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Schubert’s Harmonic Language and Fourier Phase Space 

—Jason Yust 

The idea of harmonic space is a powerful one, not primarily because it makes visualization of 
harmonic objects possible, but more fundamentally because it gives us access to a range of 
metaphors commonly used to explain and interpret harmony: distance, direction, position, 
paths, boundaries, regions, shape, and so on. From a mathematical perspective, these 
metaphors are all inherently topological. 

The most prominent current theoretical approaches involving harmonic spaces are neo-
Riemannian theory and voice-leading geometry. Recent neo-Riemannian theory has shown 
that the Tonnetz is useful for explaining a number of features of the chromatic tonality of the 
nineteenth century (e.g., Cohn 2012), especially the common-tone principles of Schubert’s 
most harmonically adventurous progressions and tonal plans (Clark 2011a–b). One of the 
drawbacks of the Tonnetz, however, is its limited range of objects, which includes only the 
twenty-four members of one set class. 

The voice-leading geometries of Callender, Quinn, and Tymoczko 2008 and Tymoczko 2011 
also take chords as objects. But because the range of chords is much wider—all chords of a 
given cardinality, including multisets and not restricted to equal temperament—the 
mathematical structure of voice-leading geometries is much richer, a continuous geometry as 
opposed to a discrete network. Yet voice-leading geometries also differ fundamentally from 
the Tonnetz in what it means for two chords to be close together: in the Tonnetz, nearness is 
about having a large number of common tones, not the size of the voice leading per se. 

In the harmonic space described in this paper, Fourier phase space, the conception of 
distance is similar to that of the Tonnetz. But it also has the richer mathematical structure and 
wider range of objects that one associates with voice-leading geometries. The first part of the 
paper describes the particular virtues of the Tonnetz’s common-tone based conception of 
distance for analysis of Schubert, and also how, on the other hand, its highly circumscribed 
range of musical objects poses severe limitations on its application. The second section 
describes a Fourier phase space, based on the discrete Fourier transform (DFT) on pitch-
class sets described in Quinn (2006), and shows how it retains the music-analytic virtues of 
the Tonnetz while expanding its range of objects and embedding it in more mathematically 
robust space.  

One of the primary advantages of Fourier phase space over both the standard Tonnetz and 
voice-leading spaces is that it relates harmonic objects of any cardinality, including pitch-
class multisets and even fractional-cardinality sets. Parts three and four exploit this aspect of 
the space in analyses of Schubert’s tonal plans and common-tone modulations. Motivated by 
some of this analysis, parts five and six extend the theory by relating Fourier phase 
components to voice-leading properties and probing the meaning of direction in the space, 
and part seven applies some of these ideas in an analysis of the Trio from Schubert’s String 
Quintet. Part eight addresses another spatial concept important to Schubert analysis: that of 
boundaries and regions, using the space to put a new perspective on important work in the 
Schubert analysis literature.  
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(1) Virtues and Limitations of the Tonnetz   

What the Tonnetz does best is to explain the special place of mediant relationships in 
nineteenth-century chromatic tonality, something especially characteristic of Schubert’s 
music. An example like the Menuetto from Schubert’s String Quartet no. 13 (Figure 1) 
should therefore be an analytical gold mine for the neo-Riemannian. In the contrasting 
middle section of the piece Schubert makes a surprising move to a chromatic submediant of 
the relative major, Ab major. Even more shockingly, despite the preparation of the home key 
(A minor) at the end of the contrasting middle, Schubert recomposes the recapitulation in a 
distantly related chromatic mediant key of C# minor.1 Schubert exploits the common tones 
between the tonic triads of all these mediant-related keys: the note C is the focal point of the 
melody all the way from measure 12–28, resolving the B of the functionally reinterpreted 
diminished seventh in the C major context in mm. 16 and 20, and in an Ab major context in 
m. 24. Most impressively, the recapitulation begins with the same E isolated in the cello, but 
instead of being 5̂, as in the exposition, in the recapitulation it turns out to be 3̂ of C# minor. 
David Kopp (2002) has shown how such common-tone links are a pervasive feature of the 
nineteenth-century usage of mediant relationships, and Suzannah Clark (2011a–b) has 
extensively demonstrated their importance for Schubert in particular. The layout of these 
harmonic landmarks on the Tonnetz in Figure 2 shows that these prominent common-tone 
links constitute the central axis of what Cohn (2000a, 2012) calls a “Weitzmann region,” a 
group of six triads that all share two tones with the same augmented triad. All of the 
important stations of the harmonic plan (A minor, C major, Ab major, E major, C# minor) 
belong to this region except the parallel of the contrasting key (Ab minor). 

[Figure 1] 

[Figure 2] 

However, Schubert’s Menuetto has another exceptional feature that proves to be a stumbling 
block for any neo-Riemannian analysis: in the exposition, the home key is represented by its 
dominant rather than its tonic. Should this tonal area therefore be represented in the analysis 

by the tonic triad, which only appears in an unstable 64 position, or by an E major triad, 
ignoring its tonal context, which is obviously of crucial importance here?  

The Tonnetz’s lack of analytical flexibility in this regard arises from the sparseness of its 
domain of musical objects, which includes only major and minor triads. A tonal area 
therefore must be represented by its tonic triad, a conflation of conceptually distinct objects 
that breaks down most spectacularly when faced with the kind of typically nineteenth-
century gesture that opens this extraordinary Menuetto. On the other hand, a more literal 
usage whereby a triad in the Tonnetz always represents an explicit chord in the music 
(perhaps selectively divested of its sevenths or added sixths) cannot be sensitive to the often 
important implications of tonal context.  

                                                
1 The exceptional tonal features of the piece are also discussed by Sobaskie (2003). 
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Despite such limitations, this example does highlight the potential virtues of a Tonnetz-based 
approach in revealing how Schubert can take advantage of the special properties of mediant 
relationships in remarkable ways. In part (3), we will revisit this analysis with an analytical 
technique in hand that embeds the Tonnetz’s network of common-tone relationships in a 
topologically-enriched context. The expanded domain will offer multiple ways to make the 
more nuanced musical distinctions that are necessary to appreciate the function of harmonic 
subtleties in Schubert’s music. 

As a network, the Tonnetz is not only restricted in analytical usage, but also has deeper 
theoretical limitations, which are also related to its limited range of musical objects. 
Tymoczko (2010; 2011, 412–417) has pointed out that larger distances in the network do not 
accurately reflect voice-leading distances. A facile rejoinder to this criticism might be to 
assert that the Tonnetz provides a different concept of voice-leading distance, one that 
prioritizes common tones and therefore may have its own unique virtues. For instance, R-
related triads (e.g., C major–A minor) are closer in the Tonnetz than S- (Slide-) related ones 
(e.g., C major–C# minor; see Lewin 2007, 178), while in voice-leading geometries, S-related 
triads are closer than (or at best, on the city-block metric, the same distance as) R-related 
ones. Yet, Tymoczko also shows that this idea of a common-tone based concept of distance 
fails to pan out for larger distances, using the example illustrated in Figure 3. F minor may 
look closer to C major than Eb major, but according to the topology of the network, they are 
the same distance, even though F minor shares a common tone with C major while Eb major 
does not.  

[Figure 3] 

Tymoczko’s example demonstrates that the restricted domain of the Tonnetz is in fact a 
topological limitation. There is a relatively large distance between C major and F minor because 
in order to get from one to the other, one must construct a path that involves only major 
and minor triads. As Tymoczko points out, and implicit also in Cohn’s (2000a, 2012) idea of 
Weitzmann regions, all it takes to fix this shortcoming is to make the augmented triad 
available as an object of the network, so that a shorter path, C major → Ab augmented → F 
minor, is possible. Tymoczko (2012, 20–21) applies this solution in a reformulation of the 
Tonnetz as a note-based voicing-leading graph. 

Reinterpreting the Tonnetz as a kind of voice-leading graph, however, surrenders the 
common-tone logic that we counted as one of its unique virtues. (The resulting network, 
equivalent to Douthett and Steinbach’s [1998] “Cube Dance,” demotes the R relation to a 
status equivalent to other two-semitone voice leadings like S.) Yet, there is a different way of 
topologically enriching the Tonnetz that preserves the musical insights about Schubert’s use 
of mediant relationships and leads to a concept of harmonic distance. Note that if the pitch 
class C were itself an object in the space, linked to C major and F minor triads by virtue of 
its shared pitch-class content with them, it too would provide a shortcut that brings these 
triads closer together. Such mixing of different-cardinality sets is not possible in voice-
leading spaces without forfeiting their basic geometric properties. It is, however, an intrinsic 
feature of the Fourier phase spaces described below. And, perhaps surprisingly, it leads to a 
different way of modeling the common-sense musical notion of voice leading. 
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(2) Fourier Phase Space 

We have seen that there is an analytical and theoretical need for a harmonic space that 
preserves the common-tone logic of the Tonnetz while expanding its range of musical objects 
beyond major and minor triads. This section shows how the discrete Fourier transform (DFT) on 
pcsets introduced first in Lewin 1959 and 2001 and developed at length by Quinn (2006), 
Callender (2007), and Amiot and Sethares (2011), fulfills that need. This section will briefly 
explain how the DFT on pcsets works and define a space, first explored by Amiot (2013), 
using the phases of two DFT components. This geometry embeds the Tonnetz but is 
continuous and can be used to plot any pitch class set or multiset. 

Most musicians will be familiar with the Fourier transform as a way of deriving frequency 
information from a waveform. Lewin and Quinn use the DFT instead as a set-theoretic tool 
by analogy: imagine that your “signal” is a pitch-class set where time is replaced by pitch 
class as the x-axis. For each pitch class in the set, there is a spike of height 1, and the value 
everywhere else is zero. The C major triad corresponds to the signal shown in solid lines in 
Figure 4, with spikes at x= 0, 4, 7, (12, 16, 19, . . . ). Because pitch class is cyclic, the signal is 
infinitely periodic. The DFT decomposes this signal into twelve sinusoids, called the Fourier 
components, which are denoted by the symbols 𝑓!, 𝑓!, 𝑓!, . . . , 𝑓!!. The index of the 
component indicates the number of cycles per octave. Figure 4 shows three of the 
components for the C major triad, 𝑓!, 𝑓!, and 𝑓!. Notice that the sinusoids have 3, 4, and 5 
peaks respectively. These twelve sinusoids, when added back together, reproduce the 
pcset—i.e., spikes of height 1 at 0, 4, 7, etc. The idea of a Fourier transform is that it 
expresses the same pcset by a different set of parameters. The original parameters, values of 
0 or 1 for each pc, are transformed into the twelve Fourier components.   

[Figure 4] 

Each component is a sinusoid, which must be specified by two parameters, a magnitude and a 
phase. The magnitude is the height of the sinusoid. The phase slides it to the left or the right, 
determining where the peaks fall along the pc-circle. The magnitude of 𝑓! is denoted |𝑓!| 
and its phase as 𝜑!. It might seem, then, that the DFT changes 12 parameters (the values of 
the 12 pcs) into 24 (a magnitude and phase for each component). But this is not so: 𝑓!–𝑓!! 
have the same magnitudes and opposite phases as their complimentary components 𝑓!–𝑓!, 
and so can be ignored. Also, the zeroeth component simply reflects the cardinality of the set. 
Therefore the non-trivial data produced by the DFT consists of 12 quantities, the 
magnitudes and phases of components 𝑓!–𝑓!.  

The purpose of the DFT is to convert less useful information—what specific pcs are 
present—into more useful intervallic information, in a similar spirit to the blunter classic 
pcset-theory conversions into set classes and interval vectors. The magnitude of each 
component measures, roughly speaking, how strongly clustered the set is on the basis of a 
single interval type, ic1 for 𝑓!, ic6 for 𝑓!, ic4 for 𝑓!, etc. Phases indicate where on the pc-
circle the center of that cluster is. Magnitudes are independent of transposition and 
inversion, so they isolate information related specifically to the set class. This is the basic 
idea behind Lewin’s (1959, 2001) and Quinn’s (2006) use of the DFT. The phase spaces 
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described below do roughly the opposite, using the transposition-dependent phase 
information and discarding (for the most part) the magnitudes. 

Each Fourier component can be considered an attempt to approximate the pcset with a 
sinusoid. The meaning of a Fourier component is therefore derived from these two features 
of sinusoidal curves:  

(a) The peaks and troughs of the sinusoid are evenly distributed in the octave. Therefore 𝑓! 
represents the nearest perfectly-even superset of size n or 12 – n. The C major triad in Figure 4, 
for instance, is very close to an augmented triad, so 𝑓! is large. This augmented triad does 
not need to be integer-valued, however, so that the closest augmented triad to C major, as 
indicated by the peaks of the sinusoid in Figure 4(a), is not {C, E, G#}, but one slightly 
flat of {C, E, G#}. This brings the note G a little bit closer to one of the peaks, improving 
the fit. Similarly the closest diminished seventh to the C major triad is 1/3-semitone flat of 
{C#, E, G, Bb}, pulling it away from E and G a little to get it closer to C. Note that the 
triad is only close to three of the peaks of 𝑓!; this is what “nearest superset” means. 

The perfectly even set of size 5 (or 7) does not occur in 12-tone equal-temperament at all. 
Its peaks are a slightly narrow perfect fourth apart, as one can see in Figure 4(c), which 
means that as one moves around the circle of fifths, the pcs gradually get closer to or 
further from peaks of 𝑓!. For the C major triad, the notes G and D are closest to peaks of 
𝑓!. Other peaks are close to the next two notes in either direction on the circle of fifths, C 
and A, and another peak is halfway between E and F. Because it does not evenly divide 
12, the peaks of 𝑓! can never be aligned exactly on any equal-tempered collection (other 
than a single pc), but they will center on collections that are compact on the circle of 
fifths, such as diatonic scales. For the C major triad, the peaks of 𝑓! center around the 
Guidonian hexachord CDEFGA and the troughs around the complementary hexachord 
F#G#A#BC#D#. 

(b) Sinusoids are continuous curves rather than a series of spikes. This is important because 
it means that if the component cannot align its peaks directly on members of a pcset, it 
will still try to get them close, and to avoid the troughs halfway between the peaks. The 
DFT therefore incorporates an element of what Tymoczko (2011) calls voice-leading 
distance. That is, when we say that the C major triad is close to an augmented triad, “close” 
means specifically that we only need to move the notes a short distance along the pc-
circle to get to the augmented triad. This explains, on a very general level, Tymoczko’s 
(2008b) result relating Fourier magnitudes to voice-leading distance from the nearest 
subset of a perfectly-even chord (see also Callender 2007). Voice-leading distance also 
plays a fundamental role in Cohn’s (2012) theories of chromatic harmony, specifically the 
small voice-leading distance from major and minor triads to perfectly even three-note 
chords, which is evident in the large |𝑓!| for major and minor triads. 

Recent music theory has taken a great deal of interest in both of these concepts, evenness 
and voice-leading distance. (See, for example, Plotkin and Douthett 2013 and Tymoczko 
2013.) The difference of the DFT from other theories is in the nature of its objects, which 
are not constrained by cardinality. Every pcset has an 𝑓! component regardless of whether it 
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is a three-note chord, or whether it is triad-like. For instance, a consonant dyad, like CE, has 
a 𝜑! value directly between the two triads that contain it (e.g., C major and A minor).  

In fact, the restriction that pcs take only values of 0 and 1 is essentially arbitrary. Allowing 
integer values larger than 1 extends the technique to pc-multisets, but even non-integer 
values are allowable. Therefore the objects of the DFT are really pitch-class distributions. 
Although uncommon in music analysis, statistical distributions have been widely adopted in 
music cognition research; they are the basis, for example, of standard key-finding algorithms 
(see, e.g., Krumhansl 1990, Temperley 2007, Temperley and Marvin 2008). While we will 
mostly consider only pcsets and occasionally multisets in this paper, thinking of these as 
special cases of pc-distributions is important to understanding the theoretical basis of the 
DFT. For instance, when considering the Fourier components of a C major triad, among the 
first questions to come to mind should be ones like, what would happen if we added a little 
more C to this chord? or a little less C and a little more G? 

The task I assigned to the DFT at the beginning of this section was to represent a Tonnetz-
like yet continuous concept of distance—i.e., a measure of distance based on shared pc 
content. Distance in the Tonnetz is measured by counting discrete maximal common-tone 
moves. But how can maximal common-tone moves be made continuous? This is precisely 
the function of embedding pcsets in the domain of pc-distributions. Two pc-distributions 
can differ infinitesimally in their pc-content. The difference between this domain and that of 
voice-leading spaces resembles the difference between harmony and chord or key and scale. 
The concept of harmony, for instance, might include emphasizing a particular note as the 
root (e.g., to distinguish “Vsub6” from iii6) or allowing other notes to occur that are de-
emphasized as auxiliary tones. In other words, the concept of harmony allows for weightings 
of pcs and is cardinality-flexible, whereas a chord involves a specific set of voices, and 
therefore is fixed and integer-valued in cardinality. 

Such a cardinality-flexible conception of harmony discards the basic structuring assumption 
of voice-leading geometries, and therefore must replace it to lead to any kind of coherent 
theory. The evenness criteria of the DFT fulfill this role, and do so in a way that resonates 
with many common ways of thinking of pitch-class sets in tonal contexts. For example, 
given an arbitrary pcset, such as DEG, what are its possible significations in a tonal context? 
It might be explained as (a) a C major triad with one note, D, displaced by step, (b) an 
incomplete seventh chord, or (c) a scalar fragment. Each of these convert the pcset into 
common tonal collections of various cardinalities, and all of these common collections are 
relatively even. The sense (a) is reflected by the difference in 𝜑! between DEG and the C 
major triad, sense (b) by its 𝜑!-proximity to Em7, and sense (c) in its 𝜑!-proximity to C 
diatonic. 

So far, I have illustrated the Fourier components with sinusoids, which are conceptually 
useful but difficult to work with directly. Fortunately, Quinn (2006) has devised a more 
intuitive way to derive Fourier components with his “Fourier balances.” Components can 
often be calculated, or at least estimated, by eye using this representation. Figure 5 shows the 
𝑓!, 𝑓!, and 𝑓! balances. The 𝑓! balance has a “pan” for each of the four augmented triads, 
arranged symmetrically around a circle; the 𝑓! balance does the same for diminished 
sevenths, and the 𝑓! balance is the circle of fifths. Each pitch class is a vector of length one 
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corresponding to a unit weight placed in one of the pans. Each Fourier component is the 
vector sum of its individual pcs on the appropriate balance. The direction of the resulting 
vector (the direction that the balance tips) is the phase of the component, and the length of 
the vector (the total force tipping in this direction) is its magnitude.  

[Figure 5] 

Figure 6 shows the calculation of the third, fourth, and fifth components for a C major triad 
through vector sums. The phase values are given in radians, where the total circumference of 
the circle is 2π, and increments of 1/6π divide the circle into 12 parts, making this a 
convenient unit. Notice that the sums can be at least estimated if not precisely determined by 
hand. Figure 7 shows the same calculation for the A minor triad. To get the precise values 
using vector addition often requires a little trigonometry—see the appendix for more details. 
Precision, however, is not especially important for present purposes; an estimate of where 
the value falls relative to individual pcs and other pcsets will suffice.  

[Figure 6] 

[Figure 7] 

The concept of distance explored in this paper is one based on differences of phase between the 
Fourier components, illustrated by plotting the phases of interest in coordinate spaces, 
which I will call Fourier phase spaces. The strategy is similar to Quinn’s (2006) quality space, 
except that Quinn’s coordinates are Fourier magnitudes rather than phases. The Fourier 
phase space used throughout this paper is the one discussed in Amiot 2013, based on the 
third and fifth components, which I will refer to as 𝜑!/!-space. These two components are 
of special interest because they reflect aspects of triadic and scalar voice leading, and are the 
largest components for consonant triads. An advantage of limiting consideration to two 
dimensions is that such a space is easy to visualize. Figure 8 plots C major and A minor in 
𝜑!/!-space, with individual pcs included for orientation. The grid imposed on the space is in 
increments of 1/6π, which is the equivalent of a semitone on the pc-circle. The space is cyclic 
in both dimensions, wrapping around from top to bottom and left to right (that is, it is 
topologically a torus), because the phases themselves are cyclic.  

[Figure 8] 

One thing that is immediately apparent from Figure 8 is that the triads fall in between their 
constituent pcs. In fact, we can think of a pcset’s position in the space as the “average” of all 
the positions of its individual pcs, but with a cautionary note: because the space is a torus, as 
one pc gets further removed from the others in a particular dimension, its contribution to 
the “average” is attenuated. For instance, the notes C and G have a stronger influence on 𝜑! 
of the C major triad because they are closer together, and similarly the notes C and E 
determine 𝜑! more strongly. Therefore the position of C major in Figure 8 is not in the 
exact center of the triangle made by the individual pcs C, E, and G, but leaning towards the 
lower left side of it.  

Bartlette (2007) has proposed a space (his “h-d (harmonic distance) map”) based on actual 
arithmetic means, with pcs are arranged in a Tonnetz-like pattern similar to the one that 
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occurs in 𝜑!/!-space.2 When limited to relatively consonant pcsets (those whose individual 
pcs are closely packed), Bartlette’s space and 𝜑!/!-space look very similar. However, the 
averages can only be calculated in a tangent space—that is, a flattened two-dimensional 
unfolding of the torus, extending infinitely in all directions. Each pc occurs in a potentially 
infinite number of places in such a tangent space, and the resulting average depends on 
which positions are selected. This leads to “wormholes” in Bartlette’s geometry, where the 
position of a chord jumps after a different selection from the tangent space is made. Figure 9 
illustrates how arithmetic means differ from DFT phases when a pc occupies an extreme 
position in one dimension of the torus. Starting from a C major triad, we hold C and E 
constant while moving the third point continuously from G through D to A around the back 
side of the torus. This can be done by gradually reducing the weight of G to zero while 
increasing the weight of D to one, then reducing the weight of D while increasing the weight 
of A. The dotted line in Figure 9 shows the path of the moving point representing the 
weighted combination of G and D or D and A. The dashed line shows a weighted average of 
the pcs. The path of the weighted average is discontinuous where the moving point 
disappears from the right and reappears on the left. The solid line shows the change of the 
DFT phases. This line actually goes in the opposite direction from the moving point, because 
the influence of the moving point over 𝜑! decreases as it approaches the opposite side of 
the torus.3 

[Figure 9] 

Amiot (2013) discovered that the major and minor triads in 𝜑!/!-space take on a Tonnetz-like 
arrangement. Figure 10 extends this observation by plotting all consonant dyads and triads 
and connecting individual pcs with dashed lines. The triads fall near the center of their 
Tonnetz triangles, while the dyads are the midpoints the Tonnetz edges between the two triads 
that contain them. One could also draw a “dual Tonnetz” in the space by connecting each 
triad to its nearest neighbor. The pcs would be at the center of a hexagon with all of the 
consonant triads containing that pitch class as its vertices and all the dyads containing it at 
the midpoint of its edges. 

[Figure 10] 

The arrangement of triads in 𝜑!/!-space is strikingly similar to the experimentally derived 
space of key relationships presented in Krumhansl and Kessler 1982 (see also Krumhansl 
1990). The resemblance to Krumhansl and Kessler’s space is especially interesting in that 
both spaces use the same kind of objects, pc-distributions.  

It is worth keeping in mind that a great deal of information from the DFT is missing from 
this two-dimensional toroidal space. The magnitudes of 𝑓! and 𝑓! and phases of other 
components are discarded for purely heuristic reasons, though, so they remain theoretically 

                                                
2 Thanks to an anonymous JMT reviewer for bringing this work to my attention. 
3 There are actually two factors at work here: In the first half of its journey from G to D, the 
moving point also decreases in magnitude of 𝑓! from 1 to 0.7, because it involves the 
combination of two notes of different phases. It recovers magnitude approaching D, but by 
then its decreasing influence over the combined 𝜑! has accelerated. 
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available when the situation demands. For instance, many pcsets fall on top of one another 
in 𝜑!/!-space. In such cases, the difference between those pcsets is captured by other 
components. Among the more significant of co-located set classes are: 

(a) Diminished triads and their chordal thirds as pcs (e.g., BDF and D). 

(b) Dominant sevenths, half-diminished sevenths, and their shared perfect fifth. 

(c) Diatonic scales, pentatonic scales, and the major third that is 1̂–3̂ of their major modes. 

(d) Harmonic minor scales and their tonic minor triad (also harmonic major scales and their 
tonic major triads) 

(e) Major and Minor seventh chords and their third-fifth dyads (a minor third for major 
sevenths, or a major third for minor sevenths). 

These examples can all be explained either by the fact that tritones cancel out in the space (a, 
b, and d) or by inversional symmetries (a, c, e).4 All of them can be disambiguated by taking 
𝜑! or 𝜑! into account.5 

Another feature of Fourier phase spaces is that the phases can be undefined for certain 
pcsets—specifically when the magnitude of the component is zero. This occurs especially in 
symmetrical collections such as tritones and diminished seventh chords which are undefined 
for both 𝜑! and 𝜑!, or augmented triads which have a 𝜑! but no 𝜑!. It is not limited to 
transpositionally symmetric collections, however: the major second, for example, has an 
undefined 𝜑!. To understand this situation, it is important to keep the magnitudes of 
components in mind, and the continuous nature of pc-distributions.  

The impossibility of locating of certain pcsets might seem like a handicap if we want the 
Fourier phases spaces to behave like voice-leading geometries, or the voice-leading based 
networks of Douthett and Steinbach 1998, where many of these set classes play a central 
role. From another perspective, though, it provides a window into how the meaning of 
positions in Fourier space differ from those in voice-leading spaces. It also reflects certain 
real features of tonality: symmetrical sets such as tritones or diminished seventh chords do 
not, qua pcsets, have a specific harmonic function. Instead they are equally balanced between 
multiple opposing functions. In real musical situations, such ambiguities are resolved by 
surrounding context. Addition of context and/or weighting of pcs can similarly resolve an 
undefined Fourier phase.  

                                                
4 The explanation from inversional symmetries is essentially statistical. Any phase 
component must correspond to one of the two inversional centers, so if two symmetrical 
pcsets have the same inversional centers, there is a 1/4 likelihood they will coincide in any 
two-dimensional phase space. Or, to put it differently, there are only four distinct locations 
(after factoring out the twelve transpositions) for inversionally symmetric sets in 𝜑!/!-space. 
The pcs and the three consonant dyads occupy each of these positions. 
5 𝜑! works for all but (d) and 𝜑! works for all but (a) and (e). 



 10 

One way to think of undefined phases is that in the vicinity of these ambiguous pcsets, 
position in phase space becomes highly sensitive. A scrap of contextual evidence might have 
a large effect on the phase. This accurately reflects how these pcsets often behave in tonal 
music. For instance, consider the remarkable opening progression to Schubert’s song “Daß 
sie hier gewesen” in Figure 11(a). The only conventionally functional harmony present in 
these two measures is a diminished seventh chord, which in principle is ambiguous between 
four possible functions. In reality however, the function of the chord is not so ambiguous 
(that is, it is not enharmonically ambiguous—the key of the piece is not yet clear), because it 
is clarified by the appoggiaturas. In 𝜑!/!-space, adding these auxiliary tones places the 
harmony in the vicinity of D minor, even if they are very weakly weighted relative to the 
chord tones. Schubert’s function-defining appoggiaturas are an inspired representation of the 
fragility of love. Appoggiaturas do not usually have this much influence in determining 
harmonic function. Figure 11(b) shows four other similar appoggiaturas from the song. 
Because they resolve to a dominant seventh, these do not have the same kind of harmony-
defining power. They add modal coloration to the chord, but do not change its function. 
The C#→C§ substitution imparts a distinctly Schubertian interpretation of the text: by 
transferring love into the beautiful object, the artwork, it gains substance and resilience. 

[Figure 11] 

 

(3) Schubert’s mediants in 𝝋𝟑/𝟓-space 

Now we may return to the Tonnetz analysis of Schubert’s Menuetto (Fig. 1), reformulated in 
Fourier phase space, and explore the expanded domain of objects as analytical resource. 

One of the problems of the Tonnetz analysis noted above is its conflation of chord and key, 
and its reduction of seventh chords to triads. Figure 12 offers three interpretations in 
Fourier phase space that redress these problems in different ways. Figure 12(a) treats the 
tonal plan as a pathway between chords, giving a picture similar to the Tonnetz analysis. The 
main difference is that now the E dominant seventh chord can be distinguished from the E 
major triad. This analysis shows that most of the action of the piece is centered on a 
hexatonic cycle beginning with the V7 of the exposition and ending with the V7 just before 
the recapitulation. The recapitulation, despite its unusual non-tonic beginning, does achieve 
“resolution” in the sense that it shifts into the hexatonic cycle of the home-key tonic (if one, 
following Cohn [1999], attributes functional identity to hexatonic cycles.) The Tonnetz in the 
phase space is rotated slightly from its traditional depiction (as in Figure 1) so that the 
hexatonic strips (see Cohn 2012, ch. 2) are precisely vertical. This reflects the fact that 
hexatonic progressions give maximally balanced voice leading between triads and that they 
produce the most efficient enharmonic cycles.  

[Figure 12] 

One might complain, however, that this chordal pathway still neglects basic facts about how 
tonal contexts operate in the piece—specifically that the piece begins in A minor and returns 
to this key at the end of the recapitulation, whereas the chord-based analysis shows it ending 
in a very different place than it began. One way to represent such tonal contexts might be to 
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plot their characteristic scales in the space, as in Figure 12(b). This pathway consists mainly 
of harmonic minor scales, which are in the same place as their tonic triads, and major scales, 
which are in the same place as their tonic major third. It is similar to the chordal trajectory 
except that it begins at A minor and gradually works its way into the hexatonic region of the 
dominant and relative major before returning at the recapitulation.  

The scalar positions are not ideal representations of the tonal plan either, however, because 
they do not distinguish the dominant-weighted A minor beginning from a more 
conventional tonic-weighted A minor. An even more sensitive analysis is possible by plotting 
a pathway on multisets that combine scalar context and chord (in other words, scales with 
chord tones doubled), as shown in Figure 12(c). Such combinations average the positions of 
their subsets, but weighted according to the magnitudes of each component individually. For 
example, “V7 of A minor” is between the A harmonic minor scale (equal to the A minor 
triad) and the E dominant seventh, but somewhat weighted toward A minor. “I of C major” 
is very close to the C diatonic scale (located at CE) in the vertical dimension because the 
scale has a strong fifth component, but somewhat closer to the C major triad in the 
horizontal direction.  

This pathway on chord/scale combinations begins on the boundary between the two 
hexatonic regions, very close to the pitch class E (the first note), moves gradually into the 
dominant region, then back to the tonic region at the recapitulation. This analysis reveals 
another interesting feature to the tonal plan by showing a consistent motion in a direction 
downward and slightly to the right. The trajectory of the exposition (V7 of A minor to I of C 
major) is thus very similar to the overall trajectory of the contrasting middle (I of C major to 
I of Ab minor), and the first part of the recapitulation (i of C# minor to V7 of A minor). This 
interesting feature of the tonal plan might be described as a mediant-based generalization of 
the subdominant recapitulation principle. Schubert is well known for occasionally 
recapitulating main themes in the subdominant key in his sonata forms (see Webster 1978–9; 
Clark 2011b, ch. 4). Such subdominant recapitulations can be explained as a way to retrace 
the trajectory (modulation up a fifth) of the exposition in the recapitulation. Something 
similar happens in this Menuetto, where a non-tonic beginning allows the recapitulation to 
return to the initial harmonic state (V of A minor) via the same kind of path that departed 
from that state (because i of C# minor → V7 of A minor goes in a similar direction as V7 of 
A minor → I of C major). This feature is reinforced by the fact that the contrasting middle 
also goes in a similar overall direction, from I of C major to I of Ab minor.  

One thing worth noting about all of the analyses in Figure 12 is that they are all quite similar, 
showing an enharmonic tour centered around a particular vertical axis associated with the 
prominent common-tone links in the piece. That we could track a tonal plan like this as a 
progression of very different kinds of objects (e.g., chords vs. scales) and get the same basic 
result illustrates the robustness of the space with respect to the omission and addition of pc-
content, particularly when such additions and omissions reflect conventional logic about 
relatedness of chords, keys, and pitch classes. Scales, for instance, are very close to the 
chords that typically function as their tonic harmonies. 

One could, of course, continually refine such plots by giving more nuanced weightings to 
recognize the tonic status of a note or its prominence in the music, but the influence on the 
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resulting path diminishes rapidly the more subtle such refinements become, and the basic 
features of the analysis are generally resilient to such variation in interpretative method.  

(4) Modulation by Scalar Common Tone  

When Schubert wants to emphasize the sense of distance between two tonal areas, a favorite 
method is to isolate a common tone between the tonic chord of one key and the 
characteristic scale of the other. When encountering this technique, it is essential for an 
analyst to have a consistent way of relating objects of different cardinality: chords, scales, 
and single pitch classes. Fourier phase spaces are particularly effective in this respect.  

In the slow movement of the String Quintet, Schubert modulates from E major to F minor 
for the interior theme in the passage shown in Figure 13(a). He isolates the tonic note of the 
home key of E major which is then reinterpreted as leading tone of the new key of F minor. 
The half-step trill on E erases the previous tonal context a moment before the assertion of 
the new key. Kinderman (1997) notes ramifications of this trill elsewhere in the movement, 
interpreting it a symbol of the “anguished, antithetical forces that . . . lurk behind the 
sublime surface of this music” (214).  

[Figure 13] 

The most efficient way to get from E major to F minor is via the slide relation, shown by the 
dashed line in Figure 13(b). Because the common tone of the slide relation is the third of the 
major triad (G#) the interior theme would be in a respelled E# minor if this were the correct 
key relationship. However, Schubert’s purpose here is clearly to send the music plummeting 
deep into the dark, impossibly flatward world of F minor. The enharmonic distinction 
corresponds to possible paths between E major and F minor on the torus, upward or 
downward (Fig. 14). The space also shows what harmonic intermediaries will effectively 
secure the flatward enharmonic interpretation: those that lie between E major and F minor 
in the downward direction: A minor, C major, etc. Schubert’s solution is breathtakingly 
efficient: by isolating the single tone, E, the key of F minor comes closer in the downward 
direction. He thereby achieves a stark juxtaposition of keys whose remoteness is 
otherworldly, more than half a turn around the 𝜑!-cycle, further than the tritone-related key 
or the hexatonic pole (both of which are a precise half turn around the cycle).  

A more understated application of the scalar common-tone method occurs in the 
modulation from the Scherzo to the Trio of the same work, shown in Figure 14(a). In this 
beguiling little Trio, a quiet respite from the hyperbolically extrovert Scherzo, the first eight 
measures serve both as main theme and as transition into a distant tonality (bII). The theme 
is a completely scalewise melody played unisono by the viola and second cello; beginning from 
the tonic of the Scherzo (C) it descends, tentatively exploring F minor before taking a 
headlong descent into Db major. A plot of the process in 𝜑!/!-space (Fig. 14b) shows 
something noteworthy about it: the two primary transitional elements that Schubert uses to 
make a seamless passage between the keys, the common tone C and the F minor triad, lie 
almost directly in-between the two tonic chords, C major and Db major. The first chord of 
the new tonality, however, is not the tonic but the even more remote subdominant, Gb 
major. The way that the theme approaches the Gb major chord involves another interesting 
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collinearity: halfway between the F minor and Gb major triads is the major third DbF, which 
is also the position of the Db diatonic scale, the basis of the scalewise passage that connects 
these two chords in the theme. 

[Figure 14] 

Such relationships may seem at first uncanny—suggestive but mysterious. They are in fact 
part of a larger compositional design involving the play of stepwise intervals between and 
within scales, pulled in different directions by the gravitational forces of tonality. To explain 
this design, however, we need more refined concept of interval and triadic voice-leading 
positions. We will revisit Schubert’s Trio in §7 after deriving such concepts from the Fourier 
coefficients in the next two sections. 

(5) Fourier Phases as Voice Leading  

As is probably apparent already, the voice-leading geometries of Callender, Quinn, and 
Tymoczko (2008) have inspired and driven the present study in a number of ways. One 
immediately intriguing feature of the Fourier phase spaces is that they mimic voice-leading 
distances when restricted to the relatively even sets of a given cardinality—specifically a 
cardinality equal to one of the Fourier component indices or its complement. In fact, a 
voice-leading based space proposed in Yust 2013b has the same topology as 𝜑!/!-space and 
lays out the major, minor, diminished, and augmented triads in the same basic pattern. This 
is surprising given the incompatibility of initial premises of the two spaces. But there is also 
an underlying conceptual kinship between them: the technique of iterated quantization used 
to construct the diatonic-triad space of Yust 2013b functions as an evenness criterion (see 
Tymoczko 2013, Yust 2013a, 2015). The Fourier components, as perfectly-even 
approximations of pcsets, do much the same. 

The relationship of 𝜑!/!-space to voice-leading geometries can be summarized by the 
following two facts:  

(1) For relatively even three-note chords (augmented, major, minor, diminished, and “sus4”), 
changes of 𝜑! are approximately equal to overall voice-leading ascent and descent. A 
decrease in 𝜑! by ~1/6π corresponds to an overall voice-leading ascent of one semitone, 
and an increase of ~1/6π in 𝜑! to a one-semitone descent. Chords related by balanced 
voice leading (like C major – E major or C# diminished – C augmented) have the same 
𝜑!, so 𝜑! differences are not the same as voice-leading distances. Instead, 𝜑! is roughly 
equivalent to the projection of these chords onto the center axis of three-note chord 
space. Or, we could say the 𝜑! sorts the chords into twelve ordered categories equivalent 
to Cohn’s (2012) voice-leading zones. 

(2) The same is true of 𝜑! for relatively even seven-note scales. For diatonic and acoustic 
scales, a voice-leading ascent of one semitone corresponds exactly to +1/6π in 𝜑!. This 
concept of voice leading between scales has been applied extensively by, e.g., Tymoczko 
2004 and Hook 2008. The positions of 𝜑! (in increments of 1/6π) correlate precisely with 
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Hook’s (2011) accidental indices for these scales as spelled heptachords, up to 
enharmonic equivalence.  

Similar points could be made for all of the Fourier coefficients, such as 𝜑! on four-note 
chords, and from the discussion of §2 the reasons should be apparent: for relatively even n-
note chords, 𝑓! is a good approximation, representing a nearby perfectly-even chord in n-
note chord space. The perfectly even chords define the center axis of chord space. 

Of course, such comparisons are limited to chords of a fixed cardinality, which disqualifies 
the feature of Fourier spaces identified above as a principle hermeneutic asset, their 
flexibility with respect to cardinality. These observations then motivate the development of a 
cardinality-independent concept of voice leading for the interpretation of Fourier phases. 

Up to now I have used the term voice leading in the part-writing sense formalized by 
Tymoczko (2008a) as bijective voice leadings, which implies a fixed number of voices. Yet many 
important uses of the term in music analysis assume more flexibility in the number and 
independence of voices. Callender’s (1998) influential and analytically useful idea of “split” 
and “fuse” operations, for example, are explicitly presented as parsimonious but non-
bijective voice leadings. Figure 15 reproduces one of Callender’s examples where allowing 
for a fluidity of voice membership allows for a smooth voice leading that would be 
impossible if the voices were fixed and independent. Tymoczko (2004) uses split and fuse 
voice leadings to relate scalar collections of different cardinality. Callender, Quinn, and 
Tymoczko’s (2008) inclusion of cardinality equivalence in their “OPTIC” symmetries attests 
to the significance of such inter-cardinality operations. This recognition is especially 
noteworthy since it is essentially honorary: there are no true voice-leading geometries that 
assume C-equivalence.6 

 [Figure 15] 

The DFT helps capture this kind of cardinality-flexible sense of voice leading in a way that is 
geometrically tractable. Consider 𝑓!, which, as shown in Figure 16, divides the pc-circle into 
three regions. The boundaries between each region (the points of the triangle) are where the 
troughs of the sinusoidal curve bottom out, while the centers of each region (dashed lines) 
are the peaks. I will call these regions triadic orbits. For a simple triad they consist of all the 
notes that act as neighbors or substitutes for each note of the triad. Ordinary voice leading 
between triads consists of motions restricted to specific orbits. Such restricted voice-leading 
motions, as the example in Figure 16(a) shows, turn the triadic orbit boundaries in the same 
direction as the voice leading. This is one way to explain the correlation of 𝜑! with voice-
leading direction for relatively even three-note chords. However, the reasoning is not 
restricted to three-note chords, because multiple notes could potentially be used to represent 
an orbit, or an orbit might be unoccupied altogether, without effecting the result. For 
instance, Figure 16(b) gives a voice leading between dyads, but through the lens of 𝜑!, these 
dyads are actually being viewed as incomplete triads. The behavior of 𝜑! approximates that 

                                                
6 The reason for this is that cardinality equivalence does not preserve basic voice-leading 
metrics, as explained on pp. 6–7 of Callender, Quinn, and Tymoczko’s supporting online 
materials. 
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of related triadic progressions like C major – F major, or A minor – F major, or C major – 
Csus4, etc. Figure 16(c) shows that the seventh of a chord, viewed through 𝜑!, is a 
substitute tone for the root—that is, the seventh and root occupy the same triadic orbit. 
Figure 16(d) shows that the correlation of 𝜑! with voice-leading direction holds also for 
seventh chords when the moving notes stay in the central zone of their triadic orbits. 

[Figure 16] 

So what happens when the voice leading crosses the triadic orbit boundaries? Figure 16(e) 
appears to be a descending voice leading between three-note chords. But 𝑓! does not see it 
this way: the unevenness of the GBbC chord means that Bb and C occupy the same triadic 
orbit, as in a C minor seventh chord, so the 𝜑! value approximates that of a C minor triad. 
Therefore, the effect on 𝜑! is that of an ascending voice leading. In essence, 𝜑! idealizes the 
voice leading on a specifically triadic model, so it treats the progression in Figure 16(e) as a 
variant on a comparable triadic progression like C minor – F minor.  

The value of 𝜑!, on the other hand, would indicate a descending voice leading for the 
progression of Figure 16(e). This might seem like a contradiction, but it is not, because 𝜑! 
and 𝜑! are mathematically independent. Thus, what seem like different theories of voice 
leading, one based on 𝑓!, in which the sevenths are true chord tones, and one based on 𝑓!, 
where the seventh is a displacement of the root (a domesticated passing dissonance, 
perhaps), are actually two facets of the same voice-leading reality.  

The sequence from Schubert’s song “Gruppe aus dem Tartarus,” shown in Figure 17, 
illustrates how such a cardinality-flexible concept of voice leading may be useful in a 
situation that is challenging to accurately represent with fixed-cardinality bijective voice 
leadings. Taken very literally, the sequence consists entirely of three-note chords, two per 
measure. The voice leading suggested by the music is shown with arrows in Figure 18a: the 
suspensions must be prepared, but there is also a clear stepwise motion in the vocal part that 
creates the suspensions. This means that approaching each suspension one voice must split 
and one of the lower voices must simply disappear. A strictly three-voice pattern would have 
to either approach the suspension by upward leap, or approach the note in the vocal line by 
downward leap, both highly implausible analyses.  

[Figure 17] 

[Figure 18] 

In 𝜑!/!-space the three-chord pattern gives the path shown in Figure 18b. The overall 
motion follows an ascending semitonal axis shown with the dashed line. There is some 
backtracking at the i–V progressions in each key, while the suspension chords and 
incomplete sevenths mediate the progression into each new key. The suspension chords, like 
AbEbFb, are close to the preceding tonics (like Ab minor) because they share two common 
tones and imply similar scalar contexts.  

Figure 19 shows the triadic orbits for one stage of the sequence. When the Eb major triad 
goes to the incomplete seventh chord FbCbEb ( = EBD#) the Eb splits within its triadic orbit, 
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and the triadic orbit previously occupied by Bb is left empty. Two voices move up within 
their orbits, the Eb→Fb of the split, and G→Ab, so the triadic orbits turn clockwise. In the 
next two stages, the resolving suspension Eb→D followed by the resolving seventh D→C 
crosses a orbit boundary. The triadic orbits therefore respond by turning the opposite way, 
in the direction associated with ascending voice leading. (This is also reinforced by the ascent 
G#→A.) The boundary-crossing restores the missing triadic orbit, necessary to beginning the 
next stage of the sequence. 

[Figure 19] 

Usual analytical convention would identify the suspension chords as non-harmonic 
embellishments of a dominant seventh, implicitly eliminating the suspension and adding the 
missing fifth to the seventh chord, giving the progression shown in Figure 20(b). The 
resulting path in 𝜑!/!-space is very similar to the path for the “raw” progression in (a). The 
pattern could also be plausibly interpreted, somewhat more abstractly, as a pattern on triads, 
as in Figure 20(c). Here again, the basic contours of the path traced in 𝜑!/!-space remain 
intact.  

[Figure 20] 

The situation is quite different in voice-leading geometries. The triadic voice leading of 
Figure 20(c) consists of relatively small 2–3 semitone voice leadings confined to the center of 
three-note chord space. The more literal progression in (a), however, charts a radically 
different course: thrusting out towards the periphery with a large seven-semitone voice 
leading where the suspension chord occurs, then easing back toward the center of the space 
with the two smaller voice leadings that follow before cycling back though the pattern 
sequentially. 

In other words, voice-leading geometries are highly sensitive to standard operations of basic 
harmonic theory that involve changes of cardinality: omission, addition, or doubling of 
voices. Using them effectively usually requires the analyst to first idealize the voice leading by 
hand. One advantage of Fourier phase spaces is that they are robust with respect to these 
operations: the raw progression will typically already approximate the idealized one. Since 
conventional theories tend to model harmony on relatively even collections, the DFT 
simulates much of what we do automatically when interpreting the harmony of a passage. 
(See also Callender [2007], who makes a related argument comparing voice-leading distance 
to changes in DFT magnitudes.) 

(6) Intervallic Axes 

In §4, a plot of the transition into the Trio of Schubert’s String Quintet (Fig. 14) suggested 
that there might be musical significance to direction in phase space as well as proximity. The F 
minor tonicization is an intermediary between C and Db not only in the sense of distance 
but also of direction, meaning that C major → F minor is a similar kind of motion as F 
minor → Db major.  
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In this section we will define intervallic axes as a way to associate directions with intervals. 
Two mathematical features of the space, related to transposition and inversion, make this 
possible. First, a given transposition always has the same vector, regardless of the set classes 
involved (assuming that the relevant phases are defined on that set class). For instance, in the 
Trio, the C major → Db major vector is a transposition by semitone. The transposition 
between pcs C→Db, or minor thirds EG→FAb, or in fact any transposition by semitone has 
the same vector. 

However, a given vector may be represented by multiple paths. This is true even if one 
considers only straight paths, because of the topology of the torus.7 For instance, between C 
and Db, the shortest path goes down and to the left, as shown in Figure 21, but there is also 
path up and to the left that circles the torus in the opposite direction. Since 𝜑! generally 
reflects circle-of-fifths distances, the difference between the upward and downward paths 
can be captured by spelling. The shorter downward path is a diatonic semitone (flatward) while 
the upward path is a chromatic semitone (sharpward). In principle, we could take even less 
efficient paths involving multiple cycles around the torus, such as a doubly-diminished third. 
All these paths involve different directions in the space, which means that to associate 
intervals with directions, we have to specify spelled intervals to capture the different 
available paths. 

[Figure 21] 

This is not enough, though: we must also distinguish between different ways to connect the 
same two points in the 𝜑! direction. Consider the two minor-third paths shown in Figure 
22. Both are minor thirds (not augmented seconds, etc.) because both move the same short 
vertical distance. The difference between them is therefore not captured by spelling, but can 
be understood through the idea of triadic orbits. Recall from §5 that 𝜑! motion to the left 
corresponds to ascending triadic voice leadings. The most efficient minor-third motion, 
however, has a small rightward 𝜑!. This is because a smaller triadic voice leading result from 
the assumption that the minor third crosses a triadic orbit boundary. If we force the minor 
third to occur within one triadic orbit, then we drag 𝜑! the long way around (to the left). We 
can refer to the first interval as a chordal minor third (one that changes triadic orbits) and the 
second as a voice-leading minor third (occurring within a single triadic orbit).8  

                                                
7 Meaning paths that are straight in a tangent space. The mathematical term for these is 
geodesics. 
8 This terminology, though sufficient for present purposes, only allows for a distinction 
between two triadic interval varieties. In principle there are an infinite number (analogous to 
doubly-diminished thirds, etc.). For a more systematic terminology, one can indicate changes 
in triadic orbit with a signed numerical prefix, such as a “+1-chordal minor third” (which 
would be an ordinary minor third, moving one triadic orbit clockwise) versus a “+2-chordal 
minor third” (a minor third moving two triadic orbits clockwise, which would imply a very 
large voice leading descent). The implicit notion of equivalence here is called homotopy. Two 
paths are homotopic if one can be continuously deformed into the other. On a torus, 
homotopic paths are those that cycle each dimension the same number of times. For more 
discussion of homotopy as a voice-leading concept, see Yust 2013b. 
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 [Figure 22] 

Viewing intervals through their most efficient 𝜑! paths thus does, automatically, what, e.g., a 
Schenkerian analyst might do by hand: when a melody leaps by third, an analysis might tend 
to say that the underlying voices have not moved, that instead the melody has moved from 
one voice to another. Triadic orbits are not equivalent to such notions of conceptual voice, 
but they do capture this typical feature of them.  

The interval of a whole tone is actually ambiguous in the 𝜑! dimension: it is the same 
distance to the left (a chordal whole tone) or to the right (a voice-leading whole step). These 
are shown in Figure 23, along with less efficient upward paths representing augmented sixths 
(with the usual augmented sixth going to the right). The difference between the chordal and 
voice-leading whole tones depends on context. The voice-leading whole step from Bb to Ab 
goes past the notes F and Db, so a context involving these notes will tend to imply this 
interval. For instance, in a progression from Bb minor to Db major, Bb and Ab belong to a 
single triadic orbit. A context featuring Eb, on the contrary, would tend to imply that the Bb–
Ab interval is chordal, as in an Ebsus4 chord.  

[Figure 23] 

Interestingly, the distinction between different kinds of whole tones is precisely analogous to 
the intonational distinction between large and small whole steps (9/8 and 10/9) in the just 
major scale (9/8→chordal, 10/9→voice leading). This means that the classic syntonic 
comma problem can also be formulated as a voice-leading paradox associated with 𝜑!-
cycles: for example, if 2̂ is approached as a voice-leading interval from 1̂ (for example in the 
progression I6–IV–ii6) but resolved back to 1̂ as a chordal whole tone (e.g., in a V–I 
progression), then there is a 𝜑!-cycle from the first 1̂ to the concluding 1̂. The ending note is 
the same (the same point in the space) yet not the same (because it has crossed a triadic orbit 
boundary). This is analogous to the fact if the same progression were realized with justly 
tuned harmonies, the concluding tonic note would be about a fifth of a semitone flat of the 
initial one. Žabka’s (2013, 2014) work suggests similar generalizations of classic tuning-
theory ideas.9  

While context is essential to resolving ambiguities, it can also imply less efficient paths. For 
instance, Bb–Ab interval is not by itself 𝜑!-ambiguous because the flatward path is much 
more efficient. But given a strong D minor context, especially one emphasizing its dominant, 
the interval may instead be interpreted as an augmented sixth, Bb–G#, because the note 
Ab/G# is closer on the sharp side when reckoned from, e.g., an A major chord. Notice that 
the harmonic objects along the augmented-sixth path in Figure 23 include all the critical 
elements of contexts that imply the augmented sixth interval (such as D minor and A major 
triads). 

                                                
9 The intervals in Žabka’s chromatic comma lattice correspond one-to-one to the non-
homotopic paths from any point to itself in 𝜑!/!-space.  
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With this expanded concept of interval, each interval now has a specific direction in the 
space. An intervallic axis is a line that circles the space in the direction corresponding to a 
given interval, connecting transpositions of a pcset by that interval. There may be multiple 
intervallic axes for the same interval passing through different set classes, or for the same set 
class if the interval’s semitonal size is a factor of 12. Also, the intervallic axes are the same 
for two intervals if one is a multiple of the other (such as perfect fifths and chordal whole 
tones). 

Intervallic axes, by definition, pass through multiple instances of the same set class, but the 
motivating examples from the Trio of the String Quintet (Figure 14) involve approximate 
collinearity of different set classes, indicating that different set classes often fall on or near the 
same intervallic axes. For instance, F minor falls approximately along the diatonic-semitone 
axis for pcs, between C and Db. Does this indicate that the path from C to F minor is 
somehow related to the diatonic semitone interval? The answer is yes, but to understand why 
requires another result about inversions in phase space. 

Amiot (2013) discovered that the axes traced through 𝜑!/!-space by diatonic-semitone 
transpositions of major and minor triads are remarkably close together, and also remarkably 
close to the diatonic-semitone axes of diminished triads (which are equivalent to single pcs in 
the space). This seemingly remarkable fact is not coincidental. Its explanation relies upon the 
following proposition: 

Proposition: Let A and B be inversionally symmetric pcsets with well-defined phases. Let TxI 
be the inversion such that TxI(B) = B. Let Ty(A) be the transposition such that Ty(A) = 
TxI(A). Then B falls on a line halfway between A and Ty(A) in Fourier phase space.  

Proof: For any inversionally symmetric set, each phase value is equal to that of one its two 
inversional centers. For some component, let a be the phase for A and b the phase for B. 
Then TxI(b) = b. Also, the phase of TxI(A) ( = Ty(A)) is TxI(a). We then have b – a = 
TxI(a) – TxI(b) = TxI(a) – b, which means the difference in phase from A to B is the same 
as from B to Ty(A)—i.e., the phase-space coordinate of B is halfway between those of A 
and Ty(A) along some path (less than a full cycle of the space in any one dimension). This 
holds for the phase of any component, so the proposition holds for any Fourier phase 
space. 

The proposition implies that any two inversionally symmetric pcsets lie on a common 
intervallic axis. For instance, let A = C and B = FAb. FAb is symmetrical under T1I, and 
T1I(C) is Db, or T1(A). Therefore, FAb falls exactly on the midpoint between C and Db, on a 
diatonic-semitone axis. If we continue applying the proposition from the last two sets, A = 
FAb and B = Db, we will continue to transpose by 1: T2I(FAb) = F#A = T1(FAb) . . . . 
Therefore, the minor thirds and pcs lie evenly spaced along a diatonic semitone axis in the 
sequence . . . –C–FAb–Db–F#A–D– . . . .  

This axis is particularly interesting because the combination of adjacent pcs/minor thirds is 
always a major or minor triad. The resulting sequence of triads is a favorite pattern of 
Schubert’s and other nineteenth-century composers (see Cohn 2012, 94–5, 100–1; Yust 
2013b). Because such combinations will fall between, though not necessarily precisely 
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halfway between, the two constituent subsets, they allow us to extend the significance of 
intervallic axes to non-symmetric set classes like major/minor triads. The exact location of a 
combination with respect to its subsets depends upon the relative magnitudes the subsets’ 
components. For minor thirds, |𝑓!| and |𝑓!| are both 1.41, while for single pcs all 
components have magnitude 1. Because the minor third have larger components, the triads 
are closer to them. But because the proportional difference is the same for both 
components, the triads fall very close to the line between the minor thirds and singletons. Of 
the three ways to partition major and minor triads into dyad + singleton, the diatonic-
semitone axis is the most compact and most evenly spaced, making it uniquely significant. 

Schubert’s use of F minor at the beginning of the Trio therefore does relate directly to an 
overall strategy of transitioning via a diatonic-semitone axis from C to Db. It reflects a well-
rehearsed move in ascending minor-second sequences. The intervallic axis of Fourier phase 
space show that this is not an accidental association; it is built into the topology of tonal 
relations. 

Diatonic-semitone transpositions play important roles in other parts of the Trio as well. 
Figure 24 shows how the main theme ends, extending four measures beyond the music of 
Figure 14a. Here (in mm. 221–24) Schubert includes a formally superfluous repetition of the 
previous four measures with only one change, the Gb major chord becomes Gb minor. This 
introduces a diatonic semitone, Bº–Ab, in the most prominent moving voices of the 
progression. The replacement itself (Bb→Bº) involves a chromatic semitone. 

[Figure 24] 

The contrasting middle section of the Trio (mm. 236–243) echoes this chromatic line, Bb–
Bº–Ab, but with an enharmonic reinterpretation of the chromatic note, Bb–A§–Ab, in the 
context of the relative key, as shown in Figure 25. The enharmonic distinction between these 
two chromatic lines is graphed in Figure 26, in the large outer triangles. The lower triangle 
represents the progression Bb–Bº–Ab, where the chromatic note is a flatward displacement. 
The enharmonic reinterpretation flips this triangle over the common diatonic whole tone, 
Bb–Ab, by reordering the two kinds of semitone intervals, so that the chromatic note 
represents a sharpward displacement, Bb–A§–Ab. 

[Figure 25] 

[Figure 26] 

A number of features of this graph are noteworthy: first, directly in the center of each 
chromatic triangle lies another tone that can be used to create one of the tonal contexts that 
can resolve the enharmonic ambiguity of the chromatic line: The note Db defines the line 

as 6̂–b6̂–5̂ in Db major, while the note F defines the line as 1̂–§7̂–7̂ in Bb minor. These notes 
are prominent in each melody respectively, as shown in Figures 24–25. When these notes are 
added to each chromatic line, to create a progression of dyads, the triangles shrink around 
the common tone, pulling the chromatic note up or down to resolve the ambiguity. The 
interior triangles are equivalent in shape to the exterior ones—consisting of lines in the 
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diatonic-semitone direction, the chromatic-semitone direction, and the voice-leading whole-
step direction—but the edges are half the distance because they are not complete 
transpositions by half step or whole step, but voice leadings involving those intervals. This 
illustrates a general principle that adding additional context typically shrinks a tonal structure 
in Fourier spaces—preserving their shapes to varying degrees—and can thereby resolve 
ambiguities in either dimension. 

It is also interesting in Figure 26 that the important harmonies of the Trio’s main theme and 
contrasting middle lie approximately along the lines defined by the melodic motions. Notice 
also that the interval DbF lies directly at the center of the figure, at the midpoint of Bb–Ab as 
well as Db–F, and also halfway between Db major and Bb minor triads. This is also the 
position of the Db diatonic scale and played an important role in Figure 14(b) (the transition 
into Db major at the beginning of the main theme).  

Figure 26 also shows, with dotted lines, that multiple important harmonic progressions of 
the passage follow the diatonic-semitone axis, including the i–V progression in Bb minor and 
the iv–I progression in Db major. The latter of these connects to the line from C major to Db 
major traced at the beginning of the main theme. 

 

(7) Chordal semitones in the Trio of the String Quintet 

In §4, I asserted that Schubert’s harmonic and motivic design for the String Quintet Trio 
centered around the play of contrasting types of stepwise interval. The previous sections 
have expanded the concept of interval to include not only differences of spelling but also 
analogous distinctions between chordal and voice-leading interval types. The latter 
distinction has to do with orientation within triadic orbits, the sense of placement within a 
contoured gravitational field aligned to the triadic structure of the harmony. These 
distinctions, and their associations with directions in Fourier phase space, will help us 
understand the more striking and unusual harmonic features of Schubert’s Trio as 
purposeful explorations of the possible triadic and enharmonic orientations of stepwise 
intervals and their expressive effects. 

We have already seen that one of the linear relationships, the F minor triad between C and 
Db, corresponds one important type of scale step, the diatonic semitone. However, we also 
observed that Schubert seems to exploit another linear relationship in the transition from 
Scherzo into Trio: as Figure 14(b) shows, the Db major scale appears halfway between the F 
minor and Gb major triads. The intervallic axis traced by this motion is that of a more exotic 
𝜑!-inefficient chordal chromatic semitone, as shown in Figure 27. 

[Figure 27] 

An ordinary major scale has three kinds of steps, because of the distinction between chordal 
and voice-leading whole steps, as shown in Figure 28(a). A mixture of elements of two scales 
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will add ordinary chromatic half steps as well as chordal chromatic half steps (Fig. 28b). The 
slurs in the figure show which notes belong to the same triadic orbit. 

[Figure 28] 

The idea of exploring of such distinctions in scale-step types and their metamorphoses 
within shifting harmonic contexts is set forth by the unusual main theme of the Trio, an 
entirely scalewise melody doubled across registers that combines the function of tonal 
transition with thematic initiation. The reduction of Figure 29 highlights properties of the 
theme related to this topic. The melody gives special attention to the interval Ab–F, which is 
filled with the passing tone G§ in the F minor portion of the melody. The subsequent scalar 
descent puts a heavy emphasis on Gb where the first literal chord appears. This Gb resolves 
to F, filling in another Ab–F interval. The Gb–F resolution is further reinforced at the 
cadence, where the first cello leaps suddenly into its upper register to cover the melody with 
a Gb over the dominant. The Ab–Gb–F melody also appears in the cadence of the contrasting 
middle, also shown in the figure. 

[Figure 29] 

The plot in Figure 30 shows that a structure relating the principal harmonies of the passage, 
F minor, Db major, Gb major, and the Bb minor of the contrasting middle, mirrors on a 
smaller scale the structure created by the two ways of filling the Ab–F minor third. The outer 
edges of each parallelogram follow diatonic-semitone and chordal whole-tone axes. (The 
latter is the same as a perfect-fifth axis, since a chordal whole tone is equal to two perfect 
fifths). The long inner diagonal represents the difference between the chordal whole tone 
and diatonic semitone, the chordal chromatic semitone. This is one of the most distant 
intervals in the complex of F minor and Db major tonalities, and Schubert’s theme highlights 
it by pointedly dramatizing the conversion of G into Gb. Association of the smaller 
parallelogram of triads with the larger melodic structure is also strongly apparent in the 
passage: the note G§ belongs to the F minor tonicization, the Gb appears first in the Gb 
major chord at the dynamic climax of the theme, and the F is most prominent melodically in 
the contrasting middle where the Bb minor area appears. (The remaining association is Ab 
with Db major, which is most evident in the return to Db major in the contrasting middle.) 
The larger parallelogram is centered on FAb, the melodic interval repeatedly outlined in the 
passage, while the smaller parallelogram shifts down and to the left because, in the broader 
context, the passage is centered on the Db diatonic scale (which coincides with DbF).  

[Figure 30] 

Thus the harmonic plan as well as aspects of the thematic material of the first part grow out 
of a chromatic conversion that embodies the stark contrast of Scherzo and Trio. The fifth of 
C major, which drives the energetic Scherzo, undergoes a two-part metamorphosis after 
being converted into a passing tone at the beginning of the Trio: it is chromatically softened, 
and it crosses the boundary between voices, entering a triadic orbit that draws it downward 
instead of upward. Both facets of the metamorphosis involve large distances in Fourier 
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space, but especially the change of voices, which traverses three quarters of a 𝜑!-cycle. The 
combined effect of chromatic softening and the re-orientation of triadic gravitational forces 
casts a blanket of enchanted sleep over the music. 

The recapitulation of the Trio further develops these relationships. Mirroring the unusual 
exposition, it begins the process of retransition at the very moment that thematic 
recapitulation begins. The reduction in Figure 31 respells the recapitulation’s sequential 
melody to show its proper tonal relationship to the home key. It begins with a melody based 
on the main theme in the key of bIII, the relative of the parallel, then sequences this melody 
down a step to the key of bII (Eº major). This is followed by a cadence in the home key that 
directly juxtaposes it with the key of bII. Schubert uses the same sequence for the true 
retransition beginning on bII (transposed down a whole step) so that it ends in “bI,” 
enharmonically C major, the key of the Scherzo. 

[Figure 31] 

The graph of the sequence in Figure 32 shows that it circles the space in the 𝜑! dimension. 
This kind of “voice-leading tour” is analogous to an enharmonic tour, and involves a similar 
kind of paradox. The sequence creates a continual descent by voice-leading whole steps, 
which is particularly evident in the upper voice whose chromatic descent divides them into 
alternating diatonic and chromatic semitones. However, the overall descent outlines chordal 
intervals in the tonic harmony of Db major. In enharmonic tours, a respelling is required at 
the global level of the entire cycle, but the local placement of the respelling is essentially 
arbitrary. Similarly in voice-leading tours, the global progression requires a change of triadic 
orbits to appear somewhere in the process, but none of the local progressions themselves 
imply such a shift. The voice-leading paradox is not unique to geometrical theories of 
harmony: the same paradox arises conspicuously in Schenker’s theory, where the endpoints 
of a linear progression or unfolding represent a vertical interval, belonging to separate voices 
at some middleground level, but are “horizontalized” into a single voice at the next level.10 
Some Schenkerians have pointed out how enharmonicism creates paradoxes within the 
theory,11 but the voice-leading paradoxes—which are actually more significant because of 
their universality—are not as commonly acknowledged. The reproduction of these endemic 
music theoretic paradoxes as features of a topology actually helps to more clearly rationalize 
them.12 

[Figure 32] 

As the slurring of Figure 31 shows, the 6̂–5̂ resolutions and 3̂–4̂–5̂ motions are prominent in 
the sequential melody. Figure 33 isolates these and uses slurs to show orbits as in Figure 28, 
and beams to show changes of orbit. The 𝜑! relationships between notes in different tonal 
areas are shown with downward-pointing beams and slurs. The tonal areas are in precisely 

                                                
10 See Schenker 1979, part II, particularly the sections on “Unfolding,” “Linear Progression,” 
“Reaching Over,” “Motion from an Inner Voice,” and “Initial Ascent.” 
11 Proctor (1978, 131–143), Damscroder (2006, 261–4) 
12 See also the analysis of “Nacht und Traume” in Yust 2013b. 
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the same relationship as melodic figures within the sequential melody: from Db major to Fb 
major is a minor third filled in with a diatonic semitone plus chordal whole step, Db major 
→ Eº major → Fb major. Taking a large-scale view, the analysis orients these tonal areas 
with respect to the home key, which is why the two sequential repetitions relate by a chordal 
whole tone (rather than the voice-leading whole step suggested by the local relationships).  

[Figure 33] 

The dotted triangles in Figure 34 extend the Ab–G–F and Ab–Gb–F structures of Figure 30 
(associated with F minor and Db major), to a larger series of triangles including the 

melodic 3̂–4̂–5̂ cells of the three keys from the sequential retransition (enharmonically E 
major, D major, and C major). At the center of the figure, shown with dashed lines, the 
diatonic scales associated with three of these keys (Db major–E major–D major) duplicate 

the shape of the individual melodic 3̂–4̂–5̂ cells. This super-structure for the recapitulation 
surrounds Gb minor and Db, indicating a kind of governing presence of Gb minor as iv. Gb 
minor does not literally appear as a harmony in the recapitulation, but its intangible presence 
might be evidence of the influence of the striking iv–I progression that concludes the first 
part (see Fig. 24). A closer examination of the music confirms this connection: the return to 
Db major approaching the parallel cadence ending the second part involves a respelled Bº–
Ab resolution with a held Db in the upper voice, exactly the essential contrapuntal 
components of the iv–I progression. The relationship of Eº major to Db major reinforces a 

more subtle link in that Gb is the common tone between their respective 3̂–4̂–5̂ melodic 
cells. 

 [Figure 34] 

What could be the musical purpose of Schubert’s expanding these motivic and harmonic 
features of the first part in the recapitulation, using the scalar motive at the foreground and 
as a modulatory plan, in a harmonic context that recalls the mode mixture on the 
subdominant? The triangle created by the 3̂–4̂–5̂ motive has a wide 𝜑! spread, which is 
doubled at the local level by this procedure of “motivic multiplication.” The fish-eye effect 
opens up the stage for the conversion necessary to restore the tonal state of the Scherzo and 
burn off the Trio’s somnolent fog.  

Figure 35 shows the status of G§/Gb in each significant tonal area of the piece, starting and 
ending from the Scherzo. The Trio begins by destabilizing this tonal pillar of the Scherzo: its 
geographic position does not change at first (in F minor), but it becomes a non-tonic passing 
note, inhabiting the outskirts of its triadic orbit. Placing the note in this peripheral status is a 
necessary preparation for what happens next: with its chromatic mutation to Gb in Db major, 
it crosses into the next orbit below, still peripheral but now in the upper reaches of its new 
orbit. The key of Eº major confers a fleeting status of tonal stability, a place at the center of 
a triadic orbit, to this Gb. It also reintroduces G (= Aº), and in the same orbit as Gb. The 
restoration of the Scherzo tonality then requires just the reversal of the 𝜑! orientation of the 
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Gb–G§ path to return to G§ into an upward-pulling gravitational orbit (see the arrows in Fig. 
34). Schubert has already composed the necessary traversal of 𝜑! space into the sequence of 
the recapitulation, so all he has to do to complete the retransition is to repeat the sequence 
starting from Eº (= D) major. Figure 35 summarizes the overall process, falling into the Trio 
by the chordal chromatic semitone from G to Gb, then rising out with the chordal diatonic 
semitone back to G. 

[Figure 35] 

(8) Boundaries and Regions 

This paper began with an observation about the ubiquity and abundance of types of spatial 
metaphor used to explain music. We have investigated concepts of place, path, and direction 
within Fourier phase space. But among the most common spatial metaphors in music are 
those of region and boundary, used especially to describe tonality and key areas. As spatial 
concepts, these are especially rich with meaning and implications. 

The Tonnetz is drawn in Figure 10 as a set of three intervallic axes, corresponding to the three 
consonant intervals and oriented to pass through the dyads and singletons. Unlike the axes 
investigated in the previous section, however, these are not primarily used as pathways from 
one object to another, but to create boundaries between them. The basic neo-Riemannian 
operations cross over them, passing through the dyad representing the common tones 
between triads. The dyadic axes are boundaries in the sense that one can approach them by 
gradually removing the note that distinguishes one triad from another. 

Thinking of these axes as boundaries implies that the Tonnetz is a partition of the Fourier 
space into regions. As a scheme of regions, the Tonnetz exhibits a number of special 
properties:  

(1) It has twenty-four regions with translational and rotational symmetry (equating to 
transposition and inversion respectively), such that the regions can be associated one-to-
one with the members of a set class—e.g., consonant triads. The major and minor triads 
fall near the centers of regions, and edges and vertices corresponds neatly to subset dyads 
and singletons.  

(2) The regions are convex. This means that it is impossible to take a straight path crossing a 
boundary out of a region and re-enter that region on the same path, except possibly by 
circling the entire torus. The convexity property is important because it means there is no 
ambiguity about whether a given straight path crosses a particular border in some 
neighborhood of the space. To satisfy this property, the boundaries must consist of 
straight lines between vertices (points shared by three or more regions).  

(3) The boundaries are meaningful intervallic axes. In the Tonnetz, the boundary axes 
represent the constituent dyads of the major and minor triads. The triad at the center of 
each region can be considered the combination of a point at the center of any one 
boundary (a dyad) with the vertex at the intersection of the other two axes (the other pc).  
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(4) A network of relationships between triads can be derived from the regions sharing 
borders, which, for the Tonnetz regions, is the dual Tonnetz or “chicken-wire Torus” 
(Douthett and Steinbach 1998)—see Figure 3.  

Property (4) is not a constraint on possible schemes, since such a network can always be 
constructed. Yet it may be a consideration, since the resulting network may help in 
interpreting the regions, and the links of this network may correspond to meaningful 
intervallic axes. Borrowing Lewin’s (2007) familiar term, we can call these transformational 
axes, to distinguish them from the boundary axes. In the Tonnetz regions the interval for each 
transformational axis is the voice-leading interval that connects the corresponding triads, as 
shown in Figure 36. It is also the difference between intervals for two of the boundary axes 
(P4–M3, P4–m3, M3–m3). 

[Figure 36] 

The Tonnetz might therefore, in recognition of all these special properties, be offered as a 
theoretical model of the concept of tonal region. But, if we mean by tonal region something 
like the conventional notion of major and minor keys, the Tonnetz regions are not a very 
good fit. In the harmonic syntax of common practice tonality, a tonal area is typically 
secured by the combination of its dominant seventh and tonic triad. Dominant sevenths, 
however, do not fall in the same Tonnetz region as the triads they tonicize. As Figure 37 
shows, they are on the boundary of two regions that are not even adjacent to the regions 
associated with their tonics.  

[Figure 37] 

Conventional keys, then, if they can be represented by regions, are not like the purely triad-
based regions of the Tonnetz. The arrows in Figure 38 show the shortest paths for all V7–I/i 
progressions. Since none of them cross, a scheme of regions containing them is possible, but 
is constrained by the fact that the parallel modes share a dominant. This means that the 
dominant sevenths must fall on a boundary that splits parallel modes, and the only available 
axis is the perfect-fifth axis shown with a dashed line in the figure. This is also the parallel-
mode boundary in the Tonnetz regions; approaching this boundary involves removing or 
negating mode-defining elements. The axis interval defines neutrality for the boundary: in 
this case, the open perfect fifth.  

[Figure 38] 

This perfect-fifth axis does not separate closely-related major and minor keys or fifth-related 
keys of either mode. Note that there is no way to draw a straight line between the dashed 
lines of Figure 38 without crossing one of the arrows. This means that it is not possible to 
draw Tonnetz-like triangular regions that contain the V7–I/i progressions. However, the 
closely-related major/minor regions can be separated by another perfect-fifth axis as shown 
by the dotted line in Figure 38. This axis is halfway between adjacent portions of the parallel-
mode axis and goes through the major and minor thirds ( . . . –FA–AC–CE–EG– . . . ). The 
points on this boundary either lack fifths (major or minor thirds) or are balanced between 
fifths on either side (major and minor seventh chords), making them ambivalent with respect 
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to possible roots a third apart.13 By separating the major and minor keys into parallel strands, 
the fifth-related region on each strand can be separated with different kinds of boundaries, 
making it possible to avoid cutting across the V7–I/i progressions.  

There are many possible ways to draw boundaries separating fifth-related regions that satisfy 
properties (2) and (3) above (convexity and intervallic axes). By using different kinds of 
boundaries for major keys versus minor keys, however, we are already forfeiting one aspect 
of property (1): although the regions will all be parallelograms of the same area and the 
scheme will have translational symmetry, it will not have rotational symmetry. This property 
is actually inappropriate for keys, though: the 180º rotational symmetries of the Tonnetz 
correspond to inversions of the pcsets represented by each region. But conventionally 
understood as keys (strict dualist theories aside), major and minor are not inversionally 
related, as manifest in the differently oriented arrows of Figure 38. 

One way to draw appropriate boundaries is to first find appropriate transformational axes. 
Because the tonal regions will be parallelograms, the transformational axes will run parallel to 
the border axes, rather than bisecting them as in the Tonnetz. One of these will be a perfect-
fifth axis between the two perfect-fifth boundaries. The others should run parallel to the 
borders between fifth-related regions. We can determine the border axes, then, by finding a 
transformational axis through a central characteristic pcset for the key, then transposing this 
axis by half of a fifth in either direction. 

The Tonnetz regions reflect the total subset structure of major and minor triads: each region 
contains the three pcs and three dyads belonging to its triad. This principle can be 
generalized to other trichords.14 However, it does not readily generalize to larger sets. A 
region containing all pcs and dyads of a major scale would occupy a quarter of the entire 
torus, six times too large for a scheme of 24 regions. The principle deduced in the last 
section, that averaging over larger objects leads to smaller areas on the torus, advises us to 
consider larger subsets. Indeed, it would be possible to contain all major and minor triads of 
                                                
13 Such parallel intervallic axes can be associated with set-class multiplication (or division). 
Starting from the perfect-fifth axis through the pcs and fifth dyads ( . . . – F – FC – C – CG 
– G – . . . ) multiply by major third ( = . . . – FA – FM7 – CE – CM7 – GB – . . . ) or by minor 
third / major sixth ( = . . . – DF – Dm7 – AC – Am7 – EG – . . . ). One can show that this 
works for any such multiplication using the convolution theorem. 
14 The generalization is similar to Cohn’s (1997), but with an added geometrical component. 
Such a generalized Tonnetz is possible where connecting the pcs of the trichord in the space 
yields a triangular region that contains no other pcs. For instance, connecting (024) trichords 
via major third, chordal whole tone, and voice-leading whole-tone paths creates a Tonnetz of 
12, not 24, regions, because one edge (the chordal whole tone) passes through another pc 
(e.g., G between C and D). The problem with (024) is its lack of odd intervals, however, not 
its inversional symmetry. The (027) trichord, for instance, makes a well-formed Tonnetz by 
using a voice-leading whole tone which is the sum of an ordinary (1-chordal) fourth and a 
𝜑!-inefficient 2-chordal fourth. The distinction between kinds of fourths makes it possible 
to invert a trichord onto another with the same pcs but different intervals (i.e., swapping 
which fourth is 1-chordal and which is 2-chordal). The simplest (012) Tonnetz in 𝜑!/!-space 
has rather imponderably narrow regions bounded by a diatonic semitone + chordal doubly 
diminished unison = chordal doubly diminished second.  
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a major scale in a region smaller by about a third. Yet this is still too large, which means that 
we cannot expect tonal regions to include every singleton, dyad, or triad belonging to a given 
key. Instead, the characteristic sets within each region should be the scales and large subsets 
of scales that typify specific keys. 

Figure 39 shows the positions of diatonic and harmonic minor scales and some of their 
subset hexachords. The major regions are easy to characterize: the diatonic scales and major 
hexachords (i.e., Guidonian hexachords) coincide with major and minor thirds on the 
boundary with the closely-related minor regions. Each major hexachord is the intersection of 
diatonic scales on either side. One diatonic hexachord appears within the major strand, and 
it is an obvious candidate for the characteristic pcset of a major key, a hexachord from 7̂ to 5̂ 
that includes all the notes of the tonic triad and dominant seventh of the key. This 
hexachord falls along a voice-leading whole tone axis (which is also a transformational axis 
for the Tonnetz).15 The axis intersects the upper boundary at the diatonic scale for the major 
key, which makes a natural point of transition between the major key and its relative minor. 
It intersects the lower boundary at the 5̂ pc. On Figure 39, this point is called “V7+C,” 
because the five-note set consisting of the dominant seventh plus the tonic note is also 
located here. This set combines all the notes common to the major key and its parallel 
minor, excluding the mode-determining 3̂s and 6̂s.  

[Figure 39] 

The boundaries for the fifth-related major keys can then be placed halfway between these 
transformational axes, as shown in Figure 39. These intersect the other two boundaries at 
the points for dominant sevenths (perfect fifths) and major hexachords. The major 
hexachords are subsets of the basic diatonic scales of both adjacent major keys, and include 
both of their tonic chords.  

The minor-key strands contain more scalar sets: the harmonic minor scale itself and two 
hexachordal subsets occur within the strand. One of these is the minor hexachord (a 
diatonic hexachord consisting of the first six notes of a minor scale). The other is a 
harmonic-minor version of the 7̂–5̂ hexachord, which has all the notes of V7 and i of a 
minor key. These each have some associated intervallic axis, as shown in Figure 40, making 
the choice of minor-key boundaries less straightforward. The intervallic axis for the minor 
hexachord can be taken out of consideration on the grounds that it goes in the wrong 
direction and would lead to boundaries that cross the V7–i progressions. The diatonic 

                                                
15 In all cases that will be described here, the criterion for associating a pcset with an axis is 
that it can be decomposed into two subsets adjacent on that axis and falls relatively close to 
it. Since tritones have no effect on the third and fifth Fourier components, an effective 
method of finding such an axis is to remove tritones, then decompose the set into two 
inversionally symmetric subsets, as balanced as possible in the magnitudes of the third and 
fifth components. For instance, the C major 7̂–5̂ hexachord, with the BF tritone removed, is 
a combination of G and CDE. The latter coincides with the major third CE, but is better 
balanced between its third and fifth components. This decomposition therefore makes a 
more suitable axis for the set than the imbalanced CE/GD. 
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semitone axis and harmonic minor are more central than the tritone axis and 7̂–5̂ hexachord 
in the sense that (a) boundaries evenly spaced around the tritone axis would put the minor 
hexachord near the edge of the region, whereas all the characteristic pcsets are well within 
the region defined by diatonic-semitone axes, and (b) the harmonic minor scale is between 
the two hexachords and represents the union of their pc-content. Using the diatonic 
semitone axis also simplifies the network of adjacent regions.  

[Figure 40] 

Figure 41 shows the resulting regions. The network of adjacent regions is slightly more 
complex than the Tonnetz, including fifth-related same-mode regions, plus three mode-
change transformations that essentially reproduce the PLR relations of the Tonnetz. The 
diatonic-semitone transformational axis of the minor regions is the same as the L-axis of the 
Tonnetz, and the voice-leading whole-tone axis is the same as the R-axis. These axes collide 
between the parallel regions, yielding a transformation based on the intervallic difference 
between them, VL whole tone – diatonic semitone = chromatic semitone, which is also the 
interval defining the Tonnetz’s P-axis.  

[Figure 41] 

The most expressively charged of boundaries, certainly in Schubert’s music, is the one that 
these tonal regions share with the Tonnetz regions, the perfect-fifth axis between parallel-
mode regions. Schubert’s use of mode change to communicate contrasts of emotional 
valence, particularly in Lieder, is too abundantly evident to require demonstration here. 
(Wollenberg [2011, ch. 2] discusses his use of parallel modes in instrumental music.) What a 
harmonic geometry can add to this already well-known aspect of Schubert’s musical language 
is to generalize its implications via spatial metaphors. As a kind of boundary-transgression, 
the crossing of the fifths axis need not necessarily involve mode-change directly. Some of 
the most interesting examples from Schubert’s music cross this boundary in the 
major→minor direction while pointedly avoiding the explicit articulation of a minor key 
through a delicate circumlocution. 

The tonal digression that disturbs the unearthly calm in the main theme of the String 
Quintet’s Adagio is one notable example. The harmonic path of the first period of the theme 
(mm. 1–14) is summarized in Figure 42. It begins by moving, ascending-fifth-wise, to F# 
major (mm. 1–9). It returns to E major via a tonicization of A major in mm. 12–13. The 
harmony that mediates between these keys is a B minor triad in m. 11. The figure tracks the 
tonal implications of this progression by plotting the pc-content union of adjacent 
harmonies. The progressions involving B minor (F# major – B minor / B minor – E major) 
are tonally ambiguous in the space, balanced on the boundary with the parallel minor keys of 
B minor and E minor. Schubert never explicitly crosses this boundary in the passage, but the 
use of B minor as a “pivot” activates it, making the listener aware of it the way one might 
search for a door by groping along the wall of an unfamiliar dark room at night. 

[Figure 42] 
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When the second period of the theme begins in hushed sotto voce (Fig. 43a), its first harmonic 
move is to the B minor triad once again, this time directly from E major, approaching the 
parallel-key border more forcefully and impatiently. The chord may hint at another 
immanent tonicization of the subdominant, but Schubert instead leaps across the boundary 
into the remote key of G major. As Figure 43(b) shows, this progression passes through the 
parallel key of E minor. Schubert then returns to the home key by surfing the expressively 
charged parallel key boundary once again, bridging the minor strand with B7 in m. 20, then 
suggesting, but not realizing, A minor with a Fr+6–V7 progression in mm. 20–21. The music 
returns to E major once again via the subdominant area. 

[Figure 43] 

The ability of this scheme of regions to accurately reflect intuitions about tonal areas has 
been explicitly engineered into the design of the regions. That the Fourier space can act as a 
mirror to these intuitions without too much distortion in the picture is impressive, but there 
is also more to the spatial metaphor than a correspondence between position in the space 
and keys. In the Adagio, a tonal area, E minor, is activated not by a progression within that 
region, but by a motion that passes through it. This is an effective description of the method 
behind Schubert’s harmony in the passage. He achieves the sense of E minor as an 
unspoken subtext by writing a harmonic progression that invokes E minor without actually 
being in that key at any given moment. The sense of E minor as a necessary intermediary 
between E major and G major is effectively a spatial one. 

We have already (in §4 above) seen what happens next in this Adagio, the tranquility of the 
seraphic main theme is violently upended by the intrusion of the F–E trill and the F minor 
interior theme that it launches. The catastrophic descent into this impossibly flatward 
tonality seems to be a consequence of what happens in the main theme: when it first 
explores, then transgresses, the charged parallel-mode boundary, it enters a forbidden region 
of tonal space. By opening the door, so to speak, the demons are unleashed, and the Inferno 
of F minor, two passes over the modal boundary from the home key, is suddenly exposed.   

The idea of this kind of tonal “action at a distance” as a feature of Schubert’s music was first 
proposed by Cone (1982) in a famous article on what he called Schubert’s “promissory 
note,” a strikingly unresolved chord in one phrase that is answered by the expected 
resolution appearing in another phrase. The proposal carries an air of paradox: Cone asks us 
to hear one chord resolving the other (in a later article he called the promissory note a 
“harmonic device involving an aborted and delayed resolution” (1984, 223)), even though 
the resolution cannot possibly be construed as structural, since both harmonic events are 
clearly subsidiary within their individual phrases. The paradox evaporates, however, if we 
reformulate the causal relationship between exceptional tonal events of different phrases in 
spatial terms. In Cone’s examples, unresolved secondary chords activate regions of tonal 
space without fully committing to them. A later, more thorough realization of that region 
may appear to be causally related to the earlier event, fulfilling the earlier intimation that this 
region will play some sort of role in the tonal plan of the piece. In other words, a promissory 
note may be a way of defining the tonal sphere of activity for the music at the outset, before 
literally advancing the parts of the narrative that involve activity in certain contrasting 
regions. 
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The notion of a promissory note can also be broadened by focusing on the spatial boundary 
involved. Whereas the example from the Adagio of the String Quintet uses the parallel-mode 
boundary, Cone’s examples (Moment Musical no. 6 and the first movement of the String 
Quintet) involve the other perfect-fifth axis that separates relative keys. The promissory note 
may then be invoked by other keys related to the one originally suggested. For instance, 
Cone (1984) cites the String Quintet first movement, where a rescinded move to E minor 
early in the exposition is recalled by a similar feint to the same key in the later part of the 
second theme (mm. 106–110) and in the closing material (mm. 139–140 / 143–144). 
Between these two later events, however, there is another notable tonal disruption, the 
repeated deceptive cadences to viio7/ii at the end of the subordinate theme (mm. 125 and 
131). The same relative-key boundary is involved here, and Schubert uses B as a common-
tone thread to G major as he does in all of the E minor tonicizations. In the Moment 
Musical that Cone discusses in the earlier (1982) article, the C major – Eb7 progression lives 
on the same relative-key boundary as the diatonic seventh chords (Dbr7 and Bbm7) that are so 
conspicuous in the initial thematic idea.  

Schemes of regions can be seen as ways of overlaying familiar networks of chord and/or key 
relations onto a common underlying space. The common space can then be used to relate 
them and provide perspective on their differences. In particular, using the tonal regions as a 
stand-in for traditional harmonic theory may illuminate debates over neo-Riemannian 
analyses of Schubert’s music. Fourier phase space is especially well-suited to this task, since it 
circumvents what is usually held to be a fundamental difference between the theories, that 
neo-Riemannian theory is based on direct relationships between triads whereas traditional 
tonal theories use diatonic scales as intermediaries in such harmonic relationships. While the 
Tonnetz regions may be derived from the structure of major/minor triads, and the tonal 
regions from scalar collections, there is nonetheless no barrier to viewing relationships 
between harmonic entities of any type—triads, scales, etc.—through either configuration. 

One such debate was instigated by Cohn’s (1999) use of hexatonic cycles in an analysis of 
Schubert’s last piano sonata, D.960, eliciting a critique by Fisk (2000) and response from 
Cohn (2000b). Fisk’s critique uses the metaphor of tonal region extensively to explain his 
dispute with Cohn’s approach, claiming that Schubert’s keys should be grouped by fifth-
relation (Bb major–F major / F# minor–C# minor) rather than by hexatonic cycle (Bb major – 
F# minor / F major–C# minor). Fisk’s “regions” group tonal regions adjacent along the 
circle-of-fifths strips, while the hexatonic cycles, which are vertical strips in the Tonnetz 
regions, chart a jagged, circuitous path across the tonal regions.  

The recapitulation of D.960, which condenses the tonal milestones of the exposition into an 
enharmonic tour within the recomposed B part of the main theme, is a good place to 
compare the two approaches. The harmonic trajectory looks different through a Tonnetz 
framework (Figure 44a) than it does through tonal regions (Figure 44b), and the difference 
reflects to some extent Cohn’s and Fisk’s differing interpretations of the sonata. The 
hexatonic pole, a focal point of contention, looks simpler as a direct move in the Tonnetz, 
where it requires passing through three bordering regions in a roughly consistent vertical 
orientation, one of which is the Gb major region matching the initial key of the B section of 
the theme. In the tonal regions, the route to a hexatonic pole is less clearly defined and more 
indirect. A straight path from Bb major to Gb major cuts indelicately across multiple regions. 
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The trill that intercedes between these keys, however, promotes the idea that the modulation 
involves a glance toward the subdominant. Such an interpretation helps to rationalize the 
pathway through tonal regions, making it perhaps unsurprising that Fisk emphasizes the 
gesture, whereas Cohn warns of overstating its importance. 

[Figure 44] 

In contrast, the return to the home key from A major at the beginning of the A' part is hard 
to rationalize in the Tonnetz (passing through bits of four regions). But it yields a 
straightforward interpretation in the tonal regions, with a single key, D minor, acting as 
intermediary between the distantly related keys. The tonal regions thus convey an 
explanation of the modulation rooted in conventional harmony: the Bb major chord is 
approached via a D minor deceptive progression and immediately reinterpreted as a tonic. 
Marston (2000) places special emphasis on this moment as a “defamiliarization of the tonic 
harmony.” Noting the strong implication of an unrealized key in this progression, we might 
read this as a reverse promissory note, recalling the extraordinary D minor return of the 
main theme material at the end of the development section (and also echoing a similar 
progression from the exposition, a true promissory note, where the resolution of an 
extended dominant of D minor in m. 70 is reinterpreted, by means of a textural sleight of 

hand, as a cadential 64 in Bb major, evaporating the D minor tonality before it has an 
opportunity to fully materialize).  

 

Conclusion 

In an article comparing the Fourier transform to voice-leading geometry, Tymoczko (2008b) 
criticizes the Fourier transform for being a “black box,” claiming that the cogs and wheels of 
the Fourier machine are concealed, not clearly referable to musical meaning. Indeed, the 
criticism is a potent one: a method whose operational premises remain mysterious is not very 
useful as theory. Tymoczko’s recommended response to this impasse was to abandon 
Quinn’s supposedly abstruse procedure in favor of one engineered from the ground up, 
voice-leading geometries. A different reaction to the black-box syndrome is to reverse-
engineer the machine to better understand how to interpret it. The DFT rewards this 
strategy: investigating the musical meaning of Fourier phase components in this paper has 
led to cardinality-independent concepts of scalar and triadic voice leading, a harmonic 
topology that is robust with respect to cardinality-changing operations, and an embedding of 
the Tonnetz in a continuous space that expands upon the common-tone based sense of 
distance that has made the Tonnetz so useful in analysis of nineteenth-century repertoire. 

Common topological metaphors such as tonal distance and tonal area become especially 
powerful hermeneutic tools when they are made explicit in a geometry like the Fourier space 
explored here. Regions and boundaries, for instance, help to generalize and make sense out 
of the idea of Schubert’s “promissory notes,” and the idea that Schubert’s music activates 
harmonic regions by outlining or passing through them without occupying them. The cycles 
that constitute an intrinsic feature of this geometry help rationalize paradoxes like 
enharmonicism that persistently arise in music theory. And the analysis of the Trio from 
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Schubert’s String Quintet shows that it is possible for long-range voice-leading processes to 
involve objects other than simple chords, such as scale segments. 
  



 34 

Appendix: Calculating Fourier Components 

Those interested in exploring Fourier phase spaces further will need a way to calculate 
components. The best way is simply to calculate the DFT (sometimes also referred to as 
FFT or “Fast Fourier transform”) directly. Software packages like Mathematica have built-in 
Fourier analysis functions. One can also set up a spreadsheet to perform DFTs and 
conversion to polar coordinates; see the example available at [INSERT LINK HERE]. 

Another way to calculate individual components is to perform the vector addition procedure 
of Quinn’s Fourier balances (see §2). The vector for a single pc is 

𝑣!" = (sinθ, cosθ)  

where θ is the angle on the given balance. For 𝑓!, θ comes in increments of π/2, and the 
resulting vector will be (±1, 0) or (0, ±1). For 𝑓!, θ takes twelve possible values in increments 
of π/6.  To give a pc a weight k other than 1, multiply the vector by k: 

𝑘𝑣!" = (𝑘  sinθ, 𝑘  cosθ)  

After summing these vectors componentwise, convert back to polar coordinates: 

𝑓! =    𝑥! + 𝑦!  ,            𝜑! = arctan(𝑥 𝑦) 

For example, 𝜑! and 𝜑! for the C major triad are given by 

(0, 1)   +   (0, 1)   +   (1, 0)   =    (1, 2)  ,        𝜑! = arctan 1 2 =   0.464 = 0.15𝜋 

(0, 1)   +   (0.5, 0.87)   +   (0.87,−0.5)   =    (1.37,−1.37)  , 

𝜑! = arctan −1 = 0.25𝜋.  
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Figures and Captions 

 

 
Figure 1: Menuetto from Schubert’s String Quartet no. 13 in A minor, mm. 1–46, with 

common-tone links indicated 
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Figure 2: The harmonic stations of Schubert’s Menuetto (home key, subordinate key, 
contrasting key, etc.) on the Tonnetz. Significant common tones used to link tonal areas in the 

music are circled. 
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Figure 3: C major is three Tonnetz links away from F minor, the same as Eb major, even 
though it shares one common tone while Eb major and F minor have none. 
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(a)

   

(b)  

 

(c)  

 
 

Figure 4: The three largest components of the DFT decomposition of a C major triad 
(dotted lines), (a) 𝑓!, (b) 𝑓!, and (c) 𝑓!, superimposed on the triad itself (solid lines). The 

magnitudes are doubled to represent the combined effects of the given component and its 
complement (e.g., 𝑓!, 𝑓!, and 𝑓! respectively). 
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Figure 5: Quinn’s Fourier balances for the third, fourth, and fifth Fourier components 
 

 
 

Figure 6: Derivation of the third, fourth, and fifth components of the C major triad (dashed 
lines) by adding vectors in Quinn’s Fourier balances 

 

 
Figure 7: Derivation of the third, fourth, and fifth Fourier components of the A minor triad 
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Figure 8: C major and A minor triads in 𝜑!/!-space. 

 
 

 
 

Figure 9: Continuous paths from CEG through CDE to ACE using DFT (solid line) and 
arithmetic mean (dashed line).  
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Figure 10: The Tonnetz in 𝜑!/!-space. Consonant triads, dyads, and single pitch-classes are 
plotted in the space, and the pcs are connected to their nearest neighbors in a triangular 

lattice.  
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Figure 11: Appoggiaturas from “Daß sie hier gewesen,” mm. 1–2, 42–3, 48–9 

 
 (a)  (b) (c) 

       
 

Figure 12: The tonal plan of the Menuetto as (a) a path between chords, (b) a path between 
scales, and (c) a path between chord + scale multisets 

 

 
Figure 13: (a) The modulation into the interior theme of the Adagio movement of Schubert’s 

String Quintet 
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Figure 13: (b) The modulation by scalar common tone in the Adagio implies that the 
contrasting key is bii, even though it is closer as a #i, by “Slide” transformation. 
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Figure 14(a): The end of the Scherzo and beginning of the Trio in the String Quintet 

 
 

 
Figure 14(b): The transition into the Trio of the String Quintet in 𝜑!/!-space 
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Figure 15: A split/fuse voice leading from Callender 1998 
 
 

 
Figure 16: Changes of 𝜑! interpreted as shifts of triadic orbits 

 

 
Figure 17: A sequence from Schubert’s song “Gruppe aus dem Tartarus”  
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Figure 18: (a) Implied voice-leading pattern of the sequence and (b) its path in 𝜑!/!-space 

 
 

 
 

Figure 19: Triadic regions in the sequence of Fig. 18, chords 4–7 
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Figure 20: (a) One stage of the sequence and its path in 𝜑!/!-space, and models of the 
sequence using (b) triads and seventh chords and (c) only triads 
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Figure 21: Chromatic and diatonic semitones are distinct paths between the same points. 
 
 

 
 

Figure 22: A voice-leading interval of a minor third is a different, and longer, path than the 
chordal minor third. 
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Figure 23: Four different paths between the same points, Bb→Ab, and the intervals 
represented by three of them 

 
 

 
 

Figure 24: Schubert repeats the cadential phrase in the first part of the Trio twice, changing 
only the quality of the subdominant triad. 
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Figure 25: The melody of the contrasting middle section of the Trio creates a chromatic line 
by juxtaposing V of Bb minor with the tonic of Db major. 

 
  

 
 

Figure 26: Two ways of chromatically filling a voice-leading whole step are inversionally 
related, differing only on which semitone is interpreted as diatonic and which as chromatic. 

The most efficient way to resolve the enharmonic ambiguity between Bb–A§–Ab and Bb–Bº–
Ab is to add the note F or Db. Dashed lines connect triads used in the passages from Figs. 

24–25 to their constituent dyads. Dotted lines show diatonic-semitone axes involving triads 
from the Trio A and B parts. 
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Figure 27: The path from the F minor to the Gb major triad at the beginning of the String 
Quintet Trio approximately follows a chordal chromatic-semitone axis. 

 
 (a) (b) 

 
Figure 28: Steps of (a) an ordinary major scale and (b) a mixture of closely related scales. 

Slurs are used to group notes belonging to the same triadic orbit. 
 

 
 

Figure 29: A reduction of the main theme and contrasting middle of the Trio, highlighting 
Schubert’s emphasis on the idea of filling the interval Ab–F with scalar motion 
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Figure 30: Two structures, chordal and melodic, from the Trio’s main theme–contrasting 
middle outline the same shape: a parallelogram whose edges follow diatonic semitone and 
chordal whole-tone axes, and whose long diagonal follows a chordal chromatic-semitone 

axis. 
 

 
 

Figure 31: Reduction and respelling of the sequential recapitulation 
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Figure 32: On a local view, the sequential recapitulation executes a voice-leading cycle. 
 

 
 

Figure 33: Tonal elements of the sequence from the recapitulation of the Trio. Slurs group 
notes in the same 𝜑! orbit and beams show arpeggiations between adjacent voices. 
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Figure 34: Dotted triangles show local melodic structures of the major 3̂–4̂–5̂ / minor 1̂–2̂–3̂ 
type from the main theme, recapitulation, and retransition. Three of these from the 

recapitulation are centered on diatonic scales that reflect the same relationships (dashed 
lines). Arrows show chordal semitones between G and Gb. 
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Figure 35: Transformations of G/Gb over the course of the Trio. Slurs connect Gs or Gbs 

that belong to the same triadic orbit. The transitions into and out of the Trio involve moving 
G/Gb into a lower orbit, then returning it to a higher orbit.  

 
 

 
 

Figure 36: Transformational axes for the Tonnetz 
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Figure 37: V7–I/i progressions cross multiple Tonnetz boundaries. 
 
 

 
Figure 38: The perfect-fifth axis through singletons separates parallel V7–I/i progressions in 
𝜑!/!-space (dashed line). A parallel perfect-fifth axis through major and minor thirds 

separates relative keys (dotted line). 
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Figure 39: Tonal scales and important scalar subsets. The major-key regions have one 

characteristic diatonic subset in the middle of their regions, which lies along the whole-tone 
axis shown. The boundaries shown with dark dashed lines are whole-tone axes halfway 

between the transformational ones.   
 

 
Figure 40: Three scalar sets typical of minor keys, transformational axes associated with each, 

and minor-key regions associated with the diatonic-semitone axis. 
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Figure 41: Tonal regions and transformational axes 

 

 
 

Figure 42: A harmonic summary of the first period from the main theme of the String 
Quintet Adagio   
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Figure 43(a): Second period of the main theme, mm. 15–24 

 
 

 
 

Figure 43(b): The passage crosses the modal boundary below E major. 
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  (a) (b) 

      
   
 

Figure 44: The progression of tonal areas in the main theme recapitulation of Schubert’s Bb 
major Piano Sonata, seen through (a) Tonnetz regions and (b) tonal regions 

 
 

 


