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Abstract. Pitch-class distributions are central to much of the compu-
tational and psychological research on musical keys. This paper looks at
pitch-class distributions through the DFT on pitch-class sets, drawing
upon recent theory that has exploited this technique. Corpus-derived
distributions consistently exhibit a prominence of three DFT compo-
nents, f5, f3, and f2, so that we might simplify tonal relationships by
viewing them within two- or three-dimensional phase space utilizing just
these components. More generally, this simplification, or filtering, of dis-
tributional information may be an essential feature of tonal hearing. The
DFTs of probe-tone distributions reveal a subdominant bias imposed by
the temporal aspect of the behavioral paradigm (as compared to corpus
data). The phases of f5, f3, and f2 also exhibit a special linear depen-
dency in tonal music giving rise to the idea of a tonal index.
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1 Introduction

Few studies in music psychology have stimulated as much interest and debate
as Carol Krumhansl and Edward Kessler’s 1982 article on tonal hierarchy ([12]).
While it is important for establishing the probe-tone technique as a behavioral
correlate of the sense of key—and the consequent focus on pitch-class distribu-
tions in research on the topic—central also to its impact, one suspects, was the
visualization of key relationships by deriving a toroidal space from the probe-
tone data. This two-dimensional toroidal geometry of key distances, derived
by applying multi-dimensial scaling (MDS) algorithms to the correlations be-
tween pitch-class distributions, was not necessary to establishing the efficacy of
the probe-tone method, nor was it a necessary component of the distributional
model or subsquently developed key-finding algorithms (which use correlations
between distributions directly, not filtered through the two-dimensional simplifi-
cation of the MDS solution). Yet the validation of common habits of thought and
language relating to musical keys, spatial metaphors of distance, direction, and
region, and of widely used theoretical models (such as the Schoenberg-Weber
chart of regions and the Tonnetz) kindled the imaginations of a wide range of
subsequent researchers.



2 Probing Questions about Keys

Spatial models raise a number of significant questions about the nature of
musical keys, many of which have been examined in the music perception and
cognition literature on the topic. This paper demonstrates that the discrete
Fourier transform (DFT) on pcsets can clarify these questions and in some cases
suggest novel solutions.

Krumhansl ([11], 99–106) noted that the spatial representation of keys in
Krumhansl and Kessler 1982 could be reproduced, without recourse to MDS,
by taking the third and fifth phase components of the Fourier analysis of the
key profiles. For Krumhansl this theoretical reformulation of the space is pri-
marily an expedient allowing for the plotting of various kinds of information
(expert key assignments, distributional data in the music) in a fixed space. The
practical problems can be overcome by clever use of computational techniques
like self-organizing maps, as [13] and [16] have shown. But, as I will argue here,
Krumhansl’s simplification using the DFT is of considerable theoretical interest
in its own right, especially in light of more recent applications of this same type
of space ([3], [4], [28], [29]). In particular, basic mathematical properties of the
DFT allow us to draw more far-reaching conclusions about this space and its
significance to the nature of tonality.

Much of this research has produced different kind of pitch-class distributions
that can be analyzed using the DFT on pitch-class vectors, as described by [15],
[19], [4], [27], and [29]. The terminology used here is taken from [27]. The entries
in the DFT vector are referred to as “components” and denoted f0, f1, f2, ... .
They are converted to polar coordinates with magnitude |fn| and phase φn, but
with phases converted to a pitch-class scale and designated Phn = 2π(φn)/12

2 Tonal Distributions

The large body of research that has grown out of Krumhansl’s work has pro-
duced an abundant crop of tonal distributions. These come in two or three basic
forms. Krumhansl and Kessler’s ([12]) original distributions are probe-tone rat-
ings from human subjects. Subsequent studies, such as [7], [6], and [22] applied
the probe-tone technique in varying contexts, or other experimental tasks that
produce comparable distributional data, such as the wrong-note detection tech-
nique used by [9]. Another method that has produced many distributions for
key-finding algorithms (further discussed in the next section) is to derive distri-
butions from the frequency of occurrence of scale degrees in a corpus. Finally,
other distributions (e.g. in [23] and [21]) are created “by hand” to optimize the
performance of key-finding algorithms.

Figs. 1–3 plot distributional data from a variety of sources in three different
Fourier phase spaces. (The locations of all major and minor triads and two
diatonic scales are also given for reference.) Fig. 1 shows part of the Ph3/Ph5
space used by Krumhansl ([11]) and which is also the basis of Amiot ([3], [4]) and
my ([28]) continuous Tonnetz. Despite a great variety of techniques represented
by corpus-derived distributions—using entire pieces with or without accounting
for modulations, using just the initial or final measures, using melodies only or
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polyphonic textures, counting pitch-classes in different ways—all are bunched
very closely together, near the tonic triad but typically with a slightly higher
Ph5, possibly reflecting a bias towards the dominant. Temperley’s (“CBMS”)
and Sapp’s hand-made distributions are close enough to these, but lie on the
fringes of the pack.

Fig. 1. Ph3/5 plot of corpus distributions from a variety of sources (Yb: [26], K&H:
[10], K-P, Essen, Temp: Kotska-Payne, Essen, and Temperley corpora from [24] , BB:
Bellman-Budge from [21], P&S: [18], A&S: [2])

Fig. 2 plots the same data with Ph2 replacing Ph3. Major-key data spreads
out a little more in the Ph2 dimension, but on the whole we can reach the same
conclusions. The interchangeability of Ph2 and Ph3 relates to a basic property
of tonality, the tonal index, explored further below. Other components do not
provide the same kind of essential tonal information, as the Ph1/4 plot in Fig.
3 illustrates. Major-key data are particular unfocused in the Ph4 dimension
and the minor-key data in the Ph1 dimension. Even where a certain amount of
consistency might be found, such as the minor-key profiles in the Ph4 dimension,
it is closer to unrelated triads like B major, B minor, and D minor.

The probe-tone profiles are more variable, but reliably close to the corre-
sponding corpus data. Fig. 4 gives a variety of major-key probe-tone data re-
flecting a variety of experimental paradigms. Cuddy and Badertscher (“C&B”)
include major-triad and major scale contexts on three levels of musical back-
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Fig. 2. Ph2/5 plot of corpus distributions.

Fig. 3. Ph1/4 plot of corpus distributions.
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Fig. 4. Ph3/5 plot of corpus distributions and probe tone distributions from a variety
of sources (KK: [12], C&B: [7], BBJ: [6], S&S: [22], J&al: [9]).

ground. Brown, Butler, and Jones (“BBJ”) replicate these (“triad1,” “scale1”)
and also test contexts that reorder the tones of each (“triad2,” “scale2”). Smith
and Schmuckler randomly generate contexts using Krumhansl and Kessler’s pro-
files weighting tones by duration (“S&S1”) or frequency (“S&S2”) at varying lev-
els. Janata et al. (“J&al”) use a very different method of wrong-note detection.
Despite such differences in experimental paradigm, these data very consistently
deviate from the corpus data on the subdominant side. The difference may re-
sult from the temporal aspect of the probe-tone task: listeners evaluate, not a
note merely in the given context, but after it, and motion to the left in Ph3
(descending thirds or fifths) is much more typical of tonal music than to the
right, particularly at endings and moments of resolution. Particularly striking is
Brown, Butler, and Jones’s reordering of the arpeggiated triad, which appears
to consistently imply F major more strongly than C major.

To examine the matter more closely, let us focus on a single, fairly rich, body
of corpus data collected by Prince and Schmuckler ([18]). Tables 1 and 2 show
the DFTs for their data collapsed over metric position but divided by composer.1

These data are average tonal profiles for each composer, with all pieces trans-
posed to C major or C minor, but with no accounting for modulations. The
data for Bach, Mozart, Beethoven, and Chopin represent relatively large sam-

1 Jon Prince generously shared this raw data through personal correspondence.
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ples (between 20,000 and 120,000 quarter notes for each data point) while those
for Schubert, Liszt, Brahms, and Scriabin are smaller (1700–16,000). Despite
the wide range of harmonic styles represented, one very clear conclusion can be
drawn from the DFT magnitudes: With one exception, f5 is always very large,
followed by f3, then f2. This agrees with results from [8] whose ic5 category may
be roughly equated with |f5| through Quinn’s [19] “intervallic half-truth.”2 The
last three components are negligibly small, in most cases less than 1% of the
total “amplitude” of the distribution. The one exception is Liszt-major, which
differs from all the other distributions in that f3 and f5 are equally prominent.
While this may point to something special in Lizst’s harmonic style, we should
not make too much of this distribution, since it represents only three pieces
(Grande étude de Paganini 4, Liebesträume 3, and Transcendental Etude 5).3

One other discernable stylistic difference is the greater emphasis on diatonicity
(f5) in Bach versus all later composers. This is particularly pronounced in the
minor mode, where later composers typically put more weight on f2 and f3 at
the expense of f5.

Table 1. DFTs of corpus data from Prince and Schmuckler, [18], for major keys.
Squared magnitudes are multiplied by 104.

Composer |f1|2 |f2|2 |f3|2 |f4|2 |f5|2 |f6|2 Ph1 Ph2 Ph3 Ph4 Ph5 Ph6

Bach 2 79 150 10 2095 2 9.89 0.96 0.38 3.74 1.96 6
Mozart 9 243 310 1 2158 4 9.34 11.91 0.96 8.04 1.66 0
Beethoven 4 182 287 7 1427 0 8.31 11.53 1.34 6.43 1.53 6
Schubert 7 127 337 18 1931 0 8.25 0.18 1.06 7.70 1.65 0
Chopin 10 186 357 11 1638 1 7.43 11.72 1.03 8.22 1.26 0
Brahms 2 49 224 5 1009 2 7.74 0.27 0.68 9.37 1.59 0
Liszt 5 85 402 30 394 43 6.21 0.12 0.68 9.37 1.59 0
Scriabin 11 117 352 47 2154 2 8.93 1.09 0.89 7.12 1.93 6

The generally low magnitudes of f1, f4, and f6 explain another feature of
the distributions: the lack of consistency in phases for these components. Phase
values should become more volatile as the magnitudes approach zero where the
phase becomes undefined. However, it is logically possible to expect variability in
phase values for the well-represented components (f2, f3, and f5). Such variation

2 There is also agreement on the minor-key data which shows smaller f5s and corre-
spondingly fewer ic5-category designations. The DFT data is less equivocal on the
secondary features of tonality, however, which clearly relate to f3 and f2. This sur-
faces in Honingh and Bod’s results in the form of ic3- or ic4-category pcsets, but it
is hard to draw as clear-cut a conclusion from this aspect of their results.

3 With the assistance of Matthew Chiu, I have recently assembled a larger data set
of distributions that confirms these conclusions, including the pronounced low di-
atonicity of Liszt’s music, especially in the minor mode where it reaches a level
approximately equal to that of f3. The tendency can also be seen in Wagner and
Scriabin, but not quite as strongly as in Liszt.
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Table 2. DFTs of corpus data from Prince and Schmuckler, [18], for minor keys.
Squared magnitudes are multiplied by 104.

Composer |f1|2 |f2|2 |f3|2 |f4|2 |f5|2 |f6|2 Ph1 Ph2 Ph3 Ph4 Ph5 Ph6

Bach 8 69 208 49 1489 3 8.72 10.80 2.29 2.60 11.60 6
Mozart 17 195 656 10 1515 6 8.97 10.53 2.24 0.15 11.91 6
Beethoven 2 239 457 5 1150 16 6.33 10.18 2.51 1.73 11.70 6
Schubert 9 238 540 14 1815 1 9.20 10.47 2.62 11.76 11.93 0
Chopin 0 149 336 6 1002 6 6.57 10.36 2.39 2.21 11.88 6
Brahms 9 194 390 2 847 19 8.23 9.89 1.87 2.14 11.68 6
Liszt 0 254 651 1 1179 14 4.83 10.75 1.75 1.30 0.40 6
Scriabin 5 237 399 48 1524 19 10.10 10.88 1.25 0.61 11.91 0

Fig. 5. Ph3/5 plot of corpus distributions from Prince and Schmuckler, [18].
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could reflect real differences between composers, who represent a wide range of
styles. On the whole, however, we do not see much variability in these phases,
and the data, as in Fig. 1, tends to cluster close to the Ph2, Ph3, and Ph5 values
for the tonic triads, as can be seen in Fig. 5. The only stylistic differences evident
here are the greater tendency of Bach’s distributions toward the diatonic scales,
especially in major, and the opposite tendency of Liszt’s distributions toward
the parallel keys.

This striking result suggests a signal processing analogy to explain tonality as
a kind of band-pass filter for pitch-class information. The tonal filter supresses
certain frequencies (f1, f4, and f6) while amplifying others (f2, f3, and f5).
As a definition of tonality, this has the advantage that it can be treated either
as a property of music or as a way of hearing or interpreting music. That is,
to the extent that music is tonal, it will tend to feature harmonic content that
emphasizes f2, f3, and f5, and tonal interpretations of music are those that filter
out f1, f4, and f6, possibly with disregard for a prominent status for one of those
components. For instance, octatonic music (such as certain pieces by Messiaen)
will have a prominent f4, but a tonal interpretation of octatonic music will
suppress this feature in order to amplify f2, f3, and f5, which may be controlled
by choice of subsets or emphasized notes within the given octatonic context. This
means that a three-dimensional phase space, Ph2/3/5, may be a sufficient and
more stable tonal state space than the original 12-dimensional space of pitch-
class distributions, since each key occupies a distinct region of Ph2/3/5-space.
However, we have also found that a two-dimensional toroidal space appears to
be sufficient for distinguishing keys. This reflects an additional constraint that
seems built into tonal syntax, a linear dependence between Ph2, Ph3, and Ph5.
This linear constraint, Ph2 + Ph3 − Ph5 ≈ 0, gives rise to a “tonality index”
that will be further discussed below. Given such a linear constraint, the three-
dimensional space of tonality may be projected onto any of its two-dimensional
subspaces with (ideally) no essential information loss.

3 Key Finding

Many studies have approached the question of key from the standpoint of ar-
tificial intelligence, by developing and testing key-finding algorithms. Distribu-
tional approaches emerge overwhelmingly as state-of-the-art from a survey of the
key-finding literature since Krumhansl and Schmuckler [11] developed the first
distributional algorithm. A number of similar algorithms have been proposed,
with the major points of distinction being the use of different ground truth dis-
tributions for each key and differences in how distributions are calculated for
each piece.

While most key-finding algorithms use correlation between profiles to deter-
mine a best key, Albrecht and Shanahan ([2]) show good results for an algorithm
that uses Euclidean distances. The Euclidean distance of two distribution is sim-
ply

√∑
(xi − yi)2 over the twelve pitch-classes with the distributions normalized
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such that
∑

(xi) =
∑

(yi) = 1. The DFT helps illuminate the differences between
these approaches.

Example 6 compares the two methods. For the distributions typical of tonal
music, like the Bach example, they match very closely, and both reflect circle-
of-fifths distances. (The preferred key according to both methods, G major,
however, is incorrect for this E minor chorale.) The second example is a dis-
tribution from a tonally ambiguous eight-measure theme that suggests both A
minor and E minor. The tonal ambiguity is reflected by the similar scores for
these two keys, but still the two methods, Euclidean and correlational, give very
similar results.
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J.S. Bach, Chorale 130

Chopin, Op. 41/2 Mazurka, mm. 1–8

Fig. 6. Correlations and Euclidean distances of Albrecht and Shanahan’s, [2], key pro-
file and distributions from two tonal pieces.

Both methods may be better understood through basic Fourier theorems.
Euclidean distances remain Euclidean distances after the DFT, measured in a
direct product of complex planes and scaled by 1/

√
12, by the unitarity principle

(i.e., orthogonality). Furthermore, the convolution theorem says that correlations
become dot products after the DFT: F(f ∗ g) = F(f) · F(g). When the magni-
tudes of DFT components match—e.g. when comparing two tonal distributions
with largef2, f3, and f5—both measures will reflect the phase differences of the
prominent components, and therefore they will tend to agree, the only difference
being that correlation will be even more strongly biased towards the components
that are large in both distributions (and hence will favor f5 more strongly when
comparing tonal distributions). Therefore, a simple explanation of how distri-
butional key finding works is that the scale is selected by Ph5 and the mode
by Ph3 or Ph2. The same results could therefore be derived from proximity in
Ph3/5-space.

When distributions emphasize different periodicities, particularly where a
DFT component is large in one distribution and close to zero in the other, the two
methods respond differently. Correlation will simply supress such components
(since the influence of a component is weighted by a product of magnitudes).
The Euclidean measure will include a constant value that is uninfluenced by
changes of phase (i.e., transposition). Therefore the range of Euclidean distances
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will contract more noticeably when comparing non-tonal distributions to the 24
key profiles, but the difference should not usually affect the choice of best key.

Example 7 shows two instances where the two methods do choose different
keys, the first eight measures of Schubert’s song “Dass sie hier gewesen” and the
subject of the F] minor fugue from Bach’s WTC I. Both distributions suppress
f2 and f3 in favor of some non-tonal component, f4 in Schubert’s case (because
of a heavily emphasized vii◦7/ii chord) and f1 in Bach’s (because the subject is
very chromatic and restricted in range). As a result, all components except for f5
are effectively canceled out for both the correlational and Euclidean criteria. In
this situation, correlation is biased towards major keys, because the major-key
distribution has a slightly higher |f5|. Euclidean distance chooses the key that is
closest in Ph5, which happens to be minor in both instances, whereas correlation
chooses the closest major key. As a result, correlation selects the correct key for
Schubert (C major as opposed to G minor) but Euclidean distance selects the
correct key for Bach (F] minor rather than E major). The bias of correlation
towards the major mode is a likely explanation of the Albrecht and Shanahan’s
finding that an algorithm using Euclidean distances performs considerably better
than others on minor-mode pieces, but somewhat worse on the major mode.
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Schubert, “Dass sie hier gewesen,” mm. 1–8 

J.S. Bach, Well-Tempered Clavier I, F# minor fugue subject

Fig. 7. Correlations and Euclidean distances of Albrecht and Shanahan’s, [2], key pro-
file and distributions from two tonal pieces.

Studies on human subjects have been much more attentive to the influence
of temporal ordering on perceptions of key than the key-finding literature. Since
distributions collapse the temporal dimension, they implicitly assume that the
temporal order of pitch-classes does not influence the sense of key, even though
experimental studies such as [5], [6], and [17] have amply demonstrated the
importance of temporal order to key inferences. Approaches to key finding that
deal with modulation by using windowed analysis, such as Temperley’s ([23],
[24]) and Sapp’s ([21]), may partially address this concern. But these only allow
for the sense of key to change over time; they do not propose means by which
the temporal ordering of pitch classes may influence the sense of key beyond
assuming that more recently occuring pitches will have a stronger influence.
More promising is Quinn’s [20] approach of treating progressions as the basic
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elements of tonality rather than chords (built upon by White [25]). The tonal
filter may provide a way of “fuzzying” the concept of chord, with progressions
as characteristic kinds of motions in Ph2/3/5 space.

4 The Tonal Index

We have observed that typical distributions in tonal music feature three promi-
nent components, f2, f3, and f5, but also that a two-dimensional space using
any selection from Ph2, Ph3, and Ph5, is sufficient to represent the tonal impli-
cations of a particular distribution. The reason is that typical tonal distributions
seem to be constrained to keep the quantity Ph2 + Ph3 − Ph5, the tonal index,
close to zero. Fig. 8 provides an example of how the tonal index tends to stay
very consistently close to zero in the windowed analysis of a tonal piece.

Fig. 8. Ph2 (Green), Ph3 (Blue), and Ph5 (Pink) and the tonal index (blue, lower
graphs) in a windowed analysis of Corelli’s Violin Sonata Op. 5/1 mvt. 2, aligned with
a harmonic summary of the score.

The tonal index is equal to zero for certain basic, mode-neutral, pitch-class
sets: unisons, perfect fifths, and diatonic scales. This is related to the mathe-
matical fact that, for generated collections, an index of this type can only take
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two values, 0 or 6.4 For major and minor triads, it is small, ±0.62. The non-
composer-specific distributions in Figs. 1–3 range from −0.20 to −1.04 for major
and 0.60 to 1.05 for minor averaging −0.67 and 0.84.5 The Prince/Schmuckler
data of Fig. 5 gives averages of −0.51 and 0.41 and some evidence of historical
trends. In major, the index for composers up to Brahms ranges just from −0.79
to −0.42 averaging −0.64, very close to the major triad value. The late tonal
styles of Liszt and Scriabin give values much higher and closer to zero, 0.14
and 0.05. In the minor mode, Bach stands out somewhat with an index of 0.49,
late-eighteenth/early-nineteenth century composers range from 0.85 to 1.16, and
Brahms seems to group with Liszt and Scriabin with indexes again close to zero:
0.08, 0.11, 0.23. This suggests that the late tonal style may be characterized by
the attenuation of this aspect of the major-minor distinction.
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