
June 25, 2019 Journal of Mathematics and Music tonnetzTopologyRev

Submitted exclusively to the Journal of Mathematics and Music
Last compiled on June 25, 2019

Generalized Tonnetze and Zeitnetz, and the Topology of Music Concepts

Jason Yust∗

School of Music, Boston University

()

The music-theoretic idea of a Tonnetz can be generalized at different levels: as a network
of chords relating by maximal intersection, a simplicial complex in which vertices represent
notes and simplices represent chords, and as a triangulation of a manifold or other geomet-
rical space. The geometrical construct is of particular interest, in that allows us to represent
inherently topological aspects to important musical concepts. Two kinds of music-theoretical
geometry have been proposed that can house Tonnetze: geometrical duals of voice-leading
spaces, and Fourier phase spaces. Fourier phase spaces are particularly appropriate for Ton-
netze in that their objects are pitch-class distributions (real-valued weightings of the twelve
pitch classes) and proximity in these space relates to shared pitch-class content. They admit
of a particularly general method of constructing a geometrical Tonnetz that allows for interval
and chord duplications in a toroidal geometry. The present article examines how these du-
plications can relate to important musical concepts such as key or pitch-height, and details a
method of removing such redundancies and the resulting changes to the homology the space.
The method also transfers to the rhythmic domain, defining Zeitnetze for cyclic rhythms. A
number of possible Tonnetze are illustrated: on triads, seventh chords, ninth-chords, scalar
tetrachords, scales, etc., as well as Zeitnetze on a common types of cyclic rhythms or time-
lines. Their different topologies – whether orientable, bounded, manifold, etc. – reveal some
of the topological character of musical concepts.
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1. Definitions of Tonnetze

For the purpose of this article, I will define a Tonnetz very generally according to the
maximum-overlap or common-tone principle, following the suggestion made in a well-
known article by Richard Cohn (1997). However, it will be useful to think of Tonnetze
in turn at different levels of abstraction, as networks of pitch-class sets, as topological
objects, or as geometrical objects. The network construct is the most general, the geo-
metrical one the most specific. In addition, while the definitions are set out initially with
pitch-class sets in mind (subsets of the twelve-note scale understood as integers mod 12),
they may also be applied to beat-class sets, looped rhythms understood as subsets of
some periodically repeating set of evenly spaced time points. We will therefore construct
Tonnetze in any possible universe, u, where this can refer to any equal division of an
octave or equal division of a time-cycle. Beat-class sets bring other possible universes into
play in a way that may lead to a wider range of applications than considering, e.g., other
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possible equal divisions of the octave. When generalized this way, the term “Tonnetz” is
not entirely appropriate, so I will call this a “Zeitnetz.” All of the following definitions
may be modified to apply to Zeitnetze by replacing “pitch class” everywhere by “beat
class.” The two constructions are mathematically indistinguishable.

We begin from what is usually referred to as the “dual Tonnetz,” in which nodes
represent chords rather than tones, which I will call the Tonnetz graph.

Definition 1.1 A cardinality-n Tonnetz graph is a connected graph whose vertices corre-
spond to pitch-class sets of cardinality n in some universe u, such that two vertices may
share an edge only if their corresponding sets share n− 1 elements in common, and the
entire network maps onto itself under any transposition of universe u.

The last criterion, transposability, implicitly requires that, for any pitch-class set in
the network, all of its transpositions must also be in the network.1 However, it allows
for the network to contain multiple distinct set classes. The other defining feature is
that the connections reflect only the maximum-overlap relationships. The definition does
allow for a possible maximum-overlap relationship to be excluded, because there may
be geometric reasons for such an exclusion, as we will see. However, the connectivity
condition may often require that all available connections must be included, in which
case we can deduce a unique Tonnetz graph given just the set types (transposition-
types) it contains. This also means that the choice of set types is not entirely arbitrary,
because there must be a way to relate every type to every other through a series of
maximum-overlap relationships.

Tonnetz graphs are common currency in much recent mathematical music theory, and
therefore their theoretical value appears to be well recognized. What is often described
as the dual of the standard triadic Tonnetz, or “chicken-wire torus” (Douthett and Stein-
bach), is a Tonnetz graph. The standard Tonnetz only involves one chord type and its
inversion (major and minor triads) and this is often assumed to be an essential prop-
erty for generalizing the Tonnetz – in that sense the above definition is unusually broad.
Assuming only one set class, however, is too restrictive when we move beyond the case
of three-note sets. The definition of Tonnetz graphs also encompasses a wider range of
networks that have been proposed such as those of Douthett and Steinbach (1998), and

Z̆abka (2014), all of which are Tonnetz graphs. Similarly, Tymoczko’s 2011; 2012 “chord-
based networks” are Tonnetz graphs. In much of this work (particularly in Tymoczko’s),
an additional constraint is put upon the networks, that adjacent chords must be close
in a voice-leading sense. That is, the unique non-common elements must be a “step”
apart in pitch-class space (one semitone, one or two semitones, or a generic scale-step,
depending on the context). That restriction is lifted here, but we will find that under
certain conditions it emerges naturally.

Historically a Tonnetz is a network of tones, where chords are represented by groups
of connected pitch classes. By mapping the chords in a Tonnetz graph to simplices in a
network of tones, we can define a simplicial Tonnetz.

Definition 1.2 A cardinality-n simplicial Tonnetz is a simplicial complex whose nodes
are pitch-classes in some universe u, such that a Tonnetz graph is given by mapping
n-simplices to nodes and connecting nodes that overlap in (n − 1)-simplices, and such
that every node and edge belong to some n-simplex participating in this mapping.

1An invertibility condition similar to the transposability condition might also be added to this definition, so
that the Tonnetz graph must include all representatives of each TnI-type set class. All the Tonnetze and Zeitnetze
appearing as examples below would satisfy such a condition.
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Generalizations of the Tonnetz as a simplicial complex have been studied by Bigo et al.
(2013, 2015) and Cantazaro (2011), under somewhat more general definitions than the
one proposed here, which fixes the cardinality of the maximal simplices and inherits
transposability from the Tonnetz graph. It is clear that a Tonnetz graph can map to
a simplicial Tonnetz in a canonical way, and vice versa, so the simplicial Tonnetz is
essentially the same level of generalization as the Tonnetz graph. However, geometrical
realizations of generalized simplicial Tonnetze are a more specific construction that has
been less studied (examples include Tymoczko 2012 and Yust 2018a):

Definition 1.3 A cardinality-n geometrical Tonnetz is an embedding of a cardinality-n
simplicial Tonnetz in some n-dimensional geometric space, such that the pitch classes are
each associated with unique points in the space, all transpositions correspond to rigid
transformations of the space, and the regions defined by the n-simplexes are disjoint and
cover the space – i.e., they constitute a triangulation of the space.

The geometrical Tonnetz realizes the transposability condition for Tonnetz graphs ge-
ometrically, as rigid transformations. Since the number of simplices is finite, the space
must be compact. The shift from the simplicial to geometrical Tonnetz is momentous
where musical interpretation is concerned, because through a musical interpretation of
the geometry we may associate specifically geometrical constructs such as paths and
regions with musical concepts. Two significant ways of doing this have been proposed:
through voice leading (Callender, Quinn, and Tymoczko 2008; Tymoczko 2012) and
through harmonic quality (Quinn 2006; Amiot 2013, 2016; Yust 2015b) as defined by
the discrete Fourier transform on pitch-class sets. With the latter type of geometry, a
very general method of construction is defined in Yust 2018a that can embed any sim-
plicial Tonnetz in a geometric space, specifically a phase space. To illustrate the main
points of interest – the two ways of defining musical geometries, the methods of folding,
and the music-conceptual significance of each of these – we begin by working carefully
through the specialized cases with a high degree of redundancy, generated collections.
These methods are then applied to two-interval generated collections, which include a
number of examples of great musical interest (including the standard triadic Tonnetz).

2. Generated collections

2.1. Dyadic Tonnetze

At the extreme of intervallic redundancy are generated collections, sets generated by
multiple iterations of a single interval. Generated collections are special in that they
are accurately captured by a Tonnetz graph in the form of a plain cycle graph with a
single set type. This is true of all dyadic Tonnetze, which are trivially generated. So, for
example, a Tonnetz graph for ic1 dyads would look like:

. . . — {B,C} — {C,C]} — {C],D} — {D,E[} — {E[,E} — . . .

Its associated simplicial Tonnetz is a one-dimensional cyclic space, whose edges corre-
spond to the nodes of the Tonnetz graph, overlapping in individual vertices:

. . . . — B — C — C] — D — E[ — . . .

Similarly a Tonnetz graph of perfect fourths/fifths,

. . . — {C,G} — {G,D} — {D,A} — {A,E} — . . .

3



June 25, 2019 Journal of Mathematics and Music tonnetzTopologyRev

has an associated simplicial Tonnetz:

. . . — C — G — D — A — E — . . .

Recall that at this level, the Tonnetze are understood as simplicial complexes – in
this case made up of 1-simplices or edges. To turn them into geometrical Tonnetze is
essentially an act of interpretation, assigning a geometrical interpretation to the circle,
in this case the pitch-class circle and the circle of fifths.

One interpretation is offered by the application of the discrete Fourier transform (DFT)
to pitch-class sets, which is discussed at length elsewhere (Quinn 2006; Amiot 2013, 2016;
Yust 2015a,b, 2016, 2017a): these can be understood as phase spaces, where the position
on the cycle represents the phase value of a certain Fourier component, denoted Phk/u
for component k in universe u, or simply Phk where the universe is understood (e.g.
for pitch-class sets, u = 12). It is not necessary to re-introduce all of the mathematics
of the Fourier transform here: for present purposes, we can understand each Phk as
an interval cycle in the sense of pitch-class set theory (Perle 1977; Straus 2016), where
Ph1 is the integers mod u and Phk is given by multiplying the pitch-class numbers by
k mod u. For consistency with previous publications (reflecting the standard definition
of the DFT) Ph1 is treated throughout as the inverse of the pitch-class circle, so that
ascent by 1 in Ph1 corresponds to descent by semitone (or going back by one beat class).
Other pitch-class sets, or multisets or weighted pitch-class sets, can then be located in
the phase space by taking circular averages of their constituent pitch-classes. This gives
the space a robust geometry: points in-between pitch classes have specific meaning. In
the circle of fifths, or Ph5, for example, the point halfway between C and G represents
the C-G dyad.2 To get a dense topology, we consider not only regular pitch-class sets,
but also weighted ones, AKA pitch-class distributions. Weightings may have multiple
musical applications, a common one being to represent the probability or frequency of
appearance of a pitch class within a certain timespan (Huron 2006; Temperley 2007). The
phase spaces provide a one-to-one complete list of ways of arranging the pitch classes
that are true to the group-theoretic properties of the transposition group Z12 (or more
generally, Zu) in the sense that the pitch classes map uniquely to points in the space,
and transposing them corresponds to some rigid transformation of the space.

Another way to give geometrical meaning to these cycles is through Callender, Quinn,
and Tymoczko’s (2008) idea of voice-leading spaces. We might first note that the pitch-
class circle is the basic one-dimensional voice-leading space, the space of log-frequency
modulo the octave.3 This is a different interpretation than Ph1: a point half-way be-
tween C and C], e.g., represents a C quarter-sharp rather than the dyad {C,C]}. How-
ever, this interpretation is not really native to the theoretical universe of the Tonnetz,
where the simplices are usually taken to represent something like chords or collections,
because the ic1 dyads in the one-dimensional voice-leading space represent segments of
the log-frequency continuum, not dyadic collections. A more appropriate derivation from
voice-leading geometries begins from the two-dimensional voice-leading space. By taking
the geometric dual of this space, as proposed by Tymoczko (2012), we get points that
correspond to individual pitch-classes. Here it is more appropriate to consider the second
example above, the circle of fifths. Each point in the space represents a line in the dyadic
voice-leading space, the line corresponding to all voice leadings that hold a particular

2This relationship, however, N.B., is not one-to-one. The point representing {C,G} in Ph5 also represents

{F,D}. The relationship only becomes one-to-one if we consider all possible phase spaces 0 ≤ k ≤ u/2 and the
magnitudes of each of these Fourier coefficients.

3Thoughout, “voice-leading spaces” will refer to what Callender, Quinn, and Tymoczko (2008) specifically call
“OP-space.” That is, it is voice-leading space folded to recognize octave and permutational equivalences.
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Figure 1. Rotation around a perfect-fifth dyad in voice-leading space, and the Tonnetz space as the geometrical

dual of dyadic voice-leading space

pitch-class constant in one voice while moving the other voice. Motion between these
represents a rotation of this line around a fixed dyad (some perfect-fifth dyad). This is
illustrated on the left side of Figure 1. The point half-way between C and G on the circle
of fifths then corresponds to a different line, one that gives a wedge voice leading (or
balanced voice leading) around the perfect-fifth dyad.

The circle of fifths is not actually smooth according to this interpretation. The dual
of the dyadic voice-leading space is shown on the right of Figure 1. Points in this space
are lines in the voice-leading space (with pitch classes again indicating lines that hold a
pitch-class constant), and motion to the left and right here corresponds to sliding the line
along the axis of transposition. Perpendicular to this (up and down) are rotations of the
line around the point where they cross the center of the space (the tritone axis). Diagonal
lines combine both of these kinds of motion, equivalent to rotating around some other
fixed point. These spaces are dual in the sense that lines in the Tonnetz space correspond
to points in the voice-leading space just as lines in the voice-leading space correspond to
points in the Tonnetz space. The circle of fifths is a zig-zag line that circles the Tonnetz
space twice, changing direction each time it hits a pitch class. A similar zig-zag line
could be defined for the ic1 intervals, but it would be an extremely inefficient way to
move through the space, circling almost the entire space for each dyad, and crossing
multiple other ic1 lines.4 Following the line of transposition, on the other hand, would
give a very efficient representation of the pitch-class circle, but does not actually reflect
the idea of holding a pitch class constant as we go from one ic1 dyad to the next, which
is essential to the idea of the Tonnetz as a network of common-tone relationships. Voice
leading therefore prioritizes certain possible Tonnetze over others in a way that phase
spaces do not.

Tymoczko (2012) does not actually consider the Tonnetz of Figure 1 as a candidate for
a dyadic voice-leading space, because its two-semitone voice leadings are not minimal.
Note that when the line segment corresponding to a fifth in the dual space (the right side
of Figure 1) rotates from one fifth to another, it passes through the tritone. For example,
between {F,C} and {C,G} is {F],C}. We can also see this in the voice-leading space
itself. According to the logic of voice leading, then, Figure 1 presents an incomplete,
one might even say inaccurate, picture. Voice leading from one fifth to another with a
common tone necessarily passes through an intermediate tritone, and the voice leading
{F,C}→{B,F]} is the same size, or smaller, than {F,C}→{C,G}, not six times as large, as
it is in our Tonnetz. For this reason, Tymoczko only considers the possibility of Tonnetze

4A common-tone voice leading between ic1 dyads that is equally efficient to the one on ic5 dyads is in fact

possible (moving one note by two semitones at each stage) but it involves a voice crossing. Stated with respect to
the dual space, we can say that edges can only rotate through a vertical axis (corresponding to the wedge voice

leading) not the horizontal axis (corresponding to transposition). Rotations of the latter type correspond to a

voice crossing).
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Figure 2. Simplicial Tonnetz of chromatic trichords

that include the most even chord types (such as tritones) before including the next-
most even and so forth. This highlights a crucial difference with Fourier phase spaces:
In Fourier spaces, the tritone is not necessarily an intermediary between the two fifths;
this would be true in Ph2-space, which reflects, in a certain sense, the logic of dyadic
voice leading. But it is not true in Ph5. The intermediary between {F,C} and {C,G} in
all phase spaces, including Ph5, is the shared pitch class C.

Whether one includes tritones or not, the voice-leading interpretation gives geometrical
meaning to a Tonnetz, but does not technically satisfy the definition of a geometrical
Tonnetz given in section 1, because the regions corresponding to the perfect-fifth 2-
simplexes are not disjoint: tritone-related perfect fifths cross at the wedge voice leading
that relates them. If the size of the universe were odd (hence sharing no factors with 2),
this would not occur and voice leading would give a good Tonnetz geometry on maximally
even dyads (for instance, fifths in a generic-diatonic, u = 7, universe).

Because of the relative simplicity of phase spaces as a geometrical realization of Ton-
netze (with pitch classes and higher-cardinality chords in the same space rather than
dual spaces) and because the relationship of phase spaces to interval cycles gives this
interpretation a valuable level of generality, we will use phase spaces for the remainder
of this section and return to voice leading in sections 4 and 5.

2.2. Generated trichordal Tonnetze

As we increase the cardinality of the generated collection, we can continue to use the
same form of Tonnetz graph. For instance, the chromatic trichord has a graph:

. . . — {C,C],D} — {C],D,E[} — {D,E[,E} — {E[,E,F} — . . .

And a chromatic tetrachord:

. . . — {C,C],D,E[} — {C],D,E[,E} — {D,E[,E,F} — {E[,E,F,F]} — . . .

And so forth. A simplicial complex of chromatic trichords might look like Figure 2.
Despite a simple cyclic Tonnetz graph, the simplicial Tonnetz requires a second dimen-
sion, bounded by the ic2s, the intervals unique to a given chromatic trichord, because
a 2-simplex (triangle) requires a space of a minimum of two dimensions. To embed this
simplicial complex in a geometry raises the question of what this second dimension might
represent musically.

One way to address this question is a procedure I suggest in Yust 2018a: begin by
defining a Tonnetz for the chromatic trichord in a two-dimensional phase space that has
duplications of ic1, and then eliminate the duplications by defining a folding, resulting
in a space like Figure 2 that inherits geometric meaning in the bounded dimension from
the original phase space. A trichordal Tonnetz can be embedded in a two-dimensional
phase space Phk1,k2 (the direct product Phk1× Phk2) given almost any choice of k1 and

6
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Figure 3. Geometrical Tonnetz of spelled chromatic trichords in Ph1,5-space

k2,5 but certain choices are better than others. Here, it will be useful for Phk1 to order
the pitch classes by the generating interval, for reasons that will become clear shortly, so
we choose k1 = 1. For the other dimension, any value of k2 will do, but since the function
of this dimension is to split apart the two whole-tone collections, a good choice will be
one that does so most effectively. The ideal choice from this perspective would be Ph6,
but Ph6 (or Phk/u with k = u/2) is degenerate in a 12-tone universe: it can logically take
only two values (0 and 6), so it is not really possible to ascribe any meaning to a Ph6

path (except by “oversampling” to a larger universe). The next best choice is Ph5, which
represents the average circle-of-fifths position of a collection. Figure 3 shows a Ph1,5 space
triangulated by chromatic trichords. The simplicial Tonnetz embedded in this geometry
has twice as many 2-simplexes than the one in Figure 2, two for each chromatic trichord,
and it is topologically toroidal, with two cyclic dimensions rather than just one.

A simplicial Tonnetz triangulates a phase space, partitioning it into regions, such that
each region is associated with a trichord (or, more generally (n+1)-note chord) from the
set of trichords belonging to the given Tonnetz. These regions correspond to the all of the
points belonging to the given trichord, in the sense that each possible weighting of the
notes in the trichord corresponds to some point within the given region.6 For a generated
trichord, such as the chromatic trichords of Figure 3, there are actually two such regions,
because there is an orientational ambiguity in one dimension. For instance, in Ph1,5 space,
the note F is an equal distance above or below the dyad {E,F]}. If the trichord {E,F,F]}
is weighted more towards E than F], then it will fall in a region below the {E,F]} dyad.
If it is weighted more towards F], then it will fall in a region above. Alternately, we could
imagine adding other notes to provide the context that distinguishes the two versions of
the trichord. In the presence of, say, {C],D],G]}, the chromatic trichord is {E,E],F]}. In

5The exception is a choice such that k1, k2, and u are not mutually prime; see Yust 2015b. Ideally we should

also apply some constraints on the choice of k1 and k2 relating to the compactness of regions, but determining
exactly how this should be done would be somewhat involved and therefore beyond our present scope.

6Our drawings of the regions, with straight lines as boundaries, however, are not completely accurate and
should be seen as an idealization. In fact, if the interval defining a given boundary has a larger magnitude in one
dimension than the other, this imparts a sinusoidal curve to the boundary. In practical situations, the amount of

curvature is typically slight and therefore can be safely disregarded.
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Figure 4. Tonnetz graph of spelled chromatic trichords

the context of {G,A,D} it is {E,F,F]}.
Values of Ph5, average circle-of-fifths positions, are of significant musical interest:

Amiot (2017a) shows that the size of its associated Fourier coefficient, f5, is the best
measure of the diatonicity of pitch-class sets,7 and it is overwhelmingly the most promi-
nent harmonic quality of pitch-class distributions that occur across tonal music (Yust
2017b, 2019). For this reason, Ph5 is the principal criterion for distributional key-finding
algorithms and models of key perception (Cuddy and Badertscher 1987; Krumhansl 1990;
Yust 2017b). Given this relationship to keys, Ph5 paths associated with ic1 distinguish
between diatonic semitones – the shorter way around the Ph5 cycle and the one that
occurs within a diatonic collection – and chromatic semitones, which go the longer way
around the Ph5 cycle and span beyond the limits of a single diatonic collection.8

In the Tonnetz of Figure 3, each chromatic trichord is made up of both kinds of
semitone, one that corresponds to −5 in Ph5 and one that corresponds to +7 in Ph5,
which sum to the regular whole tone: (−1,−5)+(−1, 7) = (−2, 2). Because there are two
ways to order the chromatic and diatonic semitones, there are two kinds of chromatic
trichord. Therefore the Tonnetz graph corresponding to Figure 3 is not the same as the
one corresponding to the simplicial complex in Figure 2; the Tonnetz graph for this space
is the one shown in Figure 4, with 24 vertices and cyclic in two dimensions. Note that
the sets at the bottom of the figure in parentheses are equivalent to the ones at the top:
the identities of the pitch classes are still enharmonically identified. The distinctions are
made only with respect to the intervals within the pitch-class sets. B[-C[-C is therefore
distinct from B[-B-C but equivalent to A]-B-B]. The graph has two kinds of cycles, one
that goes through all of the pitch classes following the horizontal zig-zags (a cycle of
twelve elements), and one that alternates swapping the semitone types (vertical edges)
with left and right moves on the horizontal cycles (a cycle of four elements).

In the toroidal geometry, the two kinds of chromatic trichord occupy different regions
of the space, with distinct boundaries (overlapping in the shared whole-tone interval)

7Dmitri Tymoczko (personal communication, Oct. 2018) has challenged this point with the argument that
diatonicity is not an intuitive description of f5 in other universes (say, for quarter-tones, u = 24). The obvious

response to this is that f5 has only been equated with diatonicity in contexts where 12-tET is taken for granted –

in other words, “diatonicity” or Quinn’s (2006) “diatonicness” has only ever referred to f5/12, not f5/u for all u.
Nonetheless, Tymoczko’s challenge raises an interesting point, which is that certain concepts related to harmonic

qualities should generalize away from a particular discretization of the octave. This is true of diatonicity: we
have an intersubjectively robust intuitive sense of diatonicity in, say, 31-tone equal temperament. The appropriate
generalization to capture this for u > 12 is |f7/u||f12/u|/|f0|2. That is, diatonicity is determined, generally, by

the combined size of two components, f7 and f12 (normalized by the total power, f20 ). The special status of these

particular components ultimately comes, presumably, from the fact that they give the best approximations to the
acoustic perfect fifth, log2(3/2), so an alternate, more basic, definition might be given by the correlation with the

spectrum of the perfect fifth with f0 (and values of k exceeding some threshold) excluded.
8For more on this distinction see Yust (2015b, 2018b).
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but the same vertices. The same vertices can bound totally different regions of space
because Ph5 is cyclic. The differences between two trichords with the same pitch classes
is contingent upon the meaning of Ph5: to the extent that this is relevant, the distinction
is relevant. This would be true given a tonal context: for instance in a context of A
major, the chromatic trichord {E,E],F]} has a different meaning (a move to the sharp
side, tonicization of the relative minor) than {E,F,F]} (a move to the flat side, mode
mixture). For composers of the nineteenth century, orientations along the circle of fifths
can have crucial musical meaning (see, for example, analyses of Schubert’s tonal plans
in Yust 2015b, 2018b, Forthcoming). In such contexts, spelling distinctions are used to
indicate orientations around the circle of fifths, which is how they are commonly, though
not exclusively, used in tonal music.9 These Ph5 distinctions might not be meaningful,
in other contexts, such as in Webern’s music. In that case we want a different kind of
geometry, one that embeds the simplicial Tonnetz of Figure 2. We can derive such a
geometry by folding a toroidal one like Ph1,5-space.

2.3. Mathematical definition of phase-space foldings

In the two-dimensional, trichordal, case, defining a folding for a toroidal Tonnetz is easy to
do given the appropriate conditions: a geometric Tonnetz in which triangles representing
the same trichord overlap in one interval, and where the generating (duplicated) intervals
project onto one axis without overlapping. The later condition can be met by the selection
of the appropriate Phk for the given generator. In particular, for generator g/u (g and u
coprime), the appropriate k is one that satisfies the equation kg =mod(u) ±1. Through this
relationship a phase space is uniquely associated with a specific interval – it will be the
essential dimension for Tonnetze on sets of any cardinality generated by that interval.10

For ic1-generated trichords, Phk = Ph1, and for the ic5-generated trichords it is Ph5. Or,
for another example, the triad is a generated trichord in a mod-7 universe (Figure 5) and
its generating interval (g = 2) projects neatly onto a Ph3 axis (2 × 3 =mod7 −1). Many
important rhythms are also generated: The tresillo is a three-note rhythm generated
by interval 3 in a minimal embedding universe of 8 (usually a dotted quarter in 4/4),
and as a Zeitnetz in Ph1,3 space (Figure 6) it has duplications. The duplicated rhythms
are differently oriented in time, since Ph1 is the dimension representing simple temporal
proximity. This could be understood as two ways of grouping the same rhythm, 3-2-3 or
2-3-3, as illustrated on the right side of Figure 6. Such a distinction may be musically
important in some contexts, in which case we would want to retain this toroidal version
of the Zeitnetz. If it is not, however, we may want to fold this geometry to produce a
simple cyclic Zeitnetz.

Let us refer to the axis that takes a projection of the generator cycle a principal
dimension and the other as a disambiguating dimension, whose function is to separate

9Spelling itself is by definition a notational phenomenon, and as such it is accurately described by a system
of voice leading on seven-note collections, or generalized key signatures (Tymoczko 2005). Although Ph5 mimics
the central axis of this voice-leading space when restricted to relatively even seven-note collections (Yust 2016),

the two are derived from a very different set of assumptions and should not be conflated (Tymoczko and Yust
2019). However, it is routine in music to treat enharmonic notation is often an imperfect tool for expressing an

underlying musical reality, often relating to key or harmonic function (though by no means limited to that). To

the extent that one believes key perception relates to pitch-class distributions – a theory that remains debatable,
but is supported at this point by a large amount and variety of empirical evidence (Krumhansl and Cuddy 2010)
– tonal composers’ use of spelling often reflects an underlying reality expressed by Ph5 relationships.

10The relationship of intervals to Fourier components (i.e., the index of a phase space, Phk) has been explored
by Quinn (2006) and Amiot (2007). Both show that a one-to-one relationship does not hold for interval content
per se, but does for intervals as generators.
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two forms of the generating interval.
Given a two-dimensional generated Tonnetz with axes x and y, let f(x, y) = 0 be

an equation for the intervallic axis for the non-generating interval, which I will call a
boundary function. If u is even (as in Figure 3 and Figure 6) then half of the pitch classes
will satisfy f(x, y) =mod(u) 0 and the other half will satisfy f(x, y) =mod(u) u/2. If u is
odd, as in Figure 5, all pitch-classes will satisfy f(x, y) =mod(u) 0. For the (012) Tonnetz,
we have f(Ph1, Ph5) = Ph1 + Ph5. For the tresillo Tonnetz we have, similarly, f(Ph1,
Ph3) = Ph1 − Ph3. For the generic triad Tonnetz we have f(Ph3,Ph2) = Ph3 + 2Ph2.
Note that the boundary functions necessarily pass through the origin and therefore have
no constants.

In the case where u is even, we can reparameterize by retaining the principal dimension,
x, and replacing the disambiguating dimension with δ = u/2 − |f(x, y)mod(u) − u/2|,

10
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which gives the distance from the line given by the boundary function. The value of z
is maximum where f(x, y) = u/2, and zero on the boundary function. The new space
parameterized by x and δ equates the two forms of the generating interval. It has only
one kind of cycle, the x cycle; in the δ dimension there are “mirror” boundaries, meaning
that the image of a straight line (such as the one for the generating interval) “reflects”
off the boundaries. It is useful also to add a subscript k to δ that recalls the original
dimension y = Phk. Figure 7 shows a folded space for the (012) Tonnetz in Figure 3,
where δ5 = 6 − |(Ph1 + Ph5)mod12 − 6|. The ic1 intervals the image of a single straight
line.

This satisfies our original goal: a well-defined geometry that embeds the simpler form of
the generated trichordal Tonnetz, without duplications. However, the purpose of defining
such a geometry, rather than simply using the simplicial form of the Tonnetz, is that it
is potentially richer in meaning. The meaning of the cyclic dimension of the generating
interval remains intact from the original phase space to the folded one, but the meaning
of the newly defined δ parameter, and to what extent it inherits some meaning from
the original phase space, demands further examination. The musical interpretation of
the original space derives from the positions it assigns to other pitch-class sets and
distributions, and the same is true of the folded space. Therefore understanding the
meaning of the δ parameters involves consideration of how other kinds of pitch-class sets
occupy the space.

An an illustrative example, let us consider two versions of an (027)-Tonnetz. The
optimum space for this Tonnetz (excluding the use of Ph6) is the same as for chromatic
trichords, Ph1,5. However, we might also be interested in thinking of (027)s as an element
of Ph3,5 space. Krumhansl (1990) proposed this as a basic space of harmonies and keys in
tonal music, and her space has been applied widely in music theory and music cognition
research. I relate it to a number of issues in the analysis of tonal music in Yust 2015b.
The Ph3 parameter corresponds to a nearest even division of the octave into three parts,
which can be understood as the three positions (root-third-fifth) of a triad, agnostic as to
which position corresponds to the root. When coupled with Ph5 and applied to primarily
high-diatonicity distributions (as in tonal music), Ph3 distinguishes dominant-side and
subdominant-side harmonies with respect to a key (note that Ph5 can then determine
which triadic position corresponds to the root).11 I will therefore refer to this as the
triadic space.

Figure 8 shows each of these (027) Tonnetze. In the Ph1,5 space, the two kinds of ic5
interval distinguish fourths from fifths. The boundary space (whole-tone axis) is defined

11See also Yust 2019.
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by Ph1 + Ph5 = 0. In the Ph3,5 space, the difference is one of triadic status. The shorter
Ph3 distance between notes a fourth apart corresponds to thinking of them as differing
by one triadic position, as they normally would as the fifth and root of a major or minor
triad. Taken the long way around, we understand the fifth to span one triadic position
and the fourth to span two. For instance, in a context centered on a D major triad, the
note C would be understood as a downward displacement of the root, and G an upward
displacement of the third, so the fifth C-G spans one triadic position (root to third)
while the fourth G-C spans two (third to root). The large Ph3 distance of this interval
reflects the relative unusualness of this situation. The boundary space is the whole-tone
axis made by the sum of these two different kinds of fourth: Ph3 + 3Ph5 = 0.

The lower panels of Figure 8 show the result of folding each space to eliminate du-
plications of the (027) trichords. Considering just the locations of pitch classes and the
Tonnetz itself, the two spaces look identical. However, if we consider the locations of
various pitch-class sets or distributions, we see substantial differences, beginning with
the (027)s themselves. In the δ1 space, each (027) is located at the midpoint of its (02)
dyad, since the (02) dyad determines the Ph1 balance of the set. In the δ3 space, on
the contrary, the (027) is understood as a kind of triad, with both fourths representing
potential triadic intervals, so it is located at the single pitch class shared by both fourths.
Figure 8 shows a series of pitch-class sets plotted in both the Ph1,5 and Ph3,5 spaces and
the corresponding folded spaces, beginning from DEA and gradually adding, one at a
time, pitch classes from the (027) a major third above (F], G], C]) or below (B[, C, F).
The changes of Ph5 are the same in both spaces (monotonically sharpward or flatward).
But in δ1 the sets remain anchored to the even whole-tone scale. In δ3 they cross the
space to the opposite side, reflecting the triadic significance of the added notes (which
fill in a diatonic stack of thirds).

If u is odd, then we may define δ = u − |f(x, y)mod(2u) − u|. By taking f(x, y) mod
2u rather than mod u we divide the line in half at the midpoint of its cycle from (0,
0) to (0, 0). The first half of the boundary line takes on a minimum value z = 0 and
the second half the maximum z = u. For the generic triad Tonnetz in Figure 5, δ =
7 − |(Ph3 + 2Ph2)mod14 − 7|, resulting in the space in Figure 9. The line from (0, 0)
to (0, u) is identified with (u, u) to (u, 0), resulting in a Möbius strip (a non-orientable
space).

2.4. Higher-order foldings

As we increase the cardinality of generated collections, we can define higher-dimensional
Tonnetze in toroidal spaces by further differentiating forms of the generating interval.
Then a similar method of folding may be applied to turn cyclic dimensions into bounded
ones, until a single cyclic chain of intersecting n-simplexes remains, reflecting the basic
Tonnetz graph. After the space is fully folded, it is homotopy equivalent to the circle
that acts as its principal dimension.

For example, a Tonnetz of chromatic tetrachords may be defined in Ph1,4,5 space by
differentiating one ic1 interval in the Ph4 dimension and another in the Ph5 dimension.
The Tonnetz contains six copies of each (0123) tetrachord based on the possible permu-
tations of the three forms of ic1, which correspond to tangent-space vectors (−1,−4,−5),
(−1,−4, 7), and (−1, 8,−5). The sum of these is the minor third interval, (−3, 0,−3).
By taking the cross product of one of the ic1s with the ic3, we get the equation of a
plane for one of the (013)s shared by “enharmonically equivalent” tetrachords. There
are three of these (one for each ic1 type): (−1,−4,−5) × (−3, 0,−3) = (12, 12,−12),

12
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(−1,−4, 7)×(−3, 0,−3) = (12,−24,−12), and (−1, 8,−5)×(−3, 0,−3) = (24,−12,−24).
Reducing the products by a factor of 12, we get the equations of three boundary planes:
Ph1 + Ph4 − Ph5 = 0, Ph1 − 2Ph4 − Ph5 = 0, and 2Ph1 − Ph4 − 2Ph5 = 0. By design
only two of the three planes are linearly independent; the third is a sum of the other two:
(1, 1,−1) + (1,−2,−1) = (2,−1,−2).

The folded space for this Tonnetz will retain Ph1 as the cyclic dimension. The other
dimensions (Ph4/Ph5) are replaced by barycentric coordinates λ1, λ2, and λ3 = 1 −
λ1 − λ2, defined for each cross-section of the space Ph1 = x by the points (x, 0, x),
(x, 4, x + 4), and (x, 8, x + 8) where the three boundary planes intersect. These points
define a triangular lattice of the cross-section with six triangles, as shown on the right
side of Figure 10, and the barycentric coordinates map all of these triangles onto one
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another.12 The resulting space is illustrated on the left side of Figure 10.
For comparison, consider a Tonnetz of generic seventh chords generated by 2 mod 7 (a

generic third). Starting with a Ph1,2,3 space, we can define three forms of the generating
interval, (−2, 3, 1), (−2,−4, 1), and (5, 3, 1). Taking cross products with the sum (1, 2, 3)
(which represents the interval of the seventh), we have boundary planes Ph1 +Ph2−Ph3,
−2Ph1 + Ph2, and Ph1 − 2Ph2 + Ph3. The principle dimension is Ph3, so for cross-
section Ph3 = x barycentric coordinates can be defined on (x3 ,

2x
3 , x), (x+7

3 , 2x+14
3 , x), and

(x+14
3 , 2x+7

3 , x). The result is the Tonnetz shown in Figure 11. This geometry is similar
to the one for the (0123) Tonnetz, but different in one important respect: because the
universe is not divisible by three, there is a twist where the two ends of the triangular
prism reconnect.13 Furthermore, because the chord is so large relative to the universe (n >
u/2), every note in the universe is connected to every other in this Tonnetz. Therefore, if
it were treated merely as a graph, we could find a complete subgraph for every possible
set in the universe, including every tetrachord. However, geometrically only the seventh-
chord tetrahedra define a simplicial decomposition. A different generating interval, such
as a fifth, will make a complete cycle in the Ph3 dimension of the space (e.g., C-G-D-A-
(C)), so it will not actually outline a region, even though all of its notes are connected in
one way or another. Thus, defining Ph3 as the principal dimension is essential to making
this the space for a generic seventh-chord Tonnetz (as opposed to, say, an (0134), diatonic
stack of fourths, Tonnetz).

The use of barycentric coordinates can be generalized to simplices of any dimension-
ality, so this method of folding is generalizable to any one-interval generated collection.
The entire process is:

(1) Define an n-dimensional phase space that includes one dimension with non-
overlapping projections of the generating interval (i.e., Phk such that |gk| =mod(u) 1).

(2) Define n unique tangent-space vectors that correspond to the generating interval,
and are linearly independent

12There are three barycentric coordinates given by projections onto the lines from each vertex of the triangle
to the midpoint of the opposite edge, and their values are the proportion of the distance from the opposite edge.
The three coordinates are constrained to sum to a constant, so only two of the three are independent.

13Compare to the trichord space of Callender, Quinn, and Tymoczko (2008) and Tymoczko (2011), which has
the same topology. This space is derived differently, from voice-leading considerations, but is similar to the spaces
discussed here in that it can be understood as a quotient of a direct product of three Ph1 spaces.
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(3) Take the cross product of each of these with the remainder interval. This defines n
hyperplanes containing the intersections of two versions of the set.

(4) For each cross section, Phk = x, define barycentric coordinates using the n points
where these hyperplanes intersect.

(5) The resulting space defined by Phk and the barycentric coordinates contains the
desired non-redundant Tonnetz geometry.

This general scheme can be understood to capture the n = 2 case also, where the
boundary hyperplanes are one-dimensional. These are split into one or two edges where
the boundary function crosses each cross section, and the δs give distances from the
endpoints of the edge, which can be understood as a trivial instance of barycentric
coordinates.

2.5. The heteromorphic diminished seventh chord

The diminished seventh chord is a special kind of generated collection, a perfectly even
collection where the remainder interval is equal to the generating interval. As such it
represents a logical extreme of the kind of collections explored in the previous section: a
Tonnetz of diminished seventh chords, considered just as basic Tonnetz graph or simplicial
Tonnetz, is trivial, containing only one chord. As a musical object, though, a diminished
seventh chord is potentially rich in multiple meanings, something that made it a an
essential resource to eighteenth- and nineteenth-century composers. If the process of
embedding a simplicial Tonnetz in a robust geometry is one of investing it with musical
meaning, then even a chord that gives rise to a trivial Tonnetz might have a non-trivial
network of meanings when embedded in different spaces.

The minimal embedding universe of a diminished seventh chord is u = 4 – i.e. the
chord itself. Accordingly, its only available phase space is Ph1/4, with Ph2/4 being degen-
erate. Since three dimensions are required to make a four-note chord into a simplex, the
procedure outlined in the previous section using phase spaces requires beginning from
the direct product of three copies of Ph1/4, which implies associating different meanings
with each of these copies. Since we are interested in the diminished seventh chord as a
component of tonal harmony, it makes sense to embed it in the non-minimal u = 12, in
which case Ph1/4 can be interpreted as Ph1/12, Ph3/12, Ph5/12, all of which order the notes
of the diminished seventh in the same way. We already have developed interpretations
for each of these in the context of tonal harmony: Ph1/12 is a position on the pitch-class
circle, Ph3/12 is a triadic location, and Ph5/12 is position on the circle of fifths. I will
use Ph11/12 in place of Ph1/12, however, so that interval values have their conventional
interpretation (with 1 as an ascending semitone). The notes of the diminished seventh
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are equally spaced in all of these dimensions.
In each of these phase spaces we can realize the generating interval of the diminished

seventh either as an interval of length 3 (or −3) or −9 (resp. 9). In Ph11, the distinction
is between an ascending 3-semitone interval and a descending 9-semitone interval. This
dimension can therefore represent differences of voicing or figured bass. The complete
diminished seventh consists of three intervals of size 3 and one of size −9. The ordering
of these will determine the position of the chord: 7, 6

5 , 4
3 , or 4

2 . For instance, if we begin
from C and fix the spelling of notes as C-E[-G[-B[[, then ordering the Ph11 interval
values 3-3-3-(−9) produces a c◦7, 3-3-(−9)-3 produces a c◦ 6

5 , and so on. The left panel
of Figure 12 shows a Tonnetz graph for these different positions of the c◦7.

Spelling can be used to distinguish between the two possible Ph5 orientations of the
3-semitone interval, as a minor third (−3) or augmented second (9). This changes the
figured bass along with the nominal root of the chord, so, with the Ph11 interval ordering
fixed at 3-3-3-(−9) (from pitch-class 0 to 9), the Ph5 ordering (−3)-(−3)-(−3)-9 gives c◦7,
(−3)-(−3)-9-(−3) gives a◦ 6

5 , (−3)-9-(−3)-(−3) gives f]◦ 4
3 , and 9-(−3)-(−3)-(−3) gives

d]◦ 4
2 . A corresponding Tonnetz graph is shown in the middle of Figure 12.

We can combine these two kinds of intervallic distinctions to make a Tonnetz of different
possible nominal roots and positions, by defining the intervals of the seventh chord in
Ph11×Ph5 as (3, 9), (−9,−3), and two copies of (3,−3). For instance, (3, 9)-(−9,−3)-
(3,−3)-(3,−3) is a d]◦ 6

5 . By permutation of these intervals, twelve possible forms of the
same diminished seventh are possible, and they make the Tonnetz graph shown on the
right of Figure 12. This Tonnetz excludes the root position chords, because they have
a different set of intervals: (3,−3)-(3,−3)-(3,−3)-(−9, 9). The root-position diminished
seventh is an essentially one-dimensional structure because it has only two kinds of
intervals.

The diminished seventh chord is perhaps the earliest instance where harmonic theory
very clearly separated interpretations of the same set pitch classes as distinct harmonic
objects. Bach (1949, p. 438) (orig. 1753), for instance, makes it clear that the idea
of a diminished seventh as a common entity with distinct enharmonic interpretations
was well established by the mid-eighteenth century. If we consider that the pitch-class
distributions of tonal music very consistently maintain a strong diatonicity (high |f5|),
diminished sevenths, with their pitch classes equally spaced on the circle of fifths, were
the earliest method that composers used to weaken f5 and thereby create an ambiguity
of diatonic position.

The distinctions made in Figure 12 might not be entirely sufficient to reflect the possi-
ble functions of a given diminished seventh, though. In particular, the notion of “nominal
root” determined solely by Ph5 orientation is somewhat unsatisfactory. For typical har-

16



June 25, 2019 Journal of Mathematics and Music tonnetzTopologyRev

monies (triads and seventh chords), the concept of a root is associated with triadic
distinctions, Ph3 orientations, as well as Ph5 orientations. We have noted above that
Ph3 orientations divide the pitch-classes up between three triadic positions (root, third,
fifth, but without specifying which position corresponds to the root). A seventh chord,
since it has four notes, must have two notes assigned to the same triadic position. With
most seventh chords (dominant, minor, half-diminished) there is no ambiguity about the
triadic orientation: the root and seventh are a step apart and belong to a single triadic
position. Either the seventh is a displacement of the root or, in certain contexts, the root
might be considered a displacement of the seventh (in which case the third might be
called the “true root”). In a diminished seventh chord, since it is equally spaced, any two
notes might be equally likely to be assigned to the same triadic position. Furthermore,
there is not necessarily any reason why the Ph5 orientation of notes (as sharpward or
flatward, determining the spelling of the chord and therefore assignment of nominal root)
should have to correlate in any particular way to their Ph3 orientations – that is, the
spelled root and seventh need not belong to the same triadic position, as they normally
would in a diatonic seventh chord.

From the eighteenth century on, the diminished seventh has been conventionally un-
derstood as a displacement of a dominant seventh, or a dominant minor ninth with a
missing root. This implies that the nominal fifth (as the seventh of the implied dominant)
and nominal seventh (the minor ninth, or displacement of the root) belong to a single
triadic position. This orientation in Ph3×Ph5 space is shown on the left of Figure 13, for
a d]◦7 chord, whose displaced root would be B. This conventional interpretation can be
generalized as a particular ordering of Ph3×Ph5 intervals: (3, 9)-(3,−3)-(3,−3)-(−9,−3).
Here the notes interpreted as triadically stable, D]-F] are also the furthest sharp. If we
fix the spelling (Ph5 orientation) but shift the Ph3 orientation in the tonic direction (to
the left), we get a different interval ordering, (3, 9)-(3,−3)-(−9,−3)-(3,−3), shown on
the right. The furthest flat note (nominal seventh), C, is now triadically stable, while
F] and A now share a triadic position and may be treated as displacements of G. The
D], though triadically stable, is remote in Ph5 and therefore can resolve to E to give
a C major triad.14 In other words, this Ph3×Ph5 orientation corresponds to the usual
common-tone interpretation of the diminished seventh, and shows why this distinct in-
terpretation cannot be captured by spelling alone. Logically we can then extrapolate to a
third possible interval ordering, (3, 9)-(−9,−3)-(3,−3)-(3,−3), in which the notes A and
C are triadically stable and the sharp-side notes, D]-F], are displacements of a hypothet-
ical fifth, E. This inversion of the usual dominant-functioning interpretation might be
understood as a minor version of the common-tone diminished seventh (a displacement
of A minor).

The diminished seventh, as a 3-simplex, can be embedded in T 3, thus potentially
admitting of all three of these kinds of distinctions simultaneously. Specifically, we can
make a Tonnetz on the diminished seventh {C,E,F],A} whose intervals in Ph11×Ph3×Ph5

are (3, 3, 9), (3,−9,−3), (−9, 3,−3) and (3, 3,−3). The twenty-four possible permutations
of these intervals partition the Ph11,3,5 space into 24 tetrahedral regions, all with the same
four vertices, differing only in their orientation in the space. Even though they are, in
a sense, all versions of the same chord, they make a non-trivial Tonnetz, with certain
interpretations overlapping in shared tetrachords and others being more distant.15

14Theoretically this reasoning could be inverted so that the chord resolves to G] minor with A and C resolving

down by semitone. This is less compelling because of the general tonal tendency to associate descent in Ph5

(decending fifths, ascending leading tones) with resolution.
15Note that the total is 24 (rather than 43 = 64) because certain intervals are excluded, namely those that are

long in two dimensions at once. We already noted that the diminished seventh interval has this property (it is
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We may then simplify this space through various types of folding, which remove the
intervallic distinctions (and thereby some of the types of diminished seventh) and the
cyclic homology of one of the dimensions. If we forget the triadic (Ph3) distinctions we
get a Tonnetz of 12 regions for the graph on the right side of Figure 12. If we forget the
distinctions relating to direction around the pitch-class circle (Ph11), 3 semitones in one
direction versus 9 in the other, and we have a Tonnetz of 12 triadic/diatonic forms of a
diminished seventh (three functions by four spellings), whose graph is isomorphic to the
one for the 12 distinctions of spelling and position. In this latter space (cyclic in Ph3 and
Ph5 and folded in Ph11) the diminished seventh chord lives in a universe of interval classes,
where it is not possible to orient along the pitch-class circle. However, spellings and
triadic distinctions remain in effect, so sharp-flat orientation and functional orientation
are possible. Also, recall from above that even after a dimension is folded, it still effects
the underlying topology, so that proximity in Ph11 continues to effect proximity of points
within the regions (insofar as these points represent pitch-class distributions), even as
the global sense of orientation in Ph11 has been lost.

We can also go one step further, folding two dimensions of the large diminished-seventh
Tonnetz, to get the simple cycles of interpretations on the left of Figure 12. This is pre-
cisely analogous to the folded chromatic tetrachord and diatonic seventh-chord Tonnetze
of the previous section, differing only in the cardinality of the resulting cyclic Tonnetz
graph (with 4 elements instead of 12 or 7). However, the diminished seventh chord is
different from these in that its remainder interval is equivalent to its generating inter-
val, which makes it possible to have a Tonnetz in which all three dimensions are folded.
This fully simplified diminished seventh Tonnetz, with no interval duplications, is in a
bounded tetrahedral space with the pitch classes of the diminished seventh as vertices, all
of the intervals between them (minor thirds and tritones) as edges, and the four dimin-
ished triads as faces bounding the entire space. This can be derived directly from the full
Ph11,3,5 space by defining barycentric coordinates based on the distance of each point
from the nearest plane for each diminished triad, mapping the 24 tetrahedral regions
defined by the diminished seventh onto one another. Pitch classes not in the Tonnetz fall
on the face opposite the pitch class two semitones away. So, for instance, pitch classes D

long in both Ph1 and Ph5). Similarly the long Ph3 interval (the minor third that does not span triadic positions)

is never the augmented second (indeed, it would hard to interpret the tonal meaning such an interval), and also
is never allowed to be the major sixth interval.
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and F] are mapped onto one another and fall on the (E[, F], A) face (opposite C). The
resulting set of pitch classes on a common face therefore, interestingly, forms an (01478),
which is special as the only example of a simple pitch-class set in u = 12 that is perfectly
balanced (|f1| = |f5| = 0) but not transpositionally symmetrical (Amiot 2017b; Milne,
Bulger, and Herff 2017).

3. Two-interval generated Tonnetz

Thus far we have only considered Tonnete on one-interval-generated collections, but the
principles of embedding a Tonnetz in a toroidal phase space and folding dimensions to
equate duplicated intervals can be applied more widely. Here we consider another class
that includes most of the other examples of theoretical interest, collections generated by
two distinct interval types. The primary difference is that instead of a Tonnetz on a single
transposition-type, we will now combine multiple transposition-types in a single Tonnetz
or Zeitnetz, including, but not limited to, inversionally related transposition-types (e.g.,
major and minor triads).

The simplest case of two-interval generated Tonnetze are the trichordal Tonnetze, such
as the standard triadic Tonnetz. Any trichord that is not one-interval generated can be
generated by two distinct intervals a-b, and will have a remainder (−a − b)mod(u). Its
inversion will then be given by taking these in the opposite order, b-a. For instance, the
standard triadic Tonnetz results from setting a = 4 and b = 3, giving major triads, 4-3-5,
and minor triads, 3-4-5, where 5 = (−a − b) is the remainder. Note, however, that this
method of generating the standard Tonnetz is not unique. We could also use, e.g., a = 5
and b = 4, giving major triads in “second inversion,” 5-4-3, and minor triads in “first
inversion,” 4-5-3.

Trichordal Tonnetze generated by two intervals are not foldable in the way described
in the previous section, because all of their intervals are unique.16 Larger two-interval
generated Tonnetze, however, are. One example is a seventh-chord Tonnetz described
by Douthett (1997) and Yust (2018a). This extends the standard triadic Tonnetz with
another minor third. To get the transposition types for this Tonnetz, we list all unique
permutations of the intervals 3, 3, and 4, and append the remainder 12− a− b− c = 2.
The result is three types of seventh chords: dominant sevenths, 4-3-3-2; minor sevenths,
3-4-3-2; and half-diminished sevenths, 3-3-4-2. Note that inversionally related transpo-
sition types will always be included. Nonetheless we still count them separately, since
some transposition types will have inversional symmetries (like the minor seventh). The
folding for this seventh-chord Tonnetz equates the two minor thirds, so that there are no
duplications of the minor seventh chords. The resulting topology may be understood as
a fattened 2-dimensional torus – that is, it has two cyclic dimensions and one bounded
dimension. Each boundary contains a whole-tone collection with a (026) trichordal Ton-
netz. These (026) trichords are connected to points on the opposite boundary to complete
dominant or half-diminished seventh chords. Minor seventh-chord simplexes then also re-
sult from these connections, filling in the space between the 3-3-4-2 and 4-3-3-2 tetrahedra
to give a complete simplicial decomposition of the space.

We can construct other two-interval generated tetrachordal Tonnetze similarly, and
they will have one bounded dimension (the disambiguating dimension) and two cyclic
dimensions (principal dimensions), which results in either the same topology as the
seventh-chord Tonnetz (an orientable fattened 2-dimensional torus) or a similar non-

16However, this is not the only possible method of folding. See the section on spherical Tonnetze below.
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Figure 14. Tonnetz of scalar tetrachords, 1-2-2-7, 2-1-2-7, and 2-2-1-7, projected onto Ph1,5-space. Dashed lines
show “voice-leading”-type transformations that hold the remainder interval (the bounding fourth) constant. Solid

lines show scalar extensions that remove the lowest note and add a note a fifth above, or vice versa.

orientable topology. An example of the latter type, also mentioned in Yust 2018a, is a
space of scalar tetrachords generated by 1, 2, and 2 – that is, tetrachords in the older
sense. The tetrachords are the “phrygian” 1-2-2-7, “dorian” 2-1-2-7, and “ionian” 2-2-
1-7. The remainder is coprime to 12, so the second method of folding needs to be used
in this case, resulting in a non-orientable space with a single boundary. This boundary
houses a trichordal (015)-Tonnetz. Connecting the (015)s across the bounded dimension
to the note that fills in the major third makes phrygian and ionian tetrachords, and the
dorian tetrachords fill in the space between these.

Since two-interval generated Tonnetze always have two cyclic dimensions remaining
after folding, they can be effectively visualized by projection onto a two-dimensional
torus. For the scalar-tetrachord Tonnetz, for example, the best choice of cyclic dimensions
(which can be determined by maximizing Fourier coefficients) are Ph1 and Ph5. In Figure
14 the tetrahedra are projected into Ph1,5-space by taking the Fourier phase values of
their tetrachords (i.e. taking circular averages of their pitch classes in each dimension).
The Ph1×Ph5 space may be compared to Noll’s (2018) degree space and corresponding
concept of width-height duality, or height versus tone character (Clampitt and Noll 2011).
Scalewise tetrachords embody this duality in the sense that they are equally compact in
Ph1 and Ph5.

Although I have advocated throughout for the importance of an underlying geome-
try, including dimensions that may be rendered homologically trivial through folding,
throughout this section and the next two, we will operate at a somewhat more general
level, remaining agnostic about the dimension that has been folded and working instead
with the Tonnetz graph and the topologically significant dimensions of the phase-space
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geometry (the ones that define the cyclic components of the homology group). In the
(0135)/(0235) Tonnetz, the topologically significant dimensions are Ph1 and Ph5. Pro-
jection into this two-dimensional space eliminates the unspecified third dimension.

Two-interval generated Tonnetze, with 3 and 4 (in Z12) as the two intervals, formal-
ize the common musical notion of tertian harmony. Such constructions generalize the
standard Tonnetz to higher cardinality by considering the generating thirds as an essen-
tial feature, and increasing the cardinality, which corresponds to dimensionality in the
topological construction. The Douthett seventh-chord Tonnetz is one example. A more
exotic set of seventh chords would result from using two major thirds, as opposed two
minor thirds (augmented-major sevenths, 4-4-3-1; major sevenths, 4-3-4-1; and minor-
major sevenths, 3-4-4-1). We can also extend further to cardinality 5, or ninth chords.
As the cardinality increases, we may also increase the number of foldings, which means
the number of cyclic dimensions remains constant at two. All such Tonnetze will house
a standard triadic Tonnetz, whose original form can be recovered by projecting it onto
the cyclic dimensions.

The two ninth-chord Tonnetze of greatest musical interest are those generated by 3, 3,
3, and 4, and by 3, 3, 4, and 4. The former is a minor ninth-chord Tonnetz with remainder
11 and the latter is a major ninth-chord Tonnetz with remainder 10. The foldings are
somewhat different in that the first identifies three intervals (the minor thirds) and the
second identifies two pairs of intervals. Therefore the minor-ninths Tonnetz is somewhat
simpler, including only four chord types. Figure 15 shows its projection in Ph4,5-space.
The edges of the Tonnetz graph are also shown, with dotted lines for voice-leading–type
relationships, meaning that they hold the position of the ninth interval constant while
moving one other note by semitone. Solid lines show the extensions of the chain of thirds,
where the initial note in the chain is removed and another note added at the end, or vice
versa. The major-ninths Tonnetz, with six chord types, has a optimum projection in
Ph3,5 space, as shown in Figure 16. Even this projection is not perfect, though, because
two chord types fall in the same location, the dominant ninth (4-3-3-4-10) and the minor-
major ninth (3-4-4-3-10 – i.e. a minor triad with a major seventh and major ninth). To
show the Tonnetz graph, then, doubled dotted lines indicate two distinct connections
to the co-located dominant and minor-major ninths, while the solid lines to and from
these show individual connections (from left to right, augmented ninth→ dominant ninth
→ half-diminished ninth, or half-diminished ninth → minor-major ninth → augmented
ninth).

The minor-ninths Tonnetz has an interesting relationship to the diminished-seventh
Tonnetze discussed in section 2.5, because diminished sevenths are one of the shared
subsets (between dominant-minor and diminished-minor ninth chords). The minor ninths
Tonnetze at different levels of folding therefore all have diminished-seventh sub-Tonnetze.
In the fully ramified 5-toroidal version of the Tonnetz, the sub-Tonnetz is the full 4-
toroidal diminished seventh Tonnetz. When folded down to two cyclic dimensions, as in
Figure 15, we see that the diminished-seventh Tonnetz retains one cyclic dimension, here
shown as Ph5 distinctions, so that the same diminished seventh chord corresponds to
four vertically aligned edges in the network. The historical origins of diminished-seventh
enharmonicism are therefore reflected in this Tonnetz: originally conceived as a dominant
minor ninth chord with an elided root, or dominant seventh with a displaced root, it is
required to retain a distinct enharmonic identity, as reflected in the dimensionality of
the folded minor-ninths Tonnetz.

We can make an interesting Zeitnetz that is very similar to the major-9ths Tonnetz,
generated by 3 and 4, but with u = 16, giving a remainder of 2 rather than 10. This
Zeitnetz includes a number of interesting timelines that are used in some Latin American
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and West African musical genres, the best known being the Son clave of Afro-Cuban
music (or Kpanlogo timeline of Ghana – see Agawu 2003, 157–61): 3-3-4-2-4 (a rotation
of 4-3-3-4-2). This Tonnetz also includes other timelines discussed by Toussaint (2013),
the Rhumba timeline (3-4-3-2-4, a rotation of 4-3-4-3-2) and the Gahu or Highlife timeline
(3-3-4-4-2), as well as the inversions (i.e. retrogrades) of these, and one that he refers
to as the “rap timeline” (4-3-2-3-4, a rotation of 3-4-4-3-2). The best projection of this
Zeitnetz is in Ph5,7/16-space, which much like the major-ninths Tonnetz, superposes two
rhythms (“rap” and Son clave), as shown in Figure 17. The rap timeline is therefore
given in T3, the rotation that is superposed on the standard rotation of the Son clave.
This phase space represents the rhythms as approximations to maximally even 5-in-
16 (interval pattern 3-3-3-3-4) rhythms and subsets of maximally even 7-in-16 (interval
pattern 3-2-2-3-2-2-2) rhythms.

4. Uniform Tonnetze

Another type of two-interval generated Zeitnetz can be constructed on what Osborn
(2014) calls Euclidean rhythms, following Gómez-Mart́ın, Taslakian, and Toussaint (2009)
and Toussaint (2013), which include many rhythms common in popular music. These are
defined as the beat-class sets that can be generated by permuting the adjacency intervals
of a maximally even rhythm.17 Although maximally even sets are generated when n and
u are coprime (Clough and Douthett 1991), if the generator is not an adjacency interval,
then distinct collections can result from permuting these.

17Toussaint’s definition is different than Osborn’s, effectively only including the maximally even patterns (which,
it turns out, can be generated though a version of the Euclidean algorithm). Osborn’s definition is somewhat

preferable since a new term is not needed for maximally even patterns.
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For present purposes, what is significant about Euclidean rhythms is that they can be
understood as two-interval generated patterns where the remainder interval is equal to
one of the generating intervals. Because the intervals need not relate to the Euclidean
algorithm in the manner described by Toussaint, I will call these uniform Tonnetze. In
uniform Tonnetze as compared to other two-interval generated Tonnetze, an additional
folding is possible, so that it can be reduced to one cyclic dimension.

The simplest non-trivial example of such a Tonnetz is generated by 2 and 1 mod 6,
which could be realized as quarter notes and eighth notes in 3/4, or as steps and thirds
in a whole-tone scale.18 The latter realization gives a Tonnetz consisting of (0248) and
(0268) tetrachords in 12-tET. This is folded according to the process described above,
resulting in a space with only one cyclic dimension remaining, as it would be for a
Tonnetz on generated tetrachords. The boundaries of the space are two augmented-triad
Möbius strips. Figure 18 gives its graph, projected in Ph2/6 but with the two set types
separated. Note the lack of connection between sets that share a common augmented
triad. The augmented triads occur on a boundary where two of the major-third intervals
(2 whole-tone steps) are equated, but one, the sum of the two whole-tone intervals of the
set, remains distinct. Therefore there are actually three geometrically distinct forms of
each augmented triad.

A similar Tonnetz generated by the intervals of the maximally even pentatonic scale, 2,
2, 2, 3, 3, contains two chord types, pentatonic scales and dominant major ninth chords,
as shown in Figure 19. The choice of generating intervals differing by a minimal amount
(1) guarantees, for a uniform Tonnetz, that one of the chord types will be maximally
even. Assuming that the cardinality n is coprime to u, the maximally even collection is
generated and the generating interval will project onto the axis Phn or Ph(u−n) without
overlapping. In other words, to use a folded phase space for this kind of Tonnetz, the
dimension that we retain as a cyclic dimension should be the one indexed by the cardi-
nality of the collection. This is Ph5 for the pentatonic Tonnetz. The form of the graph
is determined by the number of intervals, two of one type and three of the other (as
opposed to two of both types, as in Figure 18). For instance, a Tonnetz generated by 2,
2, 1, 1, 1 (pentatonic subsets and ninth-chord subsets in a mod-7 universe) would look
like Figure 19, only cycling after seven of each chord type instead of twelve. Similarly,
a Zeitnetz generated by 2, 2, 2, 1, 1, would have a central cycle of eight rotations of a
cinquillo rhythm (2-1-2-1-2) with detours through rotations of 2-2-2-1-1.

In the previous section, we distinguished two kinds of links in two-interval generated
Tonnetze, those of voice-leading type, where the remainder interval is fixed, and oth-
ers that extend the chain of generating intervals in one direction or the other. In the

18The trivial examples would be those in which a one-interval generated collection is treated as a two-interval
generated collection by treating the remainder as a generating interval
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Figure 19. Graph for a uniform Tonnetz of pentatonic scales and dominant ninths generated by 2, 2, 2, 3, 3.

uniform Tonnetze, this distinction breaks down, because the remainder interval is not
distinguishable from a generating interval. Therefore, in cases like these, where the gen-
erating intervals differ by 1, the Tonnetz connections given by simple permutations are
precisely the set of of single-semitone voice leadings. Networks like this that include all
and only the single-semitone voice leadings are discussed by Tymoczko (2011). If the
pentatonic sets in Figure 19 are replaced by their complements, the result is a network
of diatonic and acoustic scales, an important voice-leading network for Tymoczko.

This coincidence should be surprising, because the two kinds of network are derived
from very different theoretical premises. But note that they are equivalent only as chord-
based networks, not as geometrical Tonnetze. Section 2 above explained how Tymoczko
(2012) creates a geometrical Tonnetz out of chord-based voice-leading networks by defin-
ing a dual space. For the pentatonic example, we can take as our objects hyperplanes
in the five-dimensional voice-leading space. The possible rotations and translations of
these hyperplanes define a dual five-dimensional space, where certain points represent
pitch classes in the sense of representing a hyperplane in voice-leading space that holds a
certain pitch class constant. This is precisely analogous to the two-dimensional (dyadic)
case. The important point is that in all cases, the dual space has a cyclic dimension for
translation that corresponds to the cyclic transpositional dimension of the voice-leading
space, or the directed voice-leading sum (Cohn 1998). The Tonnetz graph or the sim-
plicial Tonnetz can therefore be geometrically embedded in voice-leading space with no
essential change to Figure 19 except for changing the meaning of the x-axis from Ph5

to transposition of a five-note collection. It turns out that, for any size of collection n,
these two quantities, Phn and the projection onto the central axis of the n-dimensional
voice-leading space, are close approximations of one another as long as we restrict our
attention to relatively even chord types. This is informally presented in Yust 2015b and
addressed in greater mathematical detail in Tymoczko and Yust 2019. Therefore, these
two kinds of geometry will embed the same simplicial Tonnetze, with the same topology –
the significant differences between them only emerge if we consider what kind of musical
objects occupy the space between the pitch classes.

Another interesting example of a uniform Zeitnetz can be built from the maximally
even 6-in-16 beat-class set 3-3-2-3-3-2. This rhythm may be understood as a repeated
tresillo (3-3-2). Permutation of these intervals gives distinct beat-class sets 3-3-3-2-3-2 or
3-3-3-3-2-2, or some rotation of these. Biamonte (2014) calls the latter, a common rhythm
in rock, ragtime, and other popular music genres, the “double tresillo” (see Cohn 2016).
The resulting Tonnetz can be folded into one cyclic dimension, giving the graph shown
in Figure 20.

Higher-dimensional uniform Tonnetz of scale types are also possible. The 7-in-12 max-
imally even scale is the diatonic, 1-2-2-1-2-2-2, and permutation gives the acoustic scale
or melodic minor, 1-2-1-2-2-2-2, and the “whole-tone plus one” scale 1-1-2-2-2-2-2. The
Tonnetz graph in Figure 21 is similar to that for the pentatonic Tonnetz, but with more

25



June 25, 2019 Journal of Mathematics and Music tonnetzTopologyRev

14 15 0 1 2 3 41312
Ph6

i.i. q i.i. q

i.iq.i.i. q

i.i. qi.iq.i.i. q (  xii. q.

≈ii. q i.i. q

≈iiq.i.i. q

i.i. q (  xiiq.

i.iq.i.iq.

ii. q.i.i. q

i.i. qii. q.

i.iq.ii. q.

ii. q.i.iq.

i.i. q (  xi.iq.

≈ii. q (  xii. q.

≈iiq. i.i. q

i.iiq( ii. q.

ii. q.ii. q.

‰i. q.i.iiq

ii.iq( ii. q.

‰i. q.ii.iq

i.iiq( ii. q.

‰i.iq( ii.iq

‰i. q.i.iiq

Figure 20. Portion of a graph for a uniform Zeitnetz generated by 3, 3, 3, 3, 2, 2. In the middle row are the
maximally even repeated tresillos (3-3-2-3-3-2), the top and bottom rows have rotations of the double tresillo

(3-3-3-3-2-2), and between these are the other pattern, 3-3-3-2-3-2. The graph cycles after going through the eight

distinct rotations of the repeated tresillo, of which five are shown.
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Figure 21. The graph of a uniform Tonnetz of scales generated by 2, 2, 2, 2, 2, 1, 1. The scales are labeled using

Hook (2011)’s system for spelled heptachords, which counts the number of sharps and flats needed to spell the

collection with seven distinct letter names. For instance {G], A, B[, C, D, E, F]} is the 1] whole-tone-plus-one
scale, because it is spelled with two sharps and one flat, and the difference then is one sharp.

scale types. The cyclic dimension is Ph5 and a spine of connected diatonic collections
tours the cycle with short detours to acoustic collections and long detours to whole-tone-
plus-one collections. (Note, however, that, as with the other graphs in this section, only
the horizontal positions labeled with the cyclic axis reflect the Tonnetz geometry. The
vertical positions are chosen for convenience to separate collections that project onto the
same Ph5 location.)

An interesting feature of maximally even patterns like the diatonic, however, is that
they can be defined as two-interval generated patterns through multiple distinct pairs
of generators. For example, we could treat the thirds as generators of the diatonic, con-
structing a scalar Tonnetz with a tertian logic. As Meredith (2011) observes, this captures
what are typically taught as the standard tonal scales, including the harmonic minors
and majors (4-4-3-4-3-3-3) as well as the melodic minor/acoustic (4-4-3-3-4-3-3), but not
the whole-tone-plus-one. In addition, this Tonnetz includes a more exotic type of col-
lection including a diminished second (i.e., enharmonic variant of a single pitch class),
4-4-4-3-3-3-3, e.g., C-D]-E[-F]-G-A-B.

5. Spherical Tonnetze and other topologies

Each of the n-dimensional Tonnetz geometries constructed includes a collection of hyper-
planes with (n− 1)-dimensional Tonnetze that make up the boundaries of the regions of
the n-dimensional Tonnetz, corresponding to the subsets of the set classes involved. For
instance, regions of the (0258)/(0358) Tonnetz are bounded by planes with (025), (026),
(036), and (037) Tonnetze. In the n-torus (unfolded) Tonnetz, these sub-Tonnetze are
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Figure 22. (036)-Tonnetze at different levels of folding (toroidal, cyclic, and spherical)

(n− 1)-toruses, and they retain this topology when a single dimension of the n-torus is
folded.19 With higher-order foldings, the homologies of the sub-Tonnetze are simplified
in the same way as the parent Tonnetz. For instance, the uniform pentatonic Tonnetz
of Figure 19 is a network of 4-simplexes (pentatopes) folded to have only one cyclic di-
mension (represented by Ph5). The sub-Tonnetze are tetrahedral, with (0246) and (0258)
Tonnetze making the boundary of the space, (0257) making the boundary between the
two pentachord types, and (0257) as the boundary within the central cycle of pentatonic
scales. Each of these tetrahedral Tonnetz are also cyclic in one dimension.

What happens, then, in the extreme case discussed in section 2.5, of a totally bounded
Tonnetz on a perfectly even collection? Figure 22 shows the process undergone by an
(036) sub-Tonnetz at different levels of folding of the parent diminished seventh Tonnetz.
It begins as a 2-toroidal Tonnetz and remains so with one dimension folded (i.e. when the
diminished sevenths contain three different types of minor thirds based on distinctions
in two dimensions, such as Ph1,5 or Ph3,5). With two foldings, when the diminished
seventh Tonnetz becomes a cyclic network of four tetrahedral regions, the diminished
triad Tonnetz is also reduced to a simple cyclic network of triangles bounded by tritone
axes, as shown in the middle panel of Figure 22. In this (036) Tonnetz there are no
longer distinct types of minor third, but there are two kinds of tritone. For instance, if
Ph5 is the cyclic dimension, the sum of two minor thirds is a diminished fifth, but the
remainder of two minor thirds is an augmented fourth In other words, all of the (036)s
share two common tones, but those that share a common ic3 are adjacent in the Tonnetz,
whereas those that share a tritone are not. When the parent diminished seventh Tonnetz
is reduced to its simplest form, as a single tetrahedral space with no duplications, these
duplicated tritones are also equated, as shown on the right side of Figure 22, resulting
in an (036) Tonnetz that has, as the surface of a tetrahedron, a spherical topology. This
means that it is a compact surface with a trivial fundamental group. In other words, this
(036) Tonnetz is the logical extreme of removing the homological elements of a toroidal
Tonnetz.

A spherical surface can be illustrated in stereographic projection, as on the left of
Figure 23, which places one pole in the center, the opposite pole in a circle around the

19Although they may be reduced or mapped onto one another. For instance, in the 3-torus version of the seventh-
chord Tonnetz, there are two distinct planes with (025) Tonnetze and two with (037) Tonnetz. These are mapped

onto one another in the folded version. Each (036) Tonnetz has eight triangles as a plane in the 3-torus, but only
four in the fattened 2-torus.
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Figure 23. The tetrahedral Tonnetz in stereographic projection, and its Tonnetz graph

perimeter (i.e. this circle actually corresponds to a single point), and shows longitude
lines as radii. We can see from this how transpositions by minor third and tritone map
onto rigid symmetries of the sphere. The graph of the spherical (036) Tonnetz, on the
right of Figure 23, is different than the graph of the cyclic and toroidal (036) Tonnetze.
While all duplications of (036) trichords are already removed from the cyclic version
(the one in the middle of Figure 22), the Tonnetz graph adds additional edges linking
the tritone-related (036)s. The result, then, is a complete graph on four vertices (the
graph-theoretic analog of a 3-simplex).

The construction of the tetrahedral Tonnetz can be generalized to higher-dimensional
simplices, creating a family of n-dimensional hyperspherical Tonnetze. However, as a tri-
chordal, 2-dimensional, Tonnetz, the construction is unique to the (036) set class (or,

equivalently, a ♩ ♩  rhythm), because it is the only generated trichord with the remain-
der interval of a tritone, which can be equated with its inversion. Or, we might observe
that the particular symmetries of the sphere used to satisfy the transposability criterion
are order-4 and order-2, so the only available intervals are 8ve/4 and 8ve/2. However, there
is one other way to construct a spherical trichordal Tonnetz with a different symmetry
group.

One difference between the spherical topology and all the other Tonnetze we have
constructed by folding n-dimensional phase spaces is its Euler characteristic, χ, which is
an important topological invariant. This is defined as χ := V − E + F , where V is the
number of vertices in the simplicial complex, E the number of edges, and F the number of
faces. The Euler characteristic is a topological property shared by the simplicial Tonnetz
and the geometric Tonnetz. For all torii, χ = 0. The folding process defined in section
2 preserves χ, because it removes an equal number of edges and faces. But the one
illustrated in Figure 22 removes two edges without removing any faces. This simplicial
complex therefore has the Euler characteristic of a sphere, which is χ = 2. To remove an
edge by folding without changing the vertices, we need a cycle with exactly two vertices
on it – i.e. a tritone axis. To get χ = 2 we need exactly two of these, which occurs only
in the (036) or equivalent Tonnetz.

However, there is one other way to change χ with V fixed, and that is to add faces
without adding edges. Consider the (024) whole-tone Tonnetz in Figure 24. After being
folded to a cyclic trichordal Tonnetz, it has a major-third boundary, which has exactly
three vertices and three edges. That is, understood as a graph, there is a 3-clique (triangle)
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corresponding to each augmented triad. Geometrically, however, the three edges are
colinear, so they do not actually define a region in the space. If such a region did exist,
as Figure 24 shows, the Tonnetz geometry would be spherical.20 Nothing in the phase
space corresponds to this region, though – that is, we can see that such a geometry, with
an octahedral symmetry group, could exist in principle, but we do not yet have a musical
interpretation of it.

We find a related phenomenon, however, which does have musical significance, if we
return to voice leading as the basis of our geometry, specifically trichordal voice-leading
Tonnetz where u is divisible by 3, such as the standard triadic Tonnetz. Cohn (1997) ini-
tially linked the standard triadic Tonnetz to the concept of voice leading while formalizing
it as a network of common-tone relationships, yet Tymoczko (2012) ultimately demon-
strated the full repercussions of the voice leading conception of the Tonnetz using voice-
leading geometries. Recall from section 2 that geometrical Tonnetze can be constructed
in dual voice-leading spaces. In the trichordal case, points in the dual space correspond
to planes in the voice-leading space, while points in the voice-leading space correspond
to planes in the dual space. The dual space therefore has a point for each pitch-class
(corresponding to the voice-leading plane that holds that pitch-class constant), and each
set of three pitch-classes in the dual space defines a plane, which corresponds to a point
in the voice-leading space belonging to the given trichord. Motions along that dual-space
plane correspond to rotations about the point for that trichord in voice-leading space.
We therefore have a dual-space plane for each major and minor triad, and can define tri-
angular regions on each of those planes bounded by the trichord intervals.21 Rotations of
these planes around shared dyads (“flips”) then correspond to edges in the chord-based
network (a Tonnetz graph) in voice-leading space. Therefore, piecing together all of these
regions we have a two-dimensional subspace of the three-dimensional dual voice-leading

20Reasoning from χ can thus show that these are the only two examples of two-dimensional spherical Tonnetze.

We could also observe that the existence of a spherical Tonnetz satisfying the transposability condition implies

the existence of a Platonic solid with u vertices and whose symmetry group has a cyclic subgroup of order u. By
process of elimination we are left then with only these two, tetrahedral and octahedral. For example, there is no

cubic Tonnetz because the order-8 subgroups of the symmetry group of a cube are not cyclic.
21This can be done by specifying that the balanced voice leading plane occurs within the region, which is then

defined as a convex hull around that point. Note that the balanced voice leading is the same plane for three
major-third related triads, so these regions all cross one another in the space. For instance, the C major region

and E major region cross in a line that corresponds to balanced voice leadings that hold E constant, C major and
A[ major cross in a line of balanced voice leadings holding C constant, and all three planes intersect in a point that
corresponds to balanced voice leadings between trichords of sum class 11 (= 0 + 4 + 7 = 11 + 4 + 8 = 0 + 5 + 8 mod
12). The illustration in Tymoczko 2012 redraws the Tonnetz to eliminate these visually confusing intersections,

which is helpful for visualizing its structure, but somewhat obscures the underlying geometry.
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space corresponding to the traditional Tonnetz. Technically this subspace is not a sur-
face because it intersects itself in multiple places, and for the same reason it does not
properly satisfy the definition of a Tonnetz geometry given in section 1. This situation is
analogous to that of the dyadic voice-leading Tonnetz in section 2.1.

This voice-leading version of the traditional Tonnetz gives a distinct geometrical mean-
ing to the same Tonnetz graph and simplicial Tonnetz as the phase-space version de-
scribed in section 3. The equivalent Tonnetz graphs result from the same general cor-
respondence between Phn and the n-note voice-leading space that we found in uniform
Tonnetze for maximally even collections in section 4: for relatively even chords, Phn
approximates a projection onto the central axis of the n-note voice-leading space. As a
result, the same basic Tonnetz graph can be geometrically realized in two distinct ways.

However, because major and minor triads are not maximally even, the voice-leading
space we have constructed for the traditional Tonnetz is not a satisfactory, or at least an
incomplete, representation of triadic voice leading. As Tymoczko (2011, 2012) points
out, the traditional Tonnetz inaccurately represents two-semitone voice leadings like
{CEG} → {CFA[} or {CED} → {C]EG]} as relatively large as compared to the two-
semitone “relative” voice leading, e.g. {CEG} → {CEA}. This is because a voice lead-
ing like {CEG} → {CEA} passes through an augmented triad {CEG]} which has not
been included in the network. Including these as a necessary intermediary between all
two-semitone voice leadings between major and minor triads gives a network of single-
semitone voice leadings that accurately represents distances in the voice-leading space.
Adding augmented triads to the network is similar to doing so in the octahedral Tonnetz
of Figure 24 above: each augmented triad adds a face to the space without adding any
new vertices or edges. Therefore, the Euler characteristic of the standard triadic Tonnetz,
χ = 0, increases by 4 when considered as a proper voice-leading Tonnetz, even without
accounting for the intersections of the major- and minor-triad regions. According to the
classification theorem of 2-manifolds, there is no way to consider such a simplicial com-
plex as belonging to a surface (a connected compact 2-manifold), because the maximum
Euler characteristic of a surface is that of a sphere, χ = 2.

Tymoczko’s Tonnetz therefore raises an interesting question about topology and mu-
sical meaning: what is the significance of a Tonnetz being embeddable in a manifold? A
manifold is defined as a topology that is locally Euclidean – specifically, in a 2-manifold,
every point has a region that is homeomorphic to the Euclidean plane. The triadic voice-
leading Tonnetz fails this criterion in multiple places: at the major third intervals, which
border three triadic regions, and on the intersections within triadic regions that share
a common pitch-class sum. The locally Euclidean feature might be likened to reading a
map: while it may be impossible to assign consistent orientations globally (for instance,
on the surface of the earth), if we restrict our attention to a local region, we can imag-
ine that the dimensions are fixed and extend infinitely. In the standard Tonnetz, this
imagined Euclidean space is what Harrison (2002) called the “unconformed” Tonnetz.
This is clearly how Riemann thought of the Tonnetz (Gollin 2011). As it was originally
conceived, as a map of just tuning relationships, it is in fact a noncompact Euclidean
space, but Riemann applied it in contexts where no such literal tuning differences were
present. Rather the Euclidean space is imagined, which is possible to do on the toroidal
Tonnetz as long as we maintain that only a limited extent of the space is “visible” from
a given point at one time. Clearly analysts following Riemann have found this locally
Euclidean aspect of the Tonnetz to be of great value, particularly when talking about
tonal harmony from a perceptual standpoint. When Rings (2011), for instance, talks
about Riemann’s “intentional paths” he explicitly models the perception of tonal har-
mony as something locally Euclidean. In fact, the qualities of brightness-darkness and
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dominantness-subdominantness Rings discusses track closely with the dimensions of the
Ph3,5 space that can embed the standard Tonnetz and is posited as a perceptual space
for tonal harmony by Krumhansl (1990). Cohn (2012, 64–67) explicitly advocates for the
standard Tonnetz on the grounds of its locally Euclidean properties, even while main-
taining that he is primarily interested in voice leading and that the Tonnetz does not
accurately model this, for exactly the reasons that Tymoczko points out.

What Tymoczko shows us, then, is that when using the Tonnetz in this way, we cannot
also imagine that it is a map of voice-leading relationships, at least not in the strict sense
of voice leading modeled by voice-leading geometries. We can think of it as embedded
within a two-dimensional phase space like Ph3,5 with the structure of a manifold, but it
is important then to recognize chords as instances of pitch-class distributions, a different
sort of musical object than the chords of voice-leading spaces. Indeed, this does seem to
be native to, e.g., Cohn’s thinking, when he says,

There are advantages to maintaining individual tones as primary objects, rather than
prepackaging them into triads. The Tonnetz can track continuities among individual pitch-
classes, yielding analytical information that would otherwise be difficult to recover, and
provides locations for other pitch-class combinations that arise in nineteenth-century mu-
sic. These include consonant dyads and dissonant seventh chords that would otherwise need
to be referred to a consonant triad via expansion or contraction, forcing interpretations that
might be underdetermined or even arbitrary. (Cohn 2012, 67)

Cohn, that is, views triads as existing in a space that mixes chords of different cardinality,
which is precisely what a space of pitch-class distributions does. One can make limited
claims about voice leading in such a space, grounded in the mathematical association
of Phn with the central axis of n-note chord space that holds for relatively even chords,
but it is important to recognize that this does not amount to a robust theory of voice
leading in Tymoczko’s sense, and that if we want to talk about voice leading in this way,
we cannot have a Tonnetz with the structure of a manifold.

Analogous points can be made about voice leading between seventh chords. As men-
tioned in section 3 above, Douthett (1997) constructs a Tonnetz of dominant, half-
diminished, and minor seventh chords, generated by 3, 3, 4 (remainder 2). When folded
to equate the minor thirds, the boundaries of this Tonnetz are two whole-tone planes con-
taining the (026) subsets of the dominant and half-diminished chords. At this stage, the
seventh-chord Tonnetz has a toroidal topology, with a bounded third dimension. How-
ever, it still has duplications of the tritones, which can be identified to create a spherical
sub-Tonnetz, as illustrated in Figure 22 above.22 When the tritones are identified, the
folded phase space now has fully connected (0268) tetrachords (“French sixth chords”),
and to continue to think of it as a 3-manifold, we would have to understand these (0268)
simplices as regions (adding six faces to compensate for the six edges), which they are not
in the original phase space. As a folded phase space, this seventh chord Tonnetz now only
has one non-trivial homological element, a cyclic homology associated with Ph4, oblique
to the spherical (036)-Tonnetze, which is also the phase-space dimension that mimics a
voice-leading axis for four-note chords. This folded phase space also has fully connected

22A three-dimensional toroidal Tonnetz was also proposed by Gollin (1998), but, lacking the minor seventh

chords, it is impossible to think of Gollin’s Tonnetz as actually filling any space, including a three-dimensional
toroidal one. Tymoczko (2012) points out that Gollin did not really explicitly realize the geometry of his Tonnetz,

and therefore he might have been thinking of something like a voice-leading Tonnetz, in which case the tritone
duplications in his illustration would be superfluous. If on the other hand, he had something like Douthett’s Tonnetz
in mind, as he suggests in referring to the geometry as toroidal, the tritone duplications are necessary, and we

could give a retroactive theoretical justification for them along the lines suggested in Yust 2018a, using phase

spaces. Nevertheless, Tymocko’s critique illustrates the importance of establishing clear theoretical foundations
when proposing something like a geometry of chord relations.
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diminished seventh chords. They do not define regions, however, just as the augmented
triads of the toroidal triadic Tonnetz are fully connected but do not define regions. If were
to treat them as such, we would obtain a Tonnetz graph equivalent to Tymoczko’s (2011)
seventh-chord voice-leading lattice. As in other cases, this voice-leading lattice can be
realied geometrically in the dual voice-leading space. The seventh-chord regions of this
voice-leading Tonnetz intersect where they share pitch-class sums, analogous to the 2-
and 3-dimensional cases, and have singularities at (036) faces, which belong to three
regions (dominant, half-diminished, and diminished). The diminished seventh chords are
essential to accurately reflecting voice-leading distances because they are intermediaries
in progressions like G7-b�7, analogous to triadic relatives like C-a.

6. Topology of musical concepts

Tonnetz graphs, as defined at the outset of this article, are easy to produce and admit of
many possibilities, and a variety of kinds of Tonnetze and Zeitnetze have been illustrated
here. Using phase spaces, all such networks can be embedded in musical geometries,
and we have found such geometries to relate to a number of significant existing musical
concepts. Due to the special role of simplicial complexes in the study of topology, we
have been able to readily apply this method to revealing some of the topology of musical
concepts, such as the cyclic homology of diatonicity and harmonic function. More complex
topologies can create musical heteromorphs, distinct meanings assigned to identical pitch-
class intervals, but our geometries can also forget these differences, altering the global
homology of the space but without loosing the local topology, the common-tone based
concept of proximity and the local directionality of the parent phase spaces.

A notable example of a particularly heteromorphic musical object is the fully dimin-
ished seventh chord. Through variability in is orientation in pitch space, the circle of
fifths, and functional space, it can potentially support a surprisingly large Tonnetz based
entirely on changes of interpretation of a single chord. Such a Tonnetz might be use-
ful in rationalizing the many ways diminished sevenths can be reinterpreted in nine-
teenth century music, not only enharmonic changes but also changes of function, such as
common-tone function versus its standard dominant function, and more distant types of
reinterpretation can be distinguished from less distant ones. The historical importance of
the diminished seventh chord in giving rise to richly ramified heteromorphic play in chro-
matic harmony may be explained, in fact, by the role of Ph3,5-space as a basic syntactical
space of keys and harmonic functions. As a perfect representative of the f4 dimension
of Fourier space, the diminished seventh is completely oblique to the Ph3,5 plane, and
therefore has a unique ability to shape-shift within tonality.

Phase spaces are not the only way to impart geometrical meaning to the abstract sim-
plicial networks of generalied Tonnetz, but they are particularly well suited to this task
because, as a space of tonal distributions, proximity in Fourier space derives directly from
common-tone content. Because of this, they offer a particularly general way of geomet-
rically embedding possible Tonnetze. The other prominent way of imparting musically
meaningful geometry to a Tonnetz is through voice-leading geometry. While this is also
in principle somewhat generalizable, the desire for network distances to reliably reflect
voice-leading distances gives rise to a more limited set of possibilities. Where the two
give distinct musical meaning and topology to the same networks, we have a particularly
interesting point of contact between theories based on very different basic principles.

It is worth reflecting here that a 12-dimensional vector space on pitch-class distributions
can be defined directly, with each dimension corresponding to the weighting of one pitch-
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class. Because the Fourier transform is actually a change of basis, however, this space is
actually the same as the larger Fourier space. What the Fourier transform allows us to
do is to project this larger space into one of fewer dimensions, such as our phase spaces,
which forget, in particular, differences between pitch-class sets that relate specifically to
transposition type. Phases spaces are therefore not in a one-to-one relation with pitch-
class distributions, but we can define canonical paths between points (such as simple
interpolation, or “pitch-class cross-fade”) that work in all phase spaces.
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