
Energy-Efficient Adaptive Classifier Design
for Mobile Systems

Zafar Takhirov, Joseph Wang, Venkatesh Saligrama, Ajay Joshi
Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA

{zafar, joewang, srv, joshi}@bu.edu

ABSTRACT
With the continuous increase in the amount of data that
needs to be processed by digital mobile systems, energy-
efficient computation has become a critical design constraint
for mobile systems. In this paper, we propose an adaptive
classifier that leverages the wide variability in data com-
plexity to enable energy-efficient data classification opera-
tions for mobile systems. Our approach takes advantage of
varying classification “hardness” across data to dynamically
allocate resources and improve energy efficiency. On aver-
age, our adaptive classifier is ≈ 100× more energy efficient
but has ≈ 1% higher error rate than a complex radial basis
function classifier and is ≈ 10× less energy efficient but has
≈ 40% lower error rate than a simple linear classifier across
a wide range of classification data sets.

Keywords
Machine Learning, adaptive classifier, energy efficiency, mo-
bile systems

1. INTRODUCTION
Over the last decade, there has been a shift in the con-

sumer market towards mobile computing. Mobile workloads
have become more diverse, and are increasingly trending to-
wards utilizing computationally expensive machine learning
approaches to process the large amounts of data [1]. Some
examples of these problems are live translation, fingerprint
matching, and diabetes testing [2]. These mobile systems
however have a small form factor and run on batteries or
harvest energy from the environment, and typically do not
always have reliable access to the power grid. Hence, exe-
cuting expensive machine learning algorithms on mobile sys-
tems with limited energy budget is very challenging. As a
result, minimizing energy consumption of machine learning
algorithms while achieving the desired accuracy is critical.
Machine learning based classifiers have seen an increased de-
ployment in applications such as speech recognition, hand-
writing recognition, as well as mobile health monitoring [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4185-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934583.2934615

Here, the choice of classifier often involves a trade-off be-
tween error rate and computational efficiency. For example,
accuracy-sensitive applications such as handwriting recog-
nition have stringent error constraints, while applications
like presence detection for light controls can tolerate errors.
Complex classification functions such as kernel-based func-
tions and neural networks allow for flexible boundaries to be
learned yielding strong classification performance and hence
can be used for accuracy-sensitive applications, but these ap-
proaches are often computationally demanding during run-
time, resulting in lower energy efficiency [4]. In contrast,
simple decision functions such as sparse linear functions have
high energy efficiency and can be used for applications that
can tolerate errors, but these approaches lack the flexibil-
ity to learn complex decision boundaries necessary for high
classification accuracy.

Typically, the standard approach is to apply the same
classification approach to all incoming test data during run-
time. The problem with this approach is that it does not
take into account the “difficulty” of the test input. For most
“easy” inputs, using a complex classifier results in the same
error rate as a simple classifier, but it consumes much more
energy for no added benefit. Conversely, for “hard” inputs,
using a simple classifier lowers energy, but it results in a
lower accuracy. In this paper, we introduce an adaptive
classifier approach that has a single unified “chooser” func-
tion which classifies the quality of the incoming data and
then assigns it to the optimal classifier, taking both accu-
racy and energy dissipation into account. In our approach,
the chooser function dynamically picks classifiers for each
new input to maximize classification performance subject
to an energy-efficiency constraint. This approach also en-
ables one to incorporate existing as well as new machine
learning approaches into constrained learning problems. Es-
sentially, one can seamlessly incorporate optimized, complex
classifiers into a budgeted system. Moreover, the budget can
be dynamically changed during run-time by retraining the
chooser function, which avoids the need to retrain complex
classifiers. The main contributions of our work are as fol-
lows:

– We propose an adaptive classifier design that uses a
regression-based chooser function to classify the incoming
data as “easy”, “harder” and “hardest”, and based on this
classification it assigns the data to the most energy-efficient
classifier that meets the target error rate. This chooser
function is tunable (through changing the weights of the
“chooser” function) at run-time to achieve a target accuracy
/ error rate or a target energy efficiency.

– We implemented our adaptive classifier in hardware with
Chisel [5] and Global Foundries 40nm technology node. The
implementation includes the design of the chooser function
and the linear, polynomial, and radial basis kernel function
(RBF) classifiers. Our evaluation shows that on average our
adaptive classifier consumes 100x less energy than RBF and
10x more energy than the linear classifier. The adaptive clas-
sifier is on average ≈3x faster than RBF and ≈0.5x slower
than linear classifier, while the error rate of the adaptive
classifier is on average only 0.5% higher than RBF but 40%
lower than linear classifier.

The rest of this paper is organized as follows. In Section 2,
we provide a formal definition of“hard”and“easy”problems.
This is followed by a description of the adaptive classifier in
Section 3 and the evaluation of our classifier in Section 4.
We provide an overview of the related work in Section 5,
followed by concluding remarks in Section 6.

2. HARD VS EASY CLASSIFICATION
A wide variety of classification approaches ranging from

sparse linear classifiers to deep neural networks exist today,
with each approach presenting a trade-off between classifica-
tion accuracy and energy efficiency. Rather than selecting a
single classification approach for all examples, our approach
is to design an adaptive classification system that dynami-
cally selects a classifier that is appropriate for the data un-
der consideration. We leverage the variation in “hardness”
of the data across various examples found in real world data
sets. In simpler terms, some data samples are extremely
hard to classify and require a very complex and energy in-
efficient classifier to achieve high accuracy. Other input ex-
amples could be classified easily and even the simplest clas-
sifier would achieve the desired statistical performance at
very low energy cost. Intuitively, the strategy of our adap-
tive classifier system is to route each example to the most
energy-efficient classifier such that it is correctly classified,
with examples that are incorrectly classified by all decision
functions routed to the most energy-efficient classifier.

More formally, the behavior described earlier arises from
the optimization problem when learning over training data.
Given a set of n training data/label pairs (x1, y1) , . . . , (xn, yn)
∈ X×{1, . . . , C}, where X is the input space, and {1, . . . , C}
is the collection of output labels, and given a collection of
k classifiers f1, . . . , fk : X → {1, . . . , C} with associated en-
ergy budget c1, . . . , ck ∈ R, the goal is to learn a “chooser”
function g : X → {1, . . . , k} that maps each example to one
of the k models in input space X such that the average error
rate is minimized subject to energy budget constraint. This
optimization problem can be formulated as:

min
g∈G

1

n

n∑
i=1

k∑
j=1

1fj(xi)6=yi1g(xi)=j , (1)

Subject to:
1

n

n∑
i=1

k∑
j=1

cj1g(xi)=j ≤ B

where B is the chosen average energy dissipation budget
and 1z is the indicator function, with a value of 1 when the
logical expression z is true and a value of 0 when the logical
expression z is false. By representing the constraint as a
Lagrange multiplier, the problem can be represented as an
unconstrained optimization problem:

min
g∈G

1

n

n∑
i=1

k∑
j=1

Lj (xi, yi)1g(xi)=j , (2)

where Lj (xi, yi) = 1fj(xi)6=yi + λcj is defined as the loss
associated with using the classification function fj on ex-
ample xi, incorporating both the classification error of the
prediction function as well as the energy dissipation modu-
lated by the Lagrangian multiplier λ (in practice, the value
λ is swept over in order to find a feasible system that sat-
isfies the budget constraint1). This problem is equivalent
to the well-studied cost-sensitive learning problem, allowing
for existing learning techniques to be applied.

In practice, we upper bound the objective as an impor-
tance weighted supervised learning problem of the form

min
g∈G

n∑
i=1

Wi1g(xi)6=li , (3)

where the pseudo-label li and importance weight Wi are
defined as

Wi = max
p,q∈{1,...,k}

Lp(xi, yi)− Lq(xi, yi) (4)

li = min
p∈{1,...,k}

Lp(xi, yi).

This allows for efficient training and implementation using
standard supervised learning techniques such as logistic re-
gression and support vector machines.

The pseudo-label li and importance weight Wi define if
an example is “easy”, “harder”, “hardest”, etc. We consider
an example to be “harder” or “hardest” if the pseudo-label
li (representing the optimal classification system to route
example i) points to a complex, energy-inefficient classi-
fier. Conversely, we consider an example to be “easy” if the
pseudo-label li points to an energy-efficient classifier. Note
that for examples with no variation in error rate across clas-
sifiers, the importance weight Wi is generally small, as a dif-
ference in losses simply represents the difference in energy
efficiency between classifiers. The over-fitting of the classi-
fiers (including the chooser) should be addressed during the
training period, however, no special steps are required to
avoid such problems, as the “chooser” function is not prone
to over-fitting due to the fact that it is expected to be much
simpler than the most complex classifier in the ensemble.
For example in our approach, the “chooser” function is a lin-
ear classifier, while the classifier for the “hardest” examples
is an RBF kernel function.

The proposed system presents many beneficial properties
rarely found in energy-efficient systems. By treating each
classification model as a “black box” as opposed to a known,
modifiable object, existing energy-efficient classification ap-
proaches can be directly used when constructing the system.
Furthermore, multiple complex classifiers can be easily inte-
grated into the system by providing the capability to upload
the data to a server to apply an extremely complex classifier.
Due to the modularity of our design, the system is even able

1Note that we derive this problem for the energy/power con-
straint, however we could pose the problem as a minimum
energy dissipation system given an average error constraint.
Introducing a Lagrange multiplier for the average error con-
straint yields an identical optimization problem (modulated
by a constant) as (2), and therefore solving the energy/power
constrained problem is equivalent to solving the error con-
strained problem.

to integrate humans into the loop for cases where humans
have lower error rates than machines in classifying objects.2

Additionally, changing the energy constraint of the pro-
posed system does not require that the classifiers be re-
trained. This is particularly valuable for mobile systems,
where adaptation is required to account for the difference in
usage patterns of users, and energy budgets need to be up-
dated due to changes in battery usage settings. [1]. Rather
than changing the classifiers, the system only needs to re-
train the chooser function g to adapt to a new budget con-
straint. Furthermore, the usage of a convex supervised ap-
proach such as logistic regression or a Support Vector Ma-
chine (SVM) to train the chooser function g allows for stream-
ing online updates to be applied during run-time using stochas-
tic gradient updates.

3. ADAPTIVE CLASSIFIERS
In this section, we present a detailed description of our

adaptive classifier approach. We present the theory and
the implementation details of three different classifiers and
a chooser function that chooses one of the three classifiers
based on the “hardness” of the data.

Figure 1 shows the microarchitecture of our proposed adap-
tive classifier system. It consists of the “Chooser” function

(marked as ?), and several “core” classifiers with various
complexities. In our case, the “chooser” function uses a
multi-class logistic regression classifier. Once trained the
“chooser” function selects an appropriate classifier. In the
current work the “chooser” function is implemented as a lo-
gistic regression based multi-class one-vs-all classifier with
three labels. Note that the adaptive classifier design pro-
posed in this paper doesn’t include the training hardware,
and all the classifiers, including the “chooser” are trained
offline.

During the offline training of the system, all the “core”
classifiers are trained to achieve the minimum error rate pos-
sible. The “chooser” is then trained (offline) to classify the

2In this case, a second budget constraint may exist regarding
the number of times a human is queried. Due to lack of
space, we do not discuss this model here, however the exact
same reduction to a cost-sensitive learning problem can be
made by incorporating a second Lagrange multiplier for this
new constraint.

Figure 1: Conceptual block diagram of the pro-
posed approach. “Chooser” function is marked as

? , and its microarchitecture is the same as the
“Easy” block. Data paths are shown as solid lines,
while control path is dashed.

“hardness”of the inputs by analyzing the results of the“core”
classifiers. For example, during the training of the “core”
classifiers if a data input is classified correctly by all classi-
fiers, it is labeled as“easy”, whereas if it is classified correctly
only by higher complexity classifiers, it is deemed “harder”
or “hardest”. The “easy”, “hard” and “hardest” class labels
are used to route the input to the “core” classifier of appro-
priate complexity. The “chooser” function is trained for a
given error rate constraint, which allows the adaptive clas-
sifier system to dynamically trade off classification accuracy
versus energy efficiency. The computations are performed
using fixed point, 2’s complement representations, thus only
the most significant bit (MSB) is required to identify the
label of a binary class.

Below, we describe the functional form of three “core”
classification functions – linear function, polynomial func-
tion, and RBF kernels, which we used in our evaluation.
The binary functional forms are presented, with multi-class
prediction accomplished using a one-versus-all max-margin
coding to convert from multi-class to binary classification.

We consider linear classifiers of the form

flin(x) = sign

(
D∑

d=1

αdx(d) + β

)
, (5)

where D is the dimensionality of the data and x(d) corre-
sponds to the value of the dth-dimensional element of exam-
ple x. The classifier is parametrized by the weights α1, . . . , αD

and the offset β, with these parameters learned using train-
ing data. The “easy” inputs are routed to this low complex-
ity classifier. This classifier is of similar complexity as the
“chooser” function, and is the simplest of the “core” func-
tions. It is implemented as a multiply-accumulate block as
shown in Figure 1(Easy). Depending on the design topol-
ogy chosen after design space exploration, the multiply-and-
accumulate (MAC) block is parallelized accordingly. It has
the highest energy efficiency, but it also has a high error
rate.

Similarly, we utilize homogeneous polynomial classifiers of
the form

fpoly(x) = sign

(
D∑

d=1

P∑
p=1

αp
dx(d)p + β

)
, (6)

where P is the power of the polynomial classifier. As in the
linear case, the classifier is parametrized by the weight pa-
rameters α1

1, . . . , α
P
D and the offset β. The “harder” input is

routed to this higher complexity classifier block. This block
is implemented as a 5th order polynomial evaluation func-
tion. The “harder” block shares the multiply-accumulate
unit with the “easy” block. This classifier provides a mod-
erate compromise between error rate, energy efficiency and
execution time. The polynomial is computed iteratively in
five clock cycles using a MAC unit (see Figure 1(Harder)).
The MAC unit is used to compute the higher order compo-
nents αp

· x(·)p by feeding the multiplier output as the input.
Finally, we consider radial basis function kernel classifiers

of the form

frbf (x) = sign

(
n∑

i=1

γie
−‖x−xi‖

2
2

σ

)
, (7)

where σ is a user-specified kernel parameter and the points
x1, . . . , xn are the training data points. The classifier is
parametrized by the kernel weights γ1, . . . , γn. The “hard-
est”input is routed to this highest complexity classifier block.

Because RBF includes an exponential function, this block is
more complex compared to the previous two. An SRAM
is used as a look-up table (LUT) in order to avoid lengthy
computations of the exponential function. The RBF func-
tion computation partially reuses the blocks in the other
two classifiers in order to reduce area and increase hardware
utilization. The block diagram shown in Figure 1(Hardest)
includes an exponential function that is implemented as a
look-up table. The MAC unit then computes γie

(·).

4. EVALUATION
In this section we provide a detailed evaluation of the

proposed adaptive classifier.

4.1 Experimental Setup
Before exploring the hardware design space of our adap-

tive classifier, the training of the adaptive classifier system
was performed offline using MATLAB for several different
constraints scenarios, where we set the maximum acceptable
error rate independent of the application. Our goal was to
minimize the energy dissipation for a given error rate. In
MATLAB, the minimum energy dissipation point is equiva-
lent to the use of the simplest3 model possible for the given
constraints. The “chooser” function was trained to achieve
minimum energy dissipation by optimizing the subblock uti-
lization for a given error rate, i.e. if two classifiers with dif-
ferent energy dissipations have comparable error rates, the
“chooser” function would be biased towards the simpler clas-
sifier. The data sets were separated into training and evalu-
ation sets using an 80/20 scheme, where 80% of the inputs
were used for training, and 20% for evaluation. All figures
of merit in the evaluation section were acquired using the
“evaluation” data sets, thus guaranteeing that inputs were
never seen before by the systems under test.

After the training, in order to explore and narrow down
the hardware design space of our adaptive classifier, we used
the Aladdin toolset [7]. The different design choices that
we considered include level of MAC parallelization, size of
SRAM for lookup table, level of computational parallelism,
and the number of pipeline stages. Figure 2 shows the re-
sults obtained using the Aladdin tool for one of the input
data sets (Letter Recognition). Here, all the EDP points

3Simplest model means the one that has the smallest number
of computations per example. For example, if a linear and
a polynomial function give the same error rate for a given
input, the linear function is considered to be the simplest.

0 20 40 60 80 100
Design ID

-22

-21

-20

-19

E
D

P
(lo

g
10

)

99.3% Accuracy / 1 V
97.1% Accuracy / .7 V
95.7% Accuracy / .5 V

Figure 2: Energy delay products for different adap-
tive classifier designs generated by Aladdin [7].

are computed for the maximum statistical classifier accuracy
and are acquired by varying the size of the computational
units, memory size, level of computational parallelism, and
number of pipeline stages across the different designs. The
scatter plot shows how the various design choices affect the
EDP of the system. The figure also shows the EDP at dif-
ferent voltages and the corresponding accuracy levels. The
goal for the current work was minimizing the EDP for the
given error rate constraint. Hence we selected the designs
with the minimum EDP.

The chosen design was then implemented using Chisel [5].
This environment was chosen, as it generates both hardware
description code (Verilog) as well as C++ functional model.
That allows us to perform a rapid verification of the design.
The Verilog HDL code was then synthesized and placed-
and-routed using 40nm Global Foundries technology with
Synopsys standard cell libraries. The delay and energy dissi-
pation were acquired from placed-and-routed, RC-extracted
layout simulations using Cadence toolset. The main figures
of merit that were considered for evaluation were compu-
tational performance (defined as average computation time
per input), energy dissipation, and statistical performance,
defined as misclassification error rate. We used seven differ-
ent data sets from the UCI library [8] and a synthetic data
set for our evaluation. The list of the used data sets is shown
on Table 1 under the “Data Set” column. In addition to the
adaptive system, individual classifiers were implemented for
comparison and validation.

4.2 Experimental Results
Figure 3 shows the Error Rate vs. EDP of the proposed

approach and that of the linear, polynomial, and RBF clas-
sifier when used individually. We can see from the fig-
ure that depending on the input data set the proposed ap-
proach behaves differently. Adaptive classifier system per-
forms best when the input data set has uniformly distributed
“hardness”, meaning the input has an equal mix of “easy”,
“harder” and “hardest” examples. If the input data set is
mostly “easy” or mostly “hard”, adaptive classifier would
waste energy because a simple or complex classifier could
be used, respectively, without the “chooser” function. As
seen from the data plots, linear classifier cannot achieve low
error rates, while RBF, although showing extremely low er-
ror rates, has high EDP. For example, Letter recognition

data set shown in Figure 3 shows that linear classifier cannot
achieve an error rate below 65%, while RBF, which has error
rate close to 0%, has very high delay and energy dissipation.
Thus, it is important to analyze the input data set and ap-
plication before implementing the “chooser” function.

Unlike the conventional classifiers, the adaptive classifier
system enables us to trade-off error rate and EDP. For exam-
ple, in case of the Letter Recognition data set, if the EDP
constraint falls between the EDP of the linear and polyno-
mial classifiers, then in the conventional approach one has
to choose the linear classifier which results in a high error
rate. However, if one were to use an adaptive classifier, then
the “chooser” function could be tuned to the EDP constraint
and an error rate lower than that of a linear classifier can
be achieved. Similar approach can be adopted for EDP con-
straints lying between polynomial and RBF classifier for the
Letter Recognition data set as well as for other data sets
to achieve lower error rates compared to conventional clas-
sifiers.

Adaptive Effort Classifier System Conventional Classifiers
High Error Rate Low Error Rate Average Linear Polynomial Radial-Basis

Data Set Energy Delay Energy Delay Energy Delay Energy Delay Energy Delay Energy Delay

Synthetic 52.6e-15 0.1 29e-12 0.7 903.9e-15 0.2 15.8e-15 0.03 92.3e-15 0.3 27e-12 0.4
Image Segm. 4.9e-12 1.0 2.7e-9 4.9 9.3e-12 1.4 5.4e-12 1 79.8e-12 2.6 2.6e-9 4.173
ISOLET 4.5e-9 34.6 2.9e-6 153.4 130.0e-9 69.1 5.9e-9 35.1 79.4e-9 71.4 2.7e-6 142.6
Letter Rec. 4.1e-12 1.0 2.3e-9 4.3 29.7e-12 1.1 4.4e-12 0.8 6.5e-12 2.5 1.9e-9 3.7
MNIST 8.6e-9 43.3 3.9e-6 184.1 186.4e-9 94.8 10.5e-9 44.5 14e-9 86.8 3.93e-6 181.3
Penbase Rec. 3.3e-12 0.7 2.0e-9 3.7 21.5e-12 1.5 4e-12 0.9 5.3e-12 1.6 1.8e-9 3.7
Spam filter 50.1e-12 2.9 21.6e-9 14.5 1.1e-9 4.3 53.1e-12 3.2 67.6e-12 5.4 20.5e-9 13.02
Vowel Rec. 1.4e-12 0.5 73.2e-11 2.8 15.9e-12 1.2 1.7e-12 0.5 2.4e-12 1.3 0.7e-9 2.3

Table 1: Energy and Delay for the adaptive classifier and conventional classifiers for different data sets. Each
row corresponds to subplots in Figure 3. Energy results are shown in J/cycle and delay is represented as µs.

Current Work SEC

Time EDP Time EDP

Synthetic 1.67e-04 1.81e-19 1.72e-04 3.86e-19
Image Segm. 2.60e-03 1.30e-17 3.22e-03 3.99e-17
ISOLET 2.51e-02 8.98e-12 2.50e-02 1.78e-11
Letter Rec. 4.86e-03 3.27e-17 5.42e-03 8.13e-17
MNIST w/ bkgnd 3.69e-02 1.77e-11 3.67e-02 3.48e-11
Penbase Rec. 5.15e-03 3.23e-17 5.57e-03 7.54e-17
Spam 2.83e-03 4.73e-15 3.39e-03 1.36e-14
Vowel Rec. 4.03e-03 1.91e-17 4.05e-03 3.85e-17

Table 2: Comparison of the proposed and SEC ap-
proaches [6] trained for low energy subject to error
rate budget. The time is in seconds.

Figure 3: Error rate vs. Energy Delay Product
(EDP) for adaptive classifier and conventional clas-
sifiers. Adaptive classifier can be tuned to achieve
any of the intermediate error rate values.

Table 1 shows the energy dissipation and delay values of
the adaptive classifier when running the various data sets.
The delays represent the minimum achievable delay with-
out change in the budgeted error rate. “High error rate”
represents the training scheme where we do not constrain
the error rate (due to which the linear classifier is always
preferred) resulting in lowest EDP. On the other hand, the
“Low error rate” column shows the training scenario where
the target error rate budget is set to be low (due to which
mostly RBF is selected by the “chooser” block) resulting in
a higher EDP. On average the proposed adaptive classifier
approach consumes 10x more energy as compared to the lin-
ear classifier and 100x less energy than RBF. The average
delay of the adaptive system across all examples is ≈2x of
the linear approach, and ≈0.33x times of that of RBF. At
the same time the error rate is on average 0.5% higher than
RBF, but ≈ 40% lower than linear.

6 16 27

20

40

60

80 Synthetic

19 36 53

MNIST

2 5 7

Spam

6 17 28

Letter
Rec.

10 11 12

20

40

60

80 Image
Segm.

21 34 47

ISOLET

1 3 4

Pen Base

9 20 30

Vowel
Rec.

-13

-12

-11

-10

-07

-06

-05

-10

-09

-08

-07

-10

-09

-08

-10

-09

-08

-08

-07

-06

-05

-11

-10

-09

-08

-11

-10

-09

-08

E
n

e
rg

y
D

is
si

p
a
ti

o
n

 D
is

tr
ib

u
ti

o
n

 (
%

)

T
o
ta

l
E

n
e
rg

y
D

is
si

p
a
ti

o
n

 (
lo

g
1
0
,
J/

cy
cl

e
)

Error Budget (%)

RBF Polynomial Linear Chooser

Figure 4: Energy dissipation distribution and the
total energy dissipation vs. error rate for different
classification problems.

From Table 1 we can see that the “High Error Rate” and
“Low Error Rate” results (both energy and delay) are com-
parable to linear and RBF classifiers respectively. This be-
havior is expected, because if the training is biased towards
one of the error rate extremes, the adaptive classifier tends
to choose only linear or RBF. This is also confirmed by
the subsystem energy distribution plots shown on Figure 4.
This figure shows the total energy consumed by the adap-
tive classifier system at different error budgets as well as the
distribution of energy consumption across different parts of
the system. Note that the “chooser” function tends to use
linear classifier more often when a high error rate is accept-
able, while being biased towards using RBF when the error
rate constraints are tight. That means that energy dissi-
pation of the linear classifier dominates at high error rate
budgets. This allows for dynamic change in energy dissipa-
tion depending on the current error rate budgets as well as
complexity of the current computation.

Figure 5 shows the area results post-placement-and-routing.
The bars show the relative areas of different blocks, while
the solid line shows the total area. The results include the
SRAM LUT as part of the RBF block. This LUT occupies
43900 µm2 and is used to evaluate the exponentiation func-
tion. Note that the area distributions are different across
different data sets as we generated a unique classifier design
for every data set separately. If we were to design the adap-
tive classifier using all datasets together, then it would lead
to a sub-optimal design.

As part of our evaluation, we have performed a detailed
comparison of our approach to the state-of-the-art scalable

Figure 5: Relative area distribution of subblocks in
adaptive classifier (bars) as well as the total area
(solid line).

effort classifier (SEC) approach described in [6] (see Table
2). To make the comparison as fair as possible, SEC sys-
tem was designed using the same process as the proposed
approach. We used our linear, polynomial, and RBF clas-
sifiers to implement the three stages of the SEC, and the
SEC design space exploration was performed using Aladdin
tool. However, the energy results for the SEC approach were
from just synthesized designs, while the adaptive classifier
approach energy results were using netlists extracted from
placed-and-routed designs. The “Time” column shown in
Table 2 shows the results of C++ simulations. Results show
that the execution time of for both approaches is compa-
rable. However, the adaptive classifiers can achieve almost
2× lower EDP while operating at the same error rate. The
reason for this is that when facing “harder” problems, the
SEC approach still utilizes “easy” stages of the classification
system before switching to more complex classifiers, thus
wasting energy. Adaptive classifier approach chooses only
one (appropriate) classifier depending on the “hardness”.

5. RELATED WORK
There has been some prior work in the design of energy-

efficient classifiers. The system proposed by Venkataramani
et al. [6] centers on using increasingly complex classifiers
on examples close to the decision boundary. This system as-
sumes that complex classifiers will always correctly classify
examples, potentially using multiple complex classification
functions on inherently noisy examples. Panda et al. [9] in-
troduce a system for object detection using energy-efficient
neural computing. The hierarchical framework of classifiers
were set up in an increasing level of complexity, making the
dynamic trade-off between classification performance and
energy efficiency hard. Similarly, the system proposed by
Park et al. [10] uses dynamic threshold adjustment in deep
neural networks (DNN) to achieve low power operation. In
this work, a “little” DNN is used, and if it fails, a “big” DNN
is used, etc. Because of the system topology it is not possible
to automatically enable the necessary DNN without running
all other DNNs.

The approach proposed in the current work could be viewed
as the energy-efficient learning problem, which in turn is a
variation of the problem of learning under test-time budgets
[11, 12, 13, 14, 15, 16]. Here, learning under test-time bud-
gets is a family of approaches that focus on minimizing the

costs during testing. In general, these approaches focus on
selecting sensors as opposed to energy expenditure and ig-
nore the energy usage associated with selection system. As
the main obstacle in the test-time budget problem is the se-
quential revelation of information, the energy expenditure
of the selection system is generally not accounted for. Ad-
ditionally, many approaches to test-time budgeted learning
[14, 15, 16] require design of both the resource allocation
as well as the classification functions, preventing the use of
optimized modular systems.

6. CONCLUSION
In this work we have presented a novel and fundamentally

different classifier approach that can dynamically trade-off
error rate for energy dissipation while solving a classifica-
tion problem. Our adaptive classifier design uses a logistic
regression classifier as its “chooser” function to identify the
input data complexity and then route the data to the classi-
fier with appropriate complexity. We implemented (placed-
and-routed design) the adaptive classifier system using a 40
nm technology, and tested it using the data set provided
by the UCI repository. Our evaluation shows that on aver-
age our adaptive classifier consumes 100x less energy than
RBF and 10x more energy than the linear classifier. The
adaptive classifier is on average ≈3x faster than RBF and
≈0.5x slower than linear approach, while the error rate of
the adaptive classifier is on average only 0.5% higher than
RBF but 40% lower than linear.

7. REFERENCES
[1] N. Lane et al., “A survey of mobile phone sensing,”

Communications Magazine, IEEE, vol. 48, no. 9, 2010.

[2] K. Sowjanya et al., “Mobdbtest: A machine learning based
system for predicting diabetes risk using mobile devices,” in
Advance Computing Conference (IACC), 2015.

[3] G. Wu et al., “Always connected: Billions of connected
nanosystems,” in Workshop on Rebooting the IT
Revolution, 2015.

[4] S. Venkataramani et al., “Approximate computing and the
quest for computing efficiency,” in Proc. DAC. ACM, 2015.

[5] “Chisel: Constructing Hardware in a Scala Embedded
Language,” https://chisel.eecs.berkeley.edu/.

[6] S. Venkataramani et al., “Scalable-effort classifiers for
energy-efficient machine learning,” in Proc. DAC, 2015.

[7] Y. S. Shao et al., “Aladdin: A pre-rtl, power-performance
accelerator simulator enabling large design space
exploration of customized architectures,” in ISCA, 2014.

[8] “Machine Learning Repo,” http://archive.ics.uci.edu/ml/.

[9] P. Panda et al., “Object detection using semantic
decomposition for energy-efficient neural computing,” arXiv
preprint arXiv:1509.08970, 2015.

[10] E. Park et al., “Big/little deep neural network for ultra low
power inference,” in Proc. CODES+ISSS, 2015.

[11] K. Trapeznikov et al., “Supervised sequential classification
under budget constraints,” in AISTATS, 2013.

[12] J. Wang et al., “An LP for sequential learning under
budgets,” in AISTATS, 2014.

[13] ——, “Model selection by linear programming,” in
European Conference on Computer Vision, 2014.

[14] Z. Xu et al., “Cost-sensitive tree of classifiers,” in Proc.
ICML, 2013.

[15] M. Kusner et al., “Feature-cost sensitive learning with
submodular trees of classifiers,” in Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

[16] F. Nan et al., “Feature-budgeted random forest,” in Proc.
ICML, 2015.

