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Wreaths for Rahn, and Valuable Exchanges 

The years when I studied with John Rahn, 2001–6, were, in retrospect, an inflection point in 
mathematical music theory. There was a sort of Cambrian explosion with the breaking down 
of a geographic barrier (the Atlantic Ocean), leading in short order to the founding of an 
international society and journal, the Society for Mathematics and Computation in Music 
and the Journal of Mathematics and Music, whose flagstone was the mission of 
intercontinental dialogue. At around the same time we lost, far too soon, two of the most 
important American pioneers in mathematical music theory both John Clough and David 
Lewin died in 2003. The daunting task of honoring their legacy was, in its own way, an 
important impetus that accelerated and guided subsequent developments in the field.  

I would be putting myself in good company to say that discovering Lewin’s work was a 
defining moment in my own intellectual development, and it was Rahn’s guidance into this 
universe of ideas. Early in my studies at University of Washington, he introduced me to the 
whole idea of groups in music theory; not only Lewin, but other authors, including many 
gems of mathematical music theory published in the pages of Perspectives. When I studied 
serialism with him, he pointed me towards Mead’s (1988) excellent exegesis of the twelve-
tone system and an intriguing paper by Stanfield (1984) about the exchange operation (which 
exchanges the pitch-class numbers and order numbers of a row). Around the same time he 
brought Michael Leyton to the UW to give a lecture, and was investigating the application of 
Leyton’s mathematical theories of shape to music theory. Leyton (2001) showed how 
symmetry might be an essential part of the description of the form of an object, even though 
the object itself might not be literally symmetrical. His memorable analogy is a smashed soda 
can on the floor of the subway station: one conceives this shape by imagining some ideal 
symmetrical shape, a cylinder, and applying some deformations to it. The asymmetry of the 
smashed can encodes a process by which its shape came into being. Leyton’s basic 
mathematical tool was a group-theoretic construction called the wreath product. For Rahn’s 
take on Leyton, see Rahn 2003, 18–25. 

Rahn introduced me to Leyton as I was learning about another wreath-product group, Julian 
Hook’s UTT (Uniform Triadic Transformation) group. I first encountered Hook’s work at a 
special session of the American Mathematical Society Spring Sectional in Baton Rouge that 
John generously brought me to in 2003, but most will know it from Hook 2002. The 
application of this twelve-tone music, a natural extension, is explored in an excellent paper 
by Hook and Douthett (2008). Since then, some excellent work extending these that has 
been supported by the Society of Mathematics and Computation in Music (Fiore, Noll, 
Satyendra 2013a) and the Journal of Mathematics and Music (Fiore, Noll, Satyendra 2013) both 
of which Rahn was instrumental in helping to get off the ground. (See also Fiore and Noll 
2016.)  

One of my fond memories of graduate school was the “aha!” moment I had in this serialism 
seminar. While inventing symmetrical tone rows at the little upright piano in the dungeonous 
theory TA office in the School of Music (according to the lettering on the door it was 
actually the “Sprinkler Supply Valve Room”) I realized that rotationally symmetrical rows, 
those that map onto themselves by some combination of rotation of order positions and 
transposition, could actually be described by a wreath product group! (N.B.: the exclamation 
point is not for you, dear reader, but for my 25-year-old self.)  
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Here’s how it works: Assume your row has some symmetry such as T4r4, where “r4” means 
to rotate the order positions ahead by 4 places. This is satisfied precisely if the four 
augmented triads, the orbits of T4, are assigned to the orbits of r4, order positions {0, 4, 8}, 
{1, 5, 9}, et c. The augmented triads can be assigned in any permutation, and they can start 
from any of the three members, as long as they go in ascending order. 

This observation is sufficient to count the T4r4-symmetrical rows, but the transformational 
idea goes a step further and puts a structure around these musical entities by defining a 
group that acts upon them. The musical objects do not dictate precisely how they may be 
acted upon—witness the difference between the PLR group and TnI group, both of which 
act in a simply transitive fashion over the 24 major and minor triads. Actions that preserve 
T4r4 symmetry include transpositions of each of the r4 orbits by 4 or 8, and permutations of 
the four augmented triads between the four r4 orbits. In fact, we can relate any two T4r4-
symmetrical rows with some combination of these two kinds of operation, which means that 
they generate a group that acts transitively over this set of rows. The group is a nice example 
of a wreath product. It contains four copies of a cyclic group of order 3 (Z3), one for 
transposing order positions {0, 4, 8}, one for transposing order positions {1, 5, 9}, and so 
on. Notice that each of these operate independently of one another, so altogether they are a 
direct product of cyclic groups (Z3

  ´ Z3 ´ Z3 ´ Z3). The group that permutes the augmented 
triads is called a “symmetric group” or S4: it contains all possible permutations of four 
things, and has 24 (= 4!) elements. It does not operate independently of the direct product of 
cyclic groups, because it changes which augmented triad they operate upon. In other words, 
the two operations do not commute: the order in which they occur makes a difference. Say we 
begin from the trivial row: 

0 1 2 3 4 5 6 7 8 9 t e  

and transpose orbits 2 and 3: 

0 1 6 7 4 5 t e 8 9 2 3  

then swap orbits 1 and 2: 

0 6 1 7 4 t 5 e 8 2 9 3 

If we instead swap orbits 1 and 2 first: 

0 2 1 3 4 6 5 7 8 t 9 e 

then transpose orbits 2 and 3: 

0 2 5 7 4 6 9 e 8 t 1 3 

the result is different. Let us represent the order positions of the row with a pair of numbers 
(x, y), where x gives the tetrachordal segment as 0, 4, or 8, and y gives the position in the 
tetrachordal segment as 0, 1, 2, or 3. The order position can then be recovered as x + y. 
Now define operations r40, r41, r42, and r43 where r4n transposes the pcs in (x, n) by 4 for all 
x:  
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r4# 𝑥, 𝑦 = 	
((𝑥 + 4),-./0, 𝑦)	if	𝑦 = 𝑛	
𝑥, 𝑦 	otherwise																		  

Example 1 illustrates how these work: each circle on the diagram can be rotated 
independently by one of the r4ns, and each of these generates a cyclic group of order 3. A 
direct product of these four cyclic groups, indexed by the set of integers {0, 1, 2, 3}, then 
operates on the T4r4-symmetric rows, but only relates those with a fixed order to the 
augmented triads. We then define a group of permutations, S4, that acts upon the set {0, 1, 2, 
3}. For each order position in the row {x, y}, the elements of S4 permute the ys. Let us write 
Pabcd for the permutation {a®0, b®1, c®2, d®3} (where 0 £ a, b, c, d £ 3 and none of a, b, c, 
or d are equal). This is the inverse of the usual notation, but it will produce more intuitive 
results below. We define an action on the ordered pairs (x, y):  

Pabcd(x, y) = (x, Pabcd(y)) 

 

 

Example 1: A visualization of the wreath product on T4r4-symmetric rows. The resulting row 
can be read left-to-right from top to bottom. 

In Example 1, Pabcd corresponds to a shuffling of the circles. The permutations also operate 
on the indices of the r4ns, which is essential for describing how these operations combine: 

P;<=. 	∘ r4# 𝑥, 𝑦 = 	
((𝑥 + 4)?@A/0, P;<=.(𝑦))	if	𝑦 = 𝑛	
𝑥, P;<=.(𝑦) 	otherwise																		

 

But: 

r4# ∘ 	P;<=. 𝑥, 𝑦 = 	
((𝑥 + 4)?@A/0, P;<=.(𝑦))	if	P;<=.(𝑦) = 𝑛	

𝑥, P;<=.(𝑦) 	otherwise																		
 

Which explains why the two kinds of operation do not commute (the order of application 
matters). This can be succinctly explained by saying that S4 acts upon the r4ns by conjugation: 

P;<=.–/ 	∘ 	r4# ∘ 	P;<=. 𝑥, 𝑦 = 	
((𝑥 + 4)?@A/0, 𝑦)	if	P;<=.(𝑦) = 𝑛	

𝑥, 𝑦 	otherwise																		  
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Note how multiplying by inverse permutations on either side cancels out the effect on y, but 
rearranges which orbit each r4n affects. 

These are the general components of a wreath product: one group (the cyclic group of order 
three) operates some set X (= {0,4,8}) and the other (S4) operates on a set Y (= {0,1,2,3}). 
The first group is copied |Y| times and indexed with the elements of Y (= ár40ñ ´ ár41ñ ´ 
ár42ñ ´ ár43ñ). This direct product is called the base group while the one acting on Y is called 
the control group. The control group acts upon the base group by permuting its factors via its 
action on the indices.1  

This is a nice little machine; the only problem is that rotationally symmetrical twelve-tone 
rows turn out to be of virtually no interest to composers. “Among the virtues of any tool 
should be listed the virtues of the nails it hits” (Rahn 2007, 8). A survey of serial pieces turns 
up next to nothing based on rotationally symmetrical series.2 The reason for this is perhaps 
self-evident: they are simply too symmetrical. A row that repeats the same intervallic pattern 
over and over may be tiresome and uninspiring, maybe lacking some essential position-
finding features that make it cohere as an object and prevent it from disintegrating into its 
constituent trichords, tetrachords, or hexachords. Although I thought I had found some 
pretty pleasing tone rows in the Sprinkler Supply Valve Room, I did not manage to find any 
composers that shared my enthusiasm for them. The wreath product is an enticing 
mathematical construction, but it is also a mathematical solution in search of a musical 
problem. 

But wait! (Here is where I2017 come to my2004 rescue.) Surely derived series, those that 
partition into a single trichord or tetrachord type (or even dyad-type), are quite important to 
many serialist composers, not least Webern and Babbitt, and the rotationally symmetrical 
rows are a kind of derived series. In fact, a derived series relying on a single Tn-type (rather 
than a TnI-type, as with some familiar trichordally derived and hexachordally combinatorial 
series) can be made into a rotationally symmetrical one by permuting its individual trichords 
or tetrachords. Perhaps instead of applying S4 uniformly across the r4 orbits, we could make 
a direct product of three S4s, one operating on each of the tetrachords independently. The 
only problem, then, is that the r4ns, as defined above, will not necessarily preserve the 
tetrachordal-combinatoriality property, since they are defined to operate on fixed order 
positions that are no longer required to line up with the T4-orbits. So instead, we need an 
operation that acts on the T4-orbits. Define a two-place notation for pitch-classes, (x, y), like 
the one for order positions above, where x Î {0, 4, 8} and y Î {0, 1, 2, 3}, and:  

                                                
1 For a fuller treatment, see Robinson 1993, which starts from group theory fundamentals 
and gets to wreath products fairly quickly (32–33). The definition here closely parallels 
Robinson’s. For more advanced material on wreath products, see Meldrum 1995. Note that, 
like Robinson and Meldrum, I define a general wreath product by specifying a set and an 
action of the control group. Some sources define a “standard” or “regular” wreath product 
where the control group is assumed to act upon itself, but that will not work for all of the 
applications here. Note also that the distinction between “restricted” and “unrestricted” 
wreath products only comes into play when infinite groups are involved, so is irrelevant here.  
2 The few exceptions are pieces that are only marginally related to the serial tradition, such as 
the first movement of Lutoslawski’s Musique Funèbre.  
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t4# 𝑥, 𝑦 = 	
((𝑥 + 4),-./0, 𝑦)	if	𝑦 = 𝑛	
𝑥, 𝑦 	otherwise																		  

These two groups of operations do commute, because one acts on order positions and one 
on pitch-classes. Therefore, they generate a direct product, (Z3)4 ´ (S4)3. It has a simply 
transitive action on the tetrachordally derived rows up to retrograde, since the tetrachords 
are related successively by T4, and retrograde will produce a row that relates successive 
tetrachords by T8, the other possibility. The “simply transitive” action means that there is 
exactly one element of the group to take any row of the given type to any other. This implies 
that we could bijectively map the group onto the rows by having them operate on the trivial 
row. The group has 34 ´ 243 = 81 ´ 13,824 = 1,119,744 elements, so the total number of 
tetrachordally derived rows is twice that, 2,239,488. The total number of orderings of the 
aggregate is 12! = 479,001,600, so the tetrachordally derived rows make up 0.468%—not an 
especially common property, despite the large number of possibilities. Both numbers are 
perhaps misleadingly high, however, because they do not take into account the commonly 
presumed transpositional and inversional equivalences.  

Simply transitive actions appear frequently in music theory, and they are nice in a way, but 
also misleading, a kind of group-theoretic lotus fruit that lulls the unwary into forgetting the 
difference between the operations and the set being acted upon. For instance, the TnI group 
is simply transitive on non-symmetrical set classes, and the PLR group is simply transitive on 
major and minor triads. With the PLR group, any pair of triads implies a unique 
transformation because of the simply transitive property. If PLR(C major) = F minor and 
RLP(C major) = F minor, we can confidently assert that PLR = RLP. However, we might 
also want to say that T0I(C major) = F minor, and it is not true that PLR = T0I. The T0I 
operation has no equivalent in the PLR group, and including it generates a group with many 
more than 24 elements. A similar point might be made about applying the standard TnI 
operation to row forms, and applying a “Stravinsky inversion,” an inversion that stabilizes 
the first note of the row. Recognizing either one individually gives a simply transitive group 
of operations on row forms, but recognizing both possibilities generates a larger group with 
multiple non-equivalent ways to get from one row form to another. The surjective, non-
injective, mapping from group to set in this kind of situation leads to the question of 
multivalent transformational networks, broached by Rahn (2004, 142–3) and more fully 
developed as “polysemic networks” in Rahn 2007, and to commutativity in Lewin’s (1983, 
2007) transformational networks, also investigated by Rahn (2007), and by Hook (2007) as 
the “path consistency” condition. 

In our example of the order-1,119,744 element group with its simply transitive action, the 
lack of Tn operations in the group might soon start to chafe a bit, since this is a fundamental 
operation of serialism. For instance, within the simply transitive group we can now derive 
the row of Webern’s String Quartet (Op. 28) from the trivial row, writing the permutations 
on tetrachord n as Pabcd(n) (n Î {0, 4, 8}). 

0123 4567 89te —t43
2® 012e 4563 89t7 

—P0321(0) P1230(4) P0321(8)® 0e21 5634 87t9 
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I use G = 0 here, in accordance with the convention that the initial row form be labeled as 
P0, following Rahn 1980 (and mindful of his spirited philosophical defense of this 
convention in his serialism seminar). Taking this a step further, any tetrachordally derived 
row could be denoted by a vector that lists the exponents of t40, t41, t42, and t43 times 4, 
followed by the permutations of tetrachords 0, 4, and 8. Webern’s row, according to this 
notation, would be (0, 0, 0, 8, 0321, 1230, 0321). The permutations show the retrograde 
relationship of the tetrachords nicely (hence the inverse notation for permutations). The 
notation also allows us to evaluate the pc content of the tetrachords, which is determined by 
the first four numbers, separately from their orderings.  

So far the simple transitivity property serves us well. But what if we want to show the row 
form P11 that initiates the first variation in measure 16? In the notation just described this 
row form is (0, 0, 8, 8, 3210, 0123, 3210). We can use the same notation for the operation 
that takes us from P0 to P11, which would be (0, 0, 8, 0, 1230, 3012, 1230). But one would 
like to think that the relevant operation here is T11, and t42

2!P1230(0)!P3012(4)!P1230(8) is not the 
same operation as T11. The group contains no operation equivalent to T1 or T11 (though it 
does have an equivalent to T4 and T8), so including transpositions requires an abandonment 
of the simply transitive property and enlarges the group by a factor of four. It also challenges 
us to understand how transpositions relate to the other operations.  

Adding T1 directly as a new generator is not the clearest way to view the structure of the 
resulting group, because we have the relation T4 = t40!t41!t42!t43. Instead, define an 
operation t on pitch classes represented in our X´Y notation: 

t (x, y) = (x, (y + 1)mod4) 

The new operation t is different than T1 because it fixes x, which means that pitch classes 3, 
7, e (= (0, 3), (4, 3), and (8, 3)) go to 0, 4, and 8 (= (0, 0), (4, 0), and (8, 0)) respectively, 
rather than 4, 8, and 0. It is evident, then, that 

T1 = t40 ! t. 

 The t4ns do not commute with t: 

t–1 ! t4n ! t = t4(n–1)mod4   and   t ! t4n ! t–1 = t4(n+1)mod4 

So, for example:  

T2 = t40 ! t ! t40 ! t = t40 ! t ! t40 ! t–1 ! t ! t = t40 ! t41 ! t2  

And similarly, T3 = t40 ! t41 ! t42 ! t3, and T4 = t40 ! t41 ! t42 ! t43 ! t4 = t40 ! t41 ! t42 ! t43 
(because t4 = 1).  

Thus, we have a direct product, át40ñ ´ át41ñ ´ át42ñ ´ át43ñ, a base group, and a control group 
of order 4, átñ, that permutes its indices: a wreath product. The group of permutations, S4

3, 
operates on order numbers (rather than pitch class numbers), so it can be added as a direct 
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product to get a full group operating on the tetrachordally combinatorial rows that includes 
transpositions.  

This group, like the previous one, is not transitive on all tetrachordally combinatorial rows 
because it preserves the transposition from one tetrachord to the next, so it cannot relate 
those where the successive transpositions are T4 to those where they are T8. To get a fully 
transitive group, we might wish to add another one of the standard serial operations, 
retrograde. This is an order-number operation, so it will commute with the át4ñ wr átñ group, 
but not with the S4

3 group. Again, we might best understand this group by generating it from 
a different operation than the standard retrograde: let r be the operation that swaps 
tetrachords 1 and 3. That is, it reorders the three tetrachords without changing their internal 
order. Then R = 0P3210 ! 4P3210 ! 8P3210 ! r. Also, árñ is order-2 and acts upon the indices of the 
direct product of S4s, so it can be understood as the control group of (you guessed it) a 
wreath product. The TnI operations may be incorporated in a similar way. 

One use of this sort of group is that it helps to loosen up a problem that Rahn complains 
about in Basic Atonal Theory: the “categorization” of a piece of music “may encourage shallow 
understanding,” as manifest in “the still widespread fallacy that a ‘serial’ piece is nearly 
completely understood by ‘12-counting’ it” (11).  Example 2 shows the first 24 pitch events 
of Webern’s string quartet. Notice the evident break between the two aggregates, expressed 
by a change of pace (half note to quarter note), and a change of playing technique (arco to 
pizz.). Webern partitions both aggregates into a series of wide ic1 dyads (11-, 13-, and 23-
semitone melodic intervals), and the registral positions of pitch-classes are fixed, making it 
particularly evident that the tetrachords of the second aggregate are the same, in the same 
order, as the first. This fact is also expressed in the resulting inverted contour of the first two 
tetrachords, and further emphasized by the similar rhythm and pattern of simultaneity. A 
wealth of factors points to a kind of statement–response formal design here. However, if we 
take Webern’s lead on this, we get two row forms not related by a standard twelve-tone 
operation. The usual 12-count method tends to categorically reject this possibility, presuming 
that a piece must be based on a single row type according to the standard canonical 
transformations. The typical solution (e.g., Bailey 1991, 390–1, Moseley 2013, 192–205) is to 
regard this passage as constructed by overlapping tetrachords of T8-related rows, so that 
these 24 pitch events constitute two overlapping rows plus the first eight notes of a third. 
While the idea of overlapping row forms may bear some relationship to Webern’s 
compositional process (it is a common method in his serial works), it could hardly be more 
apparent that this kind of segmentation leads us away from, not towards, the music that 
Webern actually wrote. The categorical rejection of any operation that falls outside the box 
of the well-worn Tn/TnI + R group and its orbits hardly seems worth that, especially in this 
case where the second aggregate is so clearly a variation on the first. It so happens that the 
necessary operation, 0P3210 ! 4P3210 ! 8P3210, which retrogrades each tetrachord individually 
without reordering them, is one of the elements of the group above. It commutes with Tn, 
TnI, and R, and so augments the usual set of 48 row forms to a set of 96. But for this 
movement, TnI operations are of little use given the RI symmetry of the row, so a better 
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approach would be an alternate class of 48 rows given by the orbit of a group generated by 
Tn, R, and r.3  

 

 

Example 2: Webern, String Quartet, op. 28, mm. 1–10, with barlines omitted and ic1 dyads 
connected. These are always played by an individual instrument, except where shown with a 

dashed line. 

 

The same basic transformational approach might be effective for all-combinatorial 
hexachordal rows, but for trichordally derived rows, the usual relationships relating the 
components of the aggregate partition are T6 and some contextual inversion. We could 
define new group structures to act on these, but let us (momentarily adopting the habits of 
mathematicians) leave this for an exercise, so that we can press ahead and inquire into what 
larger lessons we might take from the way that wreath products seem to pop out of the 
ground like a fairy ring of mushrooms after a spring rain. The seeming magic of such 
coincidences often catches our attention and perhaps leaves us vulnerable to the charge of 
peddling hocus-pocus theory. But usually a concerted investigation of such “magic” is 
rewarded when the mysticism dissipates and leaves behind a deeper understanding, when we 
discover that the mushroom is really one large underground organism. The wreath products 
always seem to come about in similar circumstances, when layered processes operate with 
respect to one another, and one controls the reference point for the other. Both of these 
appear to be common features of musical systems: layering, and level-dependent relativity of 
reference points. Relativity, in particular, relates to the non-commutative aspect of wreath 
products, the use of a semidirect product to relate the base and control groups.4 David 
Lewin recognized this link between relativity and non-commutativity: when he introduces 
the idea of a non-commutative generalized interval system in Generalized Musical Intervals and 
Transformations with the rhythmic GIS in Chapter 4 (2007, 60–87), his central concern, 

                                                
3 Straus (2016, 357) suggests a similar approach, and Hook and Douthett (2008) propose 
another effective method that deals directly with the tetrachords. An advantage of the row-
based approach is that aggregate-groupings play an important role in the piece, although 
these could also be theorized through Hook and Douthett’s method (by recognizing 
aggregate-generating transformations on the tetrachords).   
4 On semidirect products, see any introductory treatment of group theory, such as Robinson 
1993, 27–8. 
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dominating the discussion of the GIS and its analytical application, is the difference between 
absolute and contextual reference points for durations.  

At this point, having identified a possible abstract source for a recurring mathematical 
structure, a new test case is useful. For example, a pitch-class set may be represented by a 
characteristic function, a string of twelve 1s and 0s indicating the presence or absence of a 
pitch class, such as (100010010000) for a C major triad. The reason for using characteristic 
functions is that it makes it possible to define an algebra on pitch-class sets. If we adopt the 
convention that pitch classes cancel one another out, a kind of pitch-class on-off switch, 
then we can treat the pitch-class sets as a group acting on themselves by addition. The sum 
of a C major triad and G major triad, for example, would be 

(100010010000) + (001000010001) = (101010000001) 

Or {BCDE} (the Gs cancel out). The pitch-class sets then have the structure of a group, 
Z2

12, the direct product of twelve copies of Z2. Leaving aside the possible applications of this 
group for the moment (one might rather define the group on multisets as Z12, getting rid of 
the cancelation property5), one potential problem with it is that it does not include 
transpositions. Or, to put it differently, the pitch-class positions are overly fixed; the basic 
equivalence of transposed versions of the same sums is not reflected in the algebra. This can 
be solved by extending to a wreath product with the group of transpositions: 𝐙𝟐/0 	⋉	𝐙/0. 
The transpositions act as a control group, cycling the positions of the pitch classes. Again, 
the wreath product emerges as a way to loosen up the referential framework in the simpler 
base group.  

Concepts of referential framework in music tend to be closely tied to ideas about tonality, 
and pitch class has been a central feature of all of the examples described so far. But the 
more abstract considerations about layering and reference points that have emerged should 
not necessarily have to involve pitch-based relationships. Abstracting fundamental musical 
principles from the standard pitch-class system of the Western tradition in not just a 
theoretical concern; it is also a long-standing preoccupation of composers, one that led to, 
among other things, percussion-based concert music, starting in the 1930s. A very early, and 
fascinating, example of this trend is the piece Ostinato Pianissimo, by influential and free-
thinking west-coast composer Henry Cowell. At the time when Cowell wrote Ostinato 
Pianissimo, there was little precedent for the idea of a genre of Western concert music made 
up entirely of percussion and in which pitch and harmony did not function as structuring 
elements. The only comparable work that predates it is Varese’s Ionization, frequently cited as 
the earliest all-percussion piece in the Western canon. Cowell’s piece, like Varese’s, had to 
essentially create its own tradition, its own rules, and therefore its own basis for aesthetic 
judgment. Although the piece, in its sonic qualities and approachability, could hardly be 
further from the contemporaneous serial music of Schoenberg and his fellow travelers, it 
shared this core feature, for Schoenberg and Webern also, with epochal hubris, declared the 
composers’ right to write their own laws of music anew for each piece. They gave life to not 
only a musical style but a philosophical tradition that populated music theory through 
Babbitt and then his students, among them David Lewin, Benjamin Boretz, and John Rahn. 
This important thread of music’s structural autonomy is manifest, for instance, in the 
                                                
5 See Amiot and Sethares 2011 and Yust 2015 for possible uses of this kind of algebra. 
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painstaking way that Rahn (2001) shows how the initial measures of the first song of 
Babbitt’s Du generate the logic by which the song may be interpreted, seemingly (but not 
really) ex nihilo.  

It is fascinating then that Cowell’s solution to the problems of creating a musical style from 
the ground up also shares an essential feature with Schoenberg’s solution to writing atonal 
music: it is based on permutation. I will consider just the foundational pattern played by the 
woodblocks, tambourine, and guiro—for a fuller explanation of all the ostinati of the piece 
and how they interact, see Hitchcock 1984. Example 3 shows the nine-measure pattern, 
which consists of four sounds, each occurring exactly once in each measure, but never in the 
same order. We might then conceive of the pattern as a sequence of permutations relating 
one measure to the next—this is shown in Example 3b. The permutations are given in the 
most compact form, in cycle notation, with order numbers labeled 1–4. A cycle such as (xyz) in 
cycle notation is read as x ® y, y ® z, z ® x. If an order number does not appear in the 
cycle notation it is fixed by the permutation.  

 

 

Example 3: One of the foundational ostinati from Cowell’s Ostinato Pianissimo, which repeats 
eight times spanning the entire piece. The measure-to-measure permutations are given below 

the staff in cycle notation. 

Some interesting features are already evident from the successive permutations. The first 
three patterns are related by successive application of the same permutation, (234). This 
generates a small cyclic group of order 3 that fixes the first element of the pattern. Since the 
group is order 3, another (234) permutation would return us to the arrangement of m. 1; to 
maintain variety, an extension of this group is needed. The next permutation is a different 
order-2 type, (12)(34), which exchanges the positions of two pairs of sounds. These two 
operations do not commute:  

(12)(34) ! (234) ! (12)(34) = (143) 

This new order-3 operation, which fixes the second sound, it just so happens, is the next one 
that Cowell uses, and the fixed sound is once again the high woodblock, which is now in a 
new position. The same operation occurs at the end of the sequence, fixing the tambourine 
in position 2, which is where it is in m. 1 (and m. 11 when the pattern repeats). All of this is 
suggestive of an underlying method.  

The limited number of operations (just four) that Cowell uses between successive measures 
can be partly explained by the idea that he was avoiding any permutation involving 4®1, 
since it would create a repetition over the barline, and aiming for those that include 3®1 

High woodblock
Low woodblock

Tambourine
Guiro

(234) (234)
Successive permutations (etc.)

(12)(34) (143) (143)(13)(24) (13)(24)(234) (143)

1 2 3 4 5 6 7 8 9
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and/or 4®2, which create a kind of “neighbor-note” pattern of alternating sounds over the 
barline. This kind of pattern is also prevalent in the ostinato of string piano no. 1. All of the 
permutations except one include 3®1 or 4®2 or both (the exception being (12)(34) 
between mm. 3–4). However, this does not explain Cowell’s avoidance of permutations like 
(13), (24), or (1243), which also have this property.  

One feature that all of Cowell’s permutations share, and which the permutations (13), (24), 
and (1243) do not, is that they are even permutations, which means that they reverse the order 
of an even number of pairs—in (234) it is 2-3 and 2-4, and in (12)(34) it is 1-2 and 3-4. The 
significance of this is primarily an algebraic one: even permutations always compose to give 
even permutations, which means that a group generated by even permutations will include 
no odd permutations. The permutations Cowell uses generate A4, the alternating group on four 
elements, a special subgroup of the full permutation group, S4, that is exactly half its size 
(order 12). It includes the four 3-cycles: (234), (134), (124), and (123), and their inverses; 
three order-2 operations with no fixed element: (12)(34), (13)(24), and (14)(23); and the 
identity. The orbit of this group, the number of possible arrangements of the four sounds 
accessible via these permutations, also has twelve members, of which Cowell selects nine for 
his pattern.  

A good way to understand the structure of a group is to look at its subgroups. For A4, these 
include the order-3 subgroups that fix the position of one sound and cycle the other three. 
Altogether there are four of these, but two appear to be important here: {1, (234), (243)} 
and {1, (134), (143)}. Example 4(a) splits Cowell’s pattern up into á(234)ñ orbits and 4(b) 
into á(134)ñ orbits. Both include two full cycles, one of which is between three adjacent 
measures (if we count mm. 9 and 1 as adjacent) and one split by a single intervening 
measure. In fact, the patterns are almost identical, with the pattern of á(134)ñ orbits shifted 
two measures behind that of the á(234)ñ orbits.  

 

 

 

(234) (234)

(234)
(234)

(143) (143)

(143)
(143)
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Example 4: The measures divided into á(234)ñ orbits, (a), into á(134)ñ orbits, (b),  
into á(12)(34), (13)(24)ñ orbits, (c), and into á(234)ñ orbits vertically  

and á(12)(34), (13)(24)ñ orbits horizontally, (d) 

 

The other important subgroup of A4 is the one made up of order-2 elements of the group, 
which commute with one another, and therefore constitute a normal subgroup isomorphic 
to Z2 ´ Z2, a Klein 4-group.6 Example 4(c) shows the orbits of these, which also make a kind 
of regular pattern, with two adjacent measures and one isolated one in each orbit. The first 
two orderings are related by (12)(34) in all orbits. This arrangement is largely oblique to the 
arrangement of á(234)ñ orbits in a sense, so that they can be arranged in a grid in a way that 
mostly preserves temporal order in one dimension or the other, as in Example 4(d) 

It may seem that I have derived this group directly from the music, but actually, implicit 
assumptions about what is important in the music have played an essential role. The 
discussion of the passage exclusively in terms of permutations implies that what is important 
about the sounds is how they are ordered, not what kind of sounds they are, or how they 
relate as sounds. The high woodblock could be replaced by a car horn and it would have no 
effect on the analysis. It would also be possible to define operations that relate to the sounds 
themselves. Instead of (234), which fixes the first element and cycles the other three, we 
could define an operation that fixes the high woodblock and cycles the other three. In 
measures 1–3, this would function exactly like (234), but in measures 4, 5, and 7, it would 
function like (143).  

While the sounds-oriented analysis thus seems to reveal something about the pattern, the 
position-oriented one clearly does also, as we have already seen. Do we need to choose 
between them? If one demands a simply transitive system, where two measures can be 
                                                
6 A normal subgroup is one stabilized under conjugation by the entire group.  

(12)(34)
(13)(24)

(12)(34)
(13)(24)

(12)(34)
(14)(23)

(12)(34)
(13)(24)

(12)(34)
(13)(24)

(12)(34)
(14)(23)

1

2

3 4

5 6

7 8

9

(234)

(234)

(234)

(234)
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related by one and only one operation, then yes. But, assuming that multivalence and 
polysemy can be a virtue rather than a flaw, in the spirit of Rahn 2007, let us free ourselves 
of such strictures. It is easy enough to combine both approaches: they are isomorphic, both 
forming an A4 group, and commute, so that when combined they generate a direct product, 
A4

2. The potential multivalence here is already high, since this group is order 122 = 144, 
meaning there are potentially 12 ways to relate any two measures of the pattern. But since 
the two types of operation do not interact, it does not quite satisfy the intuition that the mm. 
1–3 cycle relates to the mm. 4–5/7 cycle in one way, by the stabilizing of a common sound, 
and the mm. 6–7/9 cycle in another, by the stabilizing of a common position. That requires 
seeing the mm. 1–3 cycle in two different senses simultaneously (polysemy), but we also 
want to show how the two kinds of cycle are in a sense equivalent. That sense of equivalence 
has to do with the isomorphism between the sound-permutation and the order-permutation 
groups. What we need then, is to identify the appropriate isomorphism. And while we’re at 
it, why not add that operation to our group? 

The isomorphism we are zeroing in on is one that will stabilize the initial cycle in mm. 1–3 
but map the generating (234) permutation to an (LTG) permutation, where the letters refer 
to sounds: H = high woodblock, L = low woodblock, T = tambourine, and G = guiro. The 
needed operation is therefore an exchange operation—that is, exactly the kind proposed by 
Stanfield (1984), except with two differences. The first difference is that Stanfield’s E 
operates on twelve things rather than four. The second is that, for Stanfield, pitch classes 
and order numbers were already labeled with the same integers, so a single operation is easy 
to define. Simply write out the row as a mapping from order numbers to pitch classes and 
reverse the arrows. The “naturalness” of this definition is misleading, however: it presumes a 
fixed 0 (such as C = 0), and also assumes stepwise-ascending to be a standard ordering of 
the pitch classes, which may or may not be a legitimate assumption. This is not a problem 
when one constructs a group generated by E and, say, Tn and TnI, because ultimately that 
group will include a number of different exchange operations, which can be obtained by 
conjugating E with all of the Tns and TnIs (or whatever). One is free to change which 
exchange operation generates the group—the group itself will be the same. This is also true 
for the exchange operations on the four sounds: there are twelve options, corresponding to 
all of the ways to order H, L, T, and G within the A4 orbit, none of which is a priori better 
than any other. We can label these Xabcd, where abcd is the ordering.  

Which exchange, then, will map the (234) operation onto (LGT)? As one might guess, the 
one that maps L®2, G®3, T®4, and H®1: XHLGT. This matches the ordering of the 
sounds in measure 2. As Example 5 shows, XHLGT maps the mm. 1–3 cycle to itself, 
reversing the orientation (which, it turns out, is a necessary condition for stabilizing this kind 
of cycle with an exchange operation). It then maps the mm. 4–5/7 cycle onto the 6–7/9 
cycle, revealing the underlying equivalence.  
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Example 5: A network using XHLTG 

 

This seems pretty satisfying, except that the analysis orphans measure 8 to some extent. The 
XHLGT operation happens to stabilize it, but this account says little else about how it relates to 
the other measures or why it might occur in the position it does. One of the observations 
made about measure 8 in Example 4(b) is that it makes a (143) cycle from mm. 8–9 back to 
measure 1, which fixes the tambourine in position 2. This is not reflected in the analysis of 
Example 5, but it is similar to what happens between mm. 4–5/7 and 6–7/9, two 3-cycles 
overlapping in a shared measure (m. 7 or m. 1). There should be an exchange operation that 
swaps these overlapping cycles too, one that equates (234) to (HLG). Indeed, the operation 
XTHLG, based on the ordering of m. 5 at the center of the ostinato, does just this. It also 
stabilizes the set of nine patterns that Cowell uses, and, as Example 6 shows, makes an 
appealingly symmetrical pattern of relationships within Cowell’s ordering. It also stabilizes 
the 3-cycle in mm. 4–5/7 (in the same way that XHLTG stabilizes mm. 1–3).  

 

 

Example 6: A network using XTHLG 

 

At this point the reader will perhaps be unsurprised by the punchline: Voilà, a wreath 
product. The base group, A4

2, is acted upon by a control group of order 2, the exchange 
group, which swaps the two A4s. Again, the group describes leveled processes, different 
systems of permutation and a global switch the allows us to move back and forth between 
them, and allows reference points—the privileging of a particular sound, order position, or 
ordering of sounds—to adapt dynamically.  

(1)HGTL (2)HLTG (3)HGLT
(4)GHTL (5)THLG

(6)LGTH
(7)LHGT

(8)GTLH

(9)LTHG

(LGT) (LGT)

XHLTG

(234) (234)

(LGT) (LGT)

(234) (234)

XHLTG

XHLTG

XHLTG

(1)HGTL (2)HLTG (3)HGLT

(4)GHTL (5)THLG

(6)LGTH

(7)LHGT

(8)GTLH (9)LTHG

XTHLG

(LTG) (LTG) (143) (143)

XTHLG

XTHLG
XTHLG

(LTG) (LTG)
(143) (143)
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Perhaps the most important thing that I learned studying with John Rahn is something he 
taught not explicitly but by example: that mathematical music theory is a kind of dialogue. 
When mathematical problems arise in music theory, that is music theory listening to 
mathematics. For instance, a musically motivated compositional problem might cause us to 
wonder how many unique partitions of the aggregate exist of a particular type. We could 
answer such a question by applying principles of combinatorics. When we look for or create 
music to exemplify mathematical constructs, that is mathematics listening to music theory. 
Music theorists tend to frown upon the latter sort of enterprise when it seems to lack 
indigenous musical motivation, but really either type of one-way conversation is of limited 
value. Where mathematical music theory becomes a sum greater than its parts, where it 
becomes a discipline in its own right rather than a mere semi-permeable membrane, is when 
lecture gives way to discourse. Music asks questions of mathematics, and mathematics seeks 
out ways to be experienced as music. It is this kind of productive exchange that is modeled 
in Basic Atonal Theory, as well of many of Rahn’s articles and essays. Basic Atonal Theory clearly 
places value on mathematical elegance. As a textbook, it is unique in the degree of 
mathematical care and precision it asks of the student. It does not compromise in this 
respect; indeed, it endeavors ultimately to show the student, who works carefully through all 
of its analyses, definitions, theorems, and exercises, that mathematical elegance ultimately 
translates into musical elegance. However, it begins not from any disembodied Platonic 
mathematical premises but with a nine-page “Ear Training: Without Score” of the theme 
from the second movement of Webern’s Op. 21 Symphony, which patiently walks the 
student through an experiential exploration of the piece, in the course of which she is asked 
to play the full theme 20 times, plus various short components of the theme. At the end of 
this, the student is entreated not to neglect the individuality of a piece by virtue of its 
categorization—e.g. as “serial music”: “Every piece of music is unique” he says “with 
idiosyncratic organizational principles and structures shared with no other pieces of music” 
(11). The “Ear Training” is followed by a seven-page “Analysis with Score” that requests 
nine more playings—all of this before any actual theory has been presented at all. Whether 
or not students diligently follow Rahn’s instructions in working through this analysis 
(nowadays a youtube video might be helpful), the message is clear. The mathematical theory 
is not worth much unless it is thoughtfully experienced as music at every step of the way. 
The mathematics is not a predator hunting and devouring pieces of musical prey, but a 
friend inviting them over for drinks, asking them how they’re doing and what they would 
like. “Not only is any musical activity active and poetic, but so are music perceptions and 
music analysis . . . mathematics is one such poetic medium” (Rahn 2004, 140). 
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