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ABSTRACT
As GPUs are becoming widely deployed in the cloud infrastructure
to support different application domains, the security concerns
of GPUs are becoming increasingly important. In particular, the
support for multiprogramming in modern GPUs has led to new
vulnerabilities since multiple kernels in a GPU can be executed at
the same time. In this work, we propose a new microarchitectural
timing covert channel for GPUs that can be established based on the
shared, on-chip interconnect channels. We first reverse-engineer
the organization of the on-chip networks in modern GPUs to under-
stand the core placements throughout the GPU. The hierarchical
organization of the GPU results in the sharing of interconnect band-
width between neighboring cores. Based on this understanding,
we identify how contention for the interconnect bandwidth can
be exploited for a novel covert channel attack. We propose two
types of interconnect-based covert channels that exploit the on-
chip network hierarchy. Unlike cache-based covert channels, no
states of the on-chip network need to be modified for communi-
cation in our interconnect-based covert channel and the impact
of contention is very predictable. By exploiting the parallelism of
GPUs, our proposed covert channel results in very high bandwidth
– achieving approximately 24 Mbps of bandwidth on NVIDIA Volta
GPUs and results in one of the highest known microarchitectural
covert channel bandwidth.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.
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1 INTRODUCTION
The compute and memory capacity of GPUs are continuing to grow
and enable more applications to leverage GPUs [13]. The large
number of compute cores and their corresponding need for large
memory bandwidth had made it critical to design an efficient on-
chip network. One key characteristic of any on-chip network is
that the resources, in particular, interconnect channel bandwidth,
are shared resources [63, 68]. In this work, we focus on the on-
chip network and explore the opportunity to exploit the shared,
high bandwidth on-chip network of GPUs to create a novel, very
high-bandwidth interconnect microarchitectural covert channel.

One feature of recent GPUs is the ability to support multipro-
gramming – i.e., have multiple kernels executing on a GPU at the
same time [55]. While this can improve the utilization of the GPUs
and the overall system performance [2, 66, 69], it opens up poten-
tial security vulnerabilities in the system because multiple kernels
share GPU resources concurrently. Anytime there is a shared re-
source such as on-chip cache, memory bus, or functional units [21],
it opens up opportunities for malicious actors to establish covert
channels by encoding a bit as either contention or no-contention in
the shared resource. A covert channel can be dangerous as it allows
a malicious program to intentionally leak information covertly [54].

The key challenges in establishing covert channels are to reliably
detect the occurrence of contention and minimize synchronization
overhead. Wu et al. [68] outlined the challenges of uncertainty
in cache-based covert channels including the scheduling uncer-
tainty between the sender and the receiver. Other prior works have
demonstratedmicroarchitectural timing covert channels [37, 40, 56].
Recently, a very high-bandwidth, 4 Mbps covert channel between
two concurrent kernels was demonstrated on GPUs [42] – one of
the highest known covert channel bandwidth. In our work, we
propose a novel covert channel that achieves approximately 24
Mbps by exploiting the on-chip shared GPU interconnect. Wu et
al. [68] also used the interconnect (or the memory bus) to create a
covert channel; however, the bandwidth achieved is significantly
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lower since it relies on “locking” the bus to create a contention (or
delay) in access for the receiver. In contrast, our work exploits the
direct contention for the physical channel that is shared and greatly
reduces the overhead in creating a covert channel – resulting in
significant bandwidth.

In our work, we exploit the contention of interconnect channel
for covert channel. In particular, we explore the on-chip intercon-
nect in GPUs that is shared by the cores and provides a more pre-
dictable or a direct impact on the performance from contention to
enable a high-bandwidth covert channel. We first reverse-engineer
the on-chip network of GPUs to identify the organization and the
core placement. Based on the reverse-engineering, we show how
on-chip communication (or the hierarchical communication organi-
zation) is shared between the streaming multiprocessors (SM) or the
cores.We then propose two different types of covert channels – TPC
(Texture Processing Cluster) channel and GPC (Graphics Processing
Cluster) channel – that exploit the contention for on-chip intercon-
nect across the GPU architecture. In particular, we demonstrate
up to 24 Mbps of bandwidth for covert channel with a negligible
error by exploiting GPU characteristics including hierarchical core
organization with limited sharing of the interconnect and parallel
threads executed concurrently to increase the number of requests
and increase contention. A single TPC channel (between two SM
cores) can create a covert channel of ≈ 1 Mbps, and by exploiting
the large number of parallel cores a covert channel with bandwidth
up to 24 Mbps can be achieved with a negligible amount of error.

One challenge in maintaining a reliable covert channel is syn-
chronization between the sender and the receiver. Alignment and
handshaking are necessary to synchronize communication between
the sender and the receiver. However, both these operations can
limit the overall bandwidth of the covert channel. We identified how
clock registers available in GPUs can be leveraged for synchroniza-
tion without requiring any explicit communication or alignment
between the sender and receiver. We determined that the clocks
in neighboring cores of the GPU have very low clock skew such
that they can be leveraged directly with local synchronization. A
combination of a low overhead synchronization and a local resource
(i.e. physical interconnect channel) that is directly shared between
the cores enables one to establish and maintain a reliable covert
channel that achieves significantly higher bandwidth compared to
other known covert channels. To subvert the interconnect-based
covert channel identified in our work, we propose to modify the
interconnect arbitration, which effectively disables the covert chan-
nel with minimal impact on overall system performance. In ad-
dition to the reverse-engineering and demonstration of a novel
high-bandwidth covert channel, the main contribution of this work
is that interconnect design (in addition to cache, memory, core
pipeline, etc.) needs to consider the security implications of
the performance-centric design choices. In particular, the contri-
butions of this work include the following.
• We reverse-engineer the on-chip interconnect of modern
GPUs, identify how the cores are mapped across the GPU
hierarchy, and the bandwidth sharing that occurs between
co-located cores in the GPU.
• We propose a novel microarchitectural interconnect covert
channel that leverages on-chip interconnect contention to

create two types of interconnect covert channels, TPC chan-
nel and GPC channel.
• We demonstrate interconnect covert channel on a modern
GPU. By exploiting the parallelism in GPU, we achieve covert
channel bandwidth of 24 Mbps with negligible error.
• We propose a countermeasure through secure arbitration –
in particular, we propose strict round-robin arbitration that
provides temporal partitioning to thwart the proposed covert
channel attack.

2 BACKGROUND
2.1 GPU Architecture
A modern GPU consists of several components such as SM, L2
cache, and Memory. Multiple SMs are connected to multiple L2
cache slices through the on-chip network (e.g, cross-bar) and each
L2 slice is coupled with different Memory Controllers (MCs) and
memories. A kernel is divided into multiple thread blocks and the
thread blocks can be assigned to each SM in an arbitrary manner [7,
11, 29, 34]. After dispatching the thread blocks to SMs, each thread
block is further split into a group of threads called a warp or a
wavefront. The warp scheduler issues one of the ready warps among
multiple warps based on a warp-scheduling algorithm [33, 57, 58,
60]. When a warp executes a memory request, memory coalescing
can reduce the memory bandwidth consumption. If multiple threads
in a warp access a contiguous memory block or a same cache
line, their requests can be coalesced into one contiguous, aligned
memory access. After memory accesses are coalesced, the memory
requests from a warp access the on-chip memory hierarchy (i.e. L1
cache, L2 cache, and the main memory).

Recent GPUs have support for multiprogramming to enable
multiple kernels to execute on the same GPU concurrently [55].
Multiprogramming on NVIDIA GPUs can be done with multiple
streams within the same process or leverage MPS (Multi-Process
Service) [49] that allow concurrent kernels from different processes.
Similar to prior work [42], we utilized streams (cudaStream) for
multiprogramming on GPU for the proposed covert channel attack
but this work is also applicable to MPS. The results in this work are
with cudaStream but we confirmed that the same covert channel can
be carried out with MPS and achieve the same high-bandwidth with
negligible impact on the error rate. The only difference was the one-
time synchronization overhead required to properly synchronize
the launch of the multiple processes from the CPU.

2.2 Threat Model
Covert channels can be referred to as “insider threats” where two
processes establish an illegitimate communication channel through
timing modulation to leak information [10, 41] and are vulnerable
in cloud computing as well [68]. As a result, covert channel is an
intentional channel that transmits data between processes that are
not permitted to communicate with each other according to the
system security policy [61]. Because of imperfections in isolation
usage of shared resources, malicious processes can exploit these
shared resources to set up a communication channel. The covert
channel consists of a sender, referred to as the trojan, and a receiver,
often referred to as the spy. With covert channel, the trojan can
send sensitive information or leak data to the spy.

In this work, we target computing systems with GPU that are
shared by multiple tenants. We assume that users are not allowed
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physical access to the target system and only remote access is pos-
sible. Our threat model consists of sender (or trojan) and receiver
(or spy) kernels that co-exist concurrently on the same GPU. We
assume both the sender and receiver processes are user-level pro-
cesses without any additional privileges. We also assume the sender
possesses secret or sensitive information and can only communi-
cate with other trusted components, such as an encryption service,
through defined channels. However, the sender intentionally leaks
the secret through the covert channel and the receiver reads the
secret leaked by the sender. In this work, our goal is to establish a
covert channel between the trojan (sender) and the spy (receiver)
kernels. Our covert channel attack and the analysis were conducted
on NVIDIA Volta V100 GPU with CUDA 10.0.

2.3 NoC Concentration and Arbitration
One critical aspect of on-chip networks [14, 22] or any interconnec-
tion networks is sharing of resource – in particular, sharing of the
channel bandwidth between different endpoints. A simple approach
to sharing bandwidth is a multiplexer (mux) – often referred to as
network concentration [15]. For an N input mux and a single output
with the same bandwidth, the output bandwidth is oversubscribed
by a factor of N . This can cause a performance bottleneck and
speedup [15] can be provided where excess bandwidth is provided
at the output channel, compared to the input channel, to improve
overall performance. Another important component of the on-chip
interconnect is the arbitration policy. In this work, we exploit how
concentration is exploited across the GPU hierarchy and the on-
chip interconnect to establish a covert channel. In addition, we
identify how the secure arbitration policy can be used to provide a
countermeasure against the proposed covert channel attack.

In this work, we explore the concentration that occurs within
the GPU hierarchy – especially between the SMs within a TPC to
create a covert channel that we refer to as TPC channel. Example
placement of the receiver (or the spy) and the sender (or the trojan)
is shown on the left in Figure 1, where the sender is shown as TPC
sender. The different TPCs within the GPC can also be leveraged
to create a different type of covert channel that we refer to as
GPC channel. Figure 1 also illustrates GPC channel with the same
receiver as the TPC channel but the sender processes are distributed
across multiple TPCs as shown with GPC sender. To increase the
bandwidth of TPC channels, multiple TPCs can be exploited while
the GPC channel bandwidth can also be increased by using a large
number of GPCs. 1

3 REVERSE ENGINEERING GPU
ON-CHIP NETWORK

In this section, we reverse engineer the organization of a GPU’s
on-chip network as well as how the various SMs are connected to
each other via the on-chip networks and leverage the SM connec-
tivity information for our proposed interconnect covert channel
attack. Note that our use of TPC (or GPC) channels refers to log-
ical channels between the SMs (or TPCs) to illustrate the covert
channel.

1Note that recent NVIDIA GPUs provide isolation between the GPCs throughMIG [50];
however, the isolation is provided between the GPCs and MPS [49] is still supported
within an instance or within the GPC. Thus, the proposed covert channel is still
applicable to recent GPUs with MIG.
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Figure 1: GPU hierarchical organization block diagram.

3.1 GPU Hierarchical Organization
It is well-known that GPUs are designed hierarchically [3, 12, 18, 28].
In NVIDIA GPUs, the basic building block of the GPUs are the
Streaming Multiprocessors (SMs).2 Two SMs are grouped together
to form a Texture Processing Cluster (TPC) and multiple TPCs are
grouped together to form a Graphics Processing Cluster (GPC) [35,
45, 46, 48]. As an example, an NVIDIA Volta GPU can consist of 6
GPCs, with each GPC consisting of 7 TPCs and each TPC consisting
of 2 SMs [46]. In this hierarchical organization, all the individual
SMs have a private L1 cache that communicates with the L2 cache.
The L2 cache is banked with multiple L2 cache banks sharing a
memory controller. While it is well-known that a high-throughput
on-chip network is necessary to interconnect the SMs and memory,
to the best of our knowledge, all the details of the NVIDIA on-
chip network are not publicly available. Publicly available block
diagrams [45] show a crossbar in the middle of the GPUs – however,
we suspect that the crossbar is used to interconnect the GPCs to
the partitioned L2 cache. A high-level logical block diagram of
GPU hierarchical organization is shown in Figure 1. In our work,
we first reverse-engineer the on-chip network organization in an
NVIDIA Volta GPU and determine how the SMs are connected
to each other via this on-chip network. The logical organization
(or hierarchical organization) of the SMs in NVIDIA GPUs is well-
known [35, 45, 46, 48]; however, the physical implications of
the hierarchical organization is not known – e.g., while the
SMs are hierarchically organized, the interconnect can be “flat”
or organized differently. We determine the relative connectivity
and the hierarchical interconnect organization of the SMs across
the TPCs and the GPCs, and then leverage this information to
implement a covert channel.

3.2 TPC Channel
Since it is known that two SMs are placed together within a TPC [35,
45, 46, 48], we first attempt to reverse engineer the organization
of the SMs to identify which SMs are co-located within a given
TPC. Our hypothesis is that SMs that are co-located within a
TPC share the TPC channel (Figure 1) and this can degrade
the performance of the two SMs. To validate our hypothesis, we
run the synthetic benchmark shown in Algorithm 1 on the GPU.

2GPUs from AMD are also organized hierarchically – e.g., compute units, shader array,
and shader engine [3].
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Algorithm 1: Reverse Engineering TPC Organization
input :conf iд_smid // SM id to be activated

Procedure Memory Write Test(conf iд_smid)
sm_id = get_smid()

Amount = array_size / thread_block_size
base = Amount · thread_id
if sm_id == 0 then

for i ← 0 to Amount do
arr_A[base + i] = thread_id

end
else if sm_id == conf iд_smid then

for i ← 0 to Amount do
arr_B[base + i] = thread_id

end
return
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Figure 2: Execution time of the synthetic benchmark (Algo-
rithm 1) when run on SM0 and one other SM. The x-axis rep-
resents the ID of the other SMs.

The goal here is to evaluate a memory-intensive program that con-
tinuously accesses the L2 cache (and bypass L1 cache such that the
interconnect is accessed). The code does sequential memory write
access and ensures that all memory partitions (and corresponding
L2 cache) are accessed by the SM. We execute this synthetic code
concurrently on SM0 and one other SM in the GPU, i.e., only two
SMs are active. The placement of code (or thread block) on the SMs
can be identified by using the smid register that provides SM ID.

The execution time of the synthetic code when running on SM0
and one other SM is shown in Figure 2. In the figure, the x-axis
indicates the ID of the SMs. When SM1 is executed concurrently
with SM0, the performance degrades by a factor of 2. This factor of
2 degradations comes from the sharing of the TPC channel between
the two SMs of a TPC. In comparison, when the code is executed
on any other SM, there is no performance degradation, compared
to the performance of SM0. Our evaluation across a different com-
bination of SMs confirms that when two SMs within a TPC have
consecutive numbers – i.e., SMi and SMi + 1, where i is an even
number, they share the same TPC channel. The key observation
is not that two SMs are clustered together but the interconnect
bandwidth of the two SMs are shared and the contention for the
interconnect bandwidth can be leveraged in the covert channel
attack.

3.3 GPC Channel
To identify which SMs are co-located within each GPC, we per-
form an evaluation similar to what was done earlier in Section 3.2.
However, instead of activating only 2 SMs, we activate one SM in
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Figure 3: Performance measurements to identify SM/TPC
placement across the GPCs in the Volta GPU.

each of the 7 TPCs 3, i.e., 7 SMs in total. Using a similar approach
as before, we always activate TPC0 and then vary the TPC that
is selected to run concurrently with TPC0. We use only one SM
from each TPC. In addition to these two TPCs, 5 other TPCs are
randomly selected or made active and we run the evaluation 200
times. Unlike the TPC channel evaluation where we only selected 2
SMs, 7 SMs are needed for this evaluation because of the bandwidth
speedup [15] that exists within the GPC organization. As shown in
Figure 1, the SMs within a TPC share a mux and connect to the TPC
channel. Similarly, the TPCs within a GPC share a mux to connect
to the GPC channel. However, 7-to-1 mux or an oversubscription
by a factor of 7 will result in significant performance degradation
for memory-intensive workloads; hence a speedup is commonly
implemented [15].

The results of our evaluation to determine the SM/TPC organi-
zation across the GPCs are shown in Figure 3. Figure 3(a,b) and
Figure 3(c,d) show the TPC0 (TPC5) execution time, respectively,
where TPC0 (TPC5) are selected as the first TPC. The x-axis con-
tains the ID of the other TPC that is selected and the y-axis is the
execution time of TPC0 (TPC5) for the 200 evaluations with 5 other
randomly selected TPCs. There are no explicit TPC IDs on the
GPUs and we simply label TPC0 as the TPC that contains SM0 and
SM1, TPC1 contains SM2 and SM3, etc. Since there are 40 TPCs in
total, x-axis value ranges from 0 to 39 and the different data points
for a given x value are the performance measurements across 200
evaluations.

The performance of TPC0 varies depending on whether the other
randomly selected TPC belongs to the same GPC (see Figure 3(a)).
For example, for certain TPC selections (e.g., TPC6, TPC12, etc.),
there are a few evaluations that result in higher latency values
around 650.We average the 200measurements of the TPC execution
time and demonstrate the results in Figure 3(b). When TPC0 is
selected first and the other selected TPC is TPC6, TPC12, etc., the
probability of having contention for on-chip network bandwidth
becomes much higher, which results in higher execution time. As
shown in Figure 3(c,d), we observe a similar pattern in the scenario
where TPC5 is selected first. However, the key difference is that the
GPC containing TPC5 is only shared with 5 other TPCs, i.e., the GPC

3It is known that there are up to 7 TPCs in a GPC of the Volta GPU [46].
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Figure 4: NVIDIA Volta V100 GPU’s Logical to Physical Core
Mapping.

contains only 6 TPCs and not 7. Given that there are 40 TPCs and 6
GPCs, 4 of the 6 GPCs have 7 TPCswhile the remaining 2 GPCs have
only 6 TPCs as it appears as if one TPC in each of these two GPCs
is disabled. 4 This analysis is used to determine which TPCs are co-
located within the same GPC. We repeated the analysis described
above across all TPCs, and accordingly determined the mapping of
SMs across all GPCs in a single GPU, as shown in Figure 4. Overall,
we found that TPCs are mostly interleaved across GPCs. However,
considering that some GPCs only have 6 TPCs while other GPCs
have 7 TPCs, some of the mappings are not perfectly interleaved.
For example, GPC5 contains TPC5, 11, 17, 23, and 29 but instead of
TPC35, it includes TPC39.

3.4 GPC/TPC Contention Characteristics
The TPC and the GPC hierarchical organization described in the
earlier sections can be leveraged to establish a covert channel.When
the two SMswithin a TPC are used, we refer to this as a TPC channel,
and when multiple TPCs are leveraged, we refer to this as a GPC
channel. Both the TPC and the GPC channels are based on the
contention for resources during memory requests. However, the
type of memory access (i.e., read or write) can have an impact on
performance degradation, i.e., the quality of the covert channel. The
impact of memory access type on TPC and GPC channels is shown
in Figure 5. For the TPC channel, read memory access contention
has a minimal impact on performance while write memory access
contention results in 2× increase in the execution time, similar to
what was shown earlier in Figure 2. However, for the GPC channel,
increasing the number of active TPCs (from 1 to 7) within a GPC
results in a small performance impact for write requests (degrading
performance by only ∼15%). We speculate that the TPC bandwidth
for write requests is effectively “throttled” due to the TPC output
channel contention before contending for the GPC output channel.
Hence, the overall performance degradation from increasing the

4The Volta GPU that we evaluated (V100) has 40 TPCs but GV100 from NVIDIA has
42 TPCs [46]; thus, we deduce that two TPCs were disabled in the V100 GPU that we
evaluated.
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number of activated TPCs is relatively small for write requests.
However, for read requests, TPCs do not limit the requests and
thus, requests from 7 TPCs (14 SMs) contend for the GPC output
channel and likely creates contention for the shared L2 resources
as well as potentially contention during the reply path from the
L2 back to the cores [8]. For up to 3 activated TPCs, there is a
minimal impact from read requests on performance; however, we
observe performance degradation for read requests with 4 or more
activated TPCs. Specifically, when all 7 TPCs are activated, the
performance degrades by 2.14×. In the proposed covert channel
attack, we leverage the contention for memory write accesses in
the TPC channel (or covert channel based on SMs within a TPC),
while we exploit memory read accesses for the GPC channel (or
covert channel based on TPCs within a GPC).

4 INTERCONNECT COVERT CHANNEL
In this section, we describe how we can exploit the understand-
ing of GPU’s on-chip network for interconnect covert channel.
The proposed interconnect covert channel exploits local shared
resources (i.e., interconnect channel) that are directly connected
to the SMs. The physical interconnect channel contention itself is
used to establish covert channel by measuring the impact of the
contention on the memory access latency. We first describe how
synchronization is done between the sender and the receiver in the
proposed interconnect covert channel based on the GPU hardware
clock register. We then describe the steps required to establish the
two different types of covert channels – TPC channel and GPC
channel. We also describe the impact of memory coalescing as well
as how potentially multi-bit information can be communicated.

4.1 Synchronization
One challenge in any covert channel is the overhead for synchro-
nization between the sender and the receiver, and its impact on
overall throughput [21]. In this work, we identify how the clock()
function available in NVIDIA GPUs can be exploited for synchro-
nization as it returns the value of a 32-bit clock register that exists
within each SM in NVIDIA GPUs [47]. To evaluate whether the
clock register can be reliably used for synchronization, we ran a
simple CUDA kernel to read the clock register from each SM in
the Volta GPU – i.e., launch a thread block across all SMs that
simply returns the value of the clock register from each SM using
clock(). The returned clock value from the 80 SMs for a single run
of the CUDA kernel is shown in Figure 6. The clock values from
SMs within a TPC are nearly identical, shown by similar values of
neighboring SMs. There can be significant variance in the values
obtained from different TPCs (e.g., 4× difference between TPC0 and
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Figure 6: Distribution of clock() return values across the dif-
ferent SMs in the Volta GPU.

TPC1). 5 However, the TPCs within the same GPC have very similar
values – e.g., all the SMs with a clock value of approximately 4×109
belong to the same GPC, SMs with a clock value of 2 × 109 belong
to the same GPC, etc.

To understand the impact of system variance, we re-ran this
kernel 100 times and the average difference between the clocks of
the two SMs within the same TPC was under 5 clock cycles and the
average difference between the clocks of two SMs within the same
GPC was under 15 clock cycles. Although there is no guarantee
that the clock registers of all SMs were read simultaneously in this
experiment, we observe that the difference among the clocks within
the same TPC (and the same GPC) is negligible compared to L2
access latency (∼200-250 clock cycles). Hence, the raw values of
the clock registers can be leveraged for synchronization.

4.2 Interconnect Channel Leakage
In Figure 7, we show the high-level block diagram of how ‘0’ and ‘1’
are communicated between two SMs for the covert channel. When
the sender SM wants to communicate a ‘0’, the sender does not
inject any request into the on-chip network and the receiver SM is
able to send its memory requests to L2 cache without contention,
i.e., with lower latency. On the contrary, if the sender SM wants
to transmit a ‘1’, the sender SM injects a request into the network
and contention occurs for the NoC injection channel. To avoid the
impact of L1 hit/miss, L1 caching is disabled [47] 6 and all memory
requests access data that is loaded into the L2 cache. The impact of
the contention (or the lack of contention) is shown in Figure 7(b)
and the receiver’s requests injected into the network continuously
increase. Thus, based on the change in the latency (and its impact
on bandwidth usage), it enables covert channel to be established
between the two cores and allows communication between the
receiver SM and the sender SM.

The information leakage through this shared multiplexer (mux)
or external concentration [31] is based on the two cores sharing
the mux (or the output channel bandwidth). In addition, another
assumption is that the arbitration for the mux is assumed to be
locally fair – i.e., round-robin arbitration. We show the impact of
the contention in the shared mux on the execution time by running
a synthetic memory access workload that accesses L2 across two
SMs under the following two scenarios – 1) SM0 and SM1 that are
located in the same TPC and share a mux, and 2) SM0 and SM12 that
are located in a different TPC and do not share a mux in an NVIDIA
5Note that TPC0 and TPC1 are not part of the same GPC.
6L1 caching can be disabled with with the -dlcm=cg compile option for nvcc. Disabling
L1 caching is not necessary to create a covert channel but is used to improve the covert
channel bandwidth and lower the error rate. In our evaluation, disabling L1 caching
resulted in approximately 20% higher covert channel bandwidth.
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Figure 7: High-level block diagram of communicating ‘0’ or
‘1’ through interconnect channel contention. (a) Contention
in the interconnect bandwidth is shown when communicat-
ing ‘1’ and (b) the impact on the latency is shown. The re-
ceiver continues to send request and measures latency.
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and the normalized performance of SM0 is shown (y-axis).

Volta GPU (see Figure 8). Here, we first measure the performance
(or execution time) of SM0, which does multiple sequential writes
to the memory that always results in an L2 hit (while bypassing
L1). SM1 and SM12 also do sequential writes but the amount of
writes issued to the memory is varied, as a fraction of the amount
of memory access made by SM0. When the two SMs do not share
the same mux (i.e., SM0 and SM12), the execution time of SM0 is
relatively constant, regardless of the amount of memory access
from SM12. However, when the two SMs share the same TPC (i.e.
SM0 and SM1), the execution time for SM0 linearly increases as the
amount of memory requests generated by SM1 increases - thus, the
degree of contention for the interconnect channel can be directly
observed by SM0.

4.3 Establishing Co-location on GPUs
To establish co-location for the proposed interconnect covert chan-
nel, the thread-block scheduling needs to be reverse-engineered.
Prior work [42] has reverse-engineered thread block scheduling –
however, their attack did not require knowledge of exact placement
of SM across the TPC or the GPC hierarchy in the GPU. Since the
interconnect covert channel relies on the exact understanding of
the placement, we explore a more detailed thread-block scheduling
understanding. In particular, our analysis shows that thread blocks
are allocated by interleaving the thread blocks across the GPCs –
however, within the GPC, the thread blocks are interleaved across
the TPC first – i.e., before two thread blocks are allocated to the
same TPC, all of the TPCs are first allocated a block. As a result, for
the multi-TPC channel attack, allocating 40 thread blocks for the
sender first and then, 40 thread blocks for the receivers results in
the 40 threads blocks of the sender (or the trojan) allocated across
all TPCs (occupying only 1 SM within each TPC) and the receiver
(or the spy) is allocated to the other SM within the TPC.
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Algorithm 2: Interconnect-based Covert Channel

Dsend [N ], Dr eceive [N ]: N bit data to transmit and receive, respectively.
Tslot : Size of timing slot shared between sender and receiver.

Procedure Sender operations()
Synchronization()

for i ← 0 to N do
if Dsend [i] == 1 then

Access L2 cache // Invoke channel-contention
else

Do nothing // No channel-contention
end

busy waiting for remaining Tslot
if i % Sync_period == 0 then

Synchronization()

end
end
return

Procedure Receiver operations()
Synchronization()

for i ← 0 to N do
AccessTime[i] =Measured L2 access latency
if AccessTime[i] > Threshold then

Dr eceive [i] = 1 // Channel is under contention
else

Dr eceive [i] = 0 // Channel is contention free
end
busy waiting for remaining Tslot
if i % Sync_period == 0 then

Synchronization()

end
end
return
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Figure 9: Timing information measured through covert
channel when ‘010101...’ bit sequence is being commentated
(a) with timing slot-only and (b) timing slot with local syn-
chronization.

4.4 TPC (Covert) Channel
For the covert channel, we leverage the clock register to achieve
synchronization without any explicit handshaking or synchroniza-
tion communication. A common challenge with using different
clocks for synchronization is the clock skew – however, as shown
earlier in Section 4.1, the clock skew between SMs in a TPC (or
GPC) is relatively small. The high-level overview of the TPC covert
channel is described in Algorithm 2. The proposed interconnect
covert channel communication is based on a timing slot where a
bit is sent every T cycles and T is agreed upon between the sender
and the receiver. Threshold value is empirically determined based
on the L2 latency of the GPU architecture. The timing slot of T
cycles is counted individually within each SM. During each time
slot, the receiver sends a memory request (with a single warp) to
L2 cache; the sender does nothing when communicating a ‘0’ and
sends write requests to L2 cache when communicating a ‘1.’ To
increase the impact of contention, we activated 5 warps for the
sender. An example of communicating a bit sequence of ‘010101...’
is shown in Figure 9 with a high latency value communicating a
‘1’ and the low latency (no contention) communicating a ‘0.’ For
large values of T , no additional synchronization would be needed
but this comes at the cost of reduced covert channel bandwidth. 7

7The value of T for the GPC channel described in the following section is set to a
higher value since more communication needs to be done across more number of SMs.
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Figure 10: Interconnect covert channel measurement on the
Volta GPU with (a) single TPC channel and (b) multi-TPC
channel on all 40 TPCs, (c) single GPC channel and (b) multi-
GPC channel using all 6 GPCs. Number of iterations are the
num. of memory operations used to communicate 1 bit.

Thus, we use a value of T that is slightly larger than the value of
L2 access round-trip latency. However, errors can accumulate and
result in effectively no-contention even when communicating a ‘1’,
as shown in Figure 9(a).

As a result, we complement timing slots with a synchronization
after every N -bits. For the timing slot, both the sender and the
receiver effectively waited for T -cycles before sending the next
bit. However, after a synchronization period, we enforce the Syn-
chronization() – where the lower n bits of the clock registers are
compared against a fixed value. Given the low clock skew, this
effectively provides a “coarse” synchronization. With the added
synchronization, any accumulated error will be “reset” and the
covert channel can be established as shown in Figure 9(b).
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Figure 11: GPC channel information leakage based on GPU-
output interconnect channel contention.

The results from TPC covert channel are shown in Figure 10(a,b)
as the number of iterations is increased. In this work, we define
the number of iterations as the number of memory operations used
to create contention (or communicate one bit) or the number of
memory accesses per warp – thus, higher number of iterations
increases the probability of contention, resulting in lower error rate
at the cost of lower bandwidth. With a single TPC channel, up to 1
Mbps covert channel bandwidth can be achieved with a near-zero
error rate, using 4 iterations. With multi-TPCs, 5 iterations are
needed to achieve negligible error while achieving ≈ 24 Mbps.

4.5 GPC (Covert) Channel
While TPC channel can provide very high bandwidth for covert
channel, it requires the sender and the receiver to be co-located
within the same TPC. In our evaluation using cudaStream, we were
able to co-locate the sender and the receiver within the same TPC
– and establish a covert channel based on TPC channel. However,
if the sender and receiver cannot be co-located within the same
TPC (e.g., by using a different thread block scheduler than the
existing one), interconnect covert channel can still be established
by exploiting the GPC channel as long as the sender and receiver
are co-located within the same GPC. Similar to the TPC channel, we
demonstrate a covert channel with GPC channel by using one TPC
within a GPC as a receiver and the remaining TPCs as the sender
in the GPC – i.e., one TPC is the receiver while the remaining TPCs
send ‘1’ (or ‘0’) to the receiving TPC. Similar to SMs in TPC, clock
register values of SMs within GPC have similar values (Sec 4.1),
thus synchronization of receiver and multiple senders in GPC can
be achieved similarly through clock() function. However, in the
GPC channel, the sender sends read requests when transmits bit
‘1’ while for the TPC channel, the sender utilizes write requests
(Section 3.4).

The results from GPC covert channel are shown in Figure 10(c,d).
With a single GPC, the bandwidth of approximately 800 kbps can be
achieved with 4 iterations. The bandwidth that can be achieved with
the GPC channel is lower than the TPC channel. We believe this
is likely caused by the speedup (Section 2.3) in the GPC hierarchy.
To overcome the bandwidth speedup, we made the sender in the
GPC channel use more warps than the TPC channel – i.e., 8 warps
were used for the GPC channel, and therefore, it had a higher T
value. The information leakage from the amount of contention in
the GPC channel is shown in Figure 11 – similar to TPC channel,
the latency increases as more memory accesses are generated by the
“sender.” However, the change in latency (or the slope of the line)
is much smaller than the TPC channel – suggesting that speedup
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Figure 12: Impact of multiple requests (or uncoalesced ac-
cesses) in creating contention. ‘S’ (’R’) are the requests
sent by the sender (receiver). (a) If sender and receiver are
aligned, contention will occur but (b) if misaligned, the con-
tention will not be detected. (c) Sending multiple requests
ensures that the chance of contention is higher.
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Figure 13: Impact of memory coalescing on the overall error
rate. If sender sends fully-coalesced memory accesses, then
covert channel cannot be effectively established.

reduces the impact of interconnect contention. Since there are only
6 GPCs in the GPU, multi-GPC results are lower than multi-TPCs,
achieving slightly less than 4 Mbps and a more noticeable error
rate of approximately 3%.

5 DISCUSSION
Memory Coalescing: While memory coalescing is commonly
leveraged to improve memory bandwidth in GPUs, we ensure mem-
ory coalescing does not occur to reduce the error rate. If memory
coalescing is used, the number of memory requests generated is
significantly reduced and thus, the probability of contention is
also greatly reduced. To avoid this and reduce the error rate, we
ensure memory requests are not coalesced (i.e., multiple requests
generated per warp) to ensure contention for interconnect occurs.
An example of the impact of coalescing is shown in Figure 12. If
there is only a single request from sender and receiver, contention
can occur (Figure 12(a)) but if the receiver request is shifted or
delayed, no contention would occur (Figure 12(b)) and ‘1’ could not
be properly communicated. However, if there are multiple requests
from a warp (e.g., 4 requests as shown in Figure 12(c)), then even if
the requests from the sender and receiver do not align, contention
can still be observed. Thus, if all memory requests in a warp are
uncoalesced, then 32 memory requests can be generated. Since the
memory latency of a warp is determined by the latency of the last
memory request of the warp that returns from the memory system,
the covert channel is more error-tolerant.

In Figure 13, the error rate of the TPC channel is compared based
on whether memory coalescing is used or not. Coalescing results in
just 1 request per warp while uncoalescing creates 32 requests per
warp. When the sender enables coalescing of the requests, the error
rate exceeds 50% and it is clear that a covert channel cannot be
established – regardless of whether the received enabled coalescing
or not. On the contrary, when the sender’s request is uncoalesced,
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Figure 14: Receiver latency when a sequence of
‘0102030102030...’ is communicated.

the error rate drops significantly. With the coalesced receiver, the
error rate drops to approximately 10% but when both the receiver
and the sender memory access are uncoalesced, the error rate is
negligible at around 0.1%.

Multi-level Channel Communication: Similar to prior work
on microarchitectural timing covert channels, a single bit was com-
municated at a time in this work – ‘0’ for no-contention and ‘1’ for
contention. However, given the interconnect contention character-
istics and its ability to directly measure contention, the degree of
contention can be altered to enable a multi-bit covert channel by
adjusting the amount of memory coalescing within a single warp.
As described earlier, we assumed ‘0’ is sent when there were no
requests and ‘1’ is sent with 32 requests (i.e., all requests within
a warp are uncoalesced). However, the amount of coalescing can
be varied to generate a multi-level covert channel – e.g., 2 bits of
information can be communicated by generating memory requests
with 0, 8, 16, or 32 unique memory requests from a single warp. In
Figure 14, we show a measurement of latency when a sequence of
‘01020301..’ is transmitted between the sender and the receiver – i.e.,
2 bits of information are communicated with a single contention.
The 4 possible values (for 2 bits) are communicated by creating
contention with 0%, 25%, 50%, and 100% memory accesses from the
sender. Our evaluations show that multi-level communication can
result in approximately 1.6× increase in covert channel bandwidth
– further increasing the amount of covert channel. However, higher
bandwidth came at the cost of a higher error rate as it also increased
proportionally.

Other GPU Architectures: Our evaluations in this work were
demonstrated on NVIDIA Volta GPU and exploited the hierarchical
organization (SM, TPC, GPC). We ran similar experiments on other
NVIDIA GPU architectures, including Kepler and Pascal architec-
tures as well as the more recent Turing architectures, and the same
covert channels were confirmed on these architectures. All of the
GPU architectures had a hierarchical network organization that
shares interconnect bandwidth through concentration. The main
difference (or challenge) across the different GPU architectures
was reverse-engineering the GPU hierarchy (e.g., # of TPCs, # of
SMs, etc.) and the thread block scheduling algorithm as they varied
slightly. MIG (Multi-Instance GPU) [50] in Ampere A100 provides
isolation between different users (instances) and each instance is
allocated a separate GPC with a dedicated memory partition. How-
ever, MPS can still be executed within MIG and thus, the proposed
covert channel is problematic with MIG since covert channels can

be carried out if the spy and the trojan share the same instance. 8 We
also ran similar experiments on a cloud GPU (i.e., AWS Volta GPU
instance) and we were able to replicate the findings of this work
on the cloud GPU. Collection of Compute Unit (CU) from AMD
GPUs is also organized hierarchically [3, 18] but OpenCL does not
provide the same interface as CUDA to reverse engineer AMD GPU
NoC (e.g., determining core placement, clock() functionality, 9
etc.) – thus, we were not able to perform similar covert channels
on an AMD system.

Impact of Noise: Noise is a concern in covert channel attack
since it can reduce the covert channel bandwidth or increase the
error rate. The biggest source of potential noise in our covert chan-
nel is the L2 cache (and the main memory). In our evaluation when
we exploit all GPCs, we do introduce some noise because there
is contention among L2 accesses from the different GPCs. This is
shown in our evaluation as the error rate slightly increases by ap-
proximately 3% when using 6 GPCs compared to 1 GPC. Additional
noise can be introduced if a third kernel (in addition to the spy
and the trojan kernel) is co-located. Our covert channel is based
on L2 accesses, and so if a third kernel shares the L2 capacity and
causes the covert channel kernels to access the main memory, the
noise from main memory accesses will become dominant and make
the covert channel infeasible. However, in the covert channel, one
goal of the attacker is to make the environment more “favorable” –
thus, if all cores (or GPCs) are leveraged for the covert channel, not
only can a higher covert channel bandwidth be achieved but any
potential noise from the third kernel is eliminated. The attacker can
easily manipulate the resource usage (e.g., local shared memory,
register file, etc.) to ensure that co-location does not occur within
SM tominimize the impact of any noise [42]. Interestingly, MIG [50]
which has been proposed for QoS in Ampere GPUs can actually
help to potentially minimize any noise from the system. Since each
instance (or the different GPCs) are fully isolated with a dedicated
path to its own memory partition, there is no opportunity for noise
to be introduced by another instance.

Side Channel Attack: In this work, we focused on the covert
channel caused by the GPU on-chip interconnect. However, since
covert channel establishes leakage, it can potentially lead to other
dangerous side-channel attacks [52]. An example of a simple side
channel attack based on the leakage described in this work is us-
ing the NoC channel contention to measure the “amount of L1
miss” since there is a linear correlation between the NoC channel
contention and the amount of L2 accesses (or L1 miss).

6 SECURE ARBITRATION
In this section, we discuss countermeasures to defend against the
proposed interconnect covert channels. One potential solution is an
alternative thread block scheduling to ensure that TPC (and GPC)
channels are not shared. Temporal partitioning, similar to sched-
uling proposed in GPUGuard [70], can be used to ensure sender
8As described earlier, covert channels are effectively an “insider” threat and thus,
sharing the same instance is a reasonable threat model in the cloud with MIG. We also
confirmed that in AWS, multiple users can share the same instance as well [6].
9In recent AMD GPUs, clock() can also be accessed [4]. However, per-CU clock()
are not synchronized and thus, cannot be used for synchronization. There is a globally
synchronized clock available across the CUs but that clock is much slower (10-100MHz).
Thus, this will cause significant degradation of covert channel bandwidth.
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and receiver do not share the same TPC (or GPC). This prevents
resource sharing and removes the possibility of the proposed in-
terconnect covert channel as the TPC/GPC channels are no longer
shared. However, this approach can lower the utilization of the SMs
by reducing the amount of concurrent SMs that can be exploited
during multi-kernel execution. Clock fuzzing [39] or introducing
clock offset can be used to reduce the accuracy/precision of the
clock and make synchronization using the clock more difficult;
however, clock fuzzing does not necessarily remove the covert
channel as alternative synchronization approaches can be explored.
For example, handshaking on the interconnect channel (similar to
prime+probe on L1 cache [42]) can be potentially leveraged for syn-
chronization. SurfNoC [67] is a non-interference NoC [9] that can
prevent covert channels but was proposed for a 2D mesh topology
and is not applicable to hierarchical GPU NoC.

In this work, we exploit how interconnect arbitration can be
leveraged to remove the proposed covert channel. As discussed
earlier, one cause of the covert channel is the contention for the in-
terconnect channel bandwidth and the locally-fair arbitration [15].
Instead of a locally-fair arbitration, a globally fair arbitration (e.g.,
age-based arbitration [1]) provides global fairness; however, such
fairness does not mitigate the interconnect covert channels since
requests that contend can be generated at a similar time or have a
similar ‘age’. We discuss alternative arbitration that can be poten-
tially used to mitigate the proposed interconnect covert channel.

Round-Robin (RR): Baseline arbitration where the grant is given
to the requester in an alternating, round-robin manner. If there
is a request from one input but no request from the other inputs,
the grant is given to the lone requester. However, this allows ‘no-
contention’ to be observed by the receiver when the sender does
not inject any packet.

Coarse-grain Round-Robin (CRR): Instead of arbitrating per
packet, the arbitration can be done at coarse granularity or group
requests from a warp together and perform per-warp arbitration.
Eachwarp generates multiple requests which translate intomultiple
request packets into the on-chip network. As discussed earlier, en-
abling memory coalescing reduces contention and prevents covert
channel from being established. Coarse-grain arbitration is effec-
tively network-coalescing to minimize the amount of arbitration
done — however, as shown in Figure 15, CRR by itself does not
prevent the covert channel since communication of ‘1’ results in
contention and higher latency.

Strict Round-Robin (SRR):One potential mitigation is strict round-
robin (SRR) arbitration or effectively providing temporal partition-
ing [63] through secure arbitration. Prior temporal network parti-
tioning [63] statically partitioned on-chip resources such as virtual
channels but in this work, we propose to statically partition inter-
connect bandwidth through arbitration. In the SRR arbitration, in
contrast with RR arbitration, each node is granted access to the
interconnect bandwidth, even if there is no request – effectively
time-division multiplexing interconnect bandwidth. Thus, when
‘no-contention’ occurs, the arbitration would prevent the receiver
from using the unused bandwidth and prevent covert channel from
being established.

Table 1: Simulation configuration parameters.

Simulation Parameters

Core Features 1200MHz, SIMT width=32, 40 TPCs, 2 SMs per TPC

Caches 128KB L1/Shmem per SM, 48 L2 slices, 96KB per L2 slice

Memory Model 24 MCs, HBM2, tCL = 12, tRP = 12, tRC = 40, tRAS = 28,
tRCD = 12, tRRD = 3

Interconnect 1200MHz, Crossbar, f l it_size = 40, num_vcs = 1, subnet = 2
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Figure 15: Simulation comparison of arbitration algorithms.

Using GPGPU-Sim simulator [30], we model a Volta-like GPU
configuration, as summarized in Table 1. We modify the network
arbitration within the BookSim [44] network simulator of GPGPU-
Sim to evaluate the performance impact of the different arbitrations
and the results are shown in Figure 15. Similar to the analysis from
Section 4.2, we activate two SMs – (SM0 and SM1) and each SM
has 2 warps allocated that continually make memory requests. The
amount of memory requests from SM1 is varied and we measure
the performance (execution time) of SM0. With the baseline RR
arbitration, the performance of SM0 increases linearly (similar to
what was shown earlier in Figure 8). We observe similar behav-
ior for CRR as well – even though the number of arbitration is
reduced, the total length of the data (or interconnect channel us-
age) does not increase (unlike memory coalescing) and contention
still occurs. In comparison, the SRR approach completely mitigates
the covert channel as the performance of SM0 is constant, regard-
less of the amount of memory accesses from SM1. While this can
prevent covert channel, the performance degradation can be sig-
nificant for other memory-intensive workloads – e.g., for the TPC
channel, there can be up to 2× reduction in memory bandwidth
from the SRR. For compute-intensive workloads, the performance
degradation is negligible across all arbitration algorithms but for
memory-intensive workloads, SRR results in significant perfor-
mance degradation – up to 60% loss in performance. Thus, there is
effectively some performance trade-off from the secure arbitration
policy.

7 RELATEDWORK
A high-level qualitative comparison of the different covert channels
is summarized in Table 2.While there are many covert channels that
have been previously proposed, we highlight a few representative
covert channels, including high-bandwidth CPU covert channel
that have targeted different shared hardware resources. 10 We cate-
gorize each covert channel based on the following characteristics
to summarize the benefits from the proposed covert channel:

10Bandwidth comparison across different prior work is not necessarily fair since they
leverage different architectures, different technologies, etc. For example, covert channel
bandwidth of [42] can be higher with recent GPUs that have more parallelism.
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Table 2: Qualitative comparison with prior work on covert channels.

Shared HW
Type of Covert Channel

Description Synchronization Error rate BandwidthParallel
/Serial

Local
/Global

Direct
/Indirect

Wu et al. [68] CPU Memory Bus Parallel Global Direct Cross-core covert channel through bus
contention by utilizing atomic memory operation

Self-clocking coding
(differential Manchester coding) N/A 38 Kbps

DRAMA [53] DRAM Row Buffer Parallel Global Direct Cross-cpu covert channel by reverse engineering
DRAM addressing schemes

Wall clock (for native runs);
Transmit a clock signal (for VM runs) 4.1% 411 Kbps

Liu et al. [37] CPU Last-Level Cache Serial Global Indirect Practical cross-core covert channel in
virtualized environment Asynchronous <1% 600 Kbps

22% 1.2 Mbps

Gruss et al. [19] CPU Shared Memory Serial Global Indirect Cross-core covert channel exploiting
Flush+Flush technique N/A 0.84% 3.9 Mbps

Sullivan et al. [62] Memory order buffer Parallel Global Indirect Cross-thread covert channel with 4K-aliasing
in GCE (Google Computer Engine) N/A <8.7% 1.49 Mbps

Naghibijouybari et al. [42]
GPU L1 Cache Serial Local Indirect Prime+Probe type covert channel using L1 cache Hand-shake based

synchronization protocol 0% 285 Kbps
(4.25 Mbps)

GPU Functional Unit Parallel Local Indirect Funtional unit based covert channel exploiting
SFU unit N/A N/A 28 Kbps

(1.3 Mbps)

GPU Global Memory Parallel Global Indirect Global memory channel leveraging L2-level
atomic operation N/A N/A 41 Kbps

This work
GPU TPC Channel Parallel Local Direct Covert channel exploiting channel contention of

interconnection network Hardware clock register
∼0% 1 Mbps

(24 Mbps)

GPU GPC Channel Parallel Local Direct ∼0%
(<3%)

800 Kbps
(4 Mbps)
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Figure 16: (a) Serial and (b) parallel approach to establishing
a covert channel.

• serial or parallel:Many covert channels are often based on
a serial approach (Figure 16(a)) (e.g., Prime+Probe approach);
however, when the communication can be done in parallel
(Figure 16(b)), higher bandwidth can be achieved.
• local or global: The shared resource used for the covert
channel can be classified as either local or global. Global
resources are often shared by multiple cores, have longer
latency, and can be more susceptible to noise. In comparison,
local resources are less susceptible to noise and in some cases,
lower latency.
• direct or indirect: We classify if the shared resource con-
tention behavior can be directly controlled or indirectly con-
trolled. For example, the interconnect for TPC channel in
this work is directly controlled by the core and only used for
memory requests to L2 cache (and main memory). In com-
parison, the function units [42] in GPUs are local resource
but are indirect since the contention for the functional units
are impacted by pipelining and the scheduler [42].

The proposed covert channel in this work is able to achieve high
bandwidth as it exploits parallel communication while leveraging
a local shared resource that is directly controlled by the cores. No

microarchitectural state needs to be modified in our attack and
leveraging local clock() minimizes the synchronization overhead.

Microarchitectural Covert Channels: After first discussed
by Lampson [32], many prior work have explored different types of
covert channels. Microarchitectural covert channel attacks based on
shared hardware resources including cache [19, 20, 37, 40, 56, 64, 71],
hard drives [36, 56], branch predictors [17], and memory con-
trollers [59] have been proposed. In particular, cache has been
regarded as an attractive shared resource that is easy to exploit in
the covert channel because its operation speed is very fast com-
pared to other shared resources. Liu et al. [37] studied covert/side
channel attacks under the cross-VM environment using LLC-based
covert/side channel through prime+probe attack. Covert channels
in the virtualized environment were demonstrated [68] by mem-
ory bus covert channel exploiting the atomic memory operations.
To prevent covert channel attacks, different defenses mechanisms
have been proposed. Yan et al. proposed ReplayConfusion [72]
framework that detects unnatural contention through replay with
program execution records. Liu et al. proposed Newcache that de-
fends against cache-based attacks through randomized mapping of
the cache [65]. There have also been recent covert channels based
on on-chip interconnect. Paccagnella et al. [51] proposed cross-core
side/covert channels that exploit the vulnerability of ring intercon-
nect in Intel CPUs. Dutta et al. [16] demonstrated two types of
covert channels exploiting contention of shared LLC cache and ring
interconnect in a heterogeneous Intel’s integrated CPU-GPU sys-
tems. Compared to prior work, this work exploits the hierarchical
on-chip interconnect in GPUs to achieve a high-bandwidth covert
channel.

GPU Covert/Side Channels: Covert channel attack in GPUs
was recently proposed [42], including intra-SM covert channel ex-
ploiting L1 constant cache and functional units, and inter-SM covert
channel exploiting the contention in the L2 constant cache and
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the global memory. To prevent contention-based side-channel and
covert channel attacks in GPUs, GPUGuard was proposed [70] that
detects malicious behavior based on shared resource contention
using a decision tree classifier. Countermeasures for intra-SM re-
sources are not applicable for the covert channel proposed in this
work since SM sharing is not required. As discussed earlier, thread
block scheduling based on temporal partitioning can be leveraged
as a countermeasure but comes at the cost of limiting the amount
of concurrent kernels that can be executed.

Jiang et al. [23] identified SIMT vulnerability in which a positive
correlation between the number of unique cache line requests and
execution time can be exploited for AES key recovery. Karimi et
al. explored hardware/software-based countermeasures to obfus-
cate the SIMT vulnerability [27] while RCoal [25] and BCoal [26]
proposed alternative memory coalescing using randomized and
bucketing-based memory coalescing to prevent SIMT leakage. Tri-
dent [5] identified how differences in modern GPUs with sectored-
cache created negative correlation. Bank conflict in GPU shared
memory has also been shown to enable AES key recovery [24]. Luo
et al. [38] analyzed the difference in power consumption according
to key information and succeeded in power analysis attack through
power traces during AES encryption. Naghibijouybari et al. [43]
showed that aggregating measures of contention through available
resource tracking APIs can be used as attack surfaces on GPUs.

8 CONCLUSION
In this work, we proposed and demonstrated a novel microarchitec-
tural timing covert channel in GPUs that exploits on-chip intercon-
nect microarchitecture. We showed how the on-chip network of
GPUs can be reverse-engineered and based on the understanding
of the core placement, the shared interconnect and contention for
network channels were exploited to create a covert channel. We
demonstrated how it achieved significantly higher bandwidth com-
pared to previously proposed covert channels and this is one of the
first works that exploits on-chip interconnect microarchitecture to
establish a covert channel with very high bandwidth.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and the shepherd
for their invaluable comments. This work was supported in part
by KAIST HRHRP program, NRF-2020R1A2B5B0100168711 and
NRF-2021R1F1A1064009.

REFERENCES
[1] Dennis Abts and Deborah Weisser. 2007. Age-Based Packet Arbitration in Large-

Radix k-ary n-cubes. In Proceedings of the 2007 ACM/IEEE conference on Super-
computing. 1–11.

[2] Jacob T. Adriaens, Katherine Compton, Nam Sung Kim, and Michael J. Schulte.
2012. The Case for GPGPU Spatial Multitasking. In 2012 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 1–12.

[3] Advanced Micro Devices, Inc. 2019. Introducing RDNA Architecture The all new
Radeon gaming architecture powering “Navi”.

[4] Advanced Micro Devices, Inc. 2020. “AMD Instinct MI100" Instruction Set Archi-
tecture Reference Guide.

[5] Jaeguk Ahn, Cheolgyu Jin, Jiho Kim, Minsoo Rhu, Yunsi Fei, David Kaeli, and John
Kim. 2021. Trident: A Hybrid Correlation-Collision GPU Cache Timing Attack for
AES Key Recovery. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 332–344.

[6] Amazon Web Services, Inc. 2021. Amazon Elastic Compute Cloud: User Guide for
Linux Instances.

[7] Mihir Awatramani, Joseph Zambreno, and Diane Rover. 2013. Increasing GPU
Throughput using Kernel Interleaved Thread Block Scheduling. In 2013 IEEE 31st
International Conference on Computer Design (ICCD). 503–506.

[8] Ali Bakhoda, John Kim, and Tor M. Aamodt. 2010. Throughput-Effective On-
Chip Networks for Manycore Accelerators. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE Com-
puter Society, USA, 421–432.

[9] Travis H. Boraten and Avinash K. Kodi. 2018. Securing NoCs Against Timing
Attacks with Non-Interference Based Adaptive Routing. In 2018 12th IEEE/ACM
International Symposium on Networks-on-Chip (NOCS). 1–8.

[10] Jie Chen and Guru Venkataramani. 2014. CC-Hunter: Uncovering Covert Tim-
ing Channels on Shared Processor Hardware. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 216–228.

[11] Li-Jhan Chen, Hsiang-Yun Cheng, Po-Han Wang, and Chia-Lin Yang. 2017. Im-
proving GPGPU Performance via Cache Locality Aware Thread Block Scheduling.
IEEE Computer Architecture Letters 16, 2 (2017), 127–131.

[12] Jack Choquette. 2017. VOLTA: Programmability and Performance.
https://www.old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-
Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-
NVIDIA-Final3.pdf.

[13] Angelo Corana. 2015. Architectural Evolution of NVIDIA GPUs for High-
Performance Computing. https://doi.org/10.13140/RG.2.1.1496.1042

[14] William J. Dally and Brian Towles. 2001. Route Packets, Not Wires: On-Chip
Inteconnection Networks. In Proceedings of the 38th Annual Design Automation
Conference (DAC). 684–689.

[15] William J. Dally and Brian Towles. 2004. Principles and Practices of Interconnection
Networks. Elsevier.

[16] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, Andres
Márquez, and Kevin Barker. 2021. Leaky Buddies: Cross-Component Covert
Channels on Integrated CPU-GPU Systems. In 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA). 972–984.

[17] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2015. Covert
Channels through Branch Predictors: A Feasibility Study. In Proceedings of the
Fourth Workshop on Hardware and Architectural Support for Security and Privacy
(Portland, Oregon) (HASP ’15). Association for Computing Machinery, New York,
NY, USA, Article 5, 8 pages.

[18] Radeon Technologies group. 2017. AMD’s Redeon Next Generation GPU
Architecture. https://www.old.hotchips.org/wp-content/uploads/hc_archives/
hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.120-
Radeon-Vega10-Mantor-AMD-f1.pdf.

[19] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721 (San Sebastián, Spain) (DIMVA 2016). Springer-Verlag,
Berlin, Heidelberg, 279–299.

[20] Youngkwang Han and John Kim. 2019. A Novel Covert Channel Attack Using
Memory Encryption Engine Cache. In 2019 56th ACM/IEEE Design Automation
Conference (DAC). 1–6.

[21] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vishwanath,
and Mohit Tiwari. 2015. Understanding Contention-Based Channels and Using
Them for Defense. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). 639–650.

[22] Natalie Enright Jerger and Li-Shiuan Peh. 2009. On-Chip Networks, Synthesis
Lectures on Computer Architecture. Morgan & cLaypool publishers (2009).

[23] Zhen H. Jiang, Yunsi Fei, and David Kaeli. 2016. A Complete Key Recovery Timing
Attack on a GPU. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 394–405.

[24] Zhen H. Jiang, Yunsi Fei, and David Kaeli. 2019. Exploiting Bank Conflict-Based
Side-Channel Timing Leakage of GPUs. ACM Trans. Archit. Code Optim. 16, 4,
Article 42 (Nov. 2019), 24 pages.

[25] Gurunath Kadam, Danfeng Zhang, and Adwait Jog. 2018. RCoal: Mitigating
GPU Timing Attack via Subwarp-Based Randomized Coalescing Techniques. In
2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 156–167.

[26] Gurunath Kadam, Danfeng Zhang, and Adwait Jog. 2020. BCoal: Bucketing-Based
Memory Coalescing for Efficient and Secure GPUs. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 570–581.

[27] Elmira Karimi, Yunsi Fei, and David Kaeli. 2020. Hardware/Software Obfusca-
tion against Timing Side-channel Attack on a GPU. In 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). 122–131.

[28] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and
David Glasco. 2011. GPUs and the Future of Parallel Computing. IEEE Micro 31,
5 (2011), 7–17.

[29] Mahmoud Khairy, Vadim Nikiforov, David Nellans, and Timothy G. Rogers. 2020.
Locality-Centric Data and Threadblock Management for Massive GPUs. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1022–1036.

[30] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In

576

https://www.old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://www.old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://www.old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf
https://doi.org/10.13140/RG.2.1.1496.1042
 https://www.old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.120-Radeon-Vega10-Mantor-AMD-f1.pdf
 https://www.old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.120-Radeon-Vega10-Mantor-AMD-f1.pdf
 https://www.old.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.120-Radeon-Vega10-Mantor-AMD-f1.pdf


Network-on-Chip Microarchitecture-based Covert Channel in GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 473–486.

[31] Prabhat Kumar, Yan Pan, John Kim, Gokhan Memik, and Alok Choudhary. 2009.
Exploring Concentration and Channel Slicing in On-chip Network Router. In 2009
3rd ACM/IEEE International Symposium on Networks-on-Chip (NOCS). 276–285.

[32] Butler W. Lampson. 1973. A Note on the Confinement Problem. Commun. ACM
16, 10 (Oct. 1973), 613–615.

[33] Minseok Lee, Gwangsun Kim, John Kim, Woong Seo, Yeongon Cho, and Soojung
Ryu. 2016. iPAWS: Instruction-Issue Pattern-Based AdaptiveWarp Scheduling for
GPGPUs. In 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 370–381.

[34] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon
Cho, and Soojung Ryu. 2014. Improving GPGPU Resource Utilization Through
Alternative Thread Block Scheduling. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). 260–271.

[35] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. 2008. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro 28, 2 (2008),
39–55.

[36] Bartosz Lipinski, Wojciech Mazurczyk, and Krzysztof Szczypiorski. 2014. Im-
proving Hard Disk Contention-Based Covert Channel in Cloud Computing. In
2014 IEEE Security and Privacy Workshops. 100–107.

[37] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. 605–622.

[38] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli. 2015. Side-
Channel Power Analysis of a GPU AES Implementation. In 2015 33rd IEEE Inter-
national Conference on Computer Design (ICCD). 281–288.

[39] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms to Mitigate
Side-Channel Attacks. In 2012 39th Annual International Symposium on Computer
Architecture (ISCA). 118–129.

[40] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francil-
lon. 2015. C5: Cross-Cores Cache Covert Channel. In Proceedings of the 12nd
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2015). 46–64.

[41] David N.Muchene, Klevis Luli, and Craig A. Shue. 2013. Reporting Insider Threats
via Covert Channels. In 2013 IEEE Security and Privacy Workshops. 68–71.

[42] Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael Abu-Ghazaleh. 2017.
Constructing and Characterizing Covert Channels on GPGPUs. In 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 354–
366.

[43] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh.
2018. Rendered Insecure: GPU Side Channel Attacks Are Practical. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 2139–2153.

[44] Nan Jiang, Daniel U. Becker, George Michelogiannakis, James Balfour, Brian
Towles, John Kim, and William J. Dally. 2013. A Detailed and Flexible Cycle-
Accurate Network-on-Chip Simulator. In 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 86–96.

[45] NVIDIA Corporation. 2016. Nvidia Tesla P100 The Most Advanced Datacenter
Accelerator Ever Built Featuring pascal GP100, the World’s Fastest GPU.

[46] NVIDIA Corporation. 2017. Nvidia Tesla V100 GPU Architecture, The World’s Most
Advanced Data Center GPU.

[47] NVIDIA Corporation. 2018. CUDA C Programming Guide.
[48] NVIDIA Corporation. 2018. Nvidia Turing GPU Architecture, Graphics Reinvented.
[49] NVIDIA Corporation. 2020. Multi-Process Service.
[50] NVIDIA Corporation. 2020. NVIDIA Multi-Instance GPU User Guide.
[51] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. 2021. Lord of

the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 645–662.

[52] Colin Percival. 2005. Cache Missing for Fun and Profit.
[53] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.

In 25th USENIX Security Symposium (USENIX Security 16). 565–581.
[54] Lili Qiu, Yin Zhang, FengWang, Mi Kyung, and Han Ratul Mahajan. 1985. Trusted

Computer System Evaluation Criteria. In National Computer Security Center.
Citeseer.

[55] Steve Rennich. 2011. CUDA C/C++ Streams and Concurrency. In GPU Technology
Conference.

[56] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,
You, Get Off ofMyCloud: Exploring Information Leakage in Third-Party Compute
Clouds. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS ’09). 199–212.

[57] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-Conscious
Wavefront Scheduling. In 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 72–83.

[58] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013. Divergence-
Aware Warp Scheduling. In 2013 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 99–110.

[59] Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram, and Jan
Kalbantner. 2020. Leaky Controller: Cross-VM Memory Controller Covert Chan-
nel onMulti-Core Systems. In IFIP International Conference on ICT Systems Security
and Privacy Protection. 3–16.

[60] Ankit Sethia, Davoud A. Jamshidi, and Scott Mahlke. 2015. Mascar: Speeding
up GPU Warps by Reducing Memory Pitstops. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). 174–185.

[61] William Stallings. 2006. Cryptography and Network Security, 4/E. Pearson Educa-
tion India.

[62] Dean Sullivan, OrlandoArias, TravisMeade, and Yier Jin. 2018. Microarchitectural
Minefields: 4K-Aliasing Covert Channel and Multi-Tenant Detection in Iaas
Clouds.. In NDSS.

[63] Yao Wang and G. Edward Suh. 2012. Efficient Timing Channel Protection for
On-Chip Networks. In 2012 6th IEEE/ACM International Symposium on Networks-
on-Chip (NOCS). 142–151.

[64] Zhenghong Wang and Ruby B. Lee. 2006. Covert and Side Channels Due to
Processor Architecture. In 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06). 473–482.

[65] Zhenghong Wang and Ruby B. Lee. 2008. A Novel Cache Architecture with
Enhanced Performance and Security. In 2008 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 83–93.

[66] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2016. Simultaneous Multikernel GPU: Multi-tasking Throughput
Processors via Fine-Grained Sharing. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 358–369.

[67] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Huffmire, Ryan Kastner,
Frederic T Chong, and Timothy Sherwood. 2013. SurfNoC: A Low Latency
and Provably Non-Interfering Approach to Secure Networks-On-Chip. ACM
SIGARCH Computer Architecture News 41, 3 (2013), 583–594.

[68] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-
space: High-speed Covert Channel Attacks in the Cloud. In 21st USENIX Security
Symposium (USENIX Security 12). USENIX Association, Bellevue, WA, 159–173.

[69] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won W. Ro, and Murali Annavaram.
2016. Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource Parti-
tioning for GPU Multiprogramming. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). 230–242.

[70] Qiumin Xu, Hoda Naghibijouybari, Shibo Wang, Nael Abu-Ghazaleh, and Murali
Annavaram. 2019. GPUGuard: Mitigating Contention Based Side and Covert
Channel Attacks on GPUs. In Proceedings of the ACM International Conference
on Supercomputing (Phoenix, Arizona) (ICS ’19). Association for Computing
Machinery, New York, NY, USA, 497–509.

[71] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,
and Richard Schlichting. 2011. An Exploration of L2 Cache Covert Channels
in Virtualized Environments. In Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop (Chicago, Illinois, USA) (CCSW ’11). Association
for Computing Machinery, New York, NY, USA, 29–40.

[72] Mengjia Yan, Yasser Shalabi, and Josep Torrellas. 2016. ReplayConfusion: Detect-
ing Cache-Based Covert Channel Attacks Using Record and Replay. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–14.

577


	Abstract
	1 Introduction
	2 Background
	2.1 GPU Architecture
	2.2 Threat Model
	2.3 NoC Concentration and Arbitration

	3 Reverse Engineering GPU On-chip Network
	3.1 GPU Hierarchical Organization
	3.2 TPC Channel
	3.3 GPC Channel
	3.4 GPC/TPC Contention Characteristics

	4 Interconnect Covert Channel
	4.1 Synchronization
	4.2 Interconnect Channel Leakage
	4.3 Establishing Co-location on GPUs
	4.4 TPC (Covert) Channel
	4.5 GPC (Covert) Channel

	5 Discussion
	6 Secure Arbitration
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

