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Abstract. Contextual inversion, introduced as an analytical tool by
David Lewin, is a concept of wide reach and value in music theory and
analysis, at the root of neo-Riemannian theory as well as serial theory,
and useful for a range of analytical applications. A shortcoming of con-
textual inversion as it is currently understood, however, is, as implied by
the name, that the transformation has to be defined anew for each ap-
plication. This is potentially a virtue, requiring the analyst to invest the
transformational system with meaning in order to construct it in the first
place. However, there are certainly instances where new transformational
systems are continually redefined for essentially the same purposes. This
paper explores some of the most common theoretical bases for contextual
inversion groups and considers possible definitions of inversion operators
that can apply across set class types, effectively de-contextualizing con-
textual inversions.

Keywords: Pitch-class set theory - Contextual inversion - Neo-Riemannian
theory - Transformational theory.

1 Standardizing Contextual Inversion

Contextual inversion was first defined by David Lewin and applied in various
ways in many of his analyses [21, 22]. It has been an important analytical resource
to many theorists in a variety of analytical contexts. Exemplary analysis using
contextual inversions, as well as references to many other applications, can be
found in articles by Lambert [17] and Straus [24] and Kochavi’s dissertation [15].

Contextual inversion is most simply defined group-theoretically as an opera-
tion that maps pitch-class sets to their inversions and commutes with transpo-
sitions. Traditional inversion operations, defined as reflections of the pitch-class
circle over some axis, do not commute with transpositions. This is often a desir-
able property; one normally considers, e.g., C major — F minor and D major —
G minor to be the same type of progression, but as traditional inversions they
are not, because the axis of inversion changes (C/Ff in the first progression,
D/Gf in the second). The advantage of traditional inversion operations is that
they are readily defined in the same way for all pitch-class sets.

There are two kinds of contextual inversion, those that apply to ordered and
to unordered pitch-class sets. In the former category are serial operations like
Lewin’s RICH operation. These are contextual inversions because they commute
with transposition, but since they are typically defined by drawing upon aspects
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of the ordering, standardization across pitch-class sets is unproblematic. For
instance, one can define a contextual inversion that uses the first note of the
series as a common tone. This is, for instance, how Stravinsky often derives
an I-form of a twelve-tone series from a P-form. This inversion readily applies
to any kind of series, regardless of how long it is or what pitch-class set it is.
Contextual inversion on serially ordered trichords has already been treated in
excellent work by Fiore, Noll, and Satyendra [8-10] and for twelve-tone music
by Hook and Douthett [14]. The present work addressed the harder problem
standardizing contextual inversion on unordered sets.

Another method of turning contextual inversions like P, L, and R into global
operations is to redefine them using multiplication by spectral units as Amiot
[3] does. Spectral units derived from a contextual inversion, however, do not
necessarily consistently act as inversions, and in fact they can have infinite order
(as do spectral units defined from the neo-Riemannian inversions). Nonetheless,
Amiot’s approach is related to the idea of directed inversions suggested below.

The difficulty of standardization might be understood as a virtue of con-
textual inversion. Many of Lewin’s analyses [22] illustrate this well: a special
inversion operator is defined for use only in the analysis at hand, requiring a
mix of theoretical and analytical reasoning that itself serves as a crucial stage of
the analytical process. The counterargument to this anti-standardization stance
is that the same kinds of reasoning may frequently reappear, so that not only is
it efficacious to establish a single standard, but it also advances the theoretical
project by making the conceptual links across analyses apparent.

Common-tone content is frequently used as a basis for defining contextual
inversions. The most prominent example of this is the paradigmatic contextual
transformations, the Neo-Riemannian P, L, and R operations, which are defined
as the inversions that preserve two common tones [6, 13, 21]. They have also been
described, however, as minimal voice-leading transformations [6,7,27]. These
two descriptions only happen to coincide for this particular set class but lead to
distinct generalizations. I will consider each possibility below.

There are two principal criteria for a good standardization,

1. It applies to a large number of set classes
2. It is meaningful

Of these, (2) is the most important. The primary value of contextual in-
versions, after all, is that they are often more meaningful as operations than
standard inversions, and therefore the theoretical meaning of the operation is
foremost. Criterion (1) is perfectly satisfied by a standard that applies to all set
classes, which is easily possible if one completely ignores (2). For example, we
could define an inversion around the first pitch class of a set’s normal order.
Since the normal order, however, is an essentially arbitrary convention, such an
operation is of little value.

Straus [24] takes on the task of satisfying (1) perfectly while preserving some
of the common-tone meaning of the neo-Riemannian transformations, by gen-
eralizing the two-common-tone property of P, L, and R to all trichords. An
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important flaw of this strategy was identified, however, by Fiore and Noll [8],
which is that there is not a consistent group structure on P, L, and R so defined.
For instance, the neo-Riemannian PL is an order 4 operation, PR is order 3,
and LR is order 12, while for (016), Straus’s PL, PR, and LR are orders 12, 12,
and 2 respectively. Therefore, despite the nomenclature, these are not really the
same operations from one trichord-type to another. Furthermore, Straus has to
lean on the normal-order convention to satisfy criterion (1), leading to a degree
of arbitrariness in which operation is called by which name. For instance, the
operation that maps (012) to itself is P, whereas for (027), it is L.

It turns out to be quite difficult to satisfy criterion (1) perfectly without
compromising on (2). Rather than pursue that holy grail here, T will instead
prioritize criterion (2) and explore multiple possible kinds of contextual inversion
that partially generalize and relate to voice-leading and common-tone properties.

2 Voice-Leading Standards

One potentially useful property in contextual inversions is minimal voice leading.
Minimal voice leading by itself, however, is certainly not sufficient to define
a contextual inversion on all set classes, since multiple voice leadings may be
equally small, an example being the 1-semitone voice leadings given by the P
and L operations on major and minor triads. Also, “minimal voice leading” is
vague, since there might be a number of relevant metrics. Tymoczko and Hall
[12, 25] propose some limits on possible voice-leading metrics, but suggest that a
number of metrics, in particular the Ly-norms, could be used. The choice between
these will often change which voice leading would be considered minimal.

As an example consider the tetrachord {0147}. It has a unique maximal
common-tone inversion: {1478}. However, considered as a voice leading, (C,Db,E,G)
— (Ab,Db,E,G), this moves a single voice by the large distance of 4 semitones.
On one commonly used voice leading metric, L1, or the taxicab metric, there
are a number of other inversions that have exactly the same size voice leading,
such as (C,Db,E,G) — (C,Eb,Ft,G), which moves two voices by two semitones,
(CtDb,E,G) — (B,D,Ef,Ff), which moves two voices up by semitone and two
down by semitone. In fact, ten of the twelve inversions have a voice leading with
this same distance of 4 on the L; metric. On an Ly (Euclidean) or Lo, metric,
the smallest voice leading is the one that preserves zero common tones (moving
every voice by one semitone), and there are three such inversions for each (0147).

Regardless of the voice-leading metric chosen, the minimal voice leading will
often be achievable in multiple ways. Therefore minimal voice-leading does not
generalize well as a contextual inversion standard. It is well defined for relatively
few set classes, and it is difficult to predict which set classes it applies to.

Another voice-leading property of potential interest is sum class. It has been
effectively applied in analysis by Cohn [7] and play an important role in recent
theory of voice leading proposed by Dmitri Tymoczko [28].

A sum class standard satisfies criterion (2) effectively. If two sets have the
same sum class, this means that there is a balanced voice leading from one to
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the other (and the converse is also true). Sum classes specify cross-sections of
voice-leading spaces oblique to the line of transposition, and therefore are basic
to the theory of voice-leading geometry.

When cardinality shares a factor with twelve, however, transposition by that
factor preserves sum class. Therefore, only when cardinality is co-prime to twelve
is there a unique inversion with the same sum class.

For sets of cardinality five or seven, there is a transposition (T5 or T7) that
changes the sum class by 1, meaning that all transpositions have a unique sum
class. This means that there is always exactly one inversionally related set in the
same sum class, so that a sum class standard for contextual inversion is defined
in just these cases, but not for other cardinalities. Thus, it is easy to know which
set classes this inversional standard applies to, but ones that tend to be of the
most analytical interest (trichords and tetrachords) are not included.

A balanced-voice-leading inversion will map inversionally symmetrical col-
lections to themselves. But it is not necessarily a minimal voice-leading stan-
dard in any sense in other instances. Consider, for example, the pentatonic scale
{CEFGB}. The balanced voice-leading inversion of this is {CtDF{GB}, a voice
leading of (1, —2, 1, 0, 0). However, the smallest voice leadings are not bal-
anced: (C,E,F,G,B) — (C,E,F,A B) moves one note up by 2 and (C,E,F,G,B)
— (C,E,F{,G,B) moves one note up by 1.

3 Common-Tone Standards

Following Cohn [6], theorists often think first of maximal common-tone preserva-
tion as a way of defining contextual inversions. The inversions would then define
a kind of proximity as reflected in the Tonnetz, or Cohn’s generalization of it.
The difficulty is that the maximal common-tone preserving inversion is rarely
unique. Inversionally symmetrical trichords have a single maximal common-tone
preserving operation, but other trichords have at least three inversions that pre-
serve two pitch-classes (four if one of its intervals is a tritone). For this reason,
Straus [24] defines three contextual inversions for all trichords. But defining mul-
tiple contextual inversions poses an additional danger: for two operations to be
understood as the same when applied to different sets, they must generate the
same groups. This is sometimes possible but limits generalizability. For instance,
we could define two trichord inversions, I and J, that preserve a dyad other
than icl or ich. This can then only apply, however, to trichords with exactly one
icl/ich interval, i.e. (013), (014), (025), and (037), which is rather limited. To
define three such operations, we can at best generalize over two trichord types,
which is hardly a generalization.

We should therefore take a step back and investigate the phenomenon of
common-tone preservation more systematically. Lewin observed the importance
of common tones and treated them as a special case of his interval function [18,
21], and also connected the interval function to the discrete Fourier transform
(DFT) [19, 20]. Specifically, the interval function is a cross-correlation and the
number of common tones is its zeroeth entry. By the convolution theorem, which
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states that convolution of sets is equivalent to multiplication of their DFTs, we
can derive the following expression for the number of common tones between a
set A, and some inversion IA:

11
5 D 1l 4)Peos(e(4) — or(14)) 1)
k=0

Here, fi(A) refers to the kth Fourier coefficient of A and ¢y (A) refers to its
phase. When A is clear from context we can write simply fi and ¢y. For a given
pair of pitch-class sets, we can use d; to indicate the phase difference.

Equation (1) implies that a large number of common tones results when the
phase values are close together, particularly on the larger DF'T components. We
may use this fact to define contextual inversions that relate to the sharing of
common tones by using distances in phase spaces. Following [29] T will use the
convention Phy, = -y, where u refers to the universe (division of the octave),
assumed to be 12 unless otherwise stated.

For example, Table 1 gives magnitudes of each component for major/minor
triads, then cosines of phase differences for some inversions from C major.

Table 1. DFT for major and minor triads: phase differences and common tones from
C major

f1 f2 f3| fa fs| fe
Mag.? 0.27 1 57 3] 37 1| | CTs
Cos(0r)| E min 0.5 0.5/ 0.8 0.5 0.5 —1 2
C min 0.5/ 0.5 0.8 05 0.5 -1 2
A min | —0.87| —0.5| 0.6| 0.5 0.87] 1 2
G min | —0.87| —0.5| —0.6| 0.5| 0.87| 1 1
F min 0 1| 0.6 —1 o 1 1
Gf min -1} -1| 0.8 -1] -1 -1 0
B min 0 1| —0.6] —1 o 1 0
D min 1| -1/ —0.8] -1 1| 0.5 0

According to (1), the last column of the table can be calculated from the
previous six. For instance, for C major — E minor:

L 0(1) +0.27(0.5) + 1(0.5) + 5(0.8) + 3(0.5) + 3.7(0.5) + 1(~1)

12 (2)
+3.7(0.5) + 3(0.5) 4 5(0.8) + 1(0.5) + 0.27(0.5)) = 2

Notice that there are twelve terms to the calculation, the first representing
the zeroth coefficient, which is simply the square of the cardinality, and the last
five being the same as the ones corresponding to f; — f5. Therefore, the common
tones between C major and E minor are primarily attributable to their proximity
in Phs, and secondarily Phy and Phs. The calculation for C major — A minor
on the other hand is:
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L 0(1) +0.27(=0.87) + 1(—0.5) + 5(0.6) + 3(0.5) + 3.7(0.87) + 1(1)

12 (3)
+ 3.7(0.87) + 3(0.5) 4+ 5(0.6) + 1(—0.5) + 0.27(—0.87)) = 2

The common tones here are attributable more to a close diatonic relation-
ship, represented by the high cos(d5), and less to the triadic similarity, cos(d3),
although generally fs3, f4, and f5 remain dominant. Note that the large differ-
ence in cos(dy) is relatively immaterial given the small value of |f;| for triads.
The C major — G minor relationship (“fifth-change”) is similar in most respects
to the C major — A minor (relative) relationship, but the reversal of the triadic
proximity results in one fewer common tone.

Distances in phase spaces will typically not be completely generalizable be-
cause some set classes will either have undefined phases for certain Fourier coef-
ficients, or will have equivalent distances with multiple inversions. For instance,
we can see in Table 3 that the P relation of triads (e.g., C major — C minor)
cannot be distinguished from the L relation (C major — E minor) at all using
phase-space distances alone. Many kinds of inversion can nonetheless be defined
that generalize to a large number of set classes. Consider, for example:

1. Minimum phase distance on a single component, such as Ph; or Phg

2. Minimum distance in a two-dimensional, or higher-dimensional, phase space,
such as Phy /3

3. Minimum distance in a two-dimensional, or higher-dimensional, phase space,
with values weighted by their coefficient size for the given set class.

For 12-tET, criterion (1) only works on Phy or Phs, because when coefficient
number k divides 12 (the size of universe), multiple transpositionally related
chords will have the same phase values. All of these types of inversion, when
applied to inversionally symmetrical sets, will map the set class to itself.

Of the 2-common-tone inversions, C minor (P) and E minor (L) can only
be distinguished by taking into account direction of phase change. The other 2-
common-tone inversion, A minor (R), is a nearest neighbor in a Phs /5 space, the
tonal phase space defined by Amiot and Yust [1, 30]. Or, an inversion maximizing
a weighted sum Y | fx|?cos(¢x) for just the high-numbered components f3 — f,
would also specify the relative relation for triads, and be generalizable to other set
classes. A different two-dimensional phase space, Phy,3 would give C major — F
minor as a minimum-distance inversion (if the dimensions are equally weighted).
Just looking at a single phase value, Ph; or Phs, a 0-common-tone inversion,
C major — D minor, would be the minimum-distance inversion. This inversion
essentially splits the difference between the 2-common-tone inversions that are
relatively close in both Ph; and Phs (C minor and E minor), falling halfway
between them on both the pitch-class circle and circle of fifths.

Defining an inversion that balances on either Ph; or Phs has the advantage of
being a relatively simple contextual inversion to understand across set classes,
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and can be defined for all set classes except only those that are perfectly bal-
anced, or zero-valued on f; and f5 [16]. In fact, complete systems of contextual
inversions I?"! and 12" can be defined where x indicates the change in phase
(possibly non-integer valued) for the given inversion. The disadvantage is, as
the previous example illustrates, the inversion that minimizes the phase change
is not always actually high in common tones, because it is only one out of six
distinct coefficients determining the total common tones in Equation (1).

One interesting fact relevant to one-dimensional phase proximity is the fol-
lowing:

Proposition 1. If set A has f1 # 0 and an inversion 1A with the same Phy
value (hence an integer value) then 1A also has the same Phs value as A, and
the converse is also true.

Proof. Assuming A and 1A have the same Phy, then the pitch-class multiset sum
of A and Tg(IA) has a zero-valued f1, because their f; values will be equal and
opposite. As Amiot [2] shows, f; = 0 implies f5 = 0 (and vice versa). Therefore
A and Tg(TA) must also have opposite Phs (since they have equal | f5| and sum
to f5 =0), so Phs(A) =Phs(IA). The same argument works for the converse.

This proposition can be generalized to any f; and fi in any universe (u),
by replacing T with T, /9, or, if u is odd, transferring into universe 2u by
oversampling and using T,. In combination with the common-tone formula in
(1), this implies that if u is prime, then only inversionally symmetrical sets have
integer-valued Phy, for any k (because integer-valued Phy would mean that there
is some inversion IA with all phase values equal to those of A, which means that
the number of common tones is equal to the cardinality of A, and IA and A are
therefore the same set).

As a case study, let us consider defining contextual inversions for major and
minor triads that also can also be applied to dominant and half-diminished sev-
enths. Table 2 lists the phase differences for all of the inversions that retain at
least one common tone. It is hard to define a PLR-type system of transformations
in a principled way for seventh chords because the 2-common-tone case is so com-
mon (including half of all the possible inversions) and the 3-common-tone case
only occurs one way. Childs [4], for example, generates the contextual inversion
group using all seven 2-3 common-tone inversions, which, from a group-theoretic
perspective, is rather extravagant for a 24-element group that requires only two
generators. All seven 2-3 common-tone inversions are also minimal voice leadings
of two semitones (with the possible exception of the 3-common-tone inversion,
which would be larger on many metrics).

Consider then, the following possible types of inversion:

1. Jy inverts to preserve Ph; and Phs.

Jo{CEG} = {DFA} and Jo{CEGBb} = {ACEbG}.
2. Jy inverts to maximize cos(d2)+cos(d3).

Ji{CEG} = {FAbC} and J{CEGBb} = {CHEGB}.
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Table 2. DFT for dominant sevenths and half-diminished sevenths: phase differences
and common tones from C”

fi fol fs fa 5| fs
Mag.? 0.27 1 2 7 37 4] | CTs
Cos(0)| E9" | —0.87] —0.5 0] 0.79] 087 1 3
A©7 1 —=1| 1| 0.14 1| —1 2
Gor 0.5| 05 —1| 0.79 0.5 -1 2
cer 0 1 0| 0.14 o 1 2
Fg@” 0 1l o0 0.14 o 1 2
Cg°?| —0.5| 0.5 1] 0.79] —0.5| —1 2
Bb®7| 0.87| —0.5| 0| 0.79] —0.87| 1 2
D97 | —0.87| —0.5| 0| —0.93] 0.87| 1 1

3. J; inverts to maximize cos(d3)+cos(ds).
Ji{CEG} = {ACE} and J,{{CEGBb} = {ACEbG}.
4. Jp, inverts to maximize 22:3 | f1e|%cos(dy).
Jp{CEG} = {ACE} and J;{CEGBb} = {EGBsD}.

Two of these inversions, J; and Jp,, operate the same way on triads but differ-
ently on dominant seventh chords, while Jy and J; are equivalent on dominant
sevenths but different on triads. These different kinds of inversions therefore give
rise to distinct group actions when combined with contextual transposition to
generate a 24-element contextual inversion group and applied across multiple
set classes. However, they are all defined as involutions so that, when combined
with contextual transpositions, they generate a group isomorphic to Djo, like
standard inversions and the contextual inversion groups.

A different approach, which generates an inversion group of a distinct isomor-
phism class (Zsay), is to define directed inversions, which go a particular direction
in the phase spaces. For instance, let us use Phs /5, but instead of simply looking
for the nearest chord, let J;4 be the chord that is the nearest in the ascending
direction in Phs and Phs. Figure 1 shows the triads in this space, and a line
that corresponds to semitone transposition. Such lines representing some T, in
some phase space are known as intervallic axes [30]. In fact, this particular axis
reflects an important sequential procedure for Schubert and other composers |7,
30]. Because the triads fall close to the same line, J; is well-defined by prox-
imity to it. This is not true of dominant and half-diminished sevenths, however,
which coincide in the same point (via the inversion defined above as J;), so Jiy
is not well-defined for these.

The proximity of the chords to this line is related to a proposition proved
in [30] and stated in a different form in [2] as proposition 6.8. Given any two
inversionally symmetric sets, A, B, with well-defined phases in some phase space,
we can draw a line connecting A to T,(A) such that some transposition of B
will fall on the midpoint of that line. Specifically, it will be a transposition
of B stabilized by the inversion that maps A to T,(A). Extending the line in
either direction, then, all transpositions of A and B will fall regularly on such a
line, ordered by T,. The individual segments of such a line can be understood
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Fig.1. J'" in Phs/s-space.

as inversions of one set over the center of symmetry of the other. The line in
Figure 1 connects minor thirds and individual pitch classes with = 1, such that
adjacent minor thirds and singletons always combine to give a major or minor
triad. One could define similar lines using the other ways of partitioning the triad
into symmetrical subsets. A partition into a perfect fifth plus a singleton gives an
operation that alternates parallel and slide relationships: C minor — C major —
Ct minor — Cf major — .... A partition into major third plus singleton gives
an operation that alternates relative and fifth-change relationships: C major —
A minor — D major — B minor — ....!

Another form of directed inversion is Amiot’s [3] multiplication by a spec-
tral unit, which can be defined for any contextual inversion, and also generalizes
to any relation between homometric (AKA Z-related) sets. The spectral units
defined by neo-Riemannian operations happen to be of infinite order and when
iterated beyond the initial two triads produce a series of pitch-class distributions
that do not correspond to actual pitch class sets. However, these distributions
could be correlated with triads or other pitch-class sets — seen this way, for in-

! The proximity of the triads to these lines can be calculated from the magnitude
of the subsets on each Fourier component used to define the phase space, with
perfect coincidence where the magnitudes are equal on each. Since all the subsets
of major/minor triads are reasonably uniform in their |F3| and |F5|, the triads fall
quite close to all of these lines in Phs s-space.
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stance, the spectral unit defined by the parallel operation approximates a P-L
sequence (“hexatonic cycle”: see [7]). Amiot, in [2] chapter 3, proposes study of
the spectral units of finite order, and provides a useful mathematical classifica-
tion of these, as well as a classification of all finite spectral units for Zs.

Directed inversions have the added advantage that they may be defined so
that they compose consistently to the same transposition, so that multiple di-
rected inversions may be combined in a single group. For instance, we might
define an inversion J_zz, and J_gemee in Ph3/4 space, such that J_s;, projects
the chords onto a line of descending fifths in the space, and J_gemie projects
them onto a line of descending semitones, as shown in Figure 2. Since these
compose to consistent (regular) transpositions, they can also be combined in a
single group. These operations act as follows:

6
o T LT T
s \ Bb maj. _ Db maj. _ E maj. G maj.
f t
A Bb A Db Ny AG
4 J—.remit
BV V A v G’V
3 No
D mif)‘\ F min. Ab mm. B miy(.
2 J—anir
D maj. F maj. Ab maj. (| B maj. /
1 T \ * T T
AD’ AF A AY AB
=
0
YA F:V AV V /v
" o [ - O——
F# min. A min. C min Eb min.
10
F4 maj. A maj. C maj. Eb maj.
9 T . ] A T * T
AF# AA AC) AEb
8
GV AV GW/V\ BV
7 |
Bb min. Ctmin. )’ E min. G min.
6 | |
6 7 8 9 10 mn 0 1 2 3 4 5 6
Ph

Fig.2. J 75" and J—*¢™ in Phs/4-space.
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7 J_sth Fﬁ®7 J_sth o J_stn BOT

a7 J_semit Qo7 J_semit B7 J_semit BT
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4 Conclusion

This paper has taken an expansive approach to the issue of generalizing con-
textual inversions on unordered sets, in recognition of the fact that contextual
inversion groups can only be defined to apply across all set classes by abandon-
ing the premise that the operations have a meaningful identity that is preserved
regardless of what set-type it acts on. Instead, by prioritizing the premise of
defining inversions through some meaningful music-theoretic construct, we have
proposed a number of possibilities, though none that is well-defined across all
set classes. Of the two kinds of properties most often used to explain contextual
inversions, voice leading and common tones, the latter, through its mathematical
relationship to Fourier phase, is the most promising for defining inversions that
can be applied widely, if not to all set classes. That a single obvious standard
does not emerge from this investigation may in fact be a virtue: it preserves the
aspect of contextual inversions that Lewin turned from a seeming flaw into an
asset, the fact that they must be chosen carefully to serve a specific analytical
purpose. This forces the analyst or theorist to invest the operation with meaning,
rather than rely on conventions. The present work opens the possibility that this
aspect of contextual inversions may coexist with the possibility of generalizing
these meanings across set types.
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