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Abstract

We construct a model of collective search in which players gradually approach

the Pareto frontier. The players have imperfect control over which improvements

to the status quo will be considered. Inefficiency takes place due to the difficulty in

finding improvements acceptable to both parties. The process is path dependent,
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1 Introduction

When searching for policy improvements, the parties involved often have imperfect con-

trol over the scope and direction of the changes that are to be considered. One reason

for this is that they must search for ideas on how to improve existing arrangements, and

it is hard to anticipate which ideas this search process yields and when. Moreover, it

is unlikely that alternatives appear that land them directly on the Pareto frontier. The

agents may have to content themselves with making only a series of potentially small

improvements over the status quo. This is often the case when the issues that are being

dealt with are inherently complex. As Binder and Lee (2013) write when describing the

complexity of legislative negotiations:

“The search for win-win solutions is labor-intensive. Information must be

gathered from many sources – for example, interest groups, affected indus-

tries, policy experts, activists, and government agencies – before members

and their staffs can understand the causes and dimensions of a policy problem

and see a pathway to possible solutions.”

Besides complex legislation, other real-life examples that feature gradual, step-by-step

improvements over existing deals include climate change negotiations, international trade

talks, and the effort to reduce the stockpiles of nuclear weapons.

Motivated by these examples, we develop a collective search model in which two

players approach the Pareto frontier in a series of interim agreements. Our game has

complete information and an infinite time horizon. The set of feasible policies is X =

{x ∈ R2
+ : x1 + x2 ≤ 1}. At each period t, player i = 1, 2 obtains a flow payoff equal

to the coordinate xti of the policy xt = (xt1, x
t
2) that is in place. The agreement in place

at the start of the game is (0, 0). In each period, a new alternative is drawn randomly

from the set of feasible policies that are Pareto improvements to the status quo policy,

and players decide whether to approve or disapprove the draw. The status quo policy

is replaced if and only if both players approve the change; otherwise, it stays in place.

Players share a common discount factor δ < 1.

Under a key inter-temporal symmetry assumption, we are able to provide a clean

characterization of the set of Markovian equilibria that have a recursive structure.1 In

any period, players only accept alternatives that improve their payoffs by a similar

1The assumption, which is made on the distributions from which policies are drawn, implies that
the continuation game played from period t onwards starting with a status quo z ∈ X is strategically
equivalent to the game played from period 0 onwards with status quo (0, 0).
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Figure 1: Path of play

amount. In particular, the set of policies that both players find acceptable is a cone

defined by two lines with positive slope that pass through the current status quo as

its vertex. Figure 1 depicts the first two “acceptance cones” for a possible sequence of

policies {x1,x2,x3,x4, ...} that are implemented along the path of play. Policies that lie

outside of the cone are rejected even if they are Pareto superior to the status quo. The

reason for this is that players cannot commit to approve future policies that dispropor-

tionally benefit their opponents. As a result, a player strictly prefers to reject Pareto

improvements that favor her opponent significantly more than her, since she (correctly)

anticipates that approving these will “close the door” in the future to many policies that

she finds attractive. Since players discount the future, the periods of inaction produced

by the rejection of Pareto improving alternatives generate inefficiency—an inefficiency

that arises simply because of the difficulty in finding moderate policies.

As Figure 1 shows, the distinctive feature of our model is that players will typically

reach a sequence of interim agreements, gradually approaching the Pareto frontier. In

addition, the randomness of draws and the rigidity of the status quo together imply that

the process by which players approach the frontier is necessarily path dependent. In

each period, the set of alternatives that players find acceptable depends on the current

status quo. As a result, at each point in time, the future path of play depends crucially

on the agreements that players reached in the early stages.
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This path dependence disappears, however, as players become fully farsighted. In the

limit as δ → 1, the acceptance cone collapses to a line segment connecting the current

policy to a point on the frontier. Only policies on this line segment are implemented on

the path of play. Intuitively, the cost in terms of forgone future payoff of implementing

a policy that is more beneficial to one’s opponent increases with δ. In the limit, the only

policies that both players accept are those that give a payoff vector on this line segment.

When policies are drawn from a smooth distribution, the long run policy converges to an

equal split of the surplus. In this case, the unique path to the frontier coincides with the

“Raiffa path”— the path of interim agreements proposed by Raiffa (1953) as a plausible

outcome in settings in which bargainers engage in step-by-step negotiations.

We also look at the finite horizon version of our game, and give conditions under

which equilibria in the infinite horizon limit correspond to a recursive Markovian equi-

librium of the infinite horizon game. When these conditions are not met, the equilibria

of the finite horizon games may feature cycles under which the players alternate in how

accepting they are of the possible Pareto improvements. Given an existing agreement,

the acceptance cone may be narrow in some periods but wide in others, following a cycli-

cal pattern. These cycles are not driven by changes in fundamentals, but by self-fulfilling

changes in players’ expectations about future play.

We also explore a set of extensions in which we characterize the full set of subgame

perfect equilibrium payoffs and analyze the case of unequal discounting. In the limit as

δ → 1, we show that the set of subgame perfect equilibrium payoffs coincides with the

full set of feasible payoffs. With unequal (but low) discounting, the more patient player

has a payoff advantage that is increasing in her discount factor and decreasing in the

other player’s discount factor.

Finally, we extend the model to allow for “strategic search.” This extension is mo-

tivated by the fact that our baseline model can be interpreted as a bargaining game in

which the players have no control over the offers that are generated. This puts the model

at the opposite extreme of the standard approach to bargaining theory (e.g. Rubinstein,

1982) in which proposers have full control over their offers. A natural extension of our

model is, therefore, to the intermediate case in which proposers have partial control over

the offers that they put on the table. We consider such an extension in which, at each

period, a randomly selected proposer chooses the distribution from which the alternative

will be drawn. Our main results carry through in this environment.
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Related literature. Our paper is primarily related to the literature on collective

search. Compte and Jehiel (2010a), Albrecht et al. (2010), Moldovanu and Shi (2013)

and Kamada and Muto (2015) study models in which a group of agents sequentially

sample alternatives from a distribution and have to choose when to stop. Closer to

our model, Roberts (2007) and Penn (2009) also study settings with randomly gener-

ated alternatives and with an endogenously evolving status-quo. They consider settings

with supermajority rules and focus on how the dynamic nature of the problem affects

voting behavior when the set of available alternatives all lie on the Pareto frontier. In

contrast, we consider a two-player setting (so necessarily with unanimity) and focus on

understanding the process by which policies approach the Pareto frontier.

The interpretation of our model as a bargaining game also connects our paper to

prior work on bargaining, especially models featuring delay and inefficiency. However,

the inefficiencies that take place in our model are qualitatively different from those that

arise in traditional bargaining theory, where players are able to strike agreements that

take them directly to the Pareto frontier. Even in models that feature inefficient delay in

bargaining (e.g. Cho, 1990, Cramton, 1992, Abreu and Gul, 2000, Fanning, 2018) once

an agreement is eventually reached, the outcome typically lies on the frontier.

Because players in our model approach the Pareto frontier in incremental steps, our

paper relates to prior work on incremental bargaining and partial agreements. Compte

and Jehiel (2004) study a bargaining model in which each player’s outside option depends

on the history of offers. In this setting players begin negotiations making incompatible

offers, and make gradual concessions over time. However, there are no interim agree-

ments in their model: the first agreement that players reach is a point on the Pareto

frontier. Acharya and Ortner (2013) analyze a model in which two players bargain over

two issues, one of which will only be open for negotiation at a future date. The main

result is that players may reach a partial agreement on the first issue, only to complete

the agreement when the second issue comes ripe for negotiation.

Our result on commitment and inefficiency relates our paper to the literature on

bargaining failures as a result of commitment problems (e.g. Fearon, 1996, Powell, 2004,

2006, Acemoglu and Robinson, 2000, 2001, Ortner, 2017). This work focuses on un-

derstanding the conditions under which the players’ inability to commit will result in

bargaining inefficiencies. Instead, we focus on how the players’ inability to commit

shapes the way bargainers approach the Pareto frontier.

The rigidity of the agreements in our model relates it to the growing literature on

political bargaining with an endogenous status quo (e.g. Kalandrakis, 2004, Duggan
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and Kalandrakis, 2012, Dziuda and Loeper, 2016, Bowen et al., 2014). We add to this

literature by constructing a model in which players bargain over complex issues, and

thus have imperfect control over the offers that are generated.

Our connection to the Raiffa path relates our paper to others that also provide

foundations for this bargaining solution. Livne (1989), Peters and Van Damme (1991),

Diskin et al. (2011) and Samet (2009) provide axiomatizations for the Raiffa path. My-

erson (2013), Trockel (2011), Diskin et al. (2011) and Driesen et al. (2017) provide

non-cooperative foundations by proposing bargaining models in the tradition of Rubin-

stein (1982). These models have the property that, in the first round, players reach

an agreement at the point at which the Raiffa path intersects the Pareto frontier. In

contrast to these studies, our model gives rise to interim agreements, therefore provid-

ing foundations for the path. Thus, our paper contributes to the “Nash program” of

providing non-cooperative foundations to cooperative bargaining solutions.2

Finally, our work is related to a set of papers in organizational economics showing how

path-dependence can arise in organizations, and arguing that these dynamics may help

explain why seemingly identical firms have persistent differences in performance; past

work in the literature includes Acharya and Ortner (2017), Callander and Matouschek

(2019), Chassang (2010), Halac and Prat (2016), and Li and Matouschek (2013).

2 Model

2.1 Framework

There are two players, i = 1, 2. Time is discrete, with an infinite horizon, and indexed

by t = 0, 1, 2, .... The set of feasible policies is

X := {(x1, x2) ∈ R2
+ : x1 + x2 ≤ 1}.

At each time t, the players decide whether to change the existing policy from the status

quo zt = (zt1, z
t
2) ∈ X to a new policy x drawn randomly from a distribution Fzt with

density fzt and support over the set

X(zt) = {x ∈ X : xi ≥ zti for i = 1, 2}

2Other contributions to the Nash program include Binmore et al. (1986), Gul (1989), Abreu and
Pearce (2007, 2015), Compte and Jehiel (2010b) and Fanning (2016).
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of alternatives that, given the payoffs we describe below, are Pareto superior to status

quo zt. After policy x is drawn, the two players simultaneously decide whether or not

to accept it. If both accept, then x becomes the policy in place in period t, so xt = x.

Otherwise, the status quo is implemented, so xt = zt. The next period’s status quo is

the previous period policy, so zt+1 = xt with z0 = (0, 0) =: 0.

Both players are expected utility maximizers and share a common discount factor

δ < 1. If xt = (xt1, x
t
2) ∈ X is the policy in place in period t, then player i earns a flow

payoff (1− δ)xti at time t. Player i’s payoff from a sequence of policies {xt}∞t=0 is thus

Ui
(
{xt}

)
= (1− δ)

∞∑
t=0

δtxti.

The following assumption will facilitate a tractable analysis of this game, and we will

maintain it throughout.

Assumption 1. For any x, z ∈ X with x ∈ X(z), let

Pz(x) :=

(
x1 − z1

1− z1 − z2

,
x2 − z2

1− z1 − z2

)
Then, for every z ∈ X, the density fz is such that

∀x ∈ X(z), fz(x) =
1

(1− z1 − z2)2
f(Pz(x))

where f := f(0,0) is the density from which policies are drawn at the start of the game.

This assumption states that, for any z ∈ X, the distribution Fz over X from which

policies are drawn when the status quo is z is “identical” to the distribution F := F0

over X from which policies are drawn at the start of the game. The main implication of

this assumption will be that a subgame starting with status quo z ∈ X is strategically

identical to the game starting at status quo z0 = 0.

Shifting frontier. A special case of our model is one in which the frontier shifts

upward in every period, and the players are able to land at points at each period’s

frontier in every period. This case arises as a special case under the assumption that the

support of F is the line segment {x ∈ R2
+ : x1 + x2 = c} for some constant c ∈ (0, 1).
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Motivation. Our model of sequential search is intended to capture settings in which

the parties involved must search for new ideas on how to improve existing policies.

Examples include negotiations over complex issues, like climate change, international

trade, or healthcare policy. The assumption that the policy draw each period depends

on the current status-quo captures the idea that current policies (and their particular

shortcomings) may guide agents in deciding what types of improvements to look for.

For tractability, our model does not allow agents to recall previous policy draws: if

a policy x was drawn in the past and rejected, players cannot go back and choose

it. But allowing players to recall previous policies will not affect our conclusions. The

Markovian equilibria that we study below remain equilibria even with recall.3 Our model

also assumes for tractability that the policy drawn each period Pareto dominates the

existing policy.

2.2 Solution concepts

The history at the start of time t is ht = (xτ ,dτ )τ<t, where xτ is the policy drawn at

period τ and dτ = (dτ1, d
τ
2) are the voting decisions of players at time τ , with dτi = 1 if

player i approved the draw xτ , and dτi = 0 otherwise. A pure strategy σi is a mapping

σi : (ht,x
t) 7→ dti.

For each subgame perfect equilibrium (SPE) σ = (σ1, σ2) and each history ht, we use

V σ
i (ht) to denote player i’s continuation payoff under σ at ht.

A subgame perfect equilibrium (SPE) σ = (σ1, σ2) is Markov Perfect if, for i = 1, 2,

all ht and all xt, σi(ht,x
t) depends only on the current status quo z(ht). For a Markov

Perfect equilibrium σ, let Aσi,z denote the policies that player i accepts under σ when

the status quo is z, and Aσz := Aσ1,z ∩ Aσ2,z be the set of mutually acceptable policies.

Consider a Markov Perfect equilibrium σ = (σ1, σ2), and let V σ
i (z) be player i’s

continuation value under σ when the status quo is z.4 We say that σ is stage-undominated

if, for i = 1, 2, all status quo z, and any draw x ∈ X(z), player i approves x whenever

(1− δ)xi + δV σ
i (x) ≥ (1− δ)zi + δV σ

i (z).

3This is no longer true when we study the finite horizon version of our model in Section 4. There,
allowing players to recall previous draws would lead to different equilibrium outcomes.

4In a Markov Perfect equilibrium, players’ continuation payoffs depend only on the status quo.
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Thus, each player approves or disapproves the draw as if their vote is decisive. Through-

out the paper, the term Markovian equilibrium will refer to stage-undominated Markov

Perfect equilibrium.

For any status-quo z ∈ X and any subset A ⊂ X(z), let

Pz(A) := {x ∈ X : x = Pz(y) for some y ∈ A}.

In words, set Pz(A) is the projection of A ⊂ X(z) to the simplex X.

For most of the analysis we focus on Markovian equilibria with the property that

Aσ0 = Pz(A
σ
z) for all z ∈ X. That is, we focus on Markovian equilibria under which

players’ voting decisions at each continuation history are “equivalent” to their voting

decisions at the start of the game. Formally:

Definition 1. A recursive Markovian equilibrium (RME) σ is a Markovian equilibrium

for which Aσ0 = Pz(A
σ
z) for all z ∈ X.5

The following lemma holds:

Lemma 1. Fix an SPE σ, a history ht, and let z = (z1, z2) be the status quo at this

history. Then, there exists an SPE σ̂ such that, for i = 1, 2,

V σ
i (ht) = zi + (1− z1 − z2)V σ̂

i (h0). (1)

Moreover, if σ is an RME, then σ̂ can be chosen to be equal to σ.

Lemma 1 highlights the recursive nature of our game. When Assumption 1 holds,

the continuation game after any history ht with status-quo z = (z1, z2) is strategically

equivalent to the entire game. As a result, player i’s continuation payoff under some

SPE σ at some history ht with status quo z = (z1, z2) is equal to the flow payoff zi that

the player is guaranteed to get forever (by the persistence of the status quo) plus the

re-scaled payoff (1− z1 − z2)V σ̂
i (h0) that she obtains under some SPE σ̂ from searching

for improvements over the remaining surplus of size 1 − z1 − z2. When σ is an RME,

we can take σ̂ to be equal to σ, so the second term in the right-hand side of (1) is the

ex-ante payoff at the start of the game, scaled down by the size of the remaining surplus.

5We note that some authors (e.g., Maskin and Tirole, 2001), consider a strategy to be Markov if
players play isomorphic strategies in strategically equivalent subgames. Under this definition of Markov
strategies, when Assumption 1 holds, all Markovian equilibria of our game are RME.
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3 Recursive Markovian Equilibrium

3.1 Characterization

Since in a Markovian equilibrium, players’ continuation payoffs at any history depend

only on the current status quo, we will abuse notation and write V σ
i (z) to be player i’s

continuation payoff under RME σ and status quo z. We will also define W σ
i := V σ

i (0)

to be player i’s ex ante payoffs under RME σ at the start of the game.

We use Lemma 1 to provide a characterization of the path of play in any RME σ.

Consider a period t at which the status quo is z = (z1, z2) ∈ X. Player i approves policy

x = (x1, x2) ∈ X only if

(1− δ)xi + δV σ
i (x) ≥ (1− δ)zi + δV σ

i (z)

Using Lemma 1 (noting that in our abuse of notation V σ
i (ht) = V σ

i (z(ht)) if σ is an

RME) and our definition of W σ
i , this inequality is equivalent to

xi ≥ `i,z(x−i|W σ
i ) := zi +

δW σ
i

1− δW σ
i

(x−i − z−i)

Note that `i,z(x−i|W σ
i ) is the line in (xi, x−i)-space with slope δW σ

i /(1 − δW σ
i ) that

passes through z.

For any W = (W1,W2) ∈ X and any z ∈ X, define

Ai,z(Wi) := {x ∈ X : xi ≥ `i,z(x−i|Wi)}

to be the set of policies that player i would accept under status-quo z if her equilibrium

payoff was Wi. Then, for any pair of payoffs W = (W1,W2), and any z ∈ X, the set

Az(W) := A1,z(W1) ∩ A2,z(W2) (2)

is the set of policies that are accepted by both players when the status quo is z and

expected payoffs are W = (W1,W2). Since 1 > δ(W1 + W2), the line `1,z(x2|W1) has

steeper slope than `2,z(x1|W2) in (x1, x2)-space and Az(W) is a cone with vertex z. For

any pair of values W we let A(W) := A0(W) be the cone with vertex 0. Such a cone

is depicted in Figure 2.
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Figure 2: Acceptance region A(W).

From these observations, it follows that player i’s payoff at the start of the game

under an RME σ satisfies

W σ
i = prob(x ∈ A(Wσ))E[(1− δ)xi + δV σ

i (x)|x ∈ A(Wσ)] + prob(x /∈ A(Wσ))δW σ
i

= prob(x ∈ A(Wσ))E[xi − (x1 + x2)δW σ
i |x ∈ A(Wσ)] + δW σ

i ,

where the second line uses V σ
i (x) = xi + (1 − x1 − x2)W σ

i (by Lemma 1). Therefore,

payoffs Wσ under RME σ are a fixed point of operator Φ : X → X defined by:

for i = 1, 2, Φi(W) := prob(x ∈ A(W))E[xi − (x1 + x2)δWi|x ∈ A(W)] + δWi. (3)

Operator Φ is continuous, and maps points in X into itself, so it has a fixed point. We

can also show that for any fixed point W of Φ, there is an RME σ that has payoffs W.

Proposition 1. The set of RME is non-empty, and W = (W1,W2) is an RME payoff

pair if and only if it is a fixed point of the operator Φ.

Figure 2 plots the acceptance region A(W) at the initial period of the game. As the

figure shows, policies that constitute a Pareto improvement over the initial policy 0 and

lie outside of A(W) are rejected, leading to inefficiency.6

6As we show in Section 5.1, under an SPE that maximizes the sum of the players’ payoffs, players
accept all policy draws at every period.
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The commitment problem plays an important role in exacerbating the inefficiencies

that arise from search frictions. To see how, suppose that in period 0 the alternative

x > 0 in Figure 2 is drawn. Policy x Pareto dominates the initial policy, but if it

were to be implemented, then starting in period 1 the set of policies Ax(W) that both

players accept would be the area inside the dashed lines in Figure 2. These policies are

significantly worse for player 2 than the policies that could be implemented in the future

if the status quo 0 remains in place. So player 2 strictly prefers to maintain policy 0

than to implement x. Player 2 might approve x if player 1 could commit to accepting

policies that are beneficial for player 2 in the future. But player 2 rightly anticipates

that player 1 would reject such policies in the future if x were to be implemented today.

This inability to commit implies that only policies that improve both players’ payoffs

by a similar amount (i.e., moderate policies) will be accepted along the path of play.

Uniqueness. Under certain assumptions, the game has a unique RME. Consider the

following two assumptions.

Assumption 2. There exist f > f > 0 such that f(x) ∈ [f, f ] for all x ∈ X.

Assumption 3. In addition to Assumption 2, f is Lipschitz continuous (with respect

to the sup norm) with Lipschitz constant γ < 4
3
f .

We will occasionally impose Assumption 2 for future results. We use Assumption 3

only as a sufficient condition for uniqueness of RME.

Proposition 2. Under Assumption 3, there exists δ < 1 such that for all δ > δ, the

RME is unique.

Symmetric distributions. Consider the case in which distribution F is symmetric

about the 45◦ line, i.e. when its density f satisfies f(x1, x2) = f(x2, x1) for all (x1, x2) ∈
X. In this case, operator Φ always has a symmetric fixed point W = (W1,W2) with

W1 = W2. To see this, for any W ∈ [0, 1], define

Ψ(W ) := Φ1(W/2,W/2) + Φ2(W/2,W/2)

= prob(x ∈ A(W/2,W/2))E[x1 + x2|x ∈ A(W/2,W/2)](1− δW ) + δW (4)

Operator Ψ(W ) has a fixed point, corresponding to a symmetric fixed point of Φ.
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Figure 3: The ratio W1/W2 of players’ equilibrium payoffs as a function of δ.

Example 1. Assume F is a uniform distribution over X. In this case, for any W ∈ [0, 1],

Ψ(W ) = δW +
2

3
(1− δW )2

and thus Ψ has a unique fixed point in [0, 1]. The fixed point is

W = W (δ) :=
1

4δ2
(3 + δ −

√
9 + 6δ − 15δ2).

Thus the game has a RME with payoff W (δ)/2 to each player. For δ < 1 we have

W (δ) < 1, but limδ→1W (δ) = 1, so as δ → 1 the inefficiency disappears and each player

gets a payoff of 1/2.

Asymmetric distributions. Next, we illustrate with an example how tilting the

distribution F away from symmetry affects the players’ payoffs.

Example 2. Consider a setting in which policies are drawn from distribution F with

support {x ∈ X : x1 + x2 = c} for some c < 1; i.e., the shifting frontier model. In

particular, suppose y is drawn from a Beta distribution with parameters β = 1 and

α > 1. Let x1 = cy and x2 = c − x1. Figure 3 plots the ratio W1/W2 of players’

equilibrium payoffs as a function of discount factor δ < 1, for parameters c = 1/2 and

α = 2 and α = 3. For low values of δ, the favored player (player 1) gets larger equilibrium

payoffs. However, her advantage disappears in the limit as δ → 1. In Section 3.2 we show

that this is a more general result: when distribution F is sufficiently smooth, players get

an equal payoff in the limit as δ → 1, even if F is asymmetric.
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Non-recursive Markovian equilibria. We end this section by noting that, under

certain conditions, the game admits Markovian equilibria that are not recursive.

Suppose that operator Φ has multiple fixed points, and let two of these be W∗

and W∗∗. In Appendix A we show that in this case, our game admits a non-recursive

Markovian equilibrium with the following structure. For all status quo z ∈ X− := {x ∈
X\{0} : x1 ≥ x2}, players’ continuation strategies are their strategies under the RME

that generates payoffs W∗; and for all status quo z ∈ X+ := {x ∈ X : x1 < x2}, players’

continuation strategies are their strategies under the RME that generates payoffs W∗∗.

3.2 Policy Evolution

In this section, we look at policy evolution in the long run under RME, as well as in the

limit as δ → 1. We start with the following simple observation.

Lemma 2. (nested acceptance cones) Fix an RME σ, and let {xt}∞t=0 be a realized

sequence of policies under σ. Then, for all τ = 0, 1, ...,

Axτ ⊇ Axτ+1 ,

with strict inclusion whenever xτ+1 6= xτ .

This lemma implies that there are policies that are acceptable at some period t,

but become no longer acceptable at period t + 1 (and after) despite also being Pareto

improvements relative to the t+ 1 status quo zt+1. The result follows immediately from

the fact that, under an RME, the acceptance set Ax(W) under status-quo x is a cone

with vertex x defined by two lines with slopes (1− δW1)/δW1 and δW2/(1− δW2) that

pass through the vertex (see Figure 2). Hence, the lines defining all of the acceptance

cones are parallel, so the acceptance cones are nested.

Long run policies. Now consider any sequence of policies {xt} that are implemented

along the path of play of an RME. With probability 1, sequence {xt} has a limit x∗ that

lies on the frontier: x∗1 + x∗2 = 1. We refer to x∗ as a long-run policy. For each RME

σ, let LRσ denote the set of long-run policies that can arise under σ. Similarly, for any

status-quo z ∈ X, let LRσ
z denote the set of long-run policies that can arise under σ,

given that current status quo is z.

Proposition 3. Suppose that F has full support on X, and fix an RME σ. Then,
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(i) (long run policies) for any z ∈ X, LRσ
z = {y ∈ X : y1 + y2 = 1} ∩ Az(W);

(ii) (path dependence) LRσ
z 6= LRσ

z′ for all z′ 6= z;

(iii) (gradual certainty) For every sequence of equilibrium policies {xτ}∞τ=0, LRσ
xτ+1 ⊆

LRσ
xτ , with strict inclusion whenever xτ+1 6= xτ .

At the start of the game, any policy x on the Pareto frontier with x1 ∈ [δW1, 1−δW2]

lies in LRσ. As play progresses and the players implement policies that are closer to

the frontier, the set of feasible long run policies shrinks. Figure 1 shows LRσ
x1 for some

interim policy x1 on the path of play.

Patient players. We now turn to the analysis of the RME path of policies in the limit

as δ → 1. We let Wδ = (W δ
1 ,W

δ
2 ) denote the players’ payoffs in an RME of the game

with discount factor δ. Abusing our previous notation, let LRδ denote the set of long

run policies of the game with discount factor δ.

Proposition 4. Fix a convergent sequence {δn,Wδn}, with limn→∞ δn → 1. Then,

(i) (determinism) LRδn converges to (W ∗
1 ,W

∗
2 ) := lim

n→∞
(W δn

1 ,W δn
2 );

(ii) (generalized Raiffa path) lim
n→∞

A(Wδn) = {x ∈ X : x1/x2 = W ∗
1 /W

∗
2 };

(iii) (efficiency) lim
n→∞

W δn
1 +W δn

2 = 1.

If the distribution F is twice continuously differentiable, then W ∗
1 = W ∗

2 = 1/2.

Proposition 4(i) says that as δ → 1 the path of policies approaches deterministically

a particular long run outcome— specifically, the players’ RME payoff split. Proposition

4(ii) says that, as δ → 1, the set of policies that both players find acceptable converges to

the line segment connecting 0 and the point (W ∗
1 ,W

∗
2 ). Intuitively, the cost in terms of

forgone future payoff of implementing a policy that is more beneficial to one’s opponent

increases with δ. In the limit, the only policies that both players accept are those that

give both of them a payoff on this line segment. This implies that, as players become

arbitrarily patient, there is no path dependence.

Proposition 4(iii) shows that the inefficiency of delay vanishes as players become fully

farsighted. This occurs in spite of the fact that, as δ → 1, the acceptance region A(Wδ)

converges to a straight line, so in any period, there is total gridlock: the probability of

changing the existing policy goes to zero. Intuitively, if limδ→1W
δ
1 +W δ

2 < 1, the players
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would be relatively accommodating in terms of the alternatives that they accept. Hence,

the expected delay cost would be zero as the discount factor approaches 1.

Lastly, Proposition 4 shows that, if F is sufficiently smooth, both players obtain the

same payoff in the limit as δ → 1, so (W ∗
1 ,W

∗
2 ) = (1/2, 1/2). That is, even if policies are

drawn from a distribution that favors one of the players, as the players become arbitrarily

patient they obtain approximately the same payoff in equilibrium. This generalizes the

findings in Examples 1 and 2.

Connection to the Raiffa path and other bargaining solutions. The limiting

equilibrium outcome in our model relates to the sequential bargaining solution proposed

by Raiffa (1953). For any given two-player bargaining set with disagreement point b, let

the utopia payoff vector u be the payoff vector that would result if each player obtained

her preferred outcome while keeping their opponent at a utility level equal to their

disagreement payoff. In our setting, b = (0, 0) and u = (1, 1). Fix an integer n ≥ 2.

Under Raiffa’s solution, negotiations happen in steps. In the first step of negotiations,

players move from the disagreement point b towards the utopia point by an amount

proportional to 1
n
: they move from x0 = b to x1 = 1

n
u + n−1

n
b. In the t-th step

of negotiations, players take last period’s agreement xt−1 to be the new disagreement

point, and move towards the updated utopia point ut−1; i.e., xt = 1
n
ut−1 + n−1

n
xt−1.7

Bargaining continues this way until players reach the Pareto frontier.8 The path of

agreements reached under this sequential solution is sometimes called the Raiffa path,

and the point at which this path intersects the Pareto frontier is the Raiffa point.

When the bargaining set has a linear frontier (as in our model), the Raiffa path is

the line-segment connecting the disagreement point to the frontier, which would pass

through the utopia payoff vector at the start of negotiations, if extended. In our model,

this is the line-segment connecting (0, 0) and (1/2, 1/2), which is exactly the path of

play that arises in the limit as δ → 1 when distribution F is sufficiently smooth.

In our setting with a linear frontier, the Raiffa point coincides with other bargaining

solutions like the Nash (1950) solution, and the Kalai and Smorodinsky (1975) solution.

Numerous non-cooperative foundations exist for these bargaining solutions. However,

prior work does not provide non-cooperative foundations for the path to these solutions

(see the the literature review above). In Raiffa’s account, the players’ journey to the

7The updated utopia point ut−1 is the utopia point of a bargaining problem with the original
bargaining set, and with disagreement payoffs given by xt−1.

8Raiffa’s discrete solution corresponds to the case with n = 2. Raiffa’s continuous solution is
obtained by taking the limit as n→∞.
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Pareto frontier is gradual, taking place in a series of steps. Prior work, on the other

hand, only provides accounts in which players land directly on the Raiffa point.

4 The Finite Horizon Game

4.1 Framework

In this section we study the finite horizon version of our model. The game is the same

as in Section 2, except that players can only draw new policies at times t = 0, ..., T ;

from time T + 1 onwards, the policy in place is the policy at time T . In this section,

our solution concept is stage-undominated SPE.

It can be shown by backward induction that this game has unique stage-undominated

SPE payoffs. We let Vi(z, t;T ) denote player i’s equilibrium continuation payoff at time

t with status quo z under deadline T . Let W(T ) = (V1(0, 0;T ), V2(0, 0;T )) denote the

players’ equilibrium payoffs at time t = 0. The following result shows that the essence

of Lemma 1 carries over to this setting, as does the recursive operator approach that we

took to prove Proposition 1.

Lemma 3. Fix any deadline T ≥ 0. Then,

(i) for all t ≤ T , and all z ∈ X,

Vi(z, t;T ) = zi + (1− z1 − z2)Wi(T − t) (5)

(ii) the players’ equilibrium payoffs satisfy W(T ) = ΦT+1(0), where Φ is the operator

defined in (3) and Φt denotes its t-th iteration.

In equilibrium, at any time t ≤ T with status-quo z, player i accepts policy x if

(1− δ)xi + δVi(x, t+ 1;T ) ≥ (1− δ)zi + δVi(z, t+ 1;T )

⇐⇒ xi ≥ zi +
δWi(T − t− 1)

1− δWi(T − t− 1)
(x−i − z−i),

where the second line uses equation (5). Hence, payoffs W(t) for t ≤ T are suffi-

cient to characterize the equilibrium of the game with deadline T . We will therefore

study the equilibria of the game in the limit as T → ∞ by studying the sequence

{W(0),W(1),W(2), ...}. We define two types of games.
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Definition 2. We say that the finite horizon games are convergent if W(T ) converges

as T →∞. Otherwise, we say that the finite horizon games are cycling.

4.2 Convergent Games

It is clear that when the finite horizon games are convergent, equilibrium behavior in

the limit as the deadline T grows to ∞ corresponds to equilibrium behavior under an

RME of the infinite horizon game studied above.

We now provide two sets of conditions under which the finite horizon games are

convergent. Recall that when F is symmetric, we can generate equilibrium payoffs using

the operator Ψ defined in (4), and that a fixed point W of this operator corresponds to

a symmetric fixed point of Φ.

Proposition 5. (i) Suppose Assumption 2 holds. Then, there exists δ < 1 such that,

if δ > δ, the finite horizon games are convergent.

(ii) Suppose F is symmetric. Then, if Ψ′(W ) > −1 for all W ∈ [0, 1], the finite horizon

games are convergent.

Thus, part (i) of the proposition provides a justification for selecting the RME of the

infinite horizon game when δ is high, and part (ii) provides conditions under which this

selection is justified if F is symmetric. However, this approach to equilibrium selection

has its limitations, as the finite horizon games may be cycling.

4.3 Cycling Games

We now turn to cycling games. We start by providing some intuition as to why the finite

horizon games may be cycling.

Players in our model trade off implementing a Pareto improving policy today against

the benefit of waiting to see if they can change the policy in a more preferred direction

tomorrow. At the deadline T , there is no benefit to waiting so the players accept every

policy in X(zT ). In the penultimate period, however, players are less accommodating,

since they anticipate that the set of acceptable policies tomorrow will depend on the pol-

icy they implement today. Graphically, the acceptance cone becomes smaller (narrower)

at period T − 1, and some extreme policies in X(zT−1) are rejected.

Now consider the third to last period T − 2. If the probability of changing the

policy next period is sufficiently small (i.e., if the distribution F places little mass on
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the acceptance cone tomorrow), players know that they are unlikely to enact a policy

reform in the next period, and, in all likelihood, will have to wait until the final period

to change the policy if they don’t change it today. Since waiting for two periods is more

costly than waiting only one period, players are more accommodating in period T − 2

than they are in period T − 1.

This suggests that, for small values of T , equilibrium play may cycle, alternating

between periods in which players find it relatively easy to modify existing agreements

and periods in which modifying these agreements is harder. Our next result shows that

these cycles can also occur in the limit as T →∞.

To provide simple conditions under which cycling occurs, we focus on the case in

which the distribution F is symmetric. Recall that when F is symmetric, players have

the same equilibrium payoffs and the sum of these payoffs is the (T + 1)-th iteration

over 0 of the operator Ψ defined in (4).

Proposition 6. If F is symmetric then Ψ has a unique fixed point Ŵ ∗. If, in addition,

(i) Ψ(Ŵ ) 6= Ŵ ∗ for all Ŵ 6= Ŵ ∗, and

(ii) there exists ε > 0 such that Ψ′(Ŵ ) ≤ −1 for all Ŵ ∈ [Ŵ ∗ − ε, Ŵ ∗ + ε],

then the finite horizon games are cycling.

For some intuition as to when the conditions in Proposition 6 hold, note that

Ψ(Ŵ ) = H(Ŵ )(1− δŴ ) + δŴ ,

Ψ′(Ŵ ) = δ(1−H(Ŵ )) +H ′(Ŵ )(1− δŴ ),

where H(Ŵ ) := prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )]. The magnitude of H ′(Ŵ ) < 0

depends on how much mass the distribution F puts on the boundary of the acceptance

set A(Ŵ ). Hence, Proposition 6 holds when distribution F places significant mass at

the boundary of A(Ŵ ) for all Ŵ close to the fixed point Ŵ ∗.

Under the conditions in Proposition 6, the players’ equilibrium payoffs Ŵ (τ)/2 cycle

around Ŵ ∗/2. Note that, in the symmetric case, the acceptance region Az(Ŵ ) is a cone

with vertex z and lines with slopes 1−δŴ/2

δŴ/2
and δŴ/2

1−δŴ/2
. Therefore, the fact that payoffs

Ŵ (τ)/2 cycle around Ŵ ∗/2 implies that there will be an alternation between periods of

high and low probability of agreement; i.e., the game features cycles.
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We now present an example to make the cycling result more concrete. The example

also shows that the period of the cycle can vary with the model’s parameters. For

expositional purposes, we consider an example in which distribution F is discrete.9

Example 3. Suppose F is such that

probF (x = (1/3, 1/4)) = probF (x = (1/4, 1/3)) = 1/2.

Note that,

Ψ(Ŵ ) =

{
δŴ if Ŵ > 6

7δ
,

7
12

(1− δŴ ) + δŴ if Ŵ ≤ 6
7δ
.

Indeed, when Ŵ > 6
7δ

, players’ continuation values are too high and the set of acceptable

policies has no mass under F . When Ŵ ≤ 6
7δ

, the set of acceptable policies has probabil-

ity 1. For δ = 0.95, the sum of players’ equilibrium payoffs Ŵ (T ) converges as T →∞
to a two-period cycle, with payoffs alternating between Ŵ ≈ 0.93 and Ŵ ≈ 0.89. For

δ = 0.98, equilibrium payoffs converge as T → ∞ to a five-period cycle, with payoffs

alternating between Ŵ ≈ 0.94, Ŵ ≈ 0.92, Ŵ ≈ 0.90, Ŵ ≈ 0.88 and Ŵ ≈ 0.86.

The example gives cases in which the cycle has a fixed period of length 2, and one in

which it has a fixed period of length 5. Whenever the cycle has a period of fixed length,

the equilibria as T →∞ converge in behavior to some equilibrium of the infinite horizon

game (but, of course, not an RME). How can we sustain cycling in the infinite horizon

game? The answer is coordination. Consider cycles of period 2. If the players expect

that they will both be accommodating tomorrow, they will be less accommodating today.

And if they expected to be less accommodating today then they will have been more

accommodating yesterday. The cycles are thus driven by self-fulfilling expectations.

5 Extensions

We now return to the infinite horizon game and report some additional results. We

first move away from RME by characterizing the full set of SPE payoffs. We then look

at two extensions– the case of unequal discounting, and the case in which players can

9Two points are worth noting about discrete F . First, Lemma 3 continues to hold when F is discrete.
Second, if we endow the space of distributions with the sup norm, operator Φ(W) is continuous in the
distribution F . Hence, Example 3 can be approximated by a sequence of continuous distributions {Fn}
converging to the discrete distribution.
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strategically search for policy improvements by choosing the distributions from which

policies are drawn.

5.1 Pareto Frontier of SPE payoffs

In this section, we move away from RME, and look at the set of SPE payoffs. For this

analysis we assume that at the start of each period, players have access to a public

randomization device.10 Let Σ denote the set of SPE of the game.

For each Pareto weight λ ∈ [0, 1], we are interested in

Uλ := sup
σ∈Σ

λV σ
1 (h0) + (1− λ)V σ

2 (h0).

In words, Uλ is the largest λ-weighted sum of payoffs that can be sustained in a SPE.

For each λ ∈ [0, 1], define operator Πλ : [0, 1]→ [0, 1] as

Πλ(U) := prob(x ∈ Aλ(U))E[λx1 + (1− λ)x2 − (x1 + x2)δU |x ∈ Aλ(U)] + δU,

where Aλ(U) := {x ∈ X : λx1 + (1 − λ)x2 ≥ (x1 + x2)δU}. Finally, for any discount

factor δ < 1, let Vδ ⊂ X denote the set of SPE payoffs. Then we have:

Proposition 7. (i) For each λ ∈ [0, 1], Uλ is the largest fixed-point of Πλ.

(ii) If f has full support on X, then limδ→1 Vδ = X.

In proving part (i) of Proposition 7, we show that Uλ can be attained in an SPE that

takes the following form. Along the path of play, if the current period status-quo is z,

both players accept draw x ∈ X(z) if and only if

λx1 + (1− λ)x2 − λz1 − (1− λ)z2 ≥ (x1 + x2 − z1 − z2)δUλ.

If at any period t a player rejects a policy that should have been accepted, the players

revert to a continuation equilibrium in which all policies get rejected forever after. So,

after such a deviation, player i’s continuation payoff is zti .

For part (ii) of the proposition, we show that for λ ∈ {0, 1}, Uλ converges to 1 as δ

goes to 1. That is, as δ approaches 1, the SPE that maximizes player i’s payoffs gives

player i a payoff converging to 1, and player j 6= i a payoff converging to 0. Since the

10Adding public randomization does not affect any of our conclusions thus far: all results up to this
point hold as stated.
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game always admits a SPE in which both players get payoffs 0 (by having both players

reject any draws at each period), and since players have access to a public randomization

device, this establishes the result.

We end this section by studying outcomes under Pareto efficient equilibria. Under

an equilibrium σ that attains Uλ, at t = 0 players accept any policy x in the agreement

region Aλ(Uλ). Suppose λ ≥ 1/2 (the case of λ < 1/2 is symmetric and omitted). In

this case, the set Aλ(Uλ) includes all policies x that satisfy:

λx1 + (1− λ)x2 ≥ (x1 + x2)δUλ ⇐⇒ x1 ≥
x2(δUλ − (1− λ))

λ− δUλ
, (6)

where we used the fact that, for any λ ∈ [0, 1], Uλ ≤ max{λ, 1 − λ} = λ.11 When λ is

close to 1/2, the right-hand side of (6) is negative, and so Aλ(Uλ) is equal to the simplex

(i.e., when λ ≈ 1/2, players accept any policy). In contrast, when λ is significantly

larger than 1/2, δUλ > 1−λ, so the agreement region Aλ(Uλ) only includes policies that

benefit player 1 significantly more than player 2.

5.2 Asymmetric discounting

Throughout the game, we assumed that players have the same discount factor δ. We

now briefly study the case of unequal discounting.

For i = 1, 2, let δi ∈ (0, 1) be player i’s discount factor. Suppose distribution F is

symmetric and that Assumption 3 holds. When δ1 = δ2 = δ > δ, Proposition 2 says that

the game has a unique RME σ, and since F is symmetric, the players have the same

payoffs: W σ
1 = W σ

2 .12 However, if we assume (without loss of generality) that δ1 > δ2,

then we can show that the more patient player 1 obtains a higher payoff than player 2.

Proposition 8. Suppose F is symmetric and Assumption 3 holds. Then, there exists

δ̂ < 1 such that, if δ1 > δ2 > δ̂, a unique RME σ exists and the players’ RME payoffs

Wσ = (W σ
1 ,W

σ
2 ) satisfy

W σ
1

W σ
2

≥ 1− δ2(1−H(Wσ))

1− δ1(1−H(Wσ))
, (7)

where H(Wσ) = prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)]).

The following example illustrates.

11Indeed, for any equilibrium σ, V σ1 (h0) + V σ2 (h0) ≤ 1; thus λV σ1 (h0) + (1− λ)V σ2 (h0) ≤ max{λ, 1−
λ} = λ, where the last equality follows since we are assuming λ ≥ 1/2.

12When F is symmetric, the game always has an RME that gives both players the same payoff. By
Proposition 2, this is the unique RME whenever Assumption 3 holds and δ is large enough.
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Example 4. Consider a setting in which policies are drawn from distribution F with

support {x ∈ X : x1 + x2 = c} for some c < 1; i.e., the shifting frontier model. In

particular, suppose x1 is drawn from a uniform distribution on [0, c], and x2 = c−x1. In

this case, the acceptance region takes the form A(W) = {x : x1 ∈ [cδ1W1, c(1− δ2W2)]},
and the probability of agreement is 1− δ2W2 − δ1W1. Hence, operator Φ is given by:

for i = 1, 2, Φi(W) =
(1− δ2W2 − δ1W1)2

2
c+ δiWi.

Equilibrium payoffs are a fixed point of this operator, and so at the equilibrium payoffs

(W σ
1 ,W

σ
2 ) we have W σ

1 /W
σ
2 = (1− δ2)/(1− δ1).

5.3 Strategic Search

Our model with random proposals is intended to capture complexities in the environment

that make it difficult for players to find new ideas to improve existing agreements. In

this section, we present a natural extension of our framework in which players have some

ability to influence the direction in which they will search for new policies.

As we mentioned in the introduction, our model can be interpreted as a bargaining

model in which the proposer has no control over the offer that is generated; and, in this

sense, our model lies at the opposite extreme of the standard approach to bargaining

theory in which proposers have full control over the proposals that are considered. The

extension we present in this section bridges the gap between the traditional approach

and our baseline model by allowing proposers to have partial control over the payoff

consequences of the offers they put on the table. We briefly describe the model here. A

formal treatment appears in Appendix C.2.

Two players, i = 1, 2, play the following game. Time is discrete and indexed by

t = 0, 1, 2, .... The set of policies is X, and players have the same preferences over

policies as in our baseline model. At each period t, player i = 1, 2 is recognized with

probability 1/2. The recognized player chooses a distribution F from a finite set of

distributions Fzt , where zt is the current status quo. We assume that each distribution

in Fz has a density and support in X(z). The alternative x in period t is then drawn

from distribution F .

After the new alternative x is drawn, the two players simultaneously decide whether

or not to accept it. If both players accept it, then the agreement in place in period
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t becomes the new policy, so xt = x. Otherwise, the status quo is implemented, so

xt = zt. The status quo at time t+ 1 is the previous period policy, so zt+1 = xt.

In Appendix C.2 we show that under a straightforward generalization of Assumptions

1 and 2, this extended model retains all the key features of our baseline model.

6 Conclusion

We constructed a model of collective search in which the players gradually find their way

to the Pareto frontier. The difficulty in locating moderate policies that are acceptable to

both players results in inefficiency. This inefficiency is driven by the commitment prob-

lem. The model also features path dependence as early agreements shape the relative

likelihoods of the long run policies. In the limit as players become arbitrarily patient,

however, both this path dependence and the inefficiency disappear, and players follow a

unique path to a unique policy outcome on the frontier.

We also looked at the finite horizon game, and showed that equilibria of this game

may feature cycles as the players alternate between being more and less accommodating.

When the equilibrium of this game features a fixed cycle in the limit as the deadline goes

to infinity, this equilibrium corresponds to an equilibrium also of the infinite horizon

game. Cycling in these equilibria is driven by an alternating pattern of changes in

the players’ self-fulfilling expectations about the likelihood of making improvements to

existing agreements.

Qualitatively similar results hold even if we move the model closer to a traditional

bargaining setting by allowing the players to strategically choose the distributions from

which new alternatives are drawn. Our model thus provides an answer to an important

question (going back at least to Raiffa) of how two bargainers searching for improvements

to existing policies approach the Pareto frontier. They do so in steps, while ensuring

that these steps fit within the set of trajectories that ensure long-run moderation.
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Appendix

A Proofs for Sections 2 and 3

Proof of Lemma 1. Before we begin, as a matter of notation, when we consider the

concatenation ht t hτ = (xs,ds)s<t+τ of two histories ht and hτ , with hτ = (x̃s, d̃s)s<τ ,

then for all s = 0, ..., τ−1 we take (xt+s,dt+s) to be (P−1
zt (x̃s), d̃s), where zt is the status

quo at time t under the history ht.

Fix an SPE σ and a history ht with status quo z = z(ht). Consider strategy profile

σ̂ such that, for i = 1, 2 and for each history hτ , σ̂i(hτ ) = σi(ht t hτ ). Assumption 1

guarantees that σ̂ is a SPNE of the game. We now show that, for i = 1, 2,

V σ
i (ht) = zi + (1− z1 − z2)V σ̂

i (h0).

Suppose for a contradiction that the result is not true. Then there exists ε > 0

and j ∈ {1, 2} such that |V σ
i (ht) − zj − (1 − z1 − z2)V σ̂

j (h0)| > ε. Pick T such that

(1 − δ)δT < ε/4. Consider strategy profiles σT and σ̂T such that: (a) for all histories

hs with s ≤ T , σT (ht t hs) = σ(ht t hs) and σ̂T (hs) = σ̂(hs), and (b) for all histories

hs with s > T , both players reject all proposals at history ht t hs under σT , and both

players reject all proposals at history hs under σ̂T .13

Since (1− δ)δT < ε/4, for i = 1, 2 we have |V σ
i (ht)− V σT

i (ht)| < ε/4 and |V σ̂
i (h0)−

V σ̂T

i (h0)| < ε/4. Therefore, since |V σ
j (ht)− zj − (1− z1 − z2)V σ̂

j (h0)| > ε, we have

|V σT

j (ht)− zj − (1− z1 − z2)V σ̂T

j (h0)| > ε/2.

For each history hT of length T , let (V σ̂T

i (hT ))i=1,2 (resp., (V σT

i (htthT ))i=1,2) denote

players’ continuation payoffs at history hT under σ̂T (resp., at history htthT under σT ).

Let z(hT ) denote the status quo under history hT , and z(htthT ) = z+(1−z1−z2)z(hT )

the status quo under history ht t hT . Note that:

V σ̂T

i (hT ) = probz(hT )(x ∈ Aσ̂(hT ))Ez(hT )[xi|x ∈ Aσ̂(hT )]

+ (1− probz(hT )(x ∈ Aσ̂(hT )))zi(hT ),

13We stress that σT and σ̂T need not be equilibria of the game.
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where Aσ̂(hT ) is the set of policies that both players accept under σ̂, and where the

equality follows since policy doesn’t change after time T under σ̂T . Similarly,

V σT

i (ht t hT ) = probz(htthT )(x ∈ Aσ(ht t hT ))Ez(htthT )[xi|x ∈ Aσ(hτ t hT )]

+ (1− probz(hτthT )(x ∈ Aσ(hτ t hT )))zi(hτ t hT )

= probz(hT )(x ∈ Aσ(hT ))Ez(hT )[zi + (1− z1 − z2)xi|x ∈ Aσ(hT )]

+ (1− probz(hT )(x ∈ Aσ(hT )))(zi + (1− z1 − z2)zi(hT ))

= zi + (1− z1 − z2)V σ̂T

i (hT ),

where the second equality uses Assumption 1.

Suppose that V σ̂T

i (ht t hs) = zi + (1 − z1 − z2)V σT

i (hs) for histories hs of length

s = τ + 1, ..., T . Consider a history hτ of length τ . Let z(hτ ) be the status quo under

hτ , and z(htthτ ) = z+ (1− z1− z2)z(hτ ) the status quo under htthτ . For each x ∈ X,

let hxτ+1 denote the history of length τ + 1 that follows hτ if policy x is implemented at

time t. Then

V σ̂T

i (hτ ) = probz(hτ )(x ∈ Aσ̂(hτ ))Ez(hτ )[(1− δ)xi + δV σ̂T

i (hxτ+1)|x ∈ Aσ̂(hτ )]

+ (1− probz(hτ )(x ∈ Aσ̂(hτ )))((1− δ)zi(hτ ) + δV σ̂T

i (h
z(hτ )
τ+1 ))

Similarly,

V σT

i (ht t hτ ) = probz(htthτ )(x ∈ Aσ(ht t hτ ))×
× Ez(htthτ )[(1− δ)xi + δV σT

i (ht t hxτ+1)|x ∈ Aσ(ht t hτ )]
+ (1− probz(htthτ )(x ∈ Aσ(ht t hτ )))((1− δ)zi(ht t hτ ) + δV σT

i (ht t hz(htthτ )
τ+1 ))

= probz(hτ )(x ∈ Aσ̂(hτ ))×
× Ez(ht)[zi + (1− z1 − z2)((1− δ)xi + δV σ̂T

i (hxt+1))|x ∈ Aσ̂(hτ )]

+ (1− probz(hτ )(x ∈ Aσ̂(hτ ))×
× (zi + (1− z1 − z2)((1− δ)zi(hτ ) + δV σ̂T

i (h
z(hτ )
τ+1 )))

= zi + (1− z1 − z2)V σ̂T

i (hτ ).

Hence, V σT

i (ht)− zi − (1− z1 − z2)V σ̂T

i (h0) = 0, a contradiction.

In the case of RME, the same contradiction follows if we take σ̂ = σ. �
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Proof of Proposition 1. By the arguments in the main text, any RME payoffs are a

fixed point of operator Φ. Note that Φ takes points in X to points in the same set, and

is continuous. So it has a fixed point, W. To show that for any fixed point W of Φ,

there exists an RME σ with payoffs W, let σi, i = 1, 2, be such that, for every history

ht and all xt, σi(ht,x
t) = 1xt∈Ai,z(ht)(W), where z(ht) is the status-quo at history ht. The

strategy profile σ = (σ1, σ2) is an RME that gives payoffs W. �

Proof of Proposition 2. Let Φδ be the operator defined in (3) indexed by δ < 1, and

suppose that distribution f satisfies Assumption 3 (and hence Assumption 2). We now

show that there exists δ < 1 such that, for all δ > δ, Φδ has a unique fixed point. Since

RME payoffs are a fixed point of Φ, this implies that all RME are payoff equivalent

when δ > δ.14 Let Aδ(W) denote the acceptance cone at W.

Assumption 3 implies that 3
4
γ < f so pick a number g ∈ (3

4
γ, f) and define

G(V ) :=
1

3
g

(1− δV )2

1− δ − V.

Let V = V δ denote the smaller of the two solutions to the quadratic equation G(V ) = 0;

specifically,

V δ :=
3

2gδ2

(
1− δ +

2gδ

3
−
√

(1− δ)
(

1− δ +
4gδ

3

))
(8)

which is clearly a real root. Let Y δ := {W ∈ X : W1 +W2 ≥ V δ}. To prove the result,

Step 1 below will show that Φδ cannot have a fixed point in X\Y δ. The remaining steps

will show that when δ is high enough, Φδ is a contraction when applied to points in the

set Y δ, so a unique fixed point exists on X, corresponding to the unique RME.

Before we start, it is useful to define a change of variables to calculate integrals of

the form
∫
Aδ(W)

(x1 + x2)f(x)dx. For all W ∈ X, i = 1, 2, j 6= i, we have

∫
Aδ(W)

(x1 + x2)f(x)dx =

∫ 1

0

∫ a(1−δWj)

aδWi

af(xi, a− xi)dxida. (9)

14This payoff-equivalence is sufficient to establish the uniqueness of RME since for all RME σ we
have specified that a player accepts a policy change when indifferent, so all of the acceptance sets Aσi ,
i = 1, 2 are solely a function of the payoffs.
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Step 1. For all δ < 1, V δ ∈ (0, 1), limδ→1 V
δ = 1, and if Wδ = (W δ

1 ,W
δ
2 ) is a fixed

point of Φδ, then Wδ ∈ Y δ.

Proof. We know that V δ > 0, since G(V ) > 0 for all V ≤ 0. Moreover, we have that

G(1) = 1
3
g(1− δ)− 1 < 1

3
f(1− δ)− 1 ≤ 2

3
(1− δ)− 1 < 0, where the second inequality

in this chain follows from the fact that f ≤ 2. (If f > 2 then f cannot be a density:

integrating it over X would yield a number larger than 1.) Since G(0) > 0 and G(1) < 0,

the Intermediate Value Theorem implies that V δ ∈ (0, 1).

By inspecting the right side of (8), we see that limδ→1 V
δ = 1.

Finally, we show that if Wδ is a fixed point of Φδ, we must have V δ ≤ W δ
1 + W δ

2 ,

thus Wδ ∈ Y δ. To verify this, note that for all W ∈ X,

Φδ
1(W) + Φδ

2(W) = δ(W1 +W2) + prob(x ∈ Aδ(W))E[x1 + x2|x ∈ Aδ(W)](1− δ(W1 +W2))

= δ(W1 +W2) +

∫
Aδ(W)

(x1 + x2)f(x)dx (1− δ(W1 +W2))

≥ δ(W1 +W2) +
1

3
f(1− δ(W1 +W2))2

> δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))2, (10)

where the first and second inequalities follow since f(x) ≥ f > g > 0 for all x, and apply-

ing the change of variables.15 Next, note that if V δ > W1+W2 then 1
3
g(1−δ(W1+W2))2 >

(1− δ)(W1 +W2), from the equation that defines V δ.16 Combining this with (10) shows

that if V δ > W1 + W2 then Φδ
1(W) + Φδ

2(W) > W1 + W2, and therefore W cannot be

a fixed point of Φδ. Thus, if W is a fixed point of Φδ, it must be that V δ ≤ W1+W2. �

Step 1 above implies that Φδ cannot have a fixed point in X\Y δ. In the remaining

steps we show that when δ is sufficiently large, Φδ is a contraction when applied to the

points in Y δ, so it has a unique fixed point in Y δ.

15In particular, for i = 1, 2, j 6= i,∫
Aδ(W)

(x1 + x2)f(x)dx =

∫ 1

0

∫ a(1−δWj)

aδWi

af(xi, a− xi)dxida ≥ f
∫ 1

0

∫ a(1−δWj)

aδWi

adxida

=
1

3
f(1− δWi − δWj) >

1

3
g(1− δWi − δWj).

16Note that V δ is the smaller real root of the quadratic equation G(V ) = 0 that defines an upward
facing parabola; so for all W1 + W2 < V δ we have (1 − δ)G(W1 + W2) > 0, as claimed. We later use
the fact that since G(1) < 0, we must have (1− δ)G(W1 +W2) ≤ 0 for all W ∈ Y δ.
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Step 2. There exists δ < 1 such that if δ ∈ (δ, 1) then Φδ(W) ∈ Y δ for all W ∈ Y δ.

Proof. Since δV δ → 1 as δ → 1 (as implied by Step 1), there exists δ < 1 such that for

all δ > δ and all W ∈ Y δ, δ − 2f
3
δ(1− δ(W1 +W2)) ≥ δ − 2f

3
δ(1− δV δ) > 0.

Now, note that δV + 1
3
g(1−δV )2 is increasing in V whenever δ− 2

3
gδ(1−δV ) ≥ 0. Note

further that g < f < f implies that δ− 2
3
δg(1−δ(W1+W2)) > δ− 2

3
fδ(1−δ(W1+W2)) ≥

0. Hence, for all δ > δ and all W ∈ Y δ, we have δ(W1 +W2) + 1
3
g(1− δ(W1 +W2))2 ≥

δV δ + 1
3
g(1− δV δ)2. Therefore, for all δ > δ and all W ∈ Y δ, we have

Φδ
1(W) + Φδ

2(W) ≥ δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))2 ≥ δV δ +

1

3
g(1− δV δ)2 = V δ,

where the first inequality follows from (10), the second from the argument above, and

the equality from the definition of V δ. Thus, Φδ(W) ∈ Y δ for all W ∈ Y δ. �

We now bound the derivatives of Φδ
i , i = 1, 2, whenever δ > δ from the step above,

and use this bound to show that Φδ is a contraction on Y δ.

Step 3. Fix δ ∈ (δ, 1) where δ < 1 is a threshold satisfying the property claimed in Step

2. Then, for all W ∈ Y δ and i = 1, 2, we have∣∣∣∣∂Φδ
i (W)

∂Wi

∣∣∣∣+

∣∣∣∣∂Φδ
i (W)

∂Wj

∣∣∣∣ < δ + δ(1− δ) < 1.

Proof. Suppose that δ > δ. Note that using our change of variables, we can write Φδ
i ,

i = 1, 2, from (3) as

Φδ
i (W) =

∫
Aδ(W)

(xi − (x1 + x2)δWi)f(x)dx + δWi

=

∫ 1

0

∫ a(1−δWj)

aδWi

(xi − aδWi)f(xi, a− xi)dxida+ δWi

from which it follows that, for j 6= i,

∂Φδ
i (W)

∂Wi

= δ − δ
∫ 1

0

∫ a(1−δWj)

aδWi

af(xi, a− xi)dxida (11)

∂Φδ
i (W)

∂Wj

= −δ(1− δ(Wi +Wj))

∫ 1

0

a2f(a(1− δWj), aδWj)da (12)
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Since we have assumed in Assumption 3 that f(x) ≤ f for all x ∈ X, we know that
∂Φδi (W)

∂Wi
is contained in the interval [δ− f

3
δ(1− δ(W1 +W2)), δ] while

∂Φδi (W)

∂Wj
is contained

in the interval [−f
3
δ(1− δ(W1 +W2)), 0].17 Therefore, for all W ∈ Y δ,

∂Φδ
i (W)

∂Wj

≤ 0 ≤ ∂Φδ
i (W)

∂Wi

. (13)

where the second inequality follows from the fact (as claimed in the first line of the proof

of Step 2) that for δ > δ we have δ − 2f
3
δ(1− δ(W1 +W2)) > 0.

Next, note that because f is Lipschitz continuous with respect to the sup norm

(Assumption 3), for any xi ∈ [aδWi, a(1− δWj)], we have

f(xi, a− xi) ≥ f(a(1− δWj), aδWj))− γa(1− δ(Wi +Wj)) (14)

From this, it follows that∫ a(1−δWj)

aδWi

f(xi, a− xi)dxi ≥ f(a(1− δWj), aδWj))a(1− δ(Wi +Wj))

− γa2(1− δ(Wi +Wj))
2 (15)

Then, using inequality (15) in (11), we have

∂Φδ
i (W)

∂Wi

≤ δ − δ(1− δ(W1 +W2))

∫ 1

0

a2(f(a(1− δWj), aδWj)))da

+ γδ(1− δ(W1 +W2))2

∫ 1

0

a3da

= δ +
∂Φδ

i (W)

∂Wj

+
1

4
γδ(1− δ(Wi +Wj))

2 (16)

where the final line follows from evaluating the integral and inserting (12).

Thus, combining (13) with the conclusion of (16) we have that for all W ∈ Y δ,∣∣∣∣∂Φδ
i (W)

∂Wi

∣∣∣∣+

∣∣∣∣∂Φδ
i (W)

∂Wj

∣∣∣∣ =
∂Φδ

i (W)

∂Wi

− ∂Φδ
i (W)

∂Wj

≤ δ +
1

4
γδ(1− δ(Wi +Wj))

2. (17)

17Indeed,
∫ 1

0

∫ a(1−δWj)

aδWi
af(xi, a−xi)dxida ≤ f 1

3 (1− δ(Wi+Wj) and δ(1− δ(Wi+Wj))
∫ 1

0
a2f(a(1−

δWj), aδWj)da ≤ f
3 δ(1− δ(W1 +W2)).
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Note further that for all W ∈ Y δ,

1

3
g

(1− δ(W1 +W2))2

1− δ ≤ W1 +W2 (18)

by definition of V δ (see the argument in footnote 16). Thus, for all W ∈ Y δ,∣∣∣∣∂Φδ
i (W)

∂Wi

∣∣∣∣+

∣∣∣∣∂Φδ
i (W)

∂Wj

∣∣∣∣ ≤ δ + δ
3

4

γ

g
(1− δ) < δ + δ(1− δ) < 1, (19)

where the first inequality follows from (18) and the fact that W1+W2 ≤ 1 for all W ∈ Y δ,

and the second inequality uses γ < 4
3
g from the assumption that g ∈ (3

4
γ, f). �

Step 4. For all δ ∈ (δ, 1), where δ < 1 is a threshold satisfying the property claimed in

Step 2, Φδ is a contraction when applied to points in Y δ.

Proof. Let || · || be the sup-norm on R2. Fix W,W′ ∈ Y δ, W 6= W′. Fix i ∈ {1, 2} such

that |W ′
i −Wi| ≥ |W ′

j −Wj|, and suppose wlog that W ′
i > Wi. Let Wj(Ŵi) = a + bŴi

be the line passing through W and W′, with b =
W ′j−Wj

W ′i−Wi
. Note that,

|Φδ
i (W)− Φδ

i (W
′)| =

∣∣∣∣∣
∫ W ′i

Wi

(
∂Φδ

i (Ŵi,Wj(Ŵi))

∂Wi

+
∂Φδ

i (Ŵi,Wj(Ŵi))

∂Wj

b

)
dŴi

∣∣∣∣∣
≤
∫ W ′i

Wi

(∣∣∣∣∣∂Φδ
i (Ŵi,Wj(Ŵi))

∂Wi

∣∣∣∣∣+

∣∣∣∣∣∂Φδ
i (Ŵi,Wj(Ŵi))

∂Wj

∣∣∣∣∣ |b|
)
dŴi

≤
∫ W ′i

Wi

(∣∣∣∣∣∂Φδ
i (Ŵi,Wj(Ŵi))

∂Wi

∣∣∣∣∣+

∣∣∣∣∣∂Φδ
i (Ŵi,Wj(Ŵi))

∂Wj

∣∣∣∣∣
)
dŴi

≤ (δ + δ(1− δ))|W ′
i −Wi|,

where the second inequality follows since |W ′
i −Wi| ≥ |W ′

j−Wj| implies |b| ≤ 1, and the

third follows from Step 3. A similar logic implies |Φδ
j(W)−Φδ

j(W
′)| ≤ (δ+δ(1−δ))|W ′

i−
Wi|. So for all δ > δ and all W,W′ ∈ Y δ, ||Φδ(W)−Φδ(W′)|| ≤ (δ+δ(1−δ))||W−W′||;
i.e., Φδ is a contraction of modulus δ + δ(1− δ) < 1 on Y δ. �

Therefore, when δ > δ, there is a unique RME. �
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A non-recursive Markovian equilibrium. We now show that, when Φ has multiple

fixed points, the game admits a non-recursive Markovian equilibrium. Suppose that

operator Φ has multiple fixed points, and let two of these be W∗ and W∗∗. We now

construct a non-recursive Markovian equilibrium σ such that: (i) for all status quo

z ∈ X− := {x ∈ X\{0, 0} : x1 ≥ x2}, players’ continuation strategies are their strategies

under the RME that generates payoffs W∗; and (ii) for all status quo z ∈ X+ := {x ∈
X : x1 < x2}, players’ continuation strategies are their strategies under the RME that

generates payoffs W∗∗.

For any W and for i = 1, 2, let A+
i (W) := {x ∈ X+ : xi + (1− x1 − x2)δW ∗

i ≥ δWi}
and A+(W) := A+

1 (W) ∩ A+
2 (W). Similarly, let A−i (W) := {x ∈ X− : xi + (1 − x1 −

x2)δW ∗∗
i ≥ δWi} and A−(W) = A−1 (W) ∩ A−2 (W). Define operator ΦNR : X → X as

follows: for i = 1, 2,

ΦNR
i (W) := prob(x ∈ A+(W))E[xi + (1− x1 − x2)δW ∗

i |x ∈ A+(W)]

+ prob(x ∈ A−(W))E[xi + (1− x1 − x2)δW ∗∗
i |x ∈ A−(W)]

+ prob(x /∈ A−(W) ∪ A+(W))δWi.

Since ΦNR is continuous, and maps X into itself, it has a fixed point WNR. By con-

struction, these payoffs WNR can be sustained in a non-recursive Markovian equilibrium

under which for all status quo z ∈ X− (resp. z ∈ X+), players’ continuation strategies

are their strategies under the RME that generates payoffs W∗ (resp. the RME that gen-

erates payoffs W∗∗). Under this non-recursive Markovian equilibrium, when the status

quo is 0, the set of policies that both players accept is A+(WNR) ∪ A−(WNR).

Proof of Lemma 2. Fix any τ ≥ t. Since xτ+1 ∈ Axτ (W) we have

xτ+1
i ≥ `i,xτ (x

τ+1
−i |Wi) = xτi +

δWi

1− δWi

(xτ+1
−i − xτ−i)

for both i = 1, 2. For any x = (x1, x2) ∈ Axτ+1(W), add x−iδWi/(1− δWi) to both sides

of the above inequality and rearrange to get

xτ+1
i +

δWi

1− δWi

(x−i − xτ+1
−i ) ≥ xτi +

δWi

1− δWi

(x−i − xτ−i)

This means that

`i,xτ+1(y−i|Wi) ≥ `i,xτ (y−i|Wi), i = 1, 2. (20)
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If x ∈ Axτ+1(W) then xi ≥ `i,xτ+1(x−i|W−i) for i = 1, 2, and by (20), xi ≥ `i,xτ (x−i|W−i)
for i = 1, 2. This means that x ∈ Axτ (W); thus Axτ+1(W) ⊆ Axτ (W). �

Proof of Proposition 3. For each z ∈ X, define L̂Rz := Az(W)∩{y ∈ X : y1 + y2 =

1}. Since distribution Fz has full support and since L̂Rz ⊆ Az(W), any point in L̂Rz

can arise as a long run policy; i.e., L̂Rz ⊆ LRz.

Consider next a subgame starting at period t with zt = z. By Lemma 2, xτ ∈ Az(W)

for all τ ≥ t. Since L̂Rz = Az(W) ∩ {z ∈ X : y1 + y2 = 1}, any point on the frontier

that is not in L̂Rz cannot arise as a long run policy when zt = z. Hence, LRz ⊆ L̂Rz.

This establishes that LRz = L̂Rz, and it follows that LRz 6= LRz′ for z 6= z′. Lemma

2 then implies that along a realized equilibrium path {xτ}∞τ=t, we have LRxτ+1 ⊆ LRxτ .

The inclusion is strict when xτ+1 6= xτ since LRxτ+1 6= LRxτ in this case. �

Recall that Φδ is the operator defined in (3) indexed by δ < 1.

Lemma A.1. Fix a sequence of discount factors {δn} → 1, and let Wδn = (W δn
1 ,W δn

2 ) ∈
X be a sequence such that Wδn = Φδn(Wδn) for all n. Then, limn→∞(W δn

1 +W δn
2 ) = 1.

Proof. We begin by deriving an expression for W δ
1 + W δ

2 for any fixed δ < 1 so that

we can take the limit that is claimed in the lemma. Let Aδ(W) be the acceptance

set defined in equation (2) when the discount factor is δ and status quo is z = 0. If

Wδ = (W δ
1 ,W

δ
2 ) is a fixed point of Φδ, then for i, j = 1, 2, i 6= j,

W δ
i = δW δ

i + prob(x ∈ Aδ(Wδ))E[xi − (xi + xj)δW
δ
i |x ∈ Aδ(Wδ)]

and thus

W δ
i =

prob(x ∈ Aδ(Wδ))E[xi|x ∈ A(Wδ)]

1− δ + δprob(x ∈ Aδ(Wδ))E[xi + xj|x ∈ Aδ(Wδ)]
.

Then, we have

W δ
1 +W δ

2 =
prob(x ∈ Aδ(Wδ))E[x1 + x2|x ∈ Aδ(Wδ)]

1− δ + δprob(x ∈ Aδ(Wδ))E[x1 + x2|x ∈ Aδ(Wδ)]
. (21)

Now, to prove the lemma, suppose for the purpose of establishing a contradiction

that the result is not true. Hence, there exists a sequence {δn} → 1 and a positive

number η > 0 such that W δn
1 + W δn

2 < 1 − η for all n. Note that this implies that
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there is a set B with nonempty interior such that B ⊆ Aδn(Wδn) for all n large enough.

Therefore, prob(x ∈ Aδn(Wδn)) > prob(x ∈ B) > 0 for all n large enough. It follows

from expression (21) that

lim
n→∞

W δn
1 +W δn

2 = lim
n→∞

prob(x ∈ Aδn(Wδn))E[x1 + x2|x ∈ Aδn(Wδn)]

1− δn + δnprob(x ∈ Aδn(Wδn))E[x1 + x2|x ∈ Aδn(Wδn)]
= 1,

a contradiction. Hence, it must be that W δn
1 +W δn

2 → 1 as δn → 1. �

Proof of Proposition 4. Fix a sequence {δn} with δn → 1. For each n, let Wδn =

(W δn
1 ,W δn

2 ) be the players’ equilibrium payoffs in a game with discount factor δn. Since

Wδn is a fixed point of Φδn , it follows from Lemma A.1 that limn→∞W
δn
1 + W δn

2 = 1.

This establishes part (iii).

Consider next part (i). By Proposition 3, for each n the set LRδn is

A(W) ∩ {y ∈ X : y1 + y2 = 1} = {x ∈ X : x1 + x2 = 1 and x1 ∈ [δW δn
1 , 1− δW δn

2 ]}.

By part (iii), δn(W δn
1 + W δn

2 ) converges to 1 as n → ∞. Hence, [δnW
δn
1 , 1 − δnW

δn
2 ]

converges to a point W ∗
1 , and so LRδn converges to (W ∗

1 ,W
∗
2 ).

For part (ii), recall that

Aδn(Wδn) =

{
x ∈ X : xi ≥

δnW
δn
i

1− δnW δn
i

x−i for i = 1, 2

}
.

Then using part (iii), Aδn(Wδn) converges to {x ∈ X : x1/x2 = W ∗
1 /W

∗
2 }.

Lastly, we show that, when F ∈ C2, it must be that W ∗
1 = W ∗

2 = 1/2. Without

loss of generality, suppose that W ∗
1 ≥ W ∗

2 . Note that, for each δ < 1 and corresponding

equilibrium payoffs W, the agreement region A(W) can be written as

A(W) = {x ∈ X : ∃c ∈ [0, 1] s.t. x1 ∈ [cx, cx], x2 = c− x1},

where x = δW1 and x = 1− δW2. Since W1 +W2 → 1 as δ → 1, we have that ε = x− x
goes to zero as δ → 1. Moreover, since W ∗

1 ≥ W ∗
2 , limδ→1 x = limδ→1 x = W ∗

1 ≥ 1/2.

Define

λ :=
1

1− δ + δprob(x ∈ A(W))E[(x1 + x2)|x ∈ A(W)]
.
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Hence, for i = 1, 2, equilibrium payoffs W = (W1,W2) satisfy

Wi = λprob(x ∈ A(W))E[xi|x ∈ A(W)].

Since x = δW1 and x = 1− δW2, we have

x = δλprob(x ∈ A(W))E[x1|x ∈ A(W)]

1− x = δλprob(x ∈ A(W))E[x2|x ∈ A(W)]

The equations above imply:

x

1− x =
prob(x ∈ A(W))E[x1|x ∈ A(W)]

prob(x ∈ A(W))E[x2|x ∈ A(W)]

which is equivalent to

εprob(x ∈ A(W))E[x1|x ∈ A(W)] =prob(x ∈ A(W))E[x1 − x(x1 + x2)|x ∈ A(W)],

(22)

since ε = x− x. Note next that

prob(x ∈ A(W))E[x1|x ∈ A(W)] =

∫
x∈A(W)

x1f(x)dx

=

∫ 1

0

∫ cx

cx

x1f(x1, c− x1)dx1dc (23)

and

prob(x ∈ A(W))E[x1 + x2|x ∈ A(W)] =

∫
x∈A(W)

(x1 + x2)f(x)dx

=

∫ 1

0

∫ cx

cx

cf(x1, c− x1)dx1dc (24)

Since F ∈ C2, for each c ∈ [0, 1] and all x̂1 ∈ [cx, cx], we have that∣∣∣∣∣f(x̂1, c− x̂1)−
∫ cx
cx
f(x1, c− x1)dx1

c(x− x)

∣∣∣∣∣ ≤ aε (25)

35



for some constant a > 0 (again, recall that ε = x − x). For each c ∈ [0, 1], define

k(c) :=
∫ cx
cx
f(x1, c− x1)dx1. Using (25) in (23) and (24), we have

prob(x ∈ A(W))E[x1|x ∈ A(W)] =

∫ 1

0

k(c)c
(
x+

ε

2

)
dc+O(ε2)

prob(x ∈ A(W))E[x1 + x2|x ∈ A(W)] =

∫ 1

0

k(c)cdc+O(ε2)

Define K :=
∫ 1

0
k(c)cdc. Using these expressions in (22), we get

εK
(
x+

ε

2
+O(ε2)

)
= K

( ε
2

+O(ε2)
)

Since ε → 0 as δ → 1, we have limδ→1 x = 1/2. Since x = δW1, we get that W ∗
1 = 1/2

and W ∗
2 = 1−W ∗

1 = 1/2. �

B Proofs for Section 4

Proof of Lemma 3. We start with part (i). For each z ∈ X, Ez[·] is the expectation

operator under distribution Fz. Let E[·] be the expectation operator under distribution

F0 = F . We prove the result by induction.

Consider a subgame starting at period t = T with status quo zT = z ∈ X. Note that

Vi(z, T ;T ) = Ez[xi] = zi + (1− z1 − z2)E[xi],

where the first equality follows since, at time T both players accept any policy, and the

second equality follows from Assumption 1.

Now, consider the game with deadline T = 0. Player i’s equilibrium payoffs satisfy

Wi(0) = E[xi]. Hence,

Vi(z, T ;T ) = zi + (1− zi − zj)Wi(0)

which establishes the basis case.

For the induction step, suppose that (5) holds for all t such that T − t = 0, 1, ..., n−1

and for all z ∈ X. Fix a subgame starting at period t̃ with T − t̃ = n and with status

quo zt̃ = z ∈ X. We abuse previous notation and in this proof let Az(t̃) be the set of
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policies that both players accept at period t̃ when zt̃ = z; that is,

Az(t̃) =
{
x ∈ X(z) : (1− δ)xi + δVi(x, t̃+ 1;T ) ≥ (1− δ)zi + δVi(z, t̃+ 1;T ) for i = 1, 2

}
=
{
x ∈ X(z) : (xi − zi) ≥ (x1 + x2 − z1 + z2)δWi(T − t̃− 1) for i = 1, 2

}
,

where the second line follows since, by the induction hypothesis, (5) holds for t = t̃+ 1.

Note then that

Vi(z, t̃;T ) = prob(x ∈ Az(t̃))Ez

[
(1− δ)xi + δVi(x, t̃+ 1;T )

∣∣x ∈ Az(t̃)
]

+ prob(x /∈ Az(t̃))
(
(1− δ)zi + δVi(z, t̃+ 1;T )

)
= prob(x ∈ Az(t̃))Ez

[
xi + (1− x1 − x2)δWi(T − t̃− 1)

∣∣z ∈ Az(t̃)
]

+ prob(x /∈ Az(t̃))
(
zi + (1− z1 − z2)δWi(T − t̃− 1)

)
= prob(x ∈ Az(t̃))Ez

[
(xi − zi) + (z1 + z2 − x1 − x2)δWi(T − t̃− 1)

∣∣x ∈ Az(t̃)
]

+ zi + (1− z1 − z2)δWi(T − t̃− 1) (26)

where the second equality follows since, by the induction hypothesis, (5) holds for t =

t̃+ 1, and the last inequality follows since prob(x /∈ Az(t̃)) = 1− prob(x ∈ Az(t̃)).

Consider next a game with deadline T − t̃. Let Ã be the set of policies that both

players accept at the first period of the game:

Ã =
{
x ∈ X : (1− δ)xi + δVi(x, 1;T − t̃) ≥ δVi(0, 1;T − t̃) for i = 1, 2

}
=
{
x ∈ X : xi ≥ (x1 + x2)δWi(T − t̃− 1) for i = 1, 2

}
,

where the second line follows since, by the induction hypothesis, for all Vi(x, 1;T − t̃) =

xi + (1− xi − xj)Wi(T − t̃) for all x. Player i’s payoff in this game is equal to

Wi(T − t̃) = prob(x ∈ Ã)E
[
(1− δ)xi + δVi(x, 1;T − t̃)

∣∣∣x ∈ Ã]+ prob(x /∈ Ã)δVi(0, 1;T − t̃)

= prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − t̃− 1)

∣∣∣x ∈ Ã]+ δWi(T − t̃− 1)

(27)

Assumption 1 implies that

prob(x ∈ Az(t̃))Ez

[
xi − zi + (z1 + z2 − x1 − x2)δWi(T − t̃− 1)

∣∣x ∈ Az(t̃)
]

=(1− z1 − z2)prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − t̃− 1)

∣∣∣x ∈ Ã] .
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Combining this with (26) and (27),

Vi(z, t̃;T ) = zi + (1− z1 − z2)Wi(T − t̃).

which establishes the result.

Now let us turn to part (ii). The proof is again by induction. Consider the game

with deadline T = 0. Since it is optimal for both players to accept any alternative x ∈ X
that is drawn, player i’s payoff in this game satisfies Wi(T ) = E[xi] = Φi(0).

Suppose next that Wi(τ) = Φτ+1
i (0) for all τ = 0, ..., T − 1, and consider game with

deadline T . The set of alternatives that both players accept in the initial period are

given by

Ã = {x ∈ X : (1− δ)xi + δVi(x, 1;T ) ≥ δVi(0, 1;T ) for i = 1, 2}
= {x ∈ X : xi ≥ (x1 + x2)δWi(T − 1) for i = 1, 2} ,

where the second line follows from part (i). Player i’s payoff Wi(T ) satisfies

Wi(T ) = prob(x ∈ Ã)E
[
(1− δ)xi + δVi(x, 1;T )

∣∣∣x ∈ Ã]+ prob(x /∈ Ã)δVi(0, 1;T )

= prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − 1)

∣∣∣x ∈ Ã]+ δWi(T − 1) (28)

where the equality follows after using part (i). By the induction hypothesis, W(T −1) =

ΦT (0), and so Ã = A(ΦT (0)). Using this in (28), Wi(T ) = Φ(ΦT (0)) = ΦT+1(0). �

Proof of Proposition 5. We start with part (i) and recall various facts from the proof

of Proposition 2. First, recall that V δ is the smaller of the two solutions to the quadratic

equation 1
3
g (1−δV δ)2

1−δ = V δ, where g ∈ (0, f).18 Also from the proof of Proposition 2, for

i, j = 1, 2, i 6= j,
∂Φδi (W)

∂Wi
is given by (11) and lies in the interval [δ − f

3
δ(1 − δ(W1 +

W2)), δ] while
∂Φδi (W)

∂Wj
is given by (12) and lies in [−f

3
δ(1 − δ(W1 + W2)), 0]. The proof

of Proposition 2 also showed that for all δ > δ and all W ∈ Y δ,
∂Φδi (W)

∂Wi
≥ 0 ≥ ∂Φδi (W)

∂Wj
.

Finally, it showed that for all δ > δ and all W ∈ Y δ, Φδ(W) ∈ Y δ.

Now fix δ > δ. Towards establishing the result, we first show that if W ∈ Y δ, then

(Φδ)T (W) converges to a fixed point of Φ as T →∞. To see why, fix W0 ∈ Y δ, and let

18For this proof, we don’t need Assumption 3 to hold, and we also don’t need g > 3
4γ.
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{Wt}∞t=0 be such that, for t = 1, 2, ..., Wt = (Φδ)t(W) = (Φδ)(Wt−1). Note then that

Wt ∈ Y δ for all t.19

There are two cases to consider: (a) there exists s ≥ 1 and i = 1, 2, i 6= j such that

W s
i ≥ W s−1

i and W s
j ≤ W s−1

j , and (b) for all s ≥ 1, either W s
1 ≥ W s−1

1 and W s
2 ≥ W s−1

2

or W s
1 ≤ W s−1

1 and W s
2 ≤ W s−1

2 .

Consider first case (a), so there exists s ≥ 1 and i = 1, 2, i 6= j such that W s
i ≥ W s−1

i

and W s
j ≤ W s−1

j . Since Φδ
i (Wi,Wj) is increasing in Wi and decreasing in Wj whenever

W ∈ Y δ, it follows that W s+1
i = Φi(W

s) ≥ Φi(W
s−1) = W s

i and W s+1
j = Φj(W

s) ≤
Φj(W

s−1) = W s
j . Applying the same argument inductively, we get that {W t

i } is an

increasing sequence and {W t
j} is a decreasing sequence for all t ≥ s. Since Wt ∈ X for

all t, Wt converges to some W∗ as t→∞.

Consider next case (b). For i, j = 1, 2, j 6= i, define

Mi,i := sup
W∈Y δ

∣∣∣∣∂Φδ
i (W)

∂Wi

∣∣∣∣ Mi,j := sup
W∈Y δ

∣∣∣∣∂Φδ
i (W)

∂Wj

∣∣∣∣
Note that, for δ > δ, we have that Mi,i ∈ [0, δ] and Mi,j ∈ [0, δ].20 Recall that, in this

case, for all t ≥ 1, either W t
i ≥ W t−1

i for i = 1, 2 or W t
i ≤ W t−1

i for i = 1, 2. Since

Φi(W) is increasing in Wi and decreasing in Wj, for all t ≥ 1 and for i = 1, 2, we have

|W t+1
i −W t

i | = |Φδ
i (W

t)− Φδ
i (W

t−1)|
= |Φδ

i (W
t)− Φδ

i (W
t−1
i ,W t

j ) + Φδ
i (W

t−1
i ,W t

j )− Φδ
i (W

t−1)|
≤ max{|Φδ

i (W
t)− Φδ

i (W
t−1
i ,W t

j )|, |Φδ
i (W

t−1
i ,W t

j )− Φδ
i (W

t−1)|}
≤ max{Mi,i,Mi,j}||Wt −Wt−1||
≤ δ||Wt −Wt−1||,

where the first inequality follows since Φδ
i is increasing in Wi and decreasing in Wj.

Hence, {Wt} is a Cauchy sequence, and so it is convergent.

We now show that the finite-horizon games are convergent whenever δ > δ. Fix

δ > δ. There are two cases to consider: (bi) Φδ(0) ∈ Y δ, and (bii) Φδ(0) /∈ Y δ. Consider

case (bi). By our arguments above, W(T ) = (Φδ)T (Φδ(0)) converges as T →∞.

19Indeed, for all δ > δ and all W ∈ Y δ, Φδ(W) ∈ Y δ.
20For all δ > δ and all W ∈ Y δ, δ− f 2

3δ(1− δ(W1 +W2)) ≥ 0 (see Step 2 in the proof of Proposition

2). Since
∂Φδi (W)
∂Wi

∈ [δ − f
3 δ(1− δ(W1 +W2)), δ] and

∂Φδi (W)
∂Wj

∈ [− f3 δ(1− δ(W1 +W2)), 0], we have that

Mi,i ∈ [0, δ] and Mi,j ∈ [0, δ] for all δ > δ.
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Consider next case (bii), so that Φδ(0) /∈ Y δ. By equation (10), for all W we have

Φδ
1(W) + Φδ

2(W)− (W1 +W2) ≥ δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))2 − (W1 +W2)

+
1

3
(f − g)(1− δ(W1 +W2))2. (29)

For all W ∈ X\Y δ, we have that

δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))2 > W1 +W2.

Using (29), for all W ∈ X\Y δ we have

Φδ
1(W) + Φδ

2(W)− (W1 +W2) >
1

3
(f − g)(1− δ(W1 +W2))2 ≥ 1

3
(f − g)(1− δ)2,

where the last inequality follows since W1 +W2 ≤ 1. This implies that, when Φ(0) /∈ Y δ,

there exists t ≥ 1 such that Φδ
1((Φδ)t(0)) + Φδ

2((Φδ)t(0)) ≥ V δ. Hence, by our arguments

above, (Φδ)t+s(0) converges as s→∞, and so the games are convergent.

Consider next part (ii). Note that when F is symmetric, both players have the

same equilibrium payoffs for all deadlines, i.e. W1(T ) = W2(T ) for all T ≥ 0. Let

Ŵ (T ) = W1(T ) + W2(T ), and note that Ŵ (T ) = ΨT+1(0) (where Ψ is the operator

defined in equation (4)).

For any Ŵ ∈ [0, 1], define

H(Ŵ ) := prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )],

so that Ψ(Ŵ ) = δŴ +H(Ŵ )(1−δŴ ). Note that H ′(Ŵ ) ≤ 0. Indeed, Ŵ ′′ > Ŵ ′ implies

that A(Ŵ ′′) ⊂ A(Ŵ ′), so for any Ŵ ′′ > Ŵ ′,

prob(x ∈ A(Ŵ ′′))E[x1 + x2|x ∈ A(Ŵ ′′)] ≤ prob(x ∈ A(Ŵ ′))E[x1 + x2|x ∈ A(Ŵ ′)].

It then follows that Ψ′(Ŵ ) = δ(1−H(Ŵ )) +H ′(Ŵ )(1− δŴ ) ≤ δ < 1 for all Ŵ ∈ [0, 1].

When Ψ′(Ŵ ) > −1 for all Ŵ ∈ [0, 1], |Ψ′(Ŵ )| < 1 for all Ŵ ∈ [0, 1]. This implies that

Ψ is a contraction, and the sequence {Ŵ (T )} converges to its unique fixed point. Hence,

the games are convergent. �
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Proof of Proposition 6. First we prove that if F is symmetric, then the fixed point

of Ψ is unique. Operator Ψ is continuous and maps [0, 1] onto itself, so by Brouwer’s

fixed point theorem, it has a fixed point.

Let Ŵ be a fixed point of Ψ. Then, Ŵ satisfies

Ŵ =
prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )]

1− δ + δprob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )]
. (30)

Note that A(Ŵ ′′) ⊂ A(Ŵ ′) for any Ŵ ′′ > Ŵ ′. Therefore, for any Ŵ ′′ > Ŵ ′,

prob(x ∈ A(Ŵ ′′))E[x1 + x2|x ∈ A(Ŵ ′′)] ≤ prob(x ∈ A(Ŵ ′))E[x1 + x2|x ∈ A(Ŵ ′)].

Thus, the right side of (30) is decreasing in Ŵ , and so Ψ has a unique fixed point.

Next, the sum of the players’ equilibrium payoffs in a game with deadline T is

Ŵ (T ) = ΨT+1(0). By standard results in dynamical systems (e.g., Theorem 4.2 in De la

Fuente (2000)), under conditions (i) and (ii) in the statement of the proposition the

sequence {Ŵ (T )} does not converge. So the games must be cycling. �

C Proofs and Details for Section 5

C.1 Proofs for Stated Results

Proof of Proposition 7. We start with part (i).

Fix λ ∈ [0, 1], and let Wλ be the largest fixed point of Πλ(·). We start by showing

that there exists an SPE σλ in which the λ-weighted sum of players’ payoffs is Wλ.

Strategy profile σλ is as follows. Along the path of play, at each period t with status-quo

zt, player i = 1, 2 accepts policy draw x ∈ X if and only if

λx1 + (1− λ)x2 + δ(1− x1 − x2)Wλ ≥ λz1 + (1− λ)z2 + δ(1− z1 − z2)Wλ

which is equivalent to

λ(x1 − z1) + (1− λ)(x2 − z2) ≥ δ(x1 + x2 − z1 − z2)Wλ.
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If at any period t a player rejects a policy that was supposed to be accepted, then

from time t + 1 onwards both players reject all policies. Note that the payoff player i

obtains from rejecting a policy at time t that should have been accepted is zti . Since her

continuation payoff at time t from playing according σλ is weakly larger than zti , this

strategy profile constitutes a SPE. Moreover, players’ λ-weighted sum of payoffs under

σλ is Wλ. Hence, Uλ ≥ Wλ.

Next, we show that Uλ ≤ Wλ. Fix σ ∈ Σ, and let Aσ(h0) denote the set of draws that

both players accept under σ at history h0. For each x ∈ X, let hx0 denote the history

that follows h0 if x is drawn and both players accept it. Then,

λV σ
1 (h0) + (1− λ)V σ

2 (h0)

=prob(x ∈ Aσ(h0))Eσ[(1− δ)(λx1 + (1− λ)x2) + δ(λV σ
1 (hx0 ) + (1− λ)V σ

2 (hx0 )|x ∈ Aσ(h0)]

+ δprob(x /∈ Aσ(h0))Eσ[λV σ
1 (h1) + (1− λ)V σ

2 (h1)|x /∈ Aσ(h0)] (31)

By Lemma 1, for any x ∈ X it must be that λV σ
1 (hx0 ) + (1 − λ)V σ

2 (hx0 ) ≤ (λx1 + (1 −
λ)x2) + (1− x1 − x2)Uλ. Therefore, by (31),

λV σ
1 (h0) + (1− λ)V σ

2 (h0)

≤prob(x ∈ Aσ(h0))Eσ[λx1 + (1− λ)x2 − (x1 + x2)δUλ|x ∈ Aσ(h0)] + δUλ

≤prob(x ∈ Aλ(Uλ))Eσ[λx1 + (1− λ)x2 − (x1 + x2)δUλ|x ∈ Aλ(Uλ)] + δUλ = Πλ(Uλ),

(32)

where the second inequality follows since Aλ(Uλ) = {x : λx1 +(1−λ)x2 ≥ (x1 +x2)δUλ}.
Since (32) holds for any SPE σ, it must be that Uλ ≤ Πλ(Uλ).

Finally, we show that Πλ(U) < U for all U > Wλ. To see why, note that

Πλ(1) = prob(x ∈ Aλ(1))Eσ[λx1 + (1− λ)x2 − (x1 + x2)δ|x ∈ Aλ(1)] + δ < 1,

where the strict inequality follows since, for all x ∈ X,

λx1 + (1− λ)x2 − (x1 + x2)δ = (x1 + x2)(1− δ)− (1− λ)x1 − λx2 < (1− δ).

Towards a contradiction, suppose that there exists U > Wλ with Πλ(U) ≥ U . Since

Wλ is the largest fixed point of Πλ, it must be that Πλ(U) > U . Since Πλ(1) < 1, and
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since Πλ is continuous, there exists U ′ ∈ (U, 1) such that Πλ(U ′) = U ′, a contradiction.

Hence, Πλ(U) < U for all U > Wλ. Since Uλ ≤ Πλ(Uλ), it follows that Uλ ≤ Wλ.

Now for part (ii). For δ < 1 and λ ∈ [0, 1], let U δ
λ denote the largest fixed point of Πλ

under discount factor δ. To prove the result, we show that for λ ∈ {0, 1}, limδ→1 U
δ
λ = 1.

Note that this implies that payoffs (1, 0) and (0, 1) both belong in limδ→1 Vδ. Since

0 ∈ Vδ for all δ < 1 (because the game has a SPE in which both players reject all offers),

we have that limδ→1 Vδ = X.

Fix λ = 1 (the proof for λ = 0 is symmetric and omitted). For each δ < 1, U δ
1 solves:

U δ
1 =

prob(x ∈ Aδ1(U δ
1 ))E[x1|x ∈ Aδ1(U δ

1 )]

1− δ + prob(x ∈ Aδ1(U δ
1 ))E[x1 + x2|x ∈ Aδ1(U δ

1 )]
(33)

Fix a sequence δn → 1, and suppose by contradiction that limn→∞ U
δn
1 = k < 1 (if

needed, take a convergent subsequence). Note then that Aδn1 (U δn
1 ) → A∗1 := {x ∈ X :

x1 ≥ (x1 +x2)k}. Since k < 1, and since f has full support, set A∗ has positive measure.

Moreover, since f has full support, E[x1 + x2|x ∈ A∗] < 1
k
E[x1|x ∈ A∗].21 Using this in

(33), we get

k = lim
n→∞

U δn
1 = lim

n→∞

prob(x ∈ Aδ1(U δ
1 ))E[x1|x ∈ Aδ1(U δ

1 )]

1− δ + prob(x ∈ Aδ1(U δ
1 ))E[x1 + x2|x ∈ Aδ1(U δ

1 )]

=
E[x1|x ∈ A∗1]

E[x1 + x2|x ∈ A∗]
>

E[x1|x ∈ A∗1]
1
k
E[x1|x ∈ A∗]

= k,

a contradiction. Hence, limδ→1 U
δ
1 = 1. �

Proof of Proposition 8. Note that in this case RME payoffs are a fixed point of

operator Φ : X → X, with Φi now given by

Φi(W) = prob(x ∈ A(W))E[xi − (x1 + x2)δiWi|x ∈ A(W)] + δiWi,

where

A(W) =

{
x ∈ X : for i = 1, 2, xi ≥

δiWi

1− δiWi

x−i

}
.

Proposition 1(ii) extends to this environment. When Assumption 3 holds, there

exists δ̂ < 1 such that, if δ1 > δ2 > δ̂, the game has unique RME payoffs. Moreover, as

21Indeed, for any x ∈ A∗, x1 ≥ (x1 + x2)k, and so x1 + x2 ≤ 1
kx1. Since f has full support,

E[x1 + x2|x ∈ A∗] < 1
kE[x1|x ∈ A∗].
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we showed in the proof of Proposition 5, when players’ discount factors are sufficiently

high, RME payoffs are given by limT→∞ΦT (0).22

Fix δ1 > δ2 > δ̂, and let Wσ = (W σ
1 ,W

σ
2 ) denote the players’ unique RME payoffs.

We first show that W σ
1 > W σ

2 . Define the sequence {WT} with WT = ΦT (0) for each

T = 1, 2, ..., and note that limT→∞WT = Wσ. Note that, for i = 1, 2, W 1
i = Φi(0) =

E[xi]. Since distribution F is symmetric, W 1
1 = W 2

1 .

Next, suppose that W T
1 ≥ W T

2 . We now show that this implies that W T+1
1 > W T+1

2 .

Indeed, note that

W T+1
1 −W T+1

2 = Φ1(WT )− Φ2(WT )

= prob(x ∈ A(WT ))E[x1 − x2|x ∈ A(WT )]

+ (δ1W
T
1 − δ2W

T
2 )(1− prob(x ∈ A(WT ))E[x1 + x2|x ∈ A(WT )]).

Since F is symmetric and since W T
1 ≥ W T

2 , we have prob(x ∈ A(WT ))E[(x1 − x2)|x ∈
A(WT )] ≥ 0. Moreover, using prob(x ∈ A(WT ))E[(x1 + x2)|x ∈ A(WT )] < 1, W T

1 ≥
W T

2 and δ1 > δ2, we have

(δ1W
T
1 − δ2W

T
2 )(1− prob(x ∈ A(WT ))E[(x1 + x2)|x ∈ A(WT )]) > 0.

Hence, W T+1
1 > W T+1

2 . Together with W 1
1 = W 1

2 , this implies that W σ
1 > W σ

2 .

Next, since Wσ is a fixed point of Φ, we have

W σ
1 −W σ

2 = prob(x ∈ A(Wσ))E[x1 − x2|x ∈ A(Wσ)]

+ (δ1W
σ
1 − δ2W

σ
2 )(1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

= prob(x ∈ A(Wσ))E[x1 − x2|x ∈ A(Wσ)]

+ δ1(W σ
1 −W σ

2 )(1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

+ (δ1 − δ2)W σ
2 (1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

≥ δ1(W σ
1 −W σ

2 )(1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

+ (δ1 − δ2)W σ
2 (1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)]),

22While the proof of Proposition 5 is written for the case of equal discounting, the arguments can
be readily extended to the case of unequal discounting.
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where the last inequality uses E[(x1 − x2)|x ∈ A(Wσ)] > 0, which holds since F is

symmetric and since W σ
1 > W σ

2 . By the inequality above,

W σ
1 −W σ

2 ≥
(δ1 − δ2)W σ

2 (1− prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)])

1− δ1 + δ1prob(x ∈ A(Wσ))E[x1 + x2|x ∈ A(Wσ)]
.

Using H(W) = prob(x ∈ A(W))E[x1 + x2|x ∈ A(W)], this is equivalent to the inequal-

ity stated in the proposition. �

C.2 Details for Strategic Search

In this appendix we flesh out the extension described in Section 5.3. We make the

following assumptions on the sets of distributions Fx. First, for all x,y ∈ X, card(Fx) =

card(Fy); i.e., all the sets Fx have the same cardinality. Second, for all x ∈ X and

all Fx ∈ Fx with density fx, there exists F ∈ F = F(0,0) with density f such that

fx(y) = 1
(1−z1−z2)2

f(Px(y)) for all y ∈ X(x). We further assume that there exists

f > f > 0 such that, for all f ∈ F , f(x) ∈ [f, f ] for all x ∈ X. Note that these

assumptions are a generalization of Assumptions 1 and 2 to the new environment.

Fix an RME σ. For each z ∈ X, let V σ
i (z) be player i’s continuation payoff under σ

when the status quo is z and let W σ
i be player i’s payoff at the start of the game under

σ. The following result extends Lemma 1 to this environment. The proof is identical to

the proof of Lemma 1, and hence omitted.

Lemma C.1. Fix an RME σ. For all z = (z1, z2) ∈ X,

V σ
i (z) = zi + (1− z1 − z2)W σ

i . (34)

Lemma C.1 can be used to obtain a recursive characterization of RME payoffs. Fix an

RME σ. As in our baseline model, under σ player i approves a policy x = (x1, x2) ∈ X(z)

when the status quo is z only if

(1− δ)xi + δV σ
i (x) ≥ (1− δ)zi + δV σ

i (z)

which, using Lemma C.1, becomes

xi + (1− x1 − x2)δW σ
i ≥ zi − (1− x1 − x2)δW σ

i ,
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Thus, player i accepts policy x when the status quo is z only if x ∈ Ai,z(W
σ
i ) =

{x ∈ X(z) : xi ≥ `i,z(x−i|W σ
i )}, where `i,z(x−i|W σ

i ) is defined as in the main text. For

any pair of payoffs W = (W1,W2) and for any z ∈ X, the set Az(W) defined in the

main text is the set of policies that are accepted by both players when the status quo is

z, and A(W) is the acceptance set at the start of the game.

Now suppose player i = 1, 2 is recognized to choose the distribution from which the

policy will be drawn at the initial period. If player i chooses distribution F ∈ F , she

obtains payoffs equal to

probF (x ∈ A(W))EF [xi − (x1 + x2)δWi|x ∈ A(W)] + δWi.

For any W ∈ X and for i = 1, 2, let

F ∗W,i ∈ arg max
F∈F

probF (x ∈ A(W))EF [xi − (x1 + x2)Wi|x ∈ A(W)],

and let F ∗W := 1
2
F ∗W,1 + 1

2
F ∗W,2. Note that the initial period policy is drawn from

distribution F ∗W.

Define the operator ΦS : X → X as follows: for i = 1, 2 and for all W ∈ X,

ΦS
i (W) = probF ∗W(x ∈ A(W))EF ∗W [xi − (x1 + x2)δWi|x ∈ A(W)] + δWi.

Let W∗ denote the players’ RME payoffs at the start of the game. The following

result extends Proposition 1 to the current environment – the proof uses the same

arguments as the proof of Proposition 1, and hence we omit it.

Proposition C.1. An RME exists, and the players’ equilibrium payoffs under an RME

are a fixed point of ΦS.

This characterization of equilibrium payoffs can be used to generalize the main results

in the main text to the current environment. First, any RME features inefficient delays.

Second, the acceptance regions are nested, and the distribution over long-run outcomes

that an RME induces at a subgame starting with status quo payoff z has support equal

to {x ∈ X : x1 + x2 = 1} ∩ Az(W). Therefore, RME also display path-dependence.

It can also be shown that Proposition 4 continues to hold in this setting, so the RME

outcome also becomes deterministic in the limit as δ → 1.23

23The proofs of all of these results are available upon request.
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