
Custom Tailored Suite of Random Forests for
Prefetcher Adaptation

Furkan Eris1, Marcia Sahaya Louis1, Sadullah Canakci1, Jose L. Abellan2, and Ajay Joshi1
1Department of ECE, Boston University, USA, 2Department of CS, Universidad Católica de Murcia, Spain
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Abstract—To close the gap between memory and processors,

and in turn improve performance, there has been an abundance
of work in the area of data/instruction prefetcher designs.
Prefetchers are deployed at each level of the memory
hierarchy, but typically, each prefetcher gets designed without
comprehensively accounting for other prefetchers in the system.
As a result, individual prefetchers do not always complement each
other, and that leads to low average performance gains and/or
many negative outliers. In this work, we propose Puppeteer,
which is a hardware prefetcher adapter that uses a suite
of random forest regressors to determine at runtime which
prefetcher should be ON at each level in the memory hierarchy,
such that the prefetchers complement each other. Compared to
a design with no prefetchers, using Puppeteer we improve IPC
by 34.6% on average across traces generated from SPEC2017,
SPEC2006, and Cloud suites with ∼ 12KB overhead. Moreover,
we also reduce the number of negative outliers by over 89%, and
the performance loss of the worst-case negative outlier from 25%
to only 5% compared to the state-of-the-art.

I. INTRODUCTION

Instruction and data prefetching [11] are commonly used in
today’s processors to overcome the memory wall problem [26].
The key idea behind prefetching is to identify a memory access
pattern and predict addresses to proactively fetch instructions
and data into the cache. This hides the large memory access
latency, and in turn improves processor performance.

To evaluate a prefetcher’s performance, we can use scope
and accuracy as the metrics. A prefetcher with high prefetching
accuracy has limited scope, i.e., this prefetcher is very good at
identifying a limited number of memory access patterns and can
accurately prefetch instruction/data if those specific memory
access patterns exist. However, such a prefetcher fails to
identify other memory access patterns. Conversely, a prefetcher
with broad scope, i.e, a prefetcher that caters to a variety of
memory access patterns, has low accuracy [8], [16]. Given the
diversity in the memory access patterns across applications,
using a single prefetcher does not improve performance of
all applications; in fact, in some cases it hurts application
performance by predicting the wrong memory addresses for
prefetching. These incorrect prefetches use up the precious
memory bandwidth as well as the limited space we have in the
L1 and L2 caches. This increases data and instruction access
latency, which hurts application performance.

Effectively, we need to find a balance between accuracy
and scope of the prefetcher. One way to balance scope and
accuracy is to use multiple prefetchers, as it is in AMD and
Intel processors [9], [12], where each prefetcher is customized
to identify a specific type of memory access pattern and
make a prefetching prediction. We can broaden the scope
by having multiple different high accuracy prefetchers with

limited scope for each prefetcher. However, having multiple
prefetchers operating at each level in the memory hierarchy
can lead to the following issues:
• Given that each prefetcher is trained independently to track a

specific type of traffic and that they share microarchitectural
resources, prefetchers can sabotage each other during runtime.
A prefetcher may trigger prefetch requests that evict cache
lines that have been accurately prefetched by another
prefetcher. This leads to loss in performance, wasted memory
access bandwidth, and increased power consumption.

• Different prefetchers (either at the same level or across levels
in the memory hierarchy) latch onto memory access patterns
at different speeds, and so a prefetcher’s predictions can
be influenced by the traffic generated by other prefetchers.
These differences in temporal behavior can cause faulty
synchronization among prefetchers and can lead to a drop
in application performance.
One way to address these problems is to use only one

prefetcher at a time at each memory level. This prefetcher is
chosen based on the current traffic pattern. Kondugli et al. [16]
proposed such a ‘composite prefetcher’, which uses a simple
priority queue as their control algorithm to target a single
memory level. Given that the priority queue of the prefetchers
is designed offline using a given set of applications, introduction
of unseen applications could lead to loss of performance.
What is really needed is a ‘coordinator’ that chooses a set of
prefetchers (one prefetcher per level) that are suitable for the
current phase of an application and complement each other, and
in turn improve performance. This ‘coordinator’ will effectively
be responsible for determining which prefetcher should be
ON/OFF at each level in the memory hierarchy, both across
different phases of an application and across applications.

In this paper, we propose a machine learning (ML)-based
hardware coordinator called Puppeteer to selectively switch
ON/OFF prefetchers at each level in the memory hierarchy
at runtime. Contrary to the prior work [17] that focuses on
training the ML model to improve the prediction accuracy of
the ML model, we train the ML model of Puppeteer to increase
the overall system performance (quantified as instructions
committed per cycle (IPC)). To coordinate the prefetchers
across multiple cache levels at runtime, we propose a multi-
regression ML-based approach. We use the observed IPC of the
various prefetcher system configurations (PSCs)1 for different
phases of each application, to train our ML model. We train a
unique random forest regressor per PSC to create a suite of

1A PSC specifies which prefetcher is switched ON at each level of the
memory hierarchy in the system.



random forests regressors. For features used in the ML model,
we use events whose behavior does not change with the choice
of PSC, i.e PSC-invariant events. For example, the number of
branch instructions in an application would not change with
the choice of PSC. This limits the number of executions per
trace we must account for during training, which makes it
easier to train the ML model in Puppeteer. We design the ML
model of Puppeteer with the goal of maximizing IPC while
minimizing the area overhead required by the ML model. In
summary, the contributions of our work are as follows:
• We propose a novel ML-based hardware coordinator called

Puppeteer to improve the system performance. At runtime,
at the end of an instruction window2, Puppeteer predicts
the IPC for each PSC and selects the PSC with the highest
predicted IPC for the next instruction window.

• We design Puppeteer to use a set of PSC-invariant events,
which can be tracked using hardware performance counters
as inputs and predict the PSC for the next instruction
window. Unlike prior work, Puppeteer chooses a prefetcher
for each level in the cache hierarchy such that the prefetchers
complement each other.

• We co-optimize the hardware design and the ML model of
Puppeteer with the goal of maximizing the overall application
performance while minimizing the area overhead.

II. BACKGROUND AND RELATED WORK

Over the past 20-30 years, heuristic algorithms have been
used for hardware adaptation, including for prefetcher throttling
[10]. Heuristic algorithms are generally simple rule-based
approaches with very low memory/area overhead and have
fairly good performance for the average case. Unfortunately,
the performance of heuristic algorithms has not scaled at
the same rate as the complexity of the processor and the
overlying applications. ML methods have been gaining traction
in place of heuristic methods for prefetcher adaptation [8],
[13], [14], [17]. The versatility and tolerance to variability
of ML algorithms makes them a prime candidate to replace
heuristic algorithms. ML algorithms can extract the non-
intuitive interactions between the different prefetchers. Prior
methods on prefetcher adaptation configure or train the adapter
using values of hardware events collected for a single fixed PSC
(generally, the default PSC) [8], [14], [17], [21]. However, at
runtime the PSC changes. If the values of the hardware events
are highly dependent on the PSC, using a dataset generated
using a fixed PSC for training leads to a low-accuracy ML
model for the prefetcher adaptation. To address this concern,
we train our ML model using PSC-invariant hardware events
(i.e., events that are not dependent on the PSC, for e.g., the
number of branch instructions) as features.

We observe a wide variation in the complexity of the ML
algorithms used in prior work. Some of the algorithms are
simple and either use small datasets or use datasets that do
not accurately portray the runtime environment. As a result,
these algorithms cannot achieve good accuracy at runtime

2We set the instruction window size to 100,000 instructions.

[14], [17], [21]. Other algorithms, such as neural networks,
are too complex and to achieve high accuracy, their size
increases prohibitively with the size of the dataset [8]. Moreover,
some prior works focus on hardware adaptation only from the
perspective of accuracy without worrying about the hardware
implementation [13], [14], [17], [21].

In our work, we jointly account for accuracy of the ML model
and hardware overhead when designing Puppeteer. Puppeteer is
complex enough to provide good accuracy on a wide variety of
micro-behavior. At the same time, Puppeteer is not too complex
(as demonstrated in Section III-C) to implement in hardware
and scales well with the size/complexity of the dataset.

III. PUPPETEER DESIGN

A. Puppeteer System Level Overview

In Figure 1, we show the system-level design of an example
prefetching system that uses Puppeteer. The prefetchers track
memory access patterns and prefetch data from main memory
to last-level cache (LLC), from LLC to L2$, and from
L2$ to L1$. These prefetchers can sometimes act overly
aggressively, and can adversely affect each other, in turn leading
to loss of application performance. There are many heuristics-
based algorithms that use simple inputs such as accuracy of
the prefetchers or memory bandwidth utilization to throttle
prefetchers in such adverse scenarios [10].

Puppeteer works as a meta-controller and complements
these heuristics-based throttling mechanisms. At runtime,
Puppeteer periodically updates the PSC, i.e., it sets which
prefetcher should be ON and which should be OFF at each level
in the memory hierarchy. To update the PSC, Puppeteer uses an
ML model with the PSC-invariant hardware events as inputs to
determine the next PSC. Effectively, throttling mechanisms are
used in prefetchers to regulate the short-term behavior of the
prefetchers, while Puppeteer controls the longer-term system-
level behavior using a more effective ML-based approach. With
our approach we are capable of coping with changes in the
long-term application behavior.

B. Puppeteer Algorithm

Regression vs Classification: To train Puppeteer, we can use
a classification approach where we label the PSCs based on
the probability that a PSC will give good performance or
bad performance. However, sometimes the application phase
performance is agnostic of the choice of the PSC, and at other
times, the performance is very sensitive to the choice of PSC
with as much as 613% change in IPC (as shown in Section
V). Simply labeling using a “good performance class” and a
“bad performance class” would be insufficient in these cases.

To create the training dataset, prior works [14], [17] use
thresholding methods. Here, a trace3 is run using all PSC
options. A PSC is given a label of “1” if the IPC when using

3A trace is a group of instructions that represent a particular behavior. One
or more traces can be used to represent the behavior of a benchmark. For
example, a benchmark with consistent looping behavior can be represented by
one trace corresponding to a single iteration of the loop. We construct one
or more unique representative traces from each benchmark [20]. In total, we
construct 232 traces.
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Fig. 1: System-level view of an example prefetching system that uses
Puppeteer. Here Pf = prefetcher. Acc = Accuracy of the prefetchers.

that PSC is within some threshold (in the case of the prior work
the threshold is 0.5%) of the IPC when using the ideal PSC.
Otherwise, the PSC receives a label “0”. The classification
algorithm is then trained for each PSC option and the associated
labels. Unfortunately, using such a classification approach can
lead to sub-optimal results. As an example, consider the case
where we are classifying four traces, and selecting the PSC
corresponding to the class of the traces. Let us say we classify
three out of the four traces correctly and one incorrectly. So,
our trace classification accuracy is 75%, and so three out of
those four traces will have performance that is within 0.5%
of their ‘ideal’ performance. However, the performance of the
fourth trace could be 100% worse or just 0.51% worse than the
‘ideal’ performance. Any classification-based method would
have a similar issue because all labeling methods used to create
the dataset for the classification algorithm will certainly lose
some amount of information.

To solve this issue, we propose to use regression instead
of classification to account for the value of IPC gain/loss and
not just if there is IPC gain/loss, when deciding the PSC.
Given that the regression algorithm will be trained on the IPC
values directly, the magnitude information is not lost, and the
regression algorithm can learn the magnitude of a good or
bad prediction. Here the regression algorithm will be used to
predict an IPC value for each one of the PSCs. We then choose
the PSC with the highest predicted IPC value.
Suite of RF Regressors vs Single RF Regressor: When using
regression algorithms, we have two options: (i) use a single
regressor, where all data collected from all the PSCs are used to
train that single regressor; or (ii) use a suite of regressors, where
each PSC will have a dedicated regressor. Using a suite of
regressors leads to a more customized solution that has higher
accuracy as compared to using a single regressor. Conceptually,
this is because in a single regressor, we maximize the accuracy
across all PSCs instead of maximizing the accuracy of each
PSC separately, whereas, in a suite of regressors we train a
dedicated regressor for each PSC. In this way, we choose the
correct PSC for each instruction window that increases the
IPC, which indirectly jointly increases the scope and accuracy
of the overall prefetching system.

In this work, we use a suite of regressors where we
implement each regressor using random forest due to its simple
implementation, its robustness to noise in the dataset, its lower

overhead (compared to other ML algorithms such as neural
networks), and its higher accuracy (compared to other ML
algorithms such as decision trees). We have multiple trees
per forest and we allow each tree to split at locations that
are unique to that PSC. The leaves of each tree in the forest
specify the predicted IPC value for the PSC. For each forest,
we calculate the average of the predicted IPC values obtained
from all the trees in the forest, and then choose the PSC with
the highest average predicted IPC. Given that each forest has
multiple decision trees, the tolerance of our method increases
where even if some of the trees give wrong decisions, other
trees can compensate this error.
Training Puppeteer: To train Puppeteer we need to generate
a representative dataset. Consider the case where we have
a single prefetcher, P f , at only one memory level. Here
Npsc = 2 with P f =OFF or P f =ON as the two PSCs. For two
consecutive instruction windows, we will have N2

psc = 4 possible
scenarios: (i) P f =OFF → P f =OFF, (ii) P f =ON → P f =OFF,
(iii) P f =OFF→ P f =ON, and (iv) P f =ON→ P f =ON. With N
number of instruction windows and Ntrace number of traces, the
number of different possible scenarios will then be Ntrace ∗NN

psc.
When N increases, the number of different scenarios will
increase exponentially. In order for the ML algorithm to choose
the correct PSC for each instruction window during runtime,
each unique scenario needs to be represented during training.
Because of the exponential explosion of the number of unique
scenarios, including each unique scenario during training is
not feasible. This means offline training is inherently a difficult
problem for prefetcher adaptation.

To handle this problem, we propose to use only the PSC-
invariant events as our features. An example of a PSC-invariant
event is the number of conditional branches, which is not
affected by the choice of PSC. We check the variance of each
hardware event value (for 180 total hardware events) for each
PSC. We identify 59 events whose values vary by less than
±10% from their mean value across all PSCs. We further
reduce the number of events by eliminating the redundant
events that track similar behavior and have high correlation
with each other. Table I shows the 6 events we choose to track
trace behavior. After we have identified our PSC-invariant
events that will be the features and the PSCs that will be the
classes of our ML model, we collect an IPC value per PSC
for each instruction window as our ground truth. We form
our suite of random forests wherein we train a separate forest
for each class (i.e. each PSC) using CART (classification and
regression trees) [25] to minimize the IPC prediction error.

We limit the total number of decision nodes in Puppeteer to
keep the size of Puppeteer smaller than L1$. With this limitation
in mind, we conduct a hyper-parameter search and determine
that the number of estimators (trees per random forest) should
be 5 and the number of max nodes should be 100 per tree.

C. Puppeteer Hardware Design

Figure 2 shows the hardware design of Puppeteer. We
use a single port SRAM array called Node MEM to store
information about Puppeteer. We load the Puppeteer model
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Fig. 2: Puppeteer hardware design.

into the Node MEM at startup using firmware. Each entry of
Node MEM corresponds to one node in one of the random
forests and it consists of the following fields: (i) A 3-bit HPC
ID field that specifies which PSC-invariant event is used by
that node to make a decision. The 3-bit encoding enables
the node to use one of 6 different PSC-invariant events (see
Table I). (ii) A 16-bit Threshold field (threshold value
is determined during training), which is employed by the
node to decide if the decision path should branch left or
right. In our problem 16 bits provide enough precision for
the ML model weight values. (iii) A 12-bit (for 2250 node
addresses) Left Node Value(LNV) field, and (iv) a 12-
bit Right Node Value(RNV) field. These LNV and RNV
fields represent child node indices for internal nodes of a tree.
For the leaf nodes of a tree, we use these LNV and RNV fields
to indicate the predicted IPC value of a PSC. We differentiate
between child node index and predicted IPC using (v) a 1-bit
Type field. We use 1 bit each for LNV and RNV.

At the end of every instruction window, Puppeteer calculates
the predicted IPC for each PSC in the next instruction window
by traversing the trees of the associated forest and using the
PSC-invariant event values for the current window as inputs. For
each forest, the controller in Puppeteer reads the Node MEM
index of the root node for the first tree from Root Index Table
(RIT) and loads the Node MEM entry for the root node using a
Load Unit into a register. Next, the HPC ID in the loaded Node
MEM entry is used to load the corresponding PSC-invariant
event value into a second register. Then the Threshold value,
stored in the first register, and PSC-invariant event value stored
in the second register are compared using the Comparator.
Based on the Comparator output, we choose the left child or
the right child. The Controller then uses the corresponding
index value from LNV or RNV to find the next node in Node
MEM. The Controller continues traversing the tree until it
loads a predicted IPC value corresponding to a leaf from the
Node MEM. The above steps are repeated for the remaining
trees in the forest, and then we calculate the average of the
predicted IPC values obtained from all the trees in that forest.
The Best PSC Unit in the Controller stores the ID of the PSC
with the highest predicted IPC value. Every time the Controller
finishes traversing a forest, the predicted IPC value of that
forest, i.e. PSC, is compared with the predicted IPC value
stored in the Best PSC Unit using the Comparator. If the new
predicted IPC value is higher than the current value, the Best

PSC Unit updates the predicted IPC value and the ID of the
PSC. Once all forests have been traversed i.e., all PSCs have
been evaluated, Puppeteer chooses the entry stored in the Best
PSC Unit as the PSC for the next instruction window.

We determined that a maximum depth of 10 per tree is more
than sufficient to accurately determine the best PSC. In our
evaluation we use a prefetcher system with Npsc=5 (given in
Table I and discussed in detail in Section V). If we evaluate
all 5 forests in series, where we will require a maximum 250
comparison operations (5 forests × 5 trees per forest × 10
comparisons = 250 comparisons), it will take less than 0.3%
(assuming each comparison operation takes a clock cycle) of
the total time required to execute the 100k instructions in the
instruction window. Thus, we end up using the chosen PSC
for 99.7% of the instruction window.

We need a total of 2250 nodes to design the trees in
Puppeteer, and these nodes require a 12.75 KB-sized Node
MEM (compared to a typical L1$ of 32 KB). Other than Node
MEM, we require a 5 ∗Npsc-entry RIT where each entry is
13-bit wide (12 bits for the root node index and 1 valid bit),
a 12-bit comparator, a load unit, and a register to store the
best PSC information in the Controller. For the Node MEM
operating at 2GHz, using Cacti 7.0 [4] we find that the area
overhead in a 32nm process is ∼ 0.035mm2 and the power is
∼ 4.5nW for 500 Node MEM accesses every 100k instructions.
The area and power required for the remaining components is
negligible.

IV. EVALUATION METHODOLOGY

For our evaluation, we train Puppeteer using data collected
for a 1-core (1C) OoO processor and then evaluate it on a
1-core and 4-core (4C) OoO processor. We use ChampSim [5]
for our analysis, where we model 1C and 4C processors to have
multiple prefetchers at each level of the cache – private L1I$,
L1D$, private L2$ and shared LLC (more details provided in
Table I). We train and evaluate Puppeteer using a diverse set
of traces generated from SPEC2017 [2], SPEC2006 [1], and
Cloud [6] benchmarks. In total we have 232 (traces)×10,000
(instruction windows per trace) = 2,320,000 instructions
windows that make up our dataset. To make sure that our
training algorithm is not overfitting the data, we severely limit
the training set size by dividing the dataset into two disjoint
sets - 10% of instruction windows form the training set and
the remaining 90% of the instruction windows form the testing
set and perform 10-fold cross-validation on the training set.
For 4C experiments, we run the same trace on all four cores,
hence the number of experiments is still 232.

To generate the dataset (PSC and associated IPC values) we
run the 1C experiments using all possible PSCs generated from
the prefetcher options that are available in the ChampSim
repository as well as the 1st (IPCP [19]), 2nd (Bingo
[7]), and 3rd place (MLOP [24]) finalists of the 3rd data
prefetching competition (DPC3) [3]; and the 1st (EIP) [22],
2nd (FNL+MMA) [23], and 3rd place (DJOLT) [18] finalists
of the 1st instruction prefetching competition (IPC1) [6]. To
reduce the hardware overhead of Puppeteer we avoid including
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TABLE I: Simulated system parameters, prefetchers used at each
cache level, the final PSCs that exist in Puppeteer, and the PSC-
invariant events that are used by Puppeteer.

Component Simulated Parameters
Core One to four cores, 4GHz, 4-wide, 256-entry ROB
TLBs 64 entries ITLB, 64 entries DTLB, 1536 entry shared L2 TLB
L1I$ 32KB, 8-way, 3 cycles, PQ: 8, MSHR: 8, 4 ports
L1D$ 48KB, 12-way, 5 cycles, PQ: 8, MSHR: 16, 2 ports
L2$ 512KB, 8-way, 10 cycles, PQ: 16, MSHR: 32, 2 ports
LLC 2MB/core, 16-way, 20 cycles, PQ: 32×cores, MSHR: 64×cores

DRAM 4GB 1 channel/1-core, 8GB 2 channels/multi-core, 1600 MT/sec

Final PSCs Used L1I$ L1D$ L2$ LLC
djolt-bingo-nl-nl DJOLT [18] Bingo [7] Next-line [11] Next-line
djolt-bingo-no-no DJOLT Bingo No Prefetcher No Prefetcher
fnl-bingo-spp-nl FNL+MMA [23] Bingo SPP [15] Next-line
fnl-bingo-spp-no FNL+MMA Bingo SPP No Prefetcher
no-nl-spp-no No Prefetcher Next-line SPP No Prefetcher
Overhead 221KB 48.06KB 6KB 0.6KB

Hardware Event Properties
L1I PAGES READ LOAD L1I$ Pages Read on Load.
L1D PAGES READ LOAD L1D$ Pages Read on Load.
L1D$ RFO ACCESS L1D$ Store Accesses.
BRANCH RETURN Branch Returns.
NOT BRANCH Not Branches.
BRANCH CONDIT IONAL Conditional branches.

multiple PSCs that cover the same traces. To this end, we
initially run the traces for 20M instructions with all possible
PSCs (5 L1I$ × 5 L1D$ × 6 L2$ × 2 LLC = 300 PSCs).
We then choose the PSCs that have the best performance with
minimal coverage overlap. Here coverage means the number
of traces that the PSC “covers”, i.e., the number of traces that
have good performance while running with the given PSC.
We reduce the number of PSCs by choosing a set of PSCs
that provide the maximum coverage with the minimum overlap
with each other. These PSCs are independent of the coordinator
algorithm. In Table I we show the final 5 PSCs that we selected
for our training set. In Table I, for each PSC, we show the
prefetcher used at each cache level. We use the default hashed-
perceptron for branch predictor and least-recently used (LRU)
policy for cache replacement policy provided by ChampSim.

In our evaluation results, we normalize all IPC values to the
same state of the art baseline as PPF [8], i.e., SPP (no-no-spp-
no4). We compare Puppeteer against IPCP (no-ipcp-ipcp-nl),
EIP (EIP-nl-spp-no), the final version of the algorithm that
uses trial periods to latch onto the PSC [14] (J3), and finally
an ML-based algorithm [17] (BT) - where Liao et al. tried
several different ML methods (such as decision trees and NN)
and conclude that decision trees are the best choice.

V. EVALUATION RESULTS

A. Puppeteer applied to 1C Processor

In Figure 3, we show the IPC distribution of various
PSCs and prefetcher adapter designs. Broadly, compared to a
processor with no prefetchers, Puppeteer provides an average
performance gain of 34.6% (peak value of 613%). The true
benefit Puppeteer is observed when we look closer into the
distribution in Figure 4. We observe that when using BT, 53
traces lose performance and 6 out of those 53 traces lose more
than 10% performance. This performance loss would make this

4PSC=4-tuple: L1I$pre f etcher−L1D$pre f etcher−L2$pre f etcher−LLCpre f etcher .

NO IPCP EIP BT J3 Puppeteer
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Fig. 4: Bottom Ten Performance Outliers - Performance normalized
to PPF of 1C data suite experiments. Each group signifies the Nth-
worst performance for the two adaptation algorithms from prior work
we compare to and Puppeteer ordered 10th-worst (left-most) to 1st-
worst (right-most). Smaller is better.

solution unviable. Puppeteer has a worst-case loss of only 5%
and only 8 traces in total have lower performance than SPP.
This clearly shows that Puppeteer provides us with a win-win
situation, whereby we not only see a better average performance
gain but also see a reduction in the maximum performance loss
and the number of traces that have performance loss. For the
other prior work, we observe that Puppeteer provides 4.65%,
5.8%, and 5.1% average IPC gain over IPCP, EIP, and J3,
respectively. One thing to note about J3 is that its average IPC
gain is 2.1% lower than BT yet the negative outliers are less
in both quantity and magnitude.
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Fig. 5: Box Plot of 4C Experiments - Performance Distribution of
Puppeteer and prior work normalized to SPP.
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B. Puppeteer applied to 4C Processor

In Figure 5, we show the IPC distribution of Puppeteer and
the various prior works while using the Puppeteer in a 4C
system. We observe that the average IPC gain of Puppeteer over
BT has gone up to 4.2%. The worst-case performance loss
in BT has gone up to 45%, while the worst-case loss in the
case of Puppeteer is at 19%. The number of traces that lose
performance is 61 for BT while Puppeteer has just 24 traces that
lose performance. Although Puppeteer has only been trained
on 1C data, the algorithm is still capable of generalizing to
4C and providing a clear advantage over prior work. This
is important given that as the number of cores increases, the
number of unique combinations of different traces will increase
exponentially. The experimental space makes it extremely
challenging to train for all cases in 4C and beyond (in our
experimental suite the number of unique combinations of traces
is 232×232×232×232 = 2.89 billion for 4 core). Therefore,
generalization using only 1C data is an important aspect to
consider when comparing ML-based algorithms.

C. Temporal Behavior

In Figure 6 we show the temporal behavior of Puppeteer,
BT, and J3 while running 429.mcf-217B as an example. Figure
6a shows the percentage of time for which each PSC was used
by each adaptation algorithm when executing 1.2B instructions
of 429.mcf-217B. In Figure 6b we show the IPC values and
the PSC used in each instruction window for a small slice
of the same trace. We would like to note three interesting
phenomena: (i) Both BT and Puppeteer use fnl-bingo-spp-no
for the same percentage of time, yet the performance difference
between the two is around 20% over the whole trace. This
means even a small percentage of the instruction windows
may have a large influence on the overall performance. (ii)
In the first 25 instruction windows there is a large variation
in IPC when using BT and J3, while all three algorithms
converge to the same performance and same PSC during the
last 25 instruction windows. This shows that Puppeteer does
a better job at predicting the PSC in different regions of an
application. (iii) J3 uses the same PSC as Puppeteer yet has
lower performance in the first 25 instruction windows. This
illustrates that changing the PSC has a cumulative effect on
IPC. The choice of PSC made by Puppeteer in prior instruction
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Fig. 6: (a) Percentage usage of each PSC for the three prefetcher
adapters and (b) PSC choices for an example 50 instruction
windows when running 429.mcf-217B.

windows allowed Puppeteer to gain more performance in the
given instruction windows compared to J3.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduce Puppeteer, a novel ML-based
prefetcher adapter designed using custom tailored random
forests. We train a dedicated random forest for each PSC, which
allows the random forest to retain more information in a smaller
amount of hardware. Puppeteer improves the performance of
applications by 34.6% on average (613% peak value) when
compared to a processor with no prefetching. Puppeteer also
reduces the number of negative outliers by 89%. As future
work, we will train Puppeteer using data collected from multi-
core processors and perform a more extensive evaluation using
systems with different core counts and mixed trace sets. In
addition, we will explore a unified design of a ML-based
coordinator that selects from an array of ML-based prefetchers.
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