spaces,
and that the resulting spaces always correspond to one of the possible
Fourier phase spaces. We can therefore use the DFT to optimize the
given Tonnetz to the space (or vice-versa). I interpret two-dimensional
Tonnetze as triangulations of the 2-torus into regions associated with the
representatives of a single trichord type. The natural generalization to
three dimensions is therefore a triangulation of the 3-torus. This means
that a three-dimensional Tonnetze is, in the general case, a network of
three tetrachord-types related by shared trichordal subsets. Other Ton-
netze that have been proposed with bounded or otherwise non-toroidal
topologies, including Tymoczko’s voice-leading Tonnetze, can be under-
stood as the embedding of the toroidal Tonnetze in other spaces, or as
foldings of toroidal Tonnetze with duplicated interval types.

1. Formulations of the Tonnetz

The Tonnetz originated in nineteenth-century German harmonic theory as

a network of pitch classes connected by consonant intervals. Initially pre-

sented as a grid of perfect fifth and major third intervals, Arthur von Oet-

tingen and Hugo Riemann used it to show acoustical relationships between

tones, but in Ottokar Hotinský’s reformulation, it became a triangular net-

work of tones connected by perfect fifths, major thirds, and minor thirds.

Riemann adopted this form of the network as a map of tonal relationships
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for analysis of chromatic harmony.1,2 The important feature of this trian-

gular network is that each triangle contains all the pitch classes of a major

or minor triad, and triads sharing two pitch classes are adjacent across a

common edge.

In an influential article, Richard Cohn3 suggests that the Tonnetz can

be generalized by changing the intervals of the network, so that the trian-

gles correspond to different possible trichord types. He also points out a

feature unique to the triadic Tonnetz, not shared by other possible Ton-

netze within the 12-tone system: for any two adjacent triads, the unique

tones that distinguish them are always separated by a small distance, one

or two semitones.

As a result of this long history, the Tonnetz has acquired, as Dmitri Ty-

moczko points out,4 at least three theoretical meanings: A map of acous-

tical relationships between tones, a map of common-tone relationships be-

tween triads, and as a map of minimal voice-leading relationships between

triads. Cohn’s generalization makes little sense according to the acoustical

understanding of the Tonnetz. It also prioritizes common-tone relationships

over stepwise voice leading, which Tymoczko takes as the essential prop-

erty of a Tonnetz. Nonetheless, Cohn’s common-tone based formulation is

of significant musical interest, and Tymoczko’s voice-leading Tonnetze may

in fact be understood as special cases of it. Considering the topic from

a geometrical perspective, rather than a purely topological approach—as

reflected in a number of recent mathematical papers on generalized Ton-

netze5–7—helps to enrich their potential music-theoretic applications. In

this sense the the work below shares a kinship with Tymoczko’s recent

work, also fundamentally grounded in geometric considerations, but the

geometries derived here have a different mathematical basis, the DFT.

For the Tonnetz as a network, the triangles are mathematically sig-

nificant as its maximal cliques (maximal sets of vertices all of which are

adjacent). The corresponding geometrical concept is the simplex. Thus, as

Louis Bigo and others have observed,6 the Tonnetz may be understood as a

simplicial complex, and generalized along these lines. From this perspective,

Hotinský’s “completion” of the network was necessary and inevitable, be-

cause Oettingen’s original grid contains no cliques that could be identified

with 2-simplexes (triangles). The Tonnetz is more than just a simplicial

complex, however, because it also fills an entire space with 2-simplexes,

making it a triangulation of that space. This will have important ramifica-

tions for three-dimensional Tonnetze.
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2. Definition and Construction of 2-Dimensional Tonnetze

We can define a Tonnetz geometry with some basic stipulations:

• There are a finite number of pitch classes corresponding to some Zu

• Each pitch class is assigned a unique point in the space

• Transposability : All translations of Zu (musical transpositions) corre-

spond to some rigid geometric transformation of the space that maps the

pitch-classes appropriately.

The transposability condition is crucial; it demands that the cyclic struc-

ture of the pitch-class universe be reflected in the geometry as rigid transfor-

mations. It also implies that intervals of Zu of the same size are represented

by the same distances.

A straightforward construction that maps musical transpositions to

translations in a cyclic space can immediately generate a family of spaces

satisfying the above stipulations for any Zu . The procedure is as follows:

(1) Choose a number of dimensions

(2) For each dimension, n, choose a mapping 1 7→ 2πxn/u where xn is

an integer between 0 and n − 1, such that all of the xn are mutually

coprime to u.

(3) Place the pitch classes by iterations of interval 1 = (x1, x2, ...).

In step (3), and throughout, a constant multiplier of 2π/u is assumed.

It is clear that this procedure will produce a geometric embedding of the

pitch classes that satisfies the transposability condition, where translations

of the space by (kx1, kx2, ...) correspond to transposition by k. The coprime

condition ensures that each pitch class has a unique position in the space.

Given a space satisfying the above conditions, we can define a gener-

alized Tonnetz as the triangulation of the space whose vertices correspond

precisely to the pitch classes, and where the dimension of the simplexes

matches the dimension of the space. The following construction for the

2-dimensional case will be generalized to 3 and n dimensions below.

(1) Define a two-dimensional space for the given Zu as specified above.

(2) Choose a line segment that connects pitch-class 0 to any other pitch

class without passing through another pitch class.

(3) Translate this line segment to all pitch classes.

(4) Choose another line segment from pitch-class 0 to any other that is

not parallel to the first line segment and does not cross it or any of its



November 22, 2017 12:45 ws-rv9x6 Book Title yustTonnetzSub
page 4

4 J. Yust

translates. Translate this to all pitch classes. The result is a skewed

square lattice.

(5) Choose a diagonal of one of the parallelograms and translate it to each

pitch class.

A simple example is given in Fig. 1 for Z6, represented as a whole-tone

universe. The pitch classes are set by choosing 1 7→ (1, 2). We make a

lattice by first connecting the major thirds with line segments (2,−2) from

each pitch class, then the major seconds with (1, 2) line segments. There

are two possible diagonals to bisect this lattice, one of which (connecting

the tritones) creates a (026)-Tonnetz. The other possibility would give

an (024)-Tonnetz by creating a distinct set of major-second edges. This

possibility of interval duplications is inherent to the formalism and will be

further explored below.
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Fig. 1. Construction of a Tonnetz in a whole-tone universe.

Other Tonnetz formulations that have been proposed relate to this

toroidal construction, although they may display other topological features.

For instance, Tymoczko’s triadic voice-leading Tonnetz (Fig. 2) is formu-

lated in 3-note chord space, which is a bounded, non-orientable triangular

prism whose ends are glued with a twist.8 The geometry satisfies the trans-

posability condition through translation along the central axis of the space

and screw rotation around the axis. The dimensionality of the space can be

reduced, however, by taking just the toroidal surface surrounding this axis

where all the pitch classes lie, making it equivalent to one of the toroidal

spaces derivable from the construction proposed above. The purpose of

Tymoczko’s extension of this space is to show the augmented triads as

triangles in the added dimension cutting across the torus, essential to his

minimal voice leading requirement.

Other kinds of spaces can be derived in certain cases by folding toroidal
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Fig. 2. Tymoczko’s Triadic Tonnetz in Voice-Leading Space.4

ones, resulting in non-orientable, bounded, and spherical topologies. Ex-

amples are described below.

3. Geometric Tonnetze and Fourier Phase Spaces

Emmanuel Amiot9 first noted a connection between Fourier phase spaces

and the Tonnetz. Phase spaces are defined by applying the DFT to the

characteristic function of a pitch-class set, then taking the phase values of

certain coefficients as coordinates. Because phases are cyclic, the resulting

spaces are toroidal. Amiot observed that using phases of the third and fifth

coefficients yields an arrangement of major and minor triads mimicking

the dual of the standard Tonnetz. I investigated this further10 observing

that the Tonnetz was a triangulation on the pitch classes, and that such a

triangulation could be defined for any trichord in any 2-dimensional phase

space. Fig. 3 shows the standard Tonnetz in a Ph3,5-space (where “Phx,y”

refers to a two-dimensional phase space on phases of coefficients x and

y.11) This space is optimal for this Tonnetz, but a well-formed Tonnetz

for any trichord is possible in this space provided that Z12 is its minimal

embedding universe. For example, we can draw an (013)-Tonnetz, although

the Ph3,5-space is clearly not optimal for making compact (013) regions.

This naturally raises the question of whether the reasoning can be re-

versed, deriving the Fourier phase spaces from some elementary principles

about the geometric embedding of a Tonnetz. The above construction
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Fig. 3. The standard Tonnetz and (013)-Tonnetz in Ph3,5-space.

shows that this is indeed the case, provided we limit the transposability

condition to translations, enforcing a simple toroidal topology. The one-

dimensional cyclic spaces defined by the condition 1 ∈ Zu 7→ 2πxn/u are

precisely the possible one-dimensional phase spaces for the DFT of a pitch-

class set in universe u, and an n-dimensional phase space is a direct product

of n one-dimensional spaces.

The relation to phase spaces may be a key to successful music-analytic

application of non-triadic Tonnetze. Thus far, such applications have

been limited; examples include an (013)-Tonnetz analysis of a Bach fugue

subject by David Lewin,12,13 Van den Toorn and McGinness’s octatonic-

diatonic (025) Tonnetz,14 Stephen Brown’s ic1/ic5 Tonnetz,15 and Sicil-

iano’s16 Cohn-cycle analyses which could be readily plotted in (026) and

(014) Tonnetze. These analyses typically require a high degree of satura-

tion of a musical passage with a single trichord type, and must leave by

the wayside aspects of the harmony not accounted for by that trichord.

Yet recent research has indicated a wide range of analytical applications

of Fourier phase spaces.11,17–19 The inherent limitation of the Tonnetz as

a network to single trichord-type may be loosened up by the embedding

in phase spaces, which situate it in a conceptually richer music-theoretic

context. In addition, Amiot’s18 application of the DFT to beat-class sets

introduces the possibility of rhythmic Tonnetze.
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4. Intervallic Duplications and Foldings

One important feature of toroidal spaces is that there are an infinite number

of conceivable line segments connecting any two given points. This means

that a musical interval may be identified with a vector in a phase space

but not necessarily a specific realization of that vector as a path. I have

previously10 proposed an expanded concept of musical interval that allows

for such distinctions, and a corresponding concept of intervallic axes in

phase spaces. The possibility of multiple realizations of a given interval has

important consequences for generalized Tonnetze.

Consider the (026)-Tonnetz of Fig.1. Each tritone occurs twice as an

interval in the network and the distinction is significant. The tritone F]–

C on the left, for instance, is filled in differently (by G] or A]) than the

one oriented as C–F] on the right (which is filled in by D or E). Fig. 4

provides a similar example in the rhythmic domain, where numbers refer to

beats of a 4/4 measure and superscripts to eighth-note offsets. The chosen

phase space represents temporal proximity on the x-axis and the possible

syncopations of the half-note pulse on the y-axis. The Tonnetz is made up

of ˇ “‰ ˇ “( ˘ “ and ˇ “( ˇ “‰ ˘ “ rhythms shifted to different places in the measure. A

given half-note pulse is represented in two forms differing in which half of

the measure is filled.
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Fig. 4. A rhythmic Tonnetz.

The necessity of duplicated intervals in toroidal Tonnetz explains why

Cantazaro7 finds non-toroidal topologies in his computations, because his

procedure does not recognize the possibility of duplicated intervals. In

many situations, the distinction between forms of the same interval may be

musically significant, and hence it is preferable to retain the toroidal space.

Yet, if the distinctions are not significant, it is possible to fold the space
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over a given intervallic axis, creating a bounded space. For example, the

triadic Z7-Tonnetz in Fig. 5 has two copies of each third, and, because the

triad is symmetrical in this universe, there are also two copies of each triad.

Therefore, it is possible to shear and fold the space over the fifths axis such

that the two forms of third map onto each other and the equivalent triads.

The result is the triadic Möbius strip discussed by Muzzulini20 and Maz-

zola.21 The same kind of folding can be performed in any instance where

a symmetry exists in the Tonnetz, and the result is a bounded space that

will be orientable in an even-cardinality universe and non-orientable in an

odd-cardinality universe. Muzzulini’s folding simplifies the triadic Tonnetz,

but the toroidal version might also be of theoretical value. One might, for

instance, treat the upwards oriented third as major and the downward ori-

ented one as minor, so that a distinction between major (upwards pointing)

and minor (downwards pointing) triads can be reflected in the Tonnetz de-

spite the fact that chromatic variants of a given generic note-name are not

distinguished in the space.

Fig. 5. A triadic Tonnetz in Z7 and a folding of it into a triadic Möbius strip.

The Z4 Tonnetz presents a unique case in which a spherical topology is

possible through folding. The full Tonnetz is shown in Fig. 6 as a Tonnetz

on (036) subsets of a diminished seventh chord. Due to the symmetry of the

trichord, a folding is possible over the tritone axis. Because the resulting

boundaries are tritone axes, they also contain duplications that can be

identified. This folding reduces the edge count by two without changing
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the number of vertices or triangles. Hence, the Euler characteristic of the

space changes from 0 (the value for all toroidal Tonnetze, which in the

two-dimensional case have u vertices, 3u edges, and 2u triangles) to 2. The

spherical Tonnetz satisfies the transposability conditions through rotations

of the sphere, a cyclic subgroup of the tetrahedral symmetry group.
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Fig. 6. Deriving a spherical Tonnetz through folding of the Z4 Tonnetz

5. Optimization

The observation that any Tonnetz can be drawn in any phase space for

the given universe motivates the search for a method of optimizing the

space to the Tonnetz. The obvious criterion for optimization is to seek

the most compact spaces, avoiding stringy regions like those in the (013)-

Tonnetz of Fig. 3. However, this could potentially be operationalized in

different ways. One method would be to minimize the perimeter of the

regions, which amounts to minimizing the number of times each axis cycles

the space. However, this measure turns out to be somewhat coarse. The

connection to the DFT offers another more sensitive method, which is to

take the magnitude of the DFT components for the given trichord (in the

two-dimensional case). These indicate how compact the trichord is in each

dimension, so maximizing them optimizes the fit.

The existence of duplicated intervals in the set class, however, com-

plicates the optimization process, because the space must allow for two

different line segments representing the same interval, such that neither

is excessively long. This is made possible by choosing one dimension that

minimizes the DFT value of this interval. A complete optimization strategy

then is first to ensure that there is a minimizing dimension for each dupli-

cated interval, then to choose the remaining dimensions so as to maximize
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the DFT components of the set class.

Table 1 shows the results for each trichord type of Z12. The wrapping

number gives the total number of times all of the axes cycle the space

in either dimension. In two cases, (014) and (037), the DFT magnitudes

distinguish between two possibilities with the same wrapping number. The

association of trichords with optimum spaces (excluding degenerate spaces

Ph1,1 and Ph5,5) is as close to one-to-one as possible given that there are

more possible spaces than trichords. Ph1,2 and Ph2,5 appear as alternate

spaces for the same trichord, (016), and Ph1,5 and Ph3,4 appear only as

second-best spaces for two possible trichords.

Table 1. Optimum Tonnetz spaces for each trichord of Z12.

Trichord Best space DFT mag’s Wrapping Other space DFT mag’s Wrapping

(012) Ph1,6 2.73, 0.73 16

(013) Ph1,4 2.39, 1.73 14 Ph1,5 2.39, 1.51 16
(014) Ph1,3 1.93, 2.24 14 Ph3,4 2.24, 1.73 14

(015) Ph2,3 2, 2.24 14

(016) Ph1,2 1, 2.65 16
Ph2,3 2.65, 1 16

Ph2,5 2.65, 1 16

(025) Ph4,5 1.73, 2.39 14 Ph1,5 1.51, 2.39 16
(027) Ph5,6 2.73, 0.73 16

(037) Ph3,5 2.24, 1.93 14 Ph3,4 2.24, 1.73 14

Fig. 7 shows an (012) Tonnetz in Ph1,6 space. The (012)s are not

very compact in the Ph6 dimension, but this is optimal because it allows

for two distinct ic1 intervals splitting the Ph6 cycle in half. The upward-

pointing and downward-pointing (012)s are enharmonically the same, but

are distinguished by spelling, taking advantage of the redundancy.

6. Three-Dimensional Tonnetze

The idea of a Tonnetz as a triangulation gives new perspective on a per-

sistent question of how to generalize the Tonnetz to tetrachords. Edward

Gollin22 proposed a three-dimensional network of tetrahedra as a seventh-

chord Tonnetz. However, Gollin (and others) have also assumed that a

Tonnetz must be specific to a single set class, which means that the (0258)

tetrachords of Gollin’s Tonnetz sometimes share a complete triangular face

with another tetrachord, but most of the time link to one another in, at

best, a shared edge, leaving a lot of empty space between tetrahedra. Gen-
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Fig. 7. An enharmonic (012) Tonnetz.

eralizing the idea of a complete triangulation of a toroidal space instead

motivates discarding the requirement of a single tetrachord type.

The construction of a three-dimensional Tonnetz follows roughly the

same procedure as the construction of the two-dimensional Tonnetz:

(1) Choose a three-dimensional phase space for Zu.

(2) Choose any line segment from pitch class 0 to some pitch class as an

edge that does not pass through any other pitch class. Translate it to

each pitch class in the space.

(3) Choose another line segment from 0 to some pitch class that is not

parallel to and does not cross any of the previous line segments, and

translate it to each pitch class.

(4) Repeat the previous step. The result will be a skewed regular cubic

lattice partitioning the space into u regions (parallelepipeds).

(5) Choose a parallelepiped incident upon pitch-class 0. For each of its

three faces, add a diagonal from 0, and translate these to each other

pitch class in the space.

(6) Add diagonal for the entire parallelepiped from 0, and translate this

similarly.

The entire process results in a total of seven distinct sets of intervallic
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axes defining the three-dimensional Tonnetz. This means that for u = 12, at

least one interval type must be duplicated, since there are only six interval

classes. Fig. 8 illustrates the process schematically through a particular

choice of intervals. The cubic lattice of step (4) defines three planes and

their intersections with three intervallic axes. These three intervallic axes

(which correspond to interval classes) plus the choice of orientation for each

(which correspond to intervals proper) determine the rest of the process,

and hence the entire Tonnetz. Choosing the same interval classes with

different orientations would amount to orienting the parallelepiped in Fig.

8 from a different corner, and would result in different Tonnetze. However,

reversing orientations of all of the intervals (orienting from the F]) results

in the same Tonnetz.
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Fig. 8. Diagram (not to scale) of the construction of a three-dimensional Tonnetz.

Fig. 8 shows steps 5–6 of the process in three stages. The first interval

(7) defines a new plane that cuts the parallelepipeds into two triangular

prisms. It also completes a triangulation of the plane made by intervals 3

and 4 into a Tonnetz, which happens to be a triadic Tonnetz in this case.

The next stage cuts (0147) tetrachords (BCD]F] and CE[F]G) out of the

corner of each triangular prism and also triangulates the plane defined by

intervals 4 and 11. The new axis is a distinct axis associated with interval

class 3—here understood as an augmented second, since it makes an (014)

Tonnetz. Note that the D] in the upper left corner must be the same

point in the space as the E[ in the lower right corner, connected to C twice

from different directions. The two planes that have been added at this

stage intersect in the middle of the parallelepiped, in the tritone axis going

through C–F]. This tritone axis, corresponding to the interval added in step

6 of the process, also triangulates the two new planes. Finally, in the third
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stage of step 5 one more plane is added that cuts the each of the remaining

pyramid-shaped regions each into two tetrahedra and also triangulates the

plane made by intervals 3 and 11. This plane also intersects the others

created in step 5 in the central tritone. The new tetrahedra correspond to

(0137)—CEF]G, BCDF]—and (0236)—CD]EF], CDE[F]—tetrachords.

The entire process thus defines three tetrachord types (each appearing

in two inversions) to make a complete simplicial partition. It also cre-

ates, in total, six planes, each of which houses its own two-dimensional

Tonnetz. The choice of intervals in Fig. 8 results in (037), (013), (014),

(016), (026), and (036) Tonnetze. The number of planes could also be

determined combinatorially by noting that each of the three tetrahedron

types has four distinct faces, and each face is shared by two tetrahedra.

Note also that the construction satisfies the requirement of a Euler char-

acteristic of zero: u vertices, 7u edges, 12u triangles, and 6u tetrahedra:

χ = u − 7u + 12u − 6u = 0. The odd number of edges is perhaps at first

surprising, until we note that the process creates two types of edges. The in-

tervallic axes added in steps 4 and 6 belong to all tetrachord types, whereas

those added in step 5 belong only to two out of the three (or four out of

the six, if we distinguish the rotationally related tetrahedra corresponding

to inversionally related tetrachords). Thus, four of the interval classes—

minor third, major third, semitone, and tritone in the example—occur at

the intersection of six tetrachords (all types) where three—augmented sec-

ond, perfect fifth, and major second—occur at the intersection of four (two

types). This also checks out combinatorially (6× 6 = 4× 6 + 3× 4).

The example given in Fig. 8 duplicates a single interval class, ic3.

The duplication may be theoretically justified by a spelling distinction—

the ic3s that occur in (037)s and (013)s are understood as minor thirds,

whereas those occurring in (014)s are augmented seconds. The (036)s have

both types, making them asymmetrical. The (0137) tetrachords may there-

fore be understood as key-defining diatonic subsets, the (0147)s as triad +

leading-tone subsets of harmonic major/minor scales, and the (0236)s as

scale segments containing an augmented second. One can thus imagine

potential analytical uses and theoretical interest for this Tonnetz dealing

with harmonic major and minor scales.

For a given space and universe, the number of possible Tonnetze is

technically infinite, since the initial intervallic axes may be freely chosen and

in a toroidal space any two points may be connected by an infinite number

of lines. These may be reduced to a finite number by equating Tonnetze

that result in the same set of tetrachords, but the number is still large and
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contains many degenerate examples. It is useful to classify the possibilities

according to the number and kind of interval duplications required for each,

since an excess of interval duplications results in impracticable examples.

Table 2 lists seven such classes (A–G) for u = 12. Class A, with the fewest

possible duplicated intervals, includes the example just discussed plus five

others. In most cases the duplicated interval is ic3, but duplications of ic1

and ic5 are also possible. Class A Tonnetze are all based on one of the all-

interval tetrachords, (0137) or (0146). Classes B, C, and D duplicate two

intervals and omit one. They are subdivided on the grounds of what kinds

of intervals are duplicated, whether they are what we might call primary

(those belonging to all tetrachord types) or secondary (those belonging to

just two types). In Classes B and C, both duplicated intervals occur once

as a primary and once as a secondary interval (they differ only in how

the intervals are distributed among trichords). In Class D, one duplicated

interval occurs twice as a primary interval while the other occurs twice as a

secondary interval. This group, characterized by duplicated tetrachords, is

especially large. Class E and G Tonnetze both have a duplicated secondary

interval in addition to a tripled interval, while class F and H have three

different duplicated intervals. Classes E and G differ in that the duplicated

interval is secondary in class E and primary in class G, while class H has

two duplicated primary intervals and class F only one. The list includes

every Tonnetz with no 0 intervals and with Z12 as its minimal universe.

Table 2 also gives one or two optimal spaces for each Tonnetz, using a

modification of the procedure described above for the two-dimensional case.

When there are three variants of an interval (classes E and G), two dimen-

sions must be included that minimize the DFT of that interval (maximize

its spread in that dimension).

A musical interpretation of any of these possible Tonnetze these may

begin by identifying a musical distinction that can justify and take advan-

tage of the interval duplications. For example, an (0235)-(0135) Tonnetz

(class D) has duplications of ic2 and ic3 and two forms of (013) and (025)

trichords depending on which form of ic2 and ic3 they contain. The differ-

ent possible arrangements of major seconds also lead to two possible forms

of (0135) and make the inversions of (0235) distinguishable. This is all true

also of the traditional just intonation scales: they have two forms of major

second, a larger “Pythagorean” whole step defined by the frequency ratio

9/8, and a smaller “just” whole step of ratio 10/9. When combined with a

semitone, these make two kinds of minor third, Pythagorean (32/27), and

just (6/5). Using abbreviations P and J for the two forms of whole tone
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Table 2. List of three-dimensional Tonnetze.

Class Properties Tetrachords Duplications Omits Opt. Space

A One symmetric trichord (0125) (0126) (0146) ic1 Ph1,2,6
(0237) (0157) (0137) ic5 Ph2,5,6
(0136) (0236) (0146) ic3 Ph1,2,4
(0147) (0236) (0137) ic3 Ph2,3,4
(0147) (0258) (0146) ic3 Ph2,3,4
(0136) (0258) (0137) ic3 Ph2,4,5

B Two symmetric trichords (0124) (0125) (0135) ic1, ic2 ic6 Ph1,3,6
(0135) (0237) (0247) ic5, ic2 ic6 Ph3,5,6

C One duplicated trichord (0126) (0127) (0157) ic1, ic5, (016) ic3 Ph1,2,6/Ph2,5,6
D Duplicated tetrachord (0134) (0236)×2 ic1, ic3, (013), (014) ic5 Ph1,4,6

(0145) (0125)×2 ic1, ic4, (014), (015) ic6 Ph1,3,5
(0156) (0126)×2 ic1, ic5, (015), (016) ic3 Ph1,2,6
(0156) (0157)×2 ic1, ic5, (015), (016) ic3 Ph2,5,6
(0235) (0135)×2 ic2, ic3, (013), (025) ic6 Ph1,3,5
(0235) (0136)×2 ic2, ic3, (013), (025) ic4 Ph1,2,4/Ph2,4,5
(0347) (0147)×2 ic3, ic4, (014), (037) ic2 Ph2,3,4
(0158) (0237)×2 ic4, ic5, (015), (037) ic6 Ph1,3,5
(0358) (0258)×2 ic3, ic5, (025), (037) ic1 Ph4,5,6

E Duplicated tetrachord (0145) (0148)×2 ic4 (×3), ic1, (014), (015) ic2, ic6 Ph1,3,5
with augmented triad (0347) (0148)×2 ic4 (×3), ic3, (014), (037) ic2, ic6 Ph2,3,4

(0158) (0148)×2 ic4 (×3), ic5, (015), (037) ic2, ic6 Ph1,3,5
F Duplicated tetrachord (0134) (0124)×2 ic1, ic3, ic2, (013), (014) ic5, ic6 Ph1,3,6

with symmetric trichords (0358) (0247)×2 ic5, ic3, ic2, (025), (037) ic1, ic6 Ph3,5,6
G Duplicated symmetric (0123) (0124)×2 ic1 (×3), ic2, (012), (013) ic5, ic6 Ph1,3,6

trichord (0257) (0247)×2 ic5 (×3), ic2, (025), (027) ic1, ic6 Ph3,5,6
H Quadrupled trichord (0167) (0127)×2 ic1, ic5, ic6, (016)×4 ic3, ic4 Ph1,2,5
I Tripled tetrachord (0123)×3 ic1×3, ic2×3 ics4,5,6 Ph1,3,4

(0257)×3 ic5×3, ic2×3 ics1,4,6 Ph3,4,5

and s for a semitone, the tetrachords are, in consecutive intervals, PsJ,

JsP, sJP, sPJ, PJs, and JPs. The traditional just major and minor scale

patterns, PJsPJPs and PsJPsPJ, contain all of these possible strings plus

one other type that defines the bad fourth, PsP. Just scales may there-

fore be represented as paths in this Tonnetz that produce the sequence of

overlapping tetrachords between the bad fourth and augmented fourth.

Duplications may also be used to fold the spaces. The Tonnetze of

classes D–G, for instance, can be folded to equate their duplicated tetra-

chords. Such a folding of the (0258)-(0358) Tonnetz produces a seventh-

chord Tonnetz described by Jack Douthett in an unpublished letter written

in 1997.23 The folding is over the whole-tone planes that house (026) tri-

chords, turning these into boundaries. One way to imagine this space is to

draw two (026) Tonnetze, as in Fig. 1, parallel to one another in a fattened
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2-torus, one using the even whole-tone scale and one using the odd. Then

connect all pitch classes from one plane to the other related by a consonant

interval (ic3 or ic5, four connections for each pitch class) so as to link each

pitch class to two adjacent (026)s on the opposite boundary, making over-

lapping dominant and half-diminished sevenths. For example, D on the even

boundary connects to {G, B, F} and {B, F, A} on the odd one. According

to Table 2, the optimal space for the (0358)-(0258) Tonnetz is Ph4,5,6. The

Ph6 dimension is included for disambiguating the duplicated ic3s and ic5s.

This dimension is therefore the one whose cycles are removed by the fold-

ing, so that it becomes simply a means of separating the two whole-tone

planes between the boundaries of the fattened 2-torus. Therefore, this op-

timal realization of Douthett’s Tonnetz can be accurately pictured through

the projection onto Ph4,5 space in Fig. 9. Each point shows the position of

one tetrahedron, with dominant and half-diminished sevenths alternately

pointing up and down, depending on their whole-tone affinity, and minor

seventh chords connecting a major second on one plane to an obliquely

directed major third on the other. Lines connect chords that share a face.

The minor sevenths are fully connected, while the (0258)s each have one

face on a boundary. Douthett’s schematic diagram (Fig. 10) illustrates

this.

After folding, the only duplications remaining in this Tonnetz are of the

tritones on the boundaries. Cutting across the space are (036) Tonnetze

with boundaries, making 2-dimensional Tonnetz-bands like the one in the

middle panel of Fig. 6. Identifying the duplicated tritones in these (036)

Tonnetze make them spherical, as also shown in Fig. 6. This identification

eliminates the last of the interval duplications. It also turns the boundaries

into a new set of tetrachords: note in Fig. 1 that the (026) Tonnetz actu-

ally connects every note of the whole-tone collection to every other. The

distinction between tritones is the only reason that tricords like {F], G],

C} and {C, D, F]} do not combine into a single tetrachord. Identifying

the tritones folds each boundary into a set of three (0268) tetrahedra. The

resulting space is the one described by Tymoczko4 as the voice-leading Ton-

netz for four-note chords, topologically the direct product of a sphere and

a circle. As with the augmented triad in Tymoczko’s voice-leading Tonnetz

for three-note chords (Fig. 2), the (0369) tetrachords have a special status

in this space. Although they are fully connected in the network created by

the triangulation, they are not properly elements of the triangulation as

tetrachords. For Tymoczko they are essential intermediaries between dom-

inant and half-diminished sevenths sharing three notes, so that the voice
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Fig. 9. The dual of Douthett’s seventh-chord Tonnetz projected onto Ph4,5-space.

leading is entirely semitonal. But in the triangulation their status is equiv-

alent to that of the two-dimensional planes that house trichordal Tonnetze

made up of similar 2-faces of the triangulation, not of the tetrahedral (3-

simplex) elements of the triangulation. The situation is analogous to that of

Tymoczko’s two-dimensional triadic Tonnetz, where the augmented triad,

which he counts as an essential triangle (2-simplex), is, in the toroidal tri-

angulation, an intervallic axis that happens to be limited to three elements.

This distinction is essentially homological: the elements of the simplicial

decomposition can be contracted to points in the space. Other maximal

cliques, included in Tymoczko’s networks but not in the simplicial decom-

position, cannot.

7. The n-Dimensional Generalization

The construction defined for two and three dimensions above can be gen-

eralized to n dimensions:
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Fig. 10. Douthett’s drawing23 of the construction of a seventh-chord Tonnetz.

(1) Choose n distinct, linearly independent line segments, a, b, c, . . . , ex-

tending from pitch-class 0 to some other pitch class, which do not pass

through any other pitch-classes.

(2) Translate these u times (to each pitch class), making a skewed regular

hypercubic lattice partitioning the space into u regions.

(3) Add the
(
n
2

)
line segments obtained by taking vector sums of any two of

a, b, c, . . . and extending these from pitch-class 0. These will triangulate

each 2-face of the hypercube. Translate these to each pitch class to

triangulate all of the planes of the hypercubic lattice.

(4) Continue this process for each m, 1 < m ≤ n, taking vector sums of

m of a, b, c, . . . , adding these to from each pitch-class to complete a

simplicial decomposition of each m-face of the hypercubic lattice.

Note that the pitch classes used in the process need not be unique—one

of the line segments may even connect a pitch class to itself. Therefore

degenerate examples such as Tonnetze on a one-pitch-class universe are

possible. The number of edges defined in this process is

e =

n∑
i=1

(
n

i

)
u = (2n−1 − 1)u (1)

where
(
n
i

)
gives the number of i-faces of the hypercube incident upon a

given vertex.
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For example, in the three dimensional case we can define a skewed cubic

lattice with three intervals, a, b, c, triangulate the faces with intervals a +

b, b+c, a+c, then complete the triangulation of the 3-faces, the skewed cubes

themselves, with a+b+c. The tetrahedra correspond to all the permutations

of a, b, and c. To get the augmented-second Tonnetz described above, let

a → 3 (a points from 0 to 3), b → 4 (etc.), and c → 11. Then a + b → 7,

b+c→ 3, a+c→ 2, and a+b+c→ 6. The tetrahedra may be constructed

by stringing together a, b, and c in any order. In our example, abc and cba

correspond to tetrachord type (0147), acb and bca to (0236), and bac and

cab to (0137). We get the same Tonnetz by either negating all of a, b, and

c, or exchanging any of a, b, or c with (−a− b− c).
For n = 4, we get a Tonnetz of 24u 4-simplexes representing pentachords

(12 types occurring in all transpositions and inversions). The number of

intervallic axes is 15, so the number of duplications for u = 12 would be

necessarily quite large.
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