
An end-to-end RISC-V solution for ML on the edge
using in-pipeline support

Zahra Azad1, Marcia Sahaya Louis1, Leila Delshadtehrani1, Anthony Ducimo1,
Suyog Gupta2, Pete Warden2, Vijay Janapa Reddi3, and Ajay Joshi 1

1Boston University, 2Google Inc., 3Harvard University

Abstract—Machine Learning (ML) is widely used today in
many mobile applications. To preserve user privacy, there is a
need to perform ML inference on the mobile devices. Given that
ML inference is a computationally intensive task, the common
technique used in mobile devices is offloading the task to a
neural accelerator. However, the speed-up gained from offloading
these tasks on the accelerators is limited by the overhead
of frequent host-accelerator communication. In this paper, we
propose a complete end-to-end solution that uses in-pipeline
machine learning processing unit for accelerating ML workloads.
First we introduce the software infrastructure we developed to
support compilation and execution of machine learning models
used in TensorFlow Lite framework. Then we discuss the micro-
architecture we plan to implement for supporting the execution
of our vectorized machine learning kernels.

I. INTRODUCTION

Over the past few years, researchers have shown that
Machine Learning (ML) is the best solution for a variety
of mobile applications such as image recognition, speech
recognition, and natural language processing, leading to a wide
adoption and development of ML-based solutions. Although
ML have been extensively adopted in many mobile applica-
tions, ML-based applications are power hungry and so most
of the computations of these applications are offloaded to the
cloud. However, to preserve user privacy and reduce user-
perceived latency due to offloading of computations through
a bandwidth-limited wireless link, there is a need to perform
ML inference on the resource-constrained mobile devices.

To accelerate the computationally intensive tasks in ML-
based applications, the tasks are commonly offloaded to ac-
celerators like GPUs, DSPs, or special-purpose accelerators
like Neural Processing Units (NPUs) in the mobile SOCs.
This heterogeneous approach divides the task between the host
CPU and the accelerator, which requires us to use special
instructions to access the accelerator during the program
execution. Depending on the application, this may trigger
frequent host-accelerator communication. In these solutions
the whole ML task is partitioned into three main steps:
1) pre-processing the input data to make it consumable by
the accelerator; 2) running part of the application (for e.g.
neural inference) on the accelerator using the input data; and
3) post-processing the results generated by the accelerator.
The time spend on pre-processing and post-processing op-
erations and the time required to transfer data between the
processor and the accelerator makes this approach suitable
only for applications that have large amount of computations
that can be offloaded to the accelerator. Applications with a
small amount of computations that can be offloaded to the
accelerator cannot sufficiently amortize the communication

overhead. Moreover, applications that involve frequent data
and/or control exchanges between CPU and accelerator end up
severely under-utilizing the accelerator and may not see any
benefit of offloading work from the CPU to the accelerator.

In this paper we propose to create a custom processor
configuration by extending the processor architecture with a
special-purpose processing unit (similar to NEON [1], which
is an Advanced SIMD extension for ARM processors) to speed
up the execution of ML-based applications such as audio
and video processing, voice and facial recognition, computer
vision and deep learning on the processor. As mentioned in
[2] today nearly all mobile inference on Android devices
run on CPU rather than being offloaded to a co-processor
or accelerator. The main reason is that performance gain is
not substantial enough to justify the effort required to port all
inference operations to a co-processor or accelerator. In fact,
having a CPU with a SIMD unit which is decently provisioned
and properly programmed provides sufficient performance for
inference.

As the first step to explore this idea, we developed the
software stack for supporting custom machine learning instruc-
tions. We use RISC-V [3] as our target ISA because it is open
source and has specific regions of instructions decode space
allocated to user custom instructions. We used a subset of the
vector instructions to cover the key machine learning kernels.
We developed the required inline assembly support and built
the run-time environment to map TensorFlow Lite [4] kernel
operations such as convolution and matrix multiplication to
the low-level ISA execution.

As the next step, we plan to take this software stack and
prepare an end-to-end solution to accelerate the execution of
ML-based applications on the main processor. We will develop
a RISC-V based in-pipeline ML processing Unit called RV-
MLPU to accelerate DNN inference tasks on the main proces-
sor to avoid the overhead of communicating with an external
accelerator. This in-pipeline unit will be implemented as a
custom extension to Rocket Core, an in-order RISC-V based
processor.

II. SOFTWARE ENVIRONMENT

We developed the software infrastructure to support custom
domain-specific ISA extension for ML. We used the open
source RISC-V ISA as our target ISA and our ISA extensions
are derived from the RISC-V vector ISA proposal. We selected
a subset of the instructions necessary to implement the key
ML kernels. We developed the tool-chain by augmenting the
software environment with the right inline assembly support
and building the run-time that can effectively map the high-

level macros to the low-level ISA execution. We added basic
compiler support for the extended instructions using C inline
assembly functions. The C inline assembly functions are
used to implement TensorFlow Lite kernel operations such
as convolution and matrix multiplication. We added these
optimized functions to TensorFlow Lite source code and cross-
compiled them for RISC- V target.1 We modified Spike [5], an
instruction set simulator, to support the extended instructions.
Subsequently, we used Spike for functional verification and
for benchmarking ML models. All our work has been open
sourced. 2

III. EVALUATION AND RESULTS

We evaluated the performance of deep learning models such
as DenseNet, MnasNet, Inception V3, ResNet 50, MobileNet,
Yolo tiny and Speech encoder/decoder. These are commonly
used ML inference models that are deployed on mobile
devices. We cover a wide range of applications using these
benchmark models. The models are 32-bit floating point .tflite
models and are hosted on TensorFlow Lite website. We use
the executed instruction count as the metric to compare the
modified RISC-V ISA with ARM v-8A with NEON Advanced
SIMD extensions. Figure 1 shows the comparison of ARM
baseline implementation (ARM-base), RISC-V baseline im-
plementation (RV-base), ARM-opt and RV-opt-v1 with 128bits
register widths and RV-opt-v2 256bits register widths using
the mentioned deep learning models. In the RV-base imple-
mentation we have updated the source code to replicate the
compiler loop optimizations that are available in ARM. In RV-
opt and ARM-opt, we used RISC-V cross-compiled binaries
and ARM cross-compiled binaries, respectively, of TensorFlow
Lite using optimized_ops. The optimized_ops is a
hardware specific optimized implementation of kernel oper-
ations using gemmlowp, Eigen libraries and other processor
specific optimizations.

As expected, the number of committed instructions are
similar (across all the models) for ARM-base and RV-base.
Using RV-opt-v1 implementation, on average, we achieved a
8× reduction in number of committed instructions in compar-
ison to RV-base. Compared to ARM-opt, on average, across all
benchmarks the number of committed instructions for RV-opt-
v1 is 1.25× lower. We see an additional 2× reduction in the
number of committed instructions using RV-opt with 256bits
register width. A more detailed discussion about these results
can be found in our prior work [6].

MNasNet DenseNet Inception-V3 ResNet-V1 MobileNet-V1 Yolo-tiny Speech decoder Speech encoder

10
8

10
9

10
10

C

om
m

itt
ed

 In
st

ru
ct

io
ns

RV-base ARM-base RV-opt-v1 ARM-opt RV-opt-v2

Fig. 1: Number of committed instructions for RV-base, ARM-base,
RV-opt-v1 optimized with 128bits registers, ARM-opt and RV-opt-v2
optimized with 256bit registers for various deep learning models.

1https://github.com/mars20/tensorflow
2https://github.com/bu-icsg/sparse-mat-risc-v

IV. RV-MLPU MICROARCHITECTURE

In this section, we explain the microarchitecture of RV-
MLPU, which basically is a configurable RISC-V based SIMD
unit. We support a subset of instructions from the V-extension
of the RISC-V ISA. In RV-MLPU microarchitecture design
the number of lanes and the width and number of data ele-
ments are configurable. RV-MLPU is implemented as a SIMD
extension to Rocket Core processor. We extended Rocket Core
decoder to support the subset of vector instructions. We also
integrated 32 vector registers to Rocket Core. Since each
vector instruction operates on multiple data elements, vector
register file must be able to support enough throughput to
supply the functional lanes with operands. Once the vector
instruction is fetched and decoded, the required registers are
read from both scalar and vector register files, and the register
values are passed down to the Vector Processing Unit (VPU)
to perform the required operations. VPU is a configurable
unit, and it can be configured with both the number of lanes
and the width of the data elements to be processed. Each
lane contains one Floating Point unit and all lanes have
identical microarchitecture. We also modified the DCache
implementation in Rocket Core to support higher memory
bandwidth for vector load and store operations. RV-MLPU is
equipped with a vector load/store unit to handle three different
vector memory accesses: 1) unit-stride loads and stores, which
access a contiguous chunk of memory; 2) constant-stride loads
and stores, which access memory addresses spaced with a fixed
offset; and 3) scatter and gather memory operations, which
use a vector of offsets to allow general access patterns. We
are currently testing our microarchitecture implementation and
plan to open source it in the near future.

V. CONCLUSION

In this paper, to accelerate ML-based applications on mobile
devices, we present an end-to-end support for in-pipeline
execution of the ML operations in RISC-V based processors.
First, we discussed the software infrastructure we developed to
support compilation and execution of machine learning models
(used in TensorFlow Lite framework) using a subset of RISC-
V vector extension. As the next step, we plan to complete
the micro-architecture implementation of the machine learning
processing unit, RV-MLPU, to support the execution of our
vectorized machine learning kernels in the pipeline.

REFERENCES

[1] Venu Gopal Reddy. Neon technology introduction. ARM Corporation 4
(2008), 1.

[2] C. Wu et al., Machine Learning at Facebook: Understanding Inference
at the Edge, 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Washington, DC, USA, 2019, pp. 331-
344.

[3] Waterman et al. The risc-v instruction set manual. volume 1: User-level
isa, version 2.0. Technical report, 2014.

[4] 2017. TensorFlow Lite — TensorFlow. https://www.tensorflow.org/lite
[5] Krste Asanovic, et al. The rocket chip generator. EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17.
[6] M. S. Louis, Z. Azad, L. Delshadtehrani et al., “Towards Deep Learning

using TensorFlow Lite on RISC-V,” in Proc. ACM CARRV, 2019.

