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Microscale heterogeneity in the extracellular matrix (ECM)

provides spatial information that allows tissues to develop and

function properly in vivo. This heterogeneity in composition

(chemistry) and structure (geometry) creates distinct

microenvironments for the cells that comprise a tissue. In

response, populations of cells can coordinate their behaviors

across micrometer-to-millimeter length scales to function as a

unified whole. We believe techniques to mimic the microscale

heterogeneity of the ECM in vitro will revolutionize studies that

examine how large groups of cells interact. Micropatterned

ECMs used for engineering perfused microvascular networks

and functional epidermis and for understanding symmetry-

breaking events in epithelial morphogenesis illustrate potential

applications in tissue engineering and development.

Addresses
1 Life Sciences Division, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA
2 Department of Biomedical Engineering, Boston University, Boston,

MA 02215, USA

Corresponding authors: Nelson, Celeste M (cmnelson@lbl.gov);

Tien, Joe (jtien@bu.edu)
Current Opinion in Biotechnology 2006, 17:518–523

This review comes from a themed issue on

Tissue and cell engineering

Edited by James L Sherley

Available online 12th September 2006

0958-1669/$ – see front matter

# 2006 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.copbio.2006.08.011

Introduction
The extracellular matrix (ECM) environments of most

tissues and organs are inherently heterogeneous [1]. This

heterogeneity, whether chemical or structural in nature, is

critical for proper tissue form and function. For example, a

dense basal lamina that separates epithelial and endothe-

lial cells from the underlying interstitial ECM is required

for correct cellular polarity and differentiation [2]. Like-

wise, periodic or fractal ECM geometries are needed for

efficient transport in absorptive and secretory tissues [3].

For the past thirty years, investigations of the behavior of

cultured cells and tissues have relied heavily on the use of

homogeneous two-dimensional (2D) and three-dimen-

sional (3D) ECMs. Although these systems have shed

light on the basic biology of cell adhesion, the differences

between normal and malignant cells, and the mechanisms

underlying tissue-specific gene expression [4], they
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cannot replicate the complex structure of ECMs in vivo,

in which bends, folds, channels and branches — at the

size scale of groups of cells — are plentiful [5]. Thus, the

cooperative behavior of cells across large length scales

(e.g. in morphogenesis, physiology and tissue engineer-

ing) has been nearly impossible to study in vitro, other

than with explanted tissues.

What if researchers could create artificial ECMs that

replicate the heterogeneity of native ones? For example,

what if one could engineer a collagen gel so that it

contained a branching network that mimicked the scale

and shape of actual glands in vivo? What studies would

these designer ECMs enable? This review describes

recent uses of microstructured ECMs (ECMs that possess

texture at the 5–1000 mm scale) in tissue engineering and

studies of development, and provides evidence that cells

grown in these ECMs exhibit unique behaviors not pre-

sent in homogeneous cultures. Examples of microstruc-

tured ECMs designed for microvascular and epidermal

tissue engineering and for recapitulation of epithelial

development in vitro illustrate these ideas.

Why introduce structure into ECMs?
Traditional view: dominance of chemistry

The ECM consists of glycoproteins (such as collagen,

fibronectin and laminin), proteoglycans and glycosamino-

glycans that undergo self-assembly as well as cell-directed

assembly to form a complex organized meshwork [6].

Besides serving as a scaffold to which cells adhere, ECMs

act as reservoirs that sequester and release growth factors

and other molecules that affect cellular behavior [7].

ECM molecules and their receptors are required during

development, because null mutations in either generally

lead to embryonic or perinatal lethality, or to severe

abnormalities shortly after birth [8,9]. Many ECMs also

play central roles in homeostasis [2], wound repair [10],

and diseases such as atherosclerosis [11] and cancer

[12,13], partly through mechanical alterations [14��].

Whereas the composition and structure of the ECM varies

depending on the tissue and organ, in general ECMs are

compliant viscoelastic materials with bulk properties of

hydrogels [15]. Reconstitution of ECMs in vitro often

proceeds by gelation of a liquid mixture of collagens and

other proteins; hence, the final gels are invariably homo-

geneous at the micrometer scale (although not at the

nanometer scale) [16,17]. Extensive studies of cellular

behavior in these homogeneous gels have understandably

favored the view that biochemical composition plays the

dominant role in ECM functionality.
www.sciencedirect.com
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Figure 1

Schematic of soft lithography as applied to biological materials. (a)

Elastomeric poly(dimethylsiloxane) (PDMS) stamps are cured against a

photolithographically created silicon master. Peeling the stamp leaves a

bas-relief of the original pattern. (b) PDMS can then be coated with ECM

and stamped against a solid substratum to transfer the protein

(microcontact printing), sealed against a solid substratum to create

channels into which a liquid solution of ECM is perfused (microfluidics),

or used as a mold against which ECM hydrogels are cured

(micromolding).
Emerging view: importance of form

In contrast to the bulk hydrogels traditionally used in

culture models, ECMs within native tissues contain as

much architecture as their constituent cells. Organs are

built of tissues in which the cells and ECMs take the form

of sheets (e.g. squamous epithelia, basal lamina), tubes

(e.g. vessels, bronchioles, glands), branches (e.g. blood

and lymphatic vessels, lung, kidney and mammary

epithelia), folds (e.g. dermal papillae, intestinal villae),

and bends (e.g. vessels).

Form is often viewed as the output of a biological process

but it also directly affects cellular behavior, in part by

controlling the magnitude and distribution of mechanical

stresses within the tissue [18�]. For example, angiogen-

esis is believed to occur preferentially at the convex walls

of microvessels where mechanical forces are often great-

est in vivo [19]. As we and others have shown through

manipulating the shapes of cultured cells, form also exerts

a strong effect on cellular behavior in vitro: the shape of a

cell controls several functions, including proliferation,

apoptosis, glucose metabolism, RNA processing, tissue-

specific gene expression and differentiation, and stem cell

commitment [20–28]. Similarly, individual cells within a

contiguous aggregate display different behaviors that

result from the interplay between cellular location, overall

aggregate shape, and mechanical forces [29��,30,31].

Thus, form can be viewed as an independent determinant

of ECM functionality.

Methods for patterning ECMs
To build in vitro systems that faithfully reproduce the

structure of tissues probably requires the synthesis of

ECMs with microscale heterogeneity. To date, several

synthetic schemes have been developed to form 2D pat-

terns of matrix proteins on rigid substrata. Early work used

photolithography — a light-based patterning technique

akin to high-resolution photography — to indirectly con-

trol where proteins could adsorb on glass or silicon [32].

More recently, ‘soft’ lithographic techniques, originally

developed by Whitesides and colleagues [33], that use

elastomeric stamps to pattern ECM have grown in popu-

larity, largely because of ease of use (Figure 1). Patterning

usually takes place through contact printing or adsorption

in microfluidic channels; with stamps that have multiple

levels of features, it is possible to generate complex 2D

mosaics and gradients of ECMs [34,35]. Because cells

grown on these patterned substrata often behave differ-

ently from cells in homogeneous monolayer culture, 2D

patterns have provided a useful tool for investigating the

role of microenvironment in basic cell biology [28].

In contrast to the extensive work in 2D patterning of

adsorbed or printed ECMs, only recently have investi-

gators focused on recapitulating the 3D architecture of

ECM gels. Initial attempts used light to photopolymerize

small organic molecules into hydrogels and required
www.sciencedirect.com
specialized chemistries [36]. To synthesize 3D patterned

ECMs consisting of natural proteins, we and others have

recently developed several techniques to mold macro-

molecular gels [37,38�,39]. These methods rely on molds

that are treated so that their surfaces are non-adherent;

liquid precursors (e.g. an acid extract of type I collagen or

cold matrigel) that are gelled against these molds detach

easily to yield gels with sharply defined features with

<1 mm resolution (Figure 2a) [37].

In addition to introducing surface texture onto a gel,

lithographic techniques can be used to form monolithic

gels that contain internal surfaces, such as cavities, chan-

nels and networks (Figure 2). Formation of internal

patterns requires the use of sacrificial materials, which

are initially embedded in a gel and then removed to yield

an open internal space. Examples of such sacrificial

materials include paraffin [40], matrigel [41] and gelatin

(AP Golden and J Tien, unpublished). Another strategy

for patterning ECMs in 3D relies on stacking or direct

ink-jet printing of microstructured gels to form multi-

layered laminates that localize distinct populations of

cells to different planes or areas [37,42]. These methods

attempt to build ECMs and tissues layer by layer, and still

need to address issues of resolution, speed and alignment.
Current Opinion in Biotechnology 2006, 17:518–523
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Figure 2

Images of microstructured gels. (a) Arrays of posts in type I collagen.

(b) Arrays of matrigel embedded in type I collagen. (c) A cylindrical

channel in fibrin. (d) An open network in type I collagen, perfused by

a suspension of red blood cells. Scale bars refer to 100 mm in (a–c)

and 500 mm in (d). [Image in (b) adapted from [41] with permission].

Figure 3

Images of perfused microvessels and microvascular networks

comprised of microstructured type I collagen gels and human dermal

microvascular endothelial cells. (a) An eight-day-old endothelial tube.

(b) A solution of fluorescently labeled albumin, perfused through a

five-day-old endothelial tube. The cells form a strong barrier that

confines the protein to the luminal compartment. (c) A six-day-old

patterned microvascular network. Scale bars refer to 100 mm.
Much work remains to be done to replicate the full

diversity of tissues in these in vitro systems. In particular,

the engineering of ECMs suitable for modeling tissues

with scant stroma and high cellularity (e.g. renal medulla)

remains a challenge. Nevertheless, several groups have

begun to exploit the unique architectures of these micro-

structured ECMs for tissue engineering and development.

ECMs for tissue engineering
A promising use of patterned ECMs lies in tissue engi-

neering, as shown below by recent examples in engineer-

ing functional microvessels and epidermis in vitro. Efforts

in tissue engineering are currently biased towards design-

ing synthetic biomaterials (e.g. scaffolds) and growth

factors, with the expectation that specific molecules

can direct cells seeded within them to achieve tissue-

specific function and histology [43�,44]. Although this

approach can form tissues with simple laminated organi-

zation (skin, cornea and arteries), it has difficulty in

forming functional complex tissues. For example, vascu-

lar endothelial cells seeded within bulk ECM gels or

synthetic polymers will form random cords, but these

cords do not coalesce into an open microvascular network,

even in the presence of large amounts of growth factors

[45]. The absence of flow in homogeneous constructs in
vitro can predispose endothelial cords to apoptosis. As a

result, several groups have used various strategies to

enhance survival of engineered microvascular tissues,

such as transfection with anti-apoptotic genes [46] and

introduction of mesenchymal cells [47].

How can microstructured ECMs help in forming func-

tional microvessels? As originally envisioned by Vacanti
Current Opinion in Biotechnology 2006, 17:518–523
and colleagues [48], using an ECM with pre-formed

channels that could be perfused upon cell seeding would

enhance the stability of the construct. This approach

provides immediate exposure to shear stress and chemical

factors, and thus should avoid the regression observed

with cells seeded in bulk gels. Using patterned ECMs, we

have recently demonstrated that perfused endothelial

tubes remained patent for weeks without any observable

changes in cellular organization (Figure 3). These tubes

were formed by seeding endothelial cells through ECM

gels that have open channels spanning the gels [38�].
Over time, these endothelial tubes developed functional

behaviors typical of microvessels in vivo, such as barrier

function and support of leukocyte adhesion. Thus, the

use of microstructured ECMs can enhance the stability

and functionality of engineered microvessels.

An appropriate 3D organization appears to play a role

beyond simply providing ready perfusion. In fact, perfus-

ing embedded endothelial cells via interstitial flow does

not lead to formation of stable vessels (GM Price and J

Tien, unpublished). The combination of perfusion and

correct polarization, both of which stem from the pre-

sence of an open channel, may be required for stable

vessels to develop.

Use of microstructured ECMs has also led to enhanced

differentiation in engineered epidermis: Toner, Pins and

colleagues [49,50�] reasoned that ECMs that mimic the

wavy geometry of rete ridges (the interdigitations

between epidermis and dermis) should provide seeded

keratinocytes with topographic cues present in native

skin, and thus should lead to more functional tissue,

compared with cells seeded on flat ECMs. To test their

hypothesis, they created a synthetic ‘basal lamina’ by

polymerizing collagen or gelatin against an undulating

silicone elastomer surface. When cultured on top of these
www.sciencedirect.com
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Figure 4

Images of proliferation and invasion in structured ECMs. (a) Phase

contrast image of cells cultured on 2D pattern of asymmetric (off-center)

annulus pattern. (b) Colorimetric image of proliferation on 2D

asymmetric pattern, generated by stacking images from 50 samples to

show the frequency of cells proliferating as a fuction of space. A pixel

value of 0.20 indicates that 20% of cells at that location proliferated.

(c) Abrogation of shape-induced selectivity in proliferation by disruption

of cell–cell adhesion using a dominant-negative cadherin construct.

Proliferation becomes more uniform across the monolayer with this

treatment. (d) Epithelial cells cultured within cubic cavities migrate

specifically from the vertices. Scale bars refer to 100 mm in (a–c) and 50

mm in (d). [Images in (a–c) reproduced from [29��] with permission,

copyright 2005, National Academy of Sciences, USA.]
ECM membranes, keratinocytes conformed to the micro-

meter scale ridges on the surface and showed enhanced

stratification and expression of differentiation markers in

deep undulations.

ECMs for the study of development
A second application of patterned ECMs is in the study of

tissue development. A better understanding of the

mechanisms that direct development and functional dif-

ferentiation will not only suggest strategies to treat devel-

opmental defects, but will also advance efforts to

engineer complex, functional tissues. A large subset of

tissues and organs — kidney, lung, pancreas and prostate,

salivary and mammary glands — develop by a process

called branching morphogenesis [51]. This process starts

with local invagination of an epithelial sheet to form a

primary placode or bud [52]. This primary structure then

undergoes reiterative bifurcation and/or lateral branching

at non-random sites. The specific distribution of branch

sites and lengths is unique for each tissue and generates

tissue-specific 3D geometries.

How can microstructured ECMs aid in the study of

development? Culture models developed by Bissell

and colleagues [53] and in vivo studies have established

that morphogenesis and functional differentiation of

epithelial cells are both critically dependent on the

ECM, and have proven the importance of three-dimen-

sionality in biological signaling [54]. In particular, col-

lagen and fibronectin fibrils accumulate at sites of clefting

and branching in embryonic salivary gland, lung and

kidney [55–59]. Despite the recognition that branching

morphogenesis takes place in a complex heterogeneous

3D ECM, the biochemical requirements for branching in

the mammary gland have been defined using in vitro
models of mammary epithelial cells cultured within

homogeneous gels of collagen I or matrigel [60–62].

These models have helped determine the signals that

are absolutely required for branching to occur. Never-

theless, cells in homogeneous gels branch randomly

rather than in the characteristic arborized pattern of the

gland in vivo. Use of these gels has thus provided a limited

understanding of the signals that determine sites of

branching in the mammary gland and other organs.

We and others have recently begun to use microstruc-

tured ECMs to examine how the placement of epithelial

cells can, by itself, control the development of form

[18,29��,63]. Numerical simulations and experimental

cultures both suggest that the form of the pre-existing

tissue instructs several of the symmetry-breaking events

during morphogenesis [29��,64], a concept introduced as

early as the late 1800s by Wilhelm His [65]. For instance,

by culturing cells on large (100–1000 mm) 2D islands of

ECM, it was found that whether individual cells within an

epithelial sheet proliferate depended on their position

within the sheet and its overall geometry [29��]. Slight
www.sciencedirect.com
asymmetry in the shape of the sheet of cells altered the

pattern of proliferation (Figure 4). These events require

integrity of the cellular sheet, because disrupting con-

nections between the cells leads to unpatterned prolif-

eration. We speculate that, in 3D, these spatial variations

induce feed-forward events that magnify and preserve an

original slight heterogeneity so that a stable, complex

tissue can emerge. To test this hypothesis, we have

studied the response of epithelial cells within patterned

cavities in collagen gels to morphogens. Stereotyped sites

of invasion developed in these 3D cultures, indicating

that tissue structure not only affects proliferation, but

migration as well (CM Nelson and MJ Bissell, unpub-

lished). These results suggest that the 3D architecture of

a tissue can alter further morphogenesis and support the

idea that form should be viewed as an independent

effector of development. Microstructured ECMs thus

allow us to address how form affects its own evolution

in the presence of morphogens.

Conclusions
The development of methods to deliberately introduce

microscale variations in culture models has enabled the

possibility of testing how ECM aids in the proper
Current Opinion in Biotechnology 2006, 17:518–523
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development of tissue form and function. ECM is not

simply a glue that binds cells into tissues, nor is it just a

reservoir of immobilized growth factors, proteases and

matrix proteins. Heterogeneity in the ECM — whether in

terms of geometry or chemical composition — appears to

provide signals designed to integrate the behavior of

populations of cells across large distances. Although in

their infancy, the applications of microstructured ECMs

to the study of tissue engineering and development seem

especially promising, and could one day lead to a rational,

quantitative description of morphogenetic processes. In

retrospect, it is not surprising that, even in a material as

well studied as type I collagen [16], there are ways to

enhance functionality simply by adding structure.
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