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(1)  Characteristic functions of  pcsets and the DFT 

(2)  Diatonicity, Triadicity, and Dyadicity in tonal music 

(3)  The tonal plane: Ph2 + Ph3 – Ph5 = 0 

(4)  Examples: Corelli, Mozart, Chopin, Stravinsky 

Outline of  the Talk 

outline 



(1) Characteristic Functions of pcsets 
and the DFT 
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Characteristic Functions 

The characteristic function of  a pcset is a 12-place vector  
with 1s for each pc and 0s elsewhere:  

( 1,    0,    0,    0,     1,    0,    0,     1,    0,     0,    0,    0 ) 
C    C#    D     E∫    E     F      F#    G     G#    A     B∫    B 
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Characteristic Functions 

C    C#    D     E∫    E     F      F#    G     G#    A     B∫    B 
( 2,    0,    0,     0,    1,    0,    0,     1,    0,    0,     0,    0 ) 

By allowing other integer values, the characteristic function  
can also describe pc-multisets 
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Characteristic Functions 

C    C#    D     E∫    E     F      F#    G     G#    A     B∫    B 
( 2,   0,    0.5, 0.25, 0,    1,     0,    1,    0,  0.25, 0.5,   0 ) 

And using non-integer values, the pc-vector can 
describe pc-distributions 
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The DFT is a change of  basis from a sum of  pc spikes to a sum of  discretized periodic  
(perfectly even) curves. 

DFT Components 

The magnitudes of  DFT components contain precisely the intervallic information of  the set. 
 They are equivalent under transposition, inversion, and Z-relations (homometry). 
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Quinn’s generic prototypes are pcsets that maximize a given 
component by approximating a sinusoidal function of  

the given periodicity. 

DFT Components 
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We can also define prototypes for mixtures of  components 
by approximating sums of  sinusoidal functions 

DFT Components 
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One dimensional phase spaces 
One-dimensional phase spaces are Quinn’s Fourier balances, 

superimposed n-cycles created by multiplying the pc-circle by n.  

Ph1 Ph2 Ph3 

Ph5 Ph4 Ph6 

N.B. counter-clockwise orientation 
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One dimensional phase spaces 

Deriving phases 
for a C major 

triad by circular 
averages 

DFT compo-
nents can be 
derived by 
adding vectors  
in the complex 
plane. The 
phase space is 
the unit circle 
in this plane. 
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Phase cycles 

Deriving phases 
for a C major 

triad by circular 
averages 

DFT compo-
nents can be 
derived by 
adding vectors  
in the complex 
plane. The 
phase space is 
the unit circle 
in this plane. 



Jason Yust A Three-Dimensional Model of  Tonality AMS 3/5/2016 

Phase cycles 

Deriving phases 
for a C major 

triad by circular 
averages 

DFT compo-
nents can be 
derived by 
adding vectors  
in the complex 
plane. The 
phase space is 
the unit circle 
in this plane. 
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Two-dimensional phase spaces 
A two-dimensional phase space tracks the phases 

of two components, and is topologically a torus. 
Amiot (2013) and Yust (2015) use Ph3–5-space to describe 

tonal harmony. 

     from 
     Amiot,  
MCM 2013 
proceedings 
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    Pcs, consonant  
dyads and triads, 
and Tonnetz  
in Ph3,5-space,  
from Yust (2015) 
(JMT 59/1) 

Two-dimensional phase spaces 



(2) Diatonicity, Triadicity, and Dyadicity 
in Tonal Music 
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Diatonicity 

C maj. triad 

G dom7th 

0#-diatonic 

3b-diatonic C min. triad 

A min. triad 
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Triadicity 

C maj. triad 

0#-diatonic 

3b-diatonic 

C min. triad 

G dom. 7th 

A min. triad 
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Dyadicity 

C maj. triad 

0#-diatonic 

3b-diatonic 

C min. triad 

G dom. 7th 

A min. triad 
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Triads in diatonic space 

Ph5-cycles 
indicate 
enharmonicism: 
They are only 
possible by 
going though 
other keys. 
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Triads in triadic space 

Descending fifths 
progression 
produces a 
negative 
Ph3-cycle. 



Jason Yust A Three-Dimensional Model of  Tonality AMS 3/5/2016 

Triads in dyadic space 

Descending fifths 
progression 
produces a 
positive 
Ph2-cycle. 

Stepwise  
descent may  
also produce a 
positive Ph2-cycle. 
 



(3) The Tonal Plane, 
Ph2 + Ph3 – Ph5 = 0 
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Ph2,3-space 

Single pcs and  
diatonic scales: 

Ph2 + Ph3
 – Ph5 = 0 

(Ph5 = 0, 1, 2, . . .)  

Fifths:  
Ph2 + Ph3

 – Ph5 = 0 
(Ph5 = 0.5, 1.5 . . . ) 

 
Maj. Triads: Ph2 + 
Ph3 – Ph5 = –0.61 
Min. Triads: Ph2 + 

Ph3
 – Ph5 = 0.61 

(Ph5 = 0.5, 1.5 . . . ) 
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Krumhansl-Schmuckler and Temperley key finding algorithms: 
 

Based on pc-distributions. The most probable key is the 
nearest by Euclidean metric in 12-dimensional space of  
characteristic functions. 
 
Tonal space transforms the basis of  this 12-dimensional 
space and reduces to 3 dimensions.  
 

The concept of  key 
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In the smaller space of  DFT phases, complex 
distributions are not necessary to represent keys. Each 
key can simply be represented by its tonic triad. The 
“tonal hierarchy” is a byproduct of  periodicities. 

The concept of  key 

Krumhansl-Kessler Temperley Triad 

Major Ph2 0.12 0.63 0 

Ph3 0.16 0.65 0.89 

Ph5 1.25 1.71 1.5 

Ph2 + Ph3 – Ph5 –0.96 –0.43 –0.61 

Minor Ph2 9.88 10.10 10 

Ph3 1.62 2.24 2.11 

Ph5 11.22 11.59 11.5 

Ph2 + Ph3 – Ph5 0.28 0.75 0.61 



(4) Examples:  
Motion through tonal space 
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The following examples are generated by windowed DFT 
analysis of  raw MIDI. Paths are tracked over time by 
showing the shortest path between successive points. 
 
A big thanks to Richard Plotkin for helping to write the 
Python code that generated these graphs. 
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Chopin, Mazurka, op. 33/2 
Example of  an enharmonic cycle 

D major 

Bb major 

Bb minor Db major 
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Chopin, Mazurka, op. 33/2 
Example of  an enharmonic cycle 

F# minor A major 

D major 
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Chopin, Mazurka, op. 33/2 

D major 

Bb major 

Ph5 Ph3 Ph2 

Tonality index: Ph2 + Ph3 – Ph5 

Db major 
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Mozart, K.310 main theme 

A minor Ph5 Ph3 Ph2 

Tonality index: Ph2 + Ph3 – Ph5 
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Mozart, K.310 development 

Tonality index: Ph2 + Ph3 – Ph5 
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Stravinsky, Piece for String Quartet no. 3 
A non-tonal example 
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Corelli, Op. 4/8 Sarabande 

D minor 

F major 

Ph5 
Ph3 
Ph2 

Tonality index: Ph2 + Ph3 – Ph5 
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Corelli, Op. 4/8 Sarabande 
Ascending 5ths sequence 
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Corelli, Violin Sonata, Op. 5/1 mvt. 3 

Key changes gradually ascend by fifths 

descending by fifths 
Sequence 

ascending by step 
Sequence 

descending by step 
Sequence 

Sequence descending by step 
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Corelli, Violin Sonata, Op. 5/1 mvt. 3 

Key changes gradually ascend by fifths 

descending by fifths 
Sequence 

ascending by step 
Sequence 
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Corelli, Violin Sonata, Op. 5/1 mvt. 3 

Sequence descending by step 
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Summary 

• In the three-dimensional phase space Ph2,3,5, regions around a major or minor 
triad correspond to the typical pitch-class distributions of  that triad’s key. 

• Typical pitch-class distributions of  tonal music are concentrated around the 
plane defined by Ph2 + Ph3 – Ph5 = 0 in Ph2,3,5-space. Large deviations of  
this tonal index, Ph2 + Ph3 – Ph5, from zero indicate tonally unstable or non-
tonal harmonic states.  

• Sequential progressions may cycle the space in different ways: 
—Progressions by fifth move around the space within the tonal plane   

 through complimentary motion of  Ph2 and Ph3. 
—Enharmonic major-third cycles also stay on the tonal plane through 

 coordinated complimentary motion in Ph2 and Ph5. 
—Stepwise sequences may go through tonally unstable regions when 

 Ph3 cycles independently of  the others.  

Conclusions 


