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Abstract
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Section OB collects all proofs. We analyze variants of our baseline model allowing for
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members (Section OD). Section OF presents a back-of-the-envelope calibration of our
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mum price varies.
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OA Further Empirical Exploration

OA.1 Greater entry, and worse collusion

We are interested in the relative importance of greater entry and worse within-cartel enforce-

ment in explaining the impact of minimum prices. Data from Tsuchiura includes bids from

all participants (i.e. includes non-winners) and lets us make progress on these questions.

We proceed by assessing the impact of minimum prices on entry, and then, by assessing the

impact of minimum prices on winning bids, controlling for entry. Since these are, by force,

single-city before-after regressions, we first check that before-after regressions yield estimates

of the impact of minimum prices that are consistent with estimates obtained from a more

reliable difference-in-differences framework.

Policy impact in a single city regression. We perform both OLS and quantile regres-

sions of the linear model

norm winning bida = β0 + β1policy change+ βcontrols+ εa (O1)

where controls (used throughout the analysis) include Japanese logGDP as well as a time

trend and month fixed effects. We report effects for the subsample of auctions such that the

normalized winning bid is above .8, as well as the mean effect for the unconditional sample.

Table OA.1 reports the outcome of regression (O1).

unconditional sample sample s.t. norm winning bid > .8
norm winning bid mean effect mean effect q = .2 q = .4 q = .6 q = .8

policy change -0.016∗∗∗ -0.026∗∗∗ -0.061∗∗∗ -0.015∗∗∗ -0.006∗∗∗ -0.005∗∗∗

(0.006) (0.004) (0.014) (0.003) (0.002) (0.002)
ln gdp 0.519∗∗∗ 0.226∗∗∗ 0.531∗∗∗ 0.129∗∗∗ 0.092∗∗∗ 0.052∗∗

(0.079) (0.059) (0.196) (0.050) (0.031) (0.022)
year 0.005∗∗∗ 0.005∗∗∗ 0.010∗∗∗ 0.005∗∗∗ 0.003∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.003) (0.001) (0.000) (0.000)
R-squared 0.083 0.059

N 1748 1660 1660 1660 1660 1660

Table OA.1: The effect of minimum prices on winning bids. OLS estimates for unconditional
sample and quantile regression estimates for conditional sample; regressions include month
fixed-effects.

While the results are not precisely identical, these magnitudes match those of our difference-
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in-differences design (Table 4), which gives us some confidence that our controls are sufficient

to make a single-city analysis not-implausible.

Entry and participation. We now study the impact of minimum prices on entry and

participation by cartel members.

As expected, minimum prices increase both entry and participation. Table OA.2 reports

the results from OLS estimation of the following auction-level linear models:

num entrantsa = β0 + β1policy change+ βcontrols+ εa

num biddersa = β0 + β1policy change+ βcontrols+ εa

= β0 + β1policy change+ β2num entrantsa + βcontrols+ εa

num entrants num bidders num bidders num bidders
policy change 0.243∗∗ 0.516∗∗∗ 0.364∗∗ 0.410∗∗∗

(0.117) (0.161) (0.144) (0.139)
ln gdp 1.714 2.535 1.462 2.351

(1.632) (2.258) (2.015) (1.943)
year -0.024 -0.350∗∗∗ -0.335∗∗∗ -0.378∗∗∗

(0.022) (0.030) (0.027) (0.026)
num entrants 0.626∗∗∗ 0.644∗∗∗

(0.030) (0.029)
ln reserve 0.382∗∗∗

(0.033)
R-squared 0.028 0.126 0.305 0.355

N 1748 1748 1748 1748

Table OA.2: The effect of minimum prices on entry and participation; regressions include
month fixed-effects.

The introduction of minimum prices has a significant effect on both entry and participa-

tion by long-run bidders, adding on average .24 entrants and .52 bidders to auctions. These

numbers are large given that the mean and median number of participants per auction are

respectively 3.8 and 3. Note that participation increases even controlling for new entrants,

suggesting that participation by cartel members is an endogenous decision. The results

are broadly unchanged when controlling for the auction’s reserve price. The data suggests

that cartel participation itself is affected by minimum prices, which is consistent with the

extension of our model discussed in Section 6 and fully exposed in the Appendix OD.
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Next, we examine the effect of minimum prices on winning bids controlling for partici-

pation, using the linear model

norm winning bida = β0 + β1policy change+ β2num biddersa + βcontrols+ εa. (O2)

To deal with potential endogeneity problems, we also run regression (O2) using the number

of bidders in lagged auctions with similar characteristics as an instrument for the current

number of bidders.1 Table OA.3 reports the estimates.

unconditional sample conditional sample
OLS IV OLS IV

policy change -0.010∗ -0.011∗∗ -0.023∗∗∗ -0.023∗∗∗

(0.005) (0.006) (0.004) (0.004)
num bidders -0.012∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.010∗∗∗

(0.001) (0.003) (0.001) (0.002)
ln gdp 0.550∗∗∗ 0.557∗∗∗ 0.258∗∗∗ 0.257∗∗∗

(0.074) (0.075) (0.054) (0.055)
year 0.001 0.002 0.001 0.001

(0.001) (0.002) (0.001) (0.001)
R-squared 0.194 0.189 0.191 0.191

N 1748 1739 1660 1653
Underid. LM statistic 100.62 113.70

Weak Id. F-Test 105.82 120.89

First-stage results First-stage results
unconditional sample conditional sample

lagged num bidders 0.310∗∗∗ 0.297∗∗∗

(0.030) (0.027)
R-squared 0.172 0.216

Table OA.3: The effect of minimum prices on winning bids, controlling for participation.
OLS and IV estimates for unconditional and conditional samples; regressions include month
fixed-effects.

As Table OA.3 shows, the policy change has a negative effect on bids even when control-

ling for participation.2 We emphasize that the findings of Table OA.3 do not arise naturally

1More precisely, we use the average number of bidders among auctions in the previous date whose reserve
price lies in the same quantile of the reserve price distribution. See also Online Appendix OE for a discussion
of the likely sign of a potential bias.

2Regression (O2) assigns a smaller share of the drop in mean normalized winning bids (−1.6%, Table
OA.1) to the “greater-entry” channel (−0.6%) than to the “worse within-cartel collusion” channel (−1.0%).
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from a model of competitive bidding: controlling for the number of bidders, minimum prices

should not cause a first-order stochastic dominance drop in the right tail of winning bids

under competition (Proposition 5).

OA.2 Individual policy group regressions

Aggregate regressions (2Agg) and (3Agg) aggregate results from individual policy group

regressions. Tables OA.4 and OA.5 provide a sense of potential heterogeneity in treatment

effects by reporting estimates for (2g) and (3g) for individual policy groups. With the

exception of Tsukubamirai, individual policy group findings are broadly consistent with the

aggregate estimates.

We emphasize that setting a threshold of 0.8 is not necessarily appropriate for all treat-

ment cities.3 In the case of Hitachiomiya, for instance, we find that the policy has a negative

effect on the unconditional mean, but no effect on the conditional one. In the case of

Tsukuba, we find that the policy has a negative effect on the upper quantiles of the winning

bid distribution. This is consistent with Hitachiomiya having set the minimum prices at

lower levels than Tsuchiura, and Tsukuba having set minimum prices at higher levels.4

Lastly, Figure OA.1 plots the time-series charts of the normalized winning bids on the

conditional sample for each of the treatment cities, before and after the policy change. The

figure is in line with our main findings: winning bids of long-run firms are more negatively

affected by the introduction of minimum prices than the winning bids of entrants.

OA.3 Robustness

Smooth equilibrium transition. A potential concern with the analysis in Section 5

is that it implicitly assumes that firms’ bidding behavior prior to the introduction of the

minimum price was not affected by expectations of change, and that their behavior after

the introduction of minimum prices adjusted immediately to the new environment. We have

argued that this should bias results against our findings.

We further address these concerns by running regressions (2Agg) and (3Agg), excluding

the data on auctions that were conducted within six months before or after the policy change.

3The threshold of 0.8 is the mid-point of minimum prices we observe in Tsuchiura. We do not observe
minimum prices in other cities.

4Table OA.10 shows that our results are robust to specifying different thresholds.
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unconditional sample s.t. norm winning bid > .8
norm winning bid mean effect mean effect q = .2 q = .4 q = .6 q = .8

policy change -0.008 -0.026∗∗∗ -0.084∗∗∗ -0.021∗∗∗ -0.006∗ 0.003
Tsuchiura (0.007) (0.005) (0.010) (0.005) (0.003) (0.002)

N 3705 3459

policy change -0.021∗∗ -0.008 -0.004 0.006 0.009∗∗ 0.009∗∗∗

Hitachiomiya (0.008) (0.006) (0.005) (0.011) (0.005) (0.004)
N 2457 2379

policy change -0.040∗∗∗ -0.032∗∗∗ -0.112∗∗∗ -0.023∗ 0.011∗ 0.014∗∗∗

Inashiki (0.009) (0.007) (0.005) (0.013) (0.006) (0.004)
N 1990 1913

policy change -0.029∗∗ -0.021∗∗ -0.026 -0.003 -0.001 -0.002
Toride (0.012) (0.008) (0.022) (0.007) (0.004) (0.003)

N 2348 2272

policy change 0.046∗∗∗ 0.014∗∗ 0.021∗ -0.014∗∗ -0.019∗∗∗ -0.006
Tsukuba (0.010) (0.007) (0.011) (0.007) (0.006) (0.008)

N 2650 2276

policy change 0.001 0.006 0.035∗∗∗ 0.007 0.006 0.004
Tsukubamirai (0.017) (0.009) (0.009) (0.007) (0.009) (0.011)

N 1070 930
∗∗∗, ∗∗ and ∗ respectively denote effects significant at the .01, .05 and .1 level.

Table OA.4: Difference-in-differences analysis of the effect of minimum prices on normalized
winning bids. OLS estimates for unconditional and conditional samples and quantile regres-
sion estimates for conditional sample; regressions include city fixed-effects, year fixed-effects,
month fixed-effects and city specific time-trends.

Table OA.6 reports the results. Findings are unchanged.

Separate markets. We now provide support for the assumption that markets are separate.

The argument is geographical and uses the fact that bidder names are publicly available for

Tsuchiura. This allows us to geolocate all long-run bidders, and compute their (straight

line) distance to treatment and control cities. We then compute two measures of proximity

indicating that the three markets are not integrated.

The first metric is the proportion of long-run bidders whose closest city is Tsuchiura

(treatment) rather than Tsukuba or Ushiku (controls). If the three markets were integrated,

given that the population of Tsuchiura is bracketed by that of the control cities, we should
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unconditional sample s.t. norm winning bid > .8
norm winning bid mean effect mean effect q = .2 q = .4 q = .6 q = .8

policy change 0.024∗∗ -0.007 -0.025 -0.012 0.000 0.006
Tsuchiura (0.010) (0.007) (0.018) (0.008) (0.005) (0.004)

long run X policy change -0.036∗∗∗ -0.021∗∗∗ -0.054∗∗∗ -0.007 -0.007 -0.004
Tsuchiura (0.009) (0.007) (0.016) (0.007) (0.004) (0.004)

N 3705 3449

policy change -0.015 -0.012∗ -0.007 -0.001 0.006 0.012∗∗

Hitachiomiya (0.010) (0.008) (0.008) (0.008) (0.008) (0.005)
long run X policy change -0.008 0.003 0.001 0.007 0.002 -0.002

Hitachiomiya (0.007) (0.005) (0.005) (0.006) (0.005) (0.003)
N 2457 2379

policy change -0.017∗ -0.016∗∗ -0.091∗∗∗ -0.006 0.013 0.014∗∗∗

Inashiki (0.010) (0.008) (0.008) (0.008) (0.009) (0.005)
long run X policy change -0.032∗∗∗ -0.025∗∗∗ -0.021∗∗∗ -0.076∗∗∗ -0.006 0.004

Inashiki (0.008) (0.006) (0.006) (0.006) (0.006) (0.004)
N 1990 1913

policy change -0.040∗∗∗ -0.028∗∗ -0.050∗ -0.009 0.002 -0.001
Toride (0.015) (0.011) (0.030) (0.010) (0.006) (0.004)

long run X policy change 0.017 0.009 0.023 0.004 -0.004 -0.002
Toride (0.013) (0.010) (0.027) (0.009) (0.005) (0.004)

N 2348 2272

policy change 0.087∗∗∗ 0.041∗∗∗ 0.034∗∗ 0.017∗ 0.015∗∗ 0.030∗∗∗

Tsukuba (0.012) (0.008) (0.014) (0.009) (0.007) (0.008)
long run X policy change -0.053∗∗∗ -0.035∗∗∗ -0.021∗∗ -0.034∗∗∗ -0.052∗∗∗ -0.057∗∗∗

Tsukuba (0.009) (0.006) (0.010) (0.006) (0.005) (0.006)
N 2650 2276

policy change 0.011 -0.011 0.005 -0.078∗∗∗ -0.028∗ 0.012
Tsukubamirai (0.030) (0.016) (0.018) (0.016) (0.016) (0.018)

long run X policy change -0.007 0.023 0.036∗∗ 0.085∗∗∗ 0.033∗∗ -0.004
Tsukubamirai (0.028) (0.015) (0.017) (0.015) (0.015) (0.017)

N 1070 930
∗∗∗, ∗∗ and ∗ respectively denote effects significant at the .01, .05 and .1 level.

Table OA.5: Difference-in-differences analysis of the effect of minimum prices on normalized
winning bids. OLS estimates for unconditional and conditional samples and quantile regres-
sion estimates for conditional sample; regressions include city fixed-effects, year fixed effects
month fixed-effects and city specific time-trends.
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Figure OA.1: Average normalized winning bids of long-run bidders and entrants, conditional
sample, before and after treatment.

expect roughly 1/3 of long-run bidders to have Tsuchiura as their closest location. Instead

the number in our data is 87%.

Our second metric compares the share of bidders within a fixed radius from each city.

Given a quantile Q, we compute the Qth quantile radius for Tsuchiura, i.e. the distance dQ

such that a proportion Q of long-run bidders are within distance dQ of Tsuchiura. We then

compute the proportion of long-run bidders within distance d of either control cities. Since

the distance between control cities is roughly equal to the distance between Tsuchiura and
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unconditional conditional
norm winning bid mean effect mean effect

policy change -0.022∗∗ -0.000 -0.021∗∗∗ -0.006
p-value 0.042 0.971 0.002 0.402

policy change x long run -0.021∗∗ -0.015∗∗

p-value 0.042 0.018

R-squared 0.293 0.315 0.311 0.330
N 8234 8234 7611 7611

∗∗∗, ∗∗ and ∗ respectively denote effects significant at the .01, .05 and .1 level.

Table OA.6: Difference-in-differences analysis of the effect of minimum prices on normalized
winning bids, excluding auctions occurring around the policy change. OLS estimates for
unconditional and conditional samples; regressions include city fixed-effects, year fixed effects
month fixed-effects and city specific time-trends. Standard errors are clustered at the (city,
year) level and p-values are calculated by wild bootstrap.

each control city, if the markets were integrated, we would expect that a proportion Q of

long-run bidders would be within distance dQ of each control city. This is not the case: for

Q = .5, the proportion of long-run bidders within distance dQ of control cities is exactly

equal to 0; for Q = .75, it is 13%. This suggests that markets are largely separate.

Controlling for reserve prices. We now show that our empirical results continue to hold

if we control for the level of the reserve price. We run the following versions of regressions

(2Agg) and (3Agg):

log winning bida = β0 + β1log reserve price+ β2policy change

+
1

Na

∑
g, s.t. a∈g

(βgcontrols+ fixed effectsg) + εa

log winning bida = β0 + β1log reserve price+ β2policy change+ β3 ˜long run

+ β4 ˜long run policy change+
1

Na

∑
g, s.t. a∈g

(βgcontrols+ fixed effectsg) + εa.

The results are presented in Table OA.7.

As a further check, we run the aggregate regressions in Section 5.3 for four subsamples

of the data, corresponding to the four quartiles of the reserve price distribution. Results are
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unconditional conditional
log winning bid mean effect mean effect
policy change -0.018 0.015 -0.025∗∗ -0.009

p-value 0.462 0.641 0.016 0.214

policy change x long run -0.036∗∗∗ -0.017∗∗∗

p-value 0.004 0.004

R-squared 0.995 0.995 0.999 0.999
N 8958 8958 8236 8236

∗∗∗, ∗∗ and ∗ respectively denote effects significant at the .01, .05 and .1 level.

Table OA.7: Difference-in-differences analysis of the effect of minimum prices on log winning
bids. OLS estimates for unconditional and conditional samples; regressions include city
fixed-effects, year fixed effects month fixed-effects and city specific time-trends. Standard
errors are clustered at the (city, year) level and p-values are calculated by wild bootstrap.

presented in Table OA.8

Observability of participation. To assess whether the assumption of observable partic-

ipants is plausible, we compute OLS estimates of linear models

norm bida =β0 + β1policy change+ β2num entrants

+ β3num long run participants+ βcontrols+ εa

ln bida =β0 + β1policy change+ β2num entrants

+ β3num long run participants+ β4ln reserve+ βcontrols+ εa

for all (bidder, auction) pairs using data from Tsuchiura. The results are presented in Table

OA.9. For concision we do not reports coefficients for control variables (year and log GDP).

The data supports the assumption that participation is observable. Indeed, even con-

ditional on auction size (proxied here by the reserve price), both the realized number of

entrants and the realized number of participating long-run bidders have a significant effect

on bids.

Different thresholds for normalized bids. Throughout the paper, we analyzed the

effect that the policy change had on the distribution of normalized winning bids truncated

at 0.8. Our results are robust to changes in this threshold.
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unconditional conditional
norm winning bid mean effect mean effect

Auctions with reserve price in first quartile
policy change 0.017∗∗ 0.031∗∗ -0.003 0.003

p-value 0.164 0.010 1.000 0.796

long run X policy change -0.018 -0.009
p-value 0.302 0.511

N 2063 2063 1923 1923

Auctions with reserve price in second quartile
policy change 0.006 0.010 -0.023∗ -0.018

p-value 0.694 0.276 0.064 0.218

long run X policy change 0.001 -0.007
p-value 0.937 0.392

N 2285 2285 2150 2150

Auctions with reserve price in third quartile
policy change -0.023∗ 0.011 -0.018∗∗∗ -0.002

p-value 0.070 0.444 0.002 0.847

long run X policy change -0.028∗ -0.016
p-value 0.054 0.198

N 2312 2312 2099 2099

Auctions with reserve price in fourth quartile
policy change -0.011 0.023 -0.023 -0.022

p-value 0.669 0.844 0.328 0.228

long run X policy change -0.041 -0.003
p-value 0.134 0.704

N 2298 2298 2064 2064
∗∗∗, ∗∗ and ∗ respectively denote effects significant at the .01, .05 and .1 level.

Table OA.8: Difference-in-differences analysis of the effect of minimum prices on normalized
winning bids. OLS estimates for unconditional and conditional samples; regressions include
city fixed-effects, year fixed effects month fixed-effects and city specific time-trends. Standard
errors are clustered at the (city, year) level and p-values are calculated by wild bootstrap.

To illustrate this, we estimate equations (2Agg) and (3Agg) using thresholds of 0.78 and

0.82. The results are presented in Table OA.10.
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norm bid ln bid
policy change -0.025∗∗∗ -0.024∗∗∗

(0.005) (0.006)
num entrants -0.012∗∗∗ -0.014∗∗∗

(0.002) (0.002)
num long run participants -0.011∗∗∗ -0.013∗∗∗

(0.001) (0.001)
ln reserve 1.008∗∗∗

(0.003)
R-squared 0.253 0.996

N 6560 6560

Table OA.9: Bid (winning or not) as a function of realized participation; clustered by auction
id.

norm winning bid > 0.78 norm winning bid > 0.82
norm winning bid mean effect mean effect

policy change -0.026∗∗ -0.012 -0.008 0.003
p-value 0.040 0.206 0.122 0.674

long run X policy change -0.016∗∗ -0.012∗∗∗

p-value 0.018 0.004

R-squared 0.316 0.336 0.313 0.332
N 8418 8418 8057 8057

∗∗∗, ∗∗ and ∗ respectively denote effects significant at the .01, .05 and .1 level.

Table OA.10: Difference-in-differences analysis of the effect of minimum prices on normalized
winning bids. OLS estimates for unconditional and conditional samples; regressions include
city fixed-effects, year fixed effects month fixed-effects and city specific time-trends. Standard
errors are clustered at the (city, year) level and p-values are calculated by wild bootstrap.

OB Proofs

OB.1 Proofs for Section 2

This appendix contains the proofs of Section 2. We start with a few preliminary observations.

First, since the game we are studying is a complete information game with perfect monitoring,

the set of SPE payoffs is compact (Proposition 2.5.2 in Mailath and Samuelson (2006)).

Hence, V p and V i,p are attained. Fix an SPE σ and a history ht. Let β(c), γ(c) and

T (c,b, γ,x) be the bidding and transfer profile that firms play in this equilibrium after

history ht. Let βW (c) and x(c) be, respectively, the winning bid and the allocation induced
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by bidding profile (β(c), γ(c)). Let ht+1 = ht t (c,b, γ,x,T) be the concatenated history

composed of ht followed by (c,b, γ,x,T), and let {V (ht+1)}i∈N be the vector of continuation

payoffs after history ht+1. We let ht+1(c) = ht t (c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c)))

denote the on-path history that follows ht when current costs are c. Note that the following

inequalities must hold:

(i) for all i ∈ N̂ such that ci ≤ βW (c),

xi(c)(βW (c)−ci)+Ti(c, β(c), γ(c),x(c))+δVi(ht+1(c)) ≥ ρi(β
W , γ,x)(c)(βW (c)−ci)+δV i,p.

(O3)

(ii) for all i ∈ N̂ such that ci > βW (c),

xi(c)(βW (c)− ci) + Ti(c, β(c), γ(c),x(c)) + δVi(ht+1(c)) ≥ δV i,p. (O4)

(iii) for all i ∈ N ,

Ti(c, β(c), γ(c),x(c)) + δVi(ht+1(c)) ≥ δV i,p. (O5)

The inequality in (O3) must hold since a firm with cost below βW (c) can obtain a payoff

at least as large as the right-hand side by undercutting the winning bid when βW (c) > p,

or, by bidding p and choosing γi = 1 when βW (c) = p. Similarly, the inequality in (O4)

must hold since firms with cost larger than βW (c) can obtain a payoff at least as large as

the right-hand side by bidding more than βW (c). Finally, the inequality in (O5) must hold

since otherwise firm i would not be willing to make the required transfer.

Conversely, suppose there exists a winning bid profile βW (c), an allocation x(c), a

transfer profile T and equilibrium continuation payoffs {Vi(ht+1(c))}i∈N that satisfy in-

equalities (O3)-(O5) for some γ(c) that is consistent with x(c) (i.e., γ(c) is such that

xi(c) = γi(c)/
∑

j:xj(c)>0 γj(c) for all i with xi(c) > 0). Then, (βW ,x,T) can be supported

in an SPE as follows. For all c, all firms i ∈ N̂ bid βW (c). Firms i ∈ N̂ with xi(c) = 0

choose γ̃i(c) = 0, and firms i ∈ N̂ with xi(c) > 0 choose γ̃i(c) = γi(c). Note that, for all

i ∈ N̂ , xi(c) = γ̃i(c)/
∑

j γ̃j(c) and ρi(β
W , γ̃,x)(c) = ρi(β

W , γ,x)(c). If no firm deviates

at the bidding stage, firms make transfers Ti(c, β(c), γ(c),x(c)). If no firm deviates at the

transfer stage, in the next period firms play an SPE that gives payoff vector {V (ht+1(c))}i∈N .

If firm i deviates at the bidding stage, there are no transfers and the cartel reverts to an

equilibrium that gives firm i a payoff of V i,p; if firm i deviates at the transfer stage, the

cartel reverts to an equilibrium that gives firm i a payoff of V i,p (deviations by more than
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one firm go unpunished). Since (O3) holds, under this strategy profile no firm has an in-

centive to undercut the winning bid βW (c). Since (O4) holds, no firm with ci > βW (c) and

xi(c) > 0 has an incentive to bid above βW (c) and lose. Upward deviations by a firm i with

ci < βW (c) who wins the auction are not profitable since the firm would lose the auction

by bidding b > βW (c). Finally, since (O5) holds, all firms have an incentive to make their

required transfers.

Proof of Lemma 1. Let σ be an SPE that attains V p. Towards a contradiction,

suppose there exists an on-path history ht = ht−1t(c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c)))

such that
∑

i Vi(σ, ht) = V (σ, ht) < V p. Let {Vi}i∈N be an equilibrium payoff vector with∑
i Vi = V p.

Consider changing the continuation equilibrium at history ht by an equilibrium that deliv-

ers payoff vector {Vi}i∈N , and changing the transfers after history ht−1t(c, β(c), γ(c),x(c)) as

follows. First, for each i ∈ N , let T̂i be such that T̂i+δVi = Ti(c, β(c), γ(c),x(c))+δVi(σ, ht).

Note that ∑
i

T̂i =
∑
i

{Ti(c, β(c), γ(c),x(c)) + δ(Vi(σ, ht)− Vi)} < 0,

where we used
∑

i Vi = V p >
∑

i Vi(σ, ht) and
∑

i Ti(c, β(c), γ(c),x(c)) = 0. For each

i ∈ N , let T̃i = T̂i + ε
n
, where ε > 0 is such that

∑
i T̃i =

∑
i T̂i + ε = 0. Replacing

transfers Ti(c, β(c), γ(c),x(c)) and continuation values Vi(σ, ht) by transfers T̃i and values

Vi relaxes constraints (O3)-(O5) and increases the total expected discounted surplus that

the equilibrium generates. Therefore, if σ attains V p, it must be that V (σ, ht) = V p for all

on-path histories.

We now prove the second statement in the Lemma. Fix an optimal equilibrium σ, and

let {Vi}i∈N be the payoff vector that this equilibrium delivers, with
∑

i Vi = V p. For each c,

let (β(c), γ(c)) be the bidding profile that firms use in the first period under σ, and let x(c)

denote the allocation induced by bidding profile (β(c), γ(c)). It follows that

V p = E

∑
i∈N̂

xi(c)(βi(c)− ci)

+ δV p ⇐⇒ V p =
1

1− δ
E

∑
i∈N̂

xi(c)(βi(c)− x(c))

 .
We show that there exists an optimal equilibrium in which firms use bidding profile (β(·), γ(·))
after all on-path histories. For any (c,b, γ,x), let Ti(c,b, γ,x) denote the transfer that firm

i makes at the end of the first period under equilibrium σ when first period costs, bids and

allocation are given by c, b, γ and x. Let Vi(h1(c)) denote firm i’s continuation payoff under
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equilibrium σ after first period history h1(c) = (c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c))).

By our arguments above,
∑

i Vi(h1(c)) = V p for all c. Since σ is an equilibrium, it must be

that β(c), γ(c), x(c), Ti(c,b, γ,x) and Vi(h1(c)) satisfy (O3)-(O5).

Consider the following strategy profile. Along the equilibrium path, at each period

t firms bid according to (β(·), γ(·)). For any (c, β(c), γ(c),x(c)), firm i makes transfer

T̂i(c, β(c), γ(c),x(c)) such that T̂i(c, β(c), γ(c),x(c))+δVi = Ti(c, β(c), γ(c),x(c))+δVi(h1(c)).

Note that∑
i

T̂i(c, β(c), γ(c),x(c)) =
∑
i

{Ti(c, β(c), γ(c),x(c)) + δ(Vi(h1(c))− Vi)} = 0,

where we used
∑

i Ti(c, β(c), γ(c),x(c)) = 0 and
∑

i Vi(h1(c)) = V p =
∑

i Vi. If firm i de-

viates at the bidding stage or transfer stage, then firms revert to an equilibrium that gives

firm i a payoff of V i,p. Clearly, this strategy profile delivers total payoff V p. Moreover, firms

have the same incentives to bid according to (β, γ) and make their required transfers than

under the original equilibrium σ. Hence, no firm has an incentive to deviate at any stage

and this strategy profile can be supported as an equilibrium. �

Proof of Lemma 2. Suppose there exists an SPE σ and a history ht at which firms bid

according to a bidding profile (β, γ) that induces winning bid βW (c) and allocation x(c). Let

Ti(c, β(c), γ(c),x(c)) be firm i’s transfers at history ht when costs are c and all firms play

according to the SPE σ. Let ht+1(c) = ht t (c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c))) be the

on-path history that follows ht when costs are c, and let Vi(ht+1(c)) be firm i’s equilibrium

payoff at history ht+1(c). Since the equilibrium must satisfy (O3)-(O5) for all c,∑
i∈N̂

{
(ρi(β

W , γ,x)(c)− xi(c))
[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≤
∑
i∈N

Ti(c, β(c), γ(c),x(c)) + δ
∑
i∈N

(Vi(ht+1(c))− V i,p) ≤ δ(V p −
∑
i∈N

V i,p),

where we used
∑

i Ti(c, β(c), γ(c),x(c)) = 0 and
∑

i Vi(ht+1(c)) ≤ V p.

Next, consider a winning bid profile βW (c) and an allocation x(c) that satisfy (1) for all

c for some γ(c) consistent with x(c) (i.e., such that xi(c) = γi(c)/
∑

j:xj(c)>0 γj(c) for all

i ∈ N̂ with xi(c) > 0). We now construct an SPE that supports βW (·) and x(·) in the first

period. Let {Vi}i∈N be an equilibrium payoff vector with
∑

i Vi = V p. For each i ∈ N and
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each c, we construct transfers Ti(c) as follows:

Ti(c) =


−δ(Vi − V i,p) + (ρi(β

W , γ,x)(c)− xi(c))(βW (c)− ci) + ε(c) if i ∈ N̂ , ci ≤ βW (c),

−δ(Vi − V i,p)− xi(c)(βW (c)− ci) + ε(c) if i ∈ N̂ , ci > βW (c),

−δ(Vi − V i,p) + ε(c) if i /∈ N̂ ,

where ε(c) ≥ 0 is a constant to be determined below. Note that, for all c,∑
i∈N

Ti(c)− nε(c)

=− δ(V p −
∑
i∈N

V i,p) +
∑
i∈N̂

{
(ρi(β

W , γ,x)(c)− xi(c))
[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−} ≤ 0,

where the inequality follows since βW and x satisfy (1). We set ε(c) ≥ 0 such that transfers

are budget balance; i.e., such that
∑

i∈N Ti(c) = 0.

The SPE we construct is as follows. At t = 0, for each c all participating firms

bid βW (c). Firms i ∈ N̂ with xi(c) = 0 choose γ̃i(c) = 0, and firms i ∈ N̂ with

xi(c) > 0 choose γ̃i(c) = γi(c). Note that, for all i ∈ N̂ , xi(c) = γ̃i(c)/
∑

j γ̃j(c) and

ρi(β
W , γ̃,x)(c) = ρi(β

W , γ,x)(c). If no firm deviates at the bidding stage, firms exchange

transfers Ti(c). If no firm deviates at the transfer stage, from t = 1 onwards they play an

SPE that supports payoff vector {Vi}. If firm i ∈ N deviates either at the bidding stage or

at the transfer stage, from t = 1 onwards firms play an SPE that gives firm i a payoff V i,p

(if more than one firm deviates, firms punish the lowest indexed firm that deviated). This

strategy profile satisfies (O3)-(O5), and so βW and x are implementable. �

Proof of Proposition 1. By Lemma 1, there exists an optimal equilibrium in which

firms use the same bidding profile (β, γ) at every on-path history. For each cost vector c, let

βW (c) and x(c) denote the winning bid and the allocation induced by this bidding profile

under cost vector c.

We first show that βW (c) = b∗p(c) for all c such that b∗p(c) > p. Towards a contradiction,

suppose there exists c with βW (c) 6= b∗p(c) > p. Since x∗(c) is the efficient allocation, the

procurement cost under allocation x(c) is at least as large as the procurement cost under

allocation x∗(c). Since bidding profile (β, γ) is optimal, it must be that βW (c) > b∗p(c) > p.

Indeed, if βW (c) < b∗p(c), then the cartel would strictly prefer to use a bidding profile that

allocates the contract efficiently and has winning bid b∗p(c) under cost vector c than to use
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bidding profile (β(c), γ(c)). By Lemma 2, βW (c) and x(c) must satisfy

δ(V p −
∑
i∈N

V i,p) ≥
∑
i∈N̂

{
(1− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≥
∑
i∈N̂

(1− x∗i (c))
[
βW (c)− ci

]+
,

which contradicts βW (c) > b∗p(c) > p. Therefore, βW (c) = b∗p(c) for all c such that b∗p(c) > p.

Next, we show that βW (c) = p for all c such that b∗p(c) ≤ p. Towards a contradiction,

suppose there exists c with b∗p(c) ≤ p and βW (c) > p. By Lemma 2, βW (c) and x(c) satisfy

δ(V p −
∑
i∈N

V i,p) ≥
∑
i∈N̂

{
(1− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≥
∑
i∈N̂

(1− x∗i (c))
[
βW (c)− ci

]+
,

which contradicts βW (c) > p ≥ b∗p(c). Therefore, βW (c) = p for all c such that b∗p(c) ≤ p.

Combining this with the arguments above, βW (c) = β∗p(c) = max{p, b∗p(c)}.
Finally, we characterize the allocation in an optimal equilibrium. Note first that under an

optimal bidding profile the cartel must allocate the procurement contract efficiently whenever

β∗p(c) > p. Indeed, by construction, the efficient allocation is sustainable whenever the

winning bid is β∗p(c) > p. Therefore, if the allocation was not efficient for some c with

β∗p(c) > p, the cartel could strictly improve its profits by using a bidding profile with winning

bid β∗p(c) that allocates the good efficiently.

Consider next a cost vector c such that β∗p(c) = p. In this case, the cartel’s bidding

profile in an optimal equilibrium induces the most efficient allocation (i.e., the allocation

that minimizes expected procurement costs) consistent with (1) when the winning bid is p.

�

Proof of Corollary 1. We begin with part (i). Fix a set of participants N̂ ⊂ N and

a cost realization c = (ci)i∈N̂ . Note that for any bid b, an increase in the cost cj of any

participating firm j ∈ N̂ weakly increases the term
∑

i∈N̂(1−x∗i (c))[b− ci]+. Therefore, any

increase in the cost of any participating firm weakly decreases β∗p(c).

Consider next part (ii). Fix N̂0 ⊂ N and j ∈ N\N̂0. Fix also a cost realization c =

(ci)i∈N̂0
of firms in N̂0 and cost realization cj of bidder j. When the set of participants is

N̂0, under cost realization c the winning bid is β∗p(c) = max{p, b∗p(c)}. When the set of
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participants is N̂0 ∪ {j}, under cost realization ĉ = (c, cj), the winning bid is max{p, b∗p(ĉ)}.
Note that

b∗p(c) = sup

b ≤ r :
∑
i∈N̂0

(1− x∗i (c))[b− ci]+ ≤ δ(V p −
∑
i

V i,p)


≥ sup

b ≤ r :
∑

i∈N̂0∪{j}

(1− x∗i (ĉ))[b− ci]+ ≤ δ(V p −
∑
i

V i,p)

 = b∗p(ĉ),

and so β∗p(c) ≥ β∗p(ĉ). Since this holds for any cost realization c of firms in N̂0 and all cost

realizations cj of bidder j, it follows that E[β∗p(c)|N̂ = N̂0] ≥ E[β∗p(c)|N̂ = N̂0 ∪ {j}]. �

Proof of Corollary 2. Note that, for δ = 0, b∗p(c) = c(2) for all c. By Proposi-

tion 1, when δ = 0 the winning bid under the best equilibrium for the cartel is equal to

βcomp(c) = max{c(2), p}, which is the winning bid under competition. �

Fix a minimum price p. For every value V ≥
∑

i∈N V i,p and every c, let

bp(c;V ) ≡ sup

b ≤ r :
∑
i∈N̂

(1− x∗i (c))[b− ci]+ ≤ δ(V −
∑
i

V i,p)

 ,

and let βp(c;V ) = max{bp(c;V ), p}. Note that βp(c;V ) would be the winning bid in an

optimal equilibrium if V = V p. Let xp(c;V ) be the allocation under an optimal equilibrium

when the cartel’s total surplus is V . For every V ≥
∑

i∈N V i,p, define

Up(V ) ≡ 1

1− δ
E

∑
i∈N̂

xpi (c;V )(βp(c, V )− ci)

 ,
to be the total surplus generated under a bidding profile that induces winning bid βp(c;V )

and allocation xp(c;V ). The winning bid and allocation in an optimal equilibrium are

β∗p(c) = βp(c;V p) and xp(c;V p), and so V p = Up(V p). Define

Up ≡ sup

{
V ≥

∑
i∈N

V i,p : V ≤ Up(V )

}
.
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Lemma OB.1. V p = Up.

Proof. Since V p = Up(V p), it follows that Up ≥ V p. We now show that Up ≤ V p. Towards

a contradiction, suppose that Up > V p. Hence, there exists Ṽ ≥
∑

i∈N V i,p such that

Up(Ṽ ) ≥ Ṽ > V p. Let {Vi}i∈N be such that
∑

i Vi = Up(Ṽ ) and Vi ≥ V i,p for all i, and

consider the following strategy profile. For all on-path histories, cartel members use a bidding

profile (β, γ) inducing winning bid βp(c; Ṽ ) and allocation xp(c; Ṽ ). If firm i deviates at the

bidding stage, there are no transfers and in the next period firms play an equilibrium that

gives firm i a payoff of V i,p (if more than one firm deviates, firms play an equilibrium that

gives V i,p to the lowest indexed firm that deviated). If no firm deviates at the bidding stage,

firms make transfers Ti(c) given by

Ti(c) =

{
−δ(Vi − V i,p) + (ρi(βp, γ,x

p)(c)− xpi (c; Ṽ ))(βp(c; Ṽ )− ci) + ε(c) if i ∈ N̂ , ci ≤ βp(c; Ṽ ),

−δ(Vi − V i,p) + ε(c) otherwise,

where ε(c) ≥ 0 is a constant to be determined.5 Note that∑
i∈N

Ti(c)−nε(c) = −δ(Up(Ṽ )−
∑
i∈N

V i,p)+
∑
i∈N̂

((ρi(β
W , γ,x)(c)−xpi (c; Ṽ ))[βp(c; Ṽ )−ci]+ ≤ 0,

where the inequality follows since βp(c; Ṽ ) and xpi (c; Ṽ ) are the winning bid and the allo-

cation under an optimal equilibrium when the cartel’s total surplus is Ṽ ≤ Up(Ṽ ). We set

ε(c) ≥ 0 such that
∑

i Ti(c) = 0. If firm i deviates at the transfer stage, in the next period

firms play an equilibrium that gives firm i a payoff of V i,p (if more than one firm deviates,

firms play an equilibrium that gives V i,p to the lowest indexed firm that deviated). Other-

wise, in the next period firms continue playing the same strategy as above. This strategy

profile generates total surplus Up(Ṽ ) ≥ Ṽ > V p to the cartel. One can check that no firm has

an incentive to deviate at any stage, and so this strategy profile constitutes an equilibrium.

This contradicts Up(Ṽ ) > V p, so it must be that Up ≤ V p. �

Proof of Proposition 2. We first establish part (i). Suppose that p ≤ c and fix

equilibrium payoffs {Vi}i∈N . Fix j ∈ N and consider the following strategy profile. At

t = 0, firms’ behavior depends on whether j ∈ N̂ or j /∈ N̂ . If j ∈ N̂ , all firms i ∈ N̂ bid

min{cj, c(2)} (where c(2) is the second lowest procurement cost). Firm i ∈ N̂ chooses γi = 1

5Recall that xp(c; Ṽ ) is the allocation under an optimal equilibrium when continuation payoff is Ṽ .
Therefore, xp(c; Ṽ ) is such that xpi (c; Ṽ ) = 0 for all i with ci > βp(c; Ṽ ).
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if ci = mink∈N̂ ck and chooses γi = 0 otherwise. Note that this bidding profile constitutes a

Nash equilibrium of the stage game. If j /∈ N̂ , at t = 0 participating firms play according to

some equilibrium of the stage game. If all firms bid according to this profile, firm j’s transfer

is Tj = −δVj at the end of the period regardless of whether j ∈ N̂ or j /∈ N̂ . The transfer

of firm i 6= j is Ti = 1
n−1

δVj at the end of the period, so
∑

i Ti = 0. If no firm deviates at

the bidding or transfer stage, at t = 1 firms play according to an equilibrium that delivers

payoffs {Vi}. If firm i deviates at the bidding stage, there are no transfers and at t = 1 firms

play the strategy just described with i in place of j. If no firm deviates at the bidding stage

and firm i deviates at the transfer stage, at t = 1 firms play the strategy just described with

i in place of j (if more than one firm deviates at the bidding or transfer stage, from t = 1

firms play according to an equilibrium that delivers payoffs {Vi}i∈N). Note that this strategy

profile gives player j a payoff of 0. Moreover, no firm has an incentive to deviate at t = 0,

and so V j,p = 0 for all p ≤ c.

Suppose next that p > c, and note that for all i ∈ N ,

V i,p ≥ vi,p ≡
1

1− δ
prob(i ∈ N̂)EFi

[
1

N̂
1ci≤p(p− ci)|i ∈ N̂

]
> 0,

where the inequality follows since vi,p is the minmax payoff for a firm in an auction with

minimum price p. This establishes part (i).

We now turn to part (ii). Note that β∗0(c) = infc β
∗
0(c) = c+ δV 0

n−1
> c.6 We now show that

there exists η > 0 such that V p−
∑

i∈N V i,p < V 0 for all p ∈ [β∗0(c), β∗0(c)+η]. Fix η > 0 and

p ∈ [β∗0(c), β∗0(c)+η]. For every V ≥
∑

i∈N V i,p and every c, let β̃p(c;V ) ≡ max{b0(c;V ), p}.
Since V i,p > 0 for all p > β∗0(c), it follows that b0(c;V ) ≥ bp(c;V ) for all c and all V ≥∑

i V i,p, and so β̃p(c;V ) ≥ βp(c;V ) = max{bp(c;V ), p} for all c and all V ≥
∑

i V i,p. Define

Ũp(V ) ≡ 1

1− δ
E

∑
i∈N̂

x∗i (c)(β̃p(c;V )− ci)

 ,
and note that Ũp(V ) ≥ Up(V ) for all V ≥

∑
i V i,p. Define

Ṽp ≡ sup

{
V ≥

∑
i

V i,p : Ũp(V ) ≥ V

}
,

6Term β∗0(c) attains its lowest value when all cartel members participate in the auction and costs are

c = (c)i∈N (i.e., all firms have cost c). For this cost vector, β∗0(c) = c+ δV 0

n−1 .
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and note that Ṽp ≥ V p. Recall that, for all V , U0(V ) = 1
1−δE

[∑
i∈N̂ x

∗
i (c)(b0(c;V )− ci)

]
.7

Therefore, for all V ,

Ũp(V )− U0(V ) =
1

1− δ
E
[
(p− b0(c;V ))1{c:b0(c;V )<p}

]
> 0.

Note that for all V and all c, b0(c;V ) ≥ c + δV
n−1

. Let V̂ > 0 be such that c + δV̂
n−1

=

β∗0(c) + η = c + δV 0

n−1
+ η; that is, V̂ = V 0 + (n−1)η

δ
> V 0. Then, for all p ∈ [β∗0(c), β∗0(c) + η]

and all V ≥ V̂ , b0(c;V ) ≥ p for all c, and so Ũp(V ) = U0(V ). Since V̂ > V 0 and since

V 0 = sup{V ≥ 0 : U0(V ) ≥ V }, it follows that V > U0(V ) = Ũp(V ) for all V ≥ V̂ and all

p ∈ [β∗0(c), β∗0(c) + η], and so V̂ = V 0 + (n−1)η
δ

> Ṽp ≥ V p for all p ∈ [β∗0(c), β∗0(c) + η].

Finally, let η > 0 be such that8

(n− 1)η

δ
=
∑
i∈N

vi,β∗0 (c) =
∑
i∈N

prob(i ∈ N̂)

1− δ
EFi

[
1

N̂
1ci≤β∗0 (c)(β

∗
0(c)− ci)|i ∈ N̂

]
.

Since V i,p ≥ vi,p ≥ vi,β∗0 (c) for all p ∈ [β∗0(c), β∗0(c) + η],

V̂ = V 0 +
(n− 1)η

δ
> V p ⇒ V 0 > V p −

∑
i∈N

V i,p,

which completes the proof. �

OB.2 Proofs of Section 3

Proof of Proposition 3. Consider first a collusive environment. By Propositions 1 and

2, there exists η > 0 such that β∗p(c) ≤ β∗0(c) for all p ∈ [β∗0(c), β∗0(c) + η] and all c such

that β∗0(c) ≥ p, with strict inequality if β∗0(c) < r. Therefore, for all p ∈ [β∗0(c), β∗0(c) + η],

prob(β∗p ≥ q|β∗p ≥ p) ≤ prob(β∗0 ≥ q|β∗0 ≥ p), and the inequality is strict for some q > p

whenever prob(β∗0 < r) > 0. This proves part (i).

Under competition, for all p and all q > p, prob(βcomp
p ≥ q|βcomp

p > p) = prob(c(2) ≥
q|c(2) > p) = prob(βcomp

0 ≥ q|βcomp
0 > p). This proves part (ii). �

Proof of Proposition 4. We first show that there exists a symmetric equilibrium as

7Indeed, by Proposition 1, xp=0(c;V ) = x∗(c) for all V .
8Recall that for all p, V i,p ≥ vi,p = prob(i∈N̂)

1−δ EFi

[
1

N̂
1ci≤p(p− ci)|i ∈ N̂

]
.
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described in the statement of the proposition, and then we show uniqueness.

Consider first a minimum price p ≤ bAI0 (c). Clearly, in this case all firms using the bidding

function bAI0 (·) is a symmetric equilibrium of the auction with minimum price p.

Consider next the case in which bAI0 (c) < p. For any c ∈ [c, c], define

P (c) ≡
N̂−1∑
j=0

(
N̂ − 1

j

)
1

j + 1
F (c)j(1− F (c))N̂−j−1.

P (c) is the probability with which a firm with cost c′ ≤ c wins the auction if all firms use a

bidding function β(·) with β(c′) = b ≥ p for all c′ ≤ c and β(c′) > b for all c′ > c.

Let ĉ ∈ (c, c) be the unique solution to P (ĉ)(p − ĉ) = (1 − F (ĉ))N̂−1(bAI0 (ĉ) − ĉ).9 Let

bAIp (·) be given by

bAIp (c) =

{
bAI0 (c) if c ≥ ĉ,

p if c < ĉ.

Note that if all firms bid according to bidding function bAIp (·), the probability with which a

firm with cost c < ĉ wins the auction is P (ĉ). We now show that all firms bidding according

to bAIp (·) is an equilibrium.

Suppose that all firms j 6= i bid according to bAIp (·). Note first that it is never optimal

for firm i to bid b ∈ (p, bAIp (ĉ)). Indeed, if ci < bAIp (ĉ), bidding b ∈ (p, bAIp (ĉ)) gives firm

i a strictly lower payoff than bidding bAIp (ĉ): in both cases firm i wins with probability

(1−F (ĉ))N̂−1, but by bidding bAIp (ĉ) the firm gets a strictly larger payoff in case of winning.

If ci > bAIp (ĉ), bidding b ∈ (p, bAIp (ĉ)) gives firm i a strictly lower payoff than bidding bAIp (ci).

Suppose that ci ≥ ĉ. Since bAIp (x) = bAI0 (x) for all x ≥ ĉ, firm i with cost ci gets a larger

payoff bidding bAIp (ci) than bidding bAIp (x) with x ∈ [ĉ, c]. If ci = ĉ, firm i is by construction

indifferent between bidding p and bidding bAIp (ĉ). Moreover, for all ci > ĉ,

(1− F (ci))
N̂−1(bAIp (ci)− ci) ≥ (1− F (ĉ))N̂−1(bAIp (ĉ)− ĉ) + (1− F (ĉ))N̂−1(ĉ− ci)

= P (ĉ)(p− ĉ) + (1− F (ĉ))N̂−1(ĉ− ci)

> P (ĉ)(p− ĉ) + P (ĉ)(ĉ− ci),

where the strict inequality follows since P (ĉ) > (1 − F (ĉ))N̂−1 and ci > ĉ. Hence, firm i

9Note first that such a ĉ always exists whenever bAI(c) < p. Indeed, in this case P (c)(p − c) = p − c >
bAI0 (c) − c, while P (p)(p − p) = 0 < (1 − F (p))N̂−1(bAI0 (p) − c). By the Intermediate value Theorem, there

exists ĉ ∈ [c, p] such that P (ĉ)(p− ĉ) = (1− F (ĉ))N̂−1(bAI0 (ĉ)− ĉ). Moreover, for all c ≤ p, ∂
∂cP (c)(p− c) =

−P (c) + P ′(c)(p− c) ≤ −P (c) < −(1− F (c))N̂−1 = ∂
∂c (1− F (c))N̂−1(bAI0 (c)− c), so ĉ is unique.
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strictly prefers to bid bAIp (ci) when her cost is ci > ĉ than to bid p. Combining all these

arguments, a firm with cost ci ≥ ĉ finds it optimal to bid bAIp (ci) when her cost is ci ≥ ĉ.

Finally, suppose that ci < ĉ. Firm i’s payoff from bidding bAIp (ci) = p is P (ĉ)(p − ci).
Note that, for all c ≥ ĉ,

P (ĉ)(p− ci) = P (ĉ)(p− ĉ) + P (ĉ)(ĉ− ci)

≥ (1− F (c))N̂−1(bAIp (c)− ĉ) + P (ĉ)(ĉ− ci)

> (1− F (c))N̂−1(bAIp (c)− ci),

where the first inequality follows since P (ĉ)(p − ĉ) = (1 − F (ĉ))N̂−1(bAIp (ĉ) − ĉ) ≥ (1 −
F (c))N̂−1(bAIp (c)−ĉ) for all c ≥ ĉ, and the second inequality follows since P (ĉ) > (1−F (c))N̂−1

for all c ≥ ĉ and since ci < ĉ. Therefore, firm i finds it optimal to bid bAIp (ci) = p when her

cost is ci < ĉ.

Next we establish uniqueness. We start with a few preliminary observations. Fix an

auction with minimum price p > 0 and let bp be the bidding function in a symmetric

equilibrium. By standard arguments (see, for instance, Maskin and Riley (1984)), bp must

be weakly increasing; and it must be strictly increasing and differentiable at all points c such

that bp(c) > p. Lastly, bp must be such that bp(c) = c.10

Consider a bidder with cost c such that bp(c) > p, and suppose all of her opponents

bid according to bp. The expected payoff that this bidder gets from bidding bp(c̃) > p is

(1−F (c̃))N̂−1(bp(c̃)− c). Since bidding bp(c) > p is optimal, the first-order conditions imply

that bp solves

b′p(c) =
f(c)

1− F (c)
(N̂ − 1)(bp(c)− c),

with boundary condition bp(c) = c. Note that bidding function bAI0 solves the same differ-

ential equation with the same boundary condition, and so bp(c) = bAI0 (c) for all c such that

bp(c) > p.

Consider the case in which p < bAI0 (c), and suppose that there exists a symmetric equilib-

rium bp 6= bAI0 . By the previous paragraph, bp(c) = bAI0 (c) for all c such that bp(c) > p. There-

fore, if bp 6= bAI0 is an equilibrium, there must exist c̃ > c such that bp(c) = p for all c < c̃, and

bp(c) = bAI0 (c) for all c ≥ c̃. For this to be an equilibrium, a bidder with cost c̃ must be indif-

ferent between bidding bAI0 (c̃) = bp(c̃) or bidding p: P (c̃)(p− c̃) = (1−F (c̃))N̂−1(bAI0 (c̃)− c̃).
But this can never happen when p < bAI0 (c) since P (c)(p − c) = p − c < bAI0 (c) − c, and

10This condition holds for the case in which r ≥ c. If r < c, then bp must be such that bp(r) = r.
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for all c ∈ [c, p], ∂
∂c
P (c)(p − c) = −P (c) + P ′(c)(p − c) ≤ −P (c) < −(1 − F (c))N̂−1 =

∂
∂c

(1−F (c))N̂−1(bAI0 (c)− c). Therefore, in this case the unique symmetric equilibrium is bAI0 .

Consider next the case with p > bAI0 (c). By the arguments above, any symmetric equi-

librium bp must be such that bp(c) = bAI0 (c) for all c with bp(c) > p. Therefore, in any

symmetric equilibrium, there exists c̃ > c such that bp(c) = p for all c < c̃, and bp(c) = bAI0 (c)

for all c ≥ c̃. Moreover, c̃ satisfies P (c̃)(p− c̃) = (1−F (c̃))N̂−1(bAIp (c̃)− c̃). When p > bAI0 (c),

there exists a unique such c̃ (see footnote 9). Therefore, in this case the unique symmetric

equilibrium is bAIp . �

Proof of Corollary 4. Suppose first that p ≤ bAI0 (c). Then, prob(βAIp ≥ q|βAIp > p) =

prob(βAI0 ≥ q|βAI0 > p) for all q > p.

Consider next the case in which p > bAI0 (c). For all b ∈ [bAI0 (c), bAI0 (c)], let c(b) be such

that bAI0 (c(b)) = b. Since ĉ is such that bAI0 (ĉ) > p, it follows that ĉ > c(p). Note then that, for

all q ≥ bAI0 (ĉ), prob(βAIp ≥ q|βAIp > p) = (1−F (c(q)))N̂

(1−F (ĉ))N̂
> (1−F (c(q)))N̂

(1−F (c(p)))N̂
= prob(βAI0 ≥ q|βAI0 > p).

For q ∈ (p, bAI0 (ĉ)), prob(βAIp ≥ q|βAIp > p) = 1 > (1−F (c(q)))N̂

(1−F (c(p)))N̂
= prob(βAI0 ≥ q|βAI0 > p). �

OB.3 Additional results and Proofs for Section 4

This appendix analyzes the model with entry in Section 4. We let N̂e denote the set of all

participants in the auction; i.e., N̂e = N̂ when E = 0, and N̂e = N̂ ∪ {e} when E = 1.

Given a history ht and an equilibrium σ, we let β(c|ht, σ) be the bidding profile of cartel

members and short-lived firm induced by σ at history ht as a function of procurement costs

c = (ci)i∈N̂e
.11 Our first result generalizes Lemma 1 to the current setting.

Lemma OB.2 (stationarity – entry). Consider a subgame perfect equilibrium σ that attains

V p. Equilibrium σ delivers surplus V (σ, ht) = V p after all on-path histories ht.

There exists a fixed bidding profile β∗ such that, in a Pareto efficient equilibrium, firms

bid β(ct|ht, σ) = β∗(ct) after all on-path histories ht.

Proof. The proof is identical to the proof of Lemma 1, and hence omitted. �

Given a bidding profile (β, γ), we let βW (c) be the winning bid and x(c) = (xi(c))i∈N̂e

be the induced allocation when realized costs are c = (ci)i∈N̂e
. As in Section 2, for all i ∈ N̂e

11Since the vector of costs c includes the cost of the short-lived firm in case of entry, the cartel’s bidding
profile can be different depending on whether the short-lived firm enters the auction or not.
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we let

ρi(β
W , γ,x)(c) ≡ 1βW (c)>p +

1βW (c)=p∑
j∈N̂e\{i}:xj(c)>0 γj(c) + 1

.

Lemma OB.3 (enforceable bidding – entry). A winning bid profile βW (c) and an allocation

x(c) are sustainable in SPE if and only if, for E ∈ {0, 1} and for all c,∑
i∈N̂

{(ρi(βW , γ,x)(c)− xi(c))[βW (c)− ci]+ + xi(c)[βW (c)− ci]−} ≤ δ(V p −
∑
i∈N

V i,p).

(O6)

E × {(ρe(βW , γ,x)(c)− xe(c))[βW (c)− ce]+ + xe(c)[βW (c)− ce]−} ≤ 0. (O7)

Proof. We start with a few preliminary observations. Fix an SPE σ and a history ht,

and suppose that the entry decision of the short-lived firm at time t is E. For each

c, let β(c), γ(c) and T (c,b, γ,x) be the bidding profile of cartel members and short-

lived firm and the transfer profile of cartel members in this equilibrium after history ht t
(E, c). For each c, let βW (c) and x(c) be winning bid and the allocation induced by bid-

ding profile (β(c), γ(c)). For each ht+1 = ht t (E, c,b, γ,x,T), let {V (ht+1)}i∈N be the

vector of continuation payoffs of cartel members after history ht+1. We let ht+1(c) =

ht t (E, c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c))) denote the on-path history that follows

ht t (E, c). With this notation, the inequalities (O3)-(O5) in Appendix OB must also hold

in this setting. Moreover, if E = 1, it must also be that

xe(c)[βW (c)− ce]+ ≥ ρe(β
W , γ,x)(c)[βW (c)− ce]+ and xe(c)[βW (c)− ce]− ≤ 0. (O8)

Conversely, suppose there exists a winning bid profile βW (c), an allocation x(c), a trans-

fer profile T and equilibrium continuation payoffs {Vi(ht+1(c)}i∈N that satisfy inequali-

ties (O3)-(O5) in Appendix OB for some γ(c) that is consistent with x(c) (i.e., xi(c) =

γi(c)/
∑

j:xj(c)>0 γj(c) for all i ∈ N̂e with xi(c) > 0) and satisfy (O8) if E = 1. Then,

(βW ,x,T) can be supported in an SPE as follows. For all c, all firms i ∈ N̂e bid βW (c).

Firms i ∈ N̂e with xi(c) = 0 choose γ̃i(c) = 0 and firms i ∈ N̂e with xi(c) > 0 choose

γ̃i(c) = γi(c). Note that, for all i ∈ N̂e, xi(c) = γ̃i(c)/
∑

j γ̃j(c) and ρi(β
W , γ̃,x)(c) =

ρi(β
W , γ,x)(c). If no firm i ∈ N̂ deviates at the bidding stage, cartel members make trans-

fers Ti(c, β(c), γ(c),x(c)). If no firm i ∈ N deviates at the transfer stage, in the next period

cartel members play an SPE that gives payoff vector {V (ht+1(c))}i∈N . If firm i ∈ N̂ devi-

ates at the bidding stage, there are no transfers and the cartel reverts to an equilibrium that
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gives firm i a payoff of V i,p; if firm i ∈ N deviates at the transfer stage, the cartel reverts

to an equilibrium that gives firm i a payoff of V i,p (deviations by more than one firm go

unpunished). Since (O3) holds, under this strategy profile no firm i ∈ N̂ has an incentive

to undercut the winning bid βW (c). Since (O4) holds, no firm i ∈ N̂ with ci > βW (c) and

xi(c) > 0 has an incentive to bid above βW (c) and lose. Upward deviations by a firm i ∈ N̂e

with ci < βW (c) who bids βW (c) are not profitable since the firm would lose the auction

by bidding b > βW (c). Since (O8) holds, the short-lived firm does not have an incentive to

deviate when E = 1. Finally, since (O5) holds, all firms i ∈ N have an incentive to make

their required transfers.

We now turn to the proof of the Lemma. The proof that (O6) must hold in any equilib-

rium uses the same arguments used in the proof of Lemma 2, and hence we omit it. Since

(O8) must hold for E = 1, it follows that

E × {(ρe(βW , γ,x)(c)− xe(c))[βW (c)− ce]+ + xe(c)[βW (c)− ce]−} ≤ 0.

Next, consider a winning bid profile βW (c) and an allocation x(c) that satisfy (O6) and

(O7) for all c for some γ(c) consistent with x(c) (i.e., such that xi(c) = γi(c)/
∑

j:xj(c)>0 γj(c)

for all i with xi(c) > 0). We construct an SPE that supports βW (c) and x(c) in the first

period. Let {Vi}i∈N be an equilibrium payoff vector with
∑

i Vi = V p. For each c = (ci)i∈N̂e

and i ∈ N , we construct transfers Ti(c) as follows:

Ti(c) =


−δ(Vi − V i,p) + (ρi(β

W , γ,x)(c)− xi(c))(βW (c)− ci) + ε(c) if i ∈ N̂ , ci ≤ βW (c),

−δ(Vi − V i,p)− xi(c)(βW (c)− ci) + ε(c) if i ∈ N̂ , ci > βW (c),

−δ(Vi − V i,p) + ε(c) if i /∈ N̂ ,

where ε(c) ≥ 0 is a constant to be determined below. Since βW (c) and x(c) satisfy (O6), it

follows that for all c,∑
i∈N

Ti(c)− nε(c)

=− δ(V p −
∑
i∈N

V i,p) +
∑
i∈N̂

{
(ρi(β

W , γ,x)(c)− xi)
[
βW (c)− ci

]+
+ xi

[
βW (c)− ci

]−} ≤ 0.

We set ε(c) ≥ 0 such that transfers are budget balance; i.e., such that
∑

i∈N Ti(c) = 0.

The SPE we construct is as follows. At t = 0, for each c = (ci)i∈N̂e
all firms i ∈ N̂e

bid βW (c). Firms i ∈ N̂e with xi(c) = 0 choose γ̃i(c) = 0, and firms i ∈ N̂e with
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xi(c) > 0 choose γ̃i(c) = γi(c). Note that, for all i ∈ N̂e, xi(c) = γ̃i(c)/
∑

j γ̃j(c) and

ρi(β
W , γ̃,x)(c) = ρi(β

W , γ,x)(c). If no firm i ∈ N̂ deviates at the bidding stage, cartel

members exchange transfers Ti(c). If no firm i ∈ N deviates at the transfer stage, from

t = 1 onwards firms play an SPE that supports payoff vector {Vi}. If firm i ∈ N deviates

either at the bidding stage or at the transfer stage, from t = 1 onwards firms play an SPE

that gives firm i a payoff V i,p (if more than one firm deviates, then firms punish the lowest

indexed firm that deviated). One can check that this strategy profile satisfies (O3)-(O5) in

Appendix OB and (O8). Hence, winning bid profile βW and allocation x are implementable.

�

Recall that

b∗p(c) = sup

b ≤ r :
∑
i∈N̂

(1− x∗i (c)) [b− ci]+ ≤ δ(V p −
∑
i∈N

V i,p)

 .

Proposition OB.1. In an optimal equilibrium, the on-path bidding profile is such that:

(i) if E = 0, the cartel sets winning bid β∗p(c) = max{b∗p(c), p};

(ii) if E = 1, the winning bid is β∗p(c) = max{p,min{ce, b∗p(c)}} when a cartel wins the

auction, and is β∗p(c) = max{ce, p} when the entrant wins the auction.

Proof. The proof of part (i) is identical to the proof of Proposition 1, and hence omitted.

We now turn to part (ii). Note first that, by Lemma OB.3, entry by the short-lived firm

reduces the set of sustainable bidding profiles and thus the profits that the cartel can obtain

in an auction. Therefore, in an optimal equilibrium the cartel seeks to maximize its payoff

and minimize the short-lived firm’s payoff from entry.

Suppose E = 1. For any c, let βW (c) and x(c) be, respectively, the winning bid and

allocation in an optimal equilibrium. We let c(1) = mini∈N̂ ci be the lowest cost among

participating cartel members. Consider first cost realizations c such that c(1) > ce ≥ p. In

this case, xe(c) = 1 in an optimal bidding profile. Indeed, by equation (O7), βW (c) ≤ ce

if xe(c) < 1. Hence, the cartel is better-off letting the short-lived firm win whenever c(1) >

ce ≥ p. Moreover, by setting βW (c) = ce, the cartel guarantees that the short-lived firm

earns zero payoff.12

12This is achieved by having all participating cartel members bidding βW (c) = ce and γi(c) = 0, and
having the entrant bidding βW (c) = ce and γe(c) = 1.
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Consider next c such that c(1) > p > ce. By (O7), it must be that xe(c) > 0. In this case,

in an optimal equilibrium the cartel sets winning bid equal to βW (c) = p, as this minimizes

the short-lived firm’s payoff from winning.

Consider next c such that c(1) < ce and ce ≥ p. Clearly, an optimal bidding profile for the

cartel must be such that xe(c) = 0. Equation (O7) then implies that βW (c) ≤ ce. We now

show that, in this case, βW (c) = max{p,min{ce, b∗p(c)}}. There are two cases to consider:

(a) b∗p(c) > ce, and (b) b∗p(c) ≤ ce. Consider case (a), so b∗p(c) > ce ≥ p. It follows that∑
i∈N̂

(1− x∗i (c))[ce − ci]+ <
∑
i∈N̂

(1− x∗i (c))[b∗p(c)− ci]+ ≤ δ(V p −
∑
i∈N

V i,p).

Therefore, a bidding profile that induces winning bid ce and allocation x∗(c) satisfies (O6)

and (O7). Since such a bidding profile is optimal for the cartel among all bidding profiles

with winning bid lower than ce, it must be that βW (c) = ce.

Consider next case (b). Note that for all b > max{b∗p(c), p} and any allocation x(c),∑
i∈N̂

{
(1− xi(c))[b− ci]+ + xi(c)[b− ci]−

}
≥
∑
i∈N̂

(1− x∗i (c))[b− ci]+ > δ(V p −
∑
i∈N

V i,p),

so max{b∗p(c), p} is the largest winning bid that can be supported in an equilibrium. There-

fore, in an optimal equilibrium cartel members must use a bidding profile inducing winning

bid max{b∗p(c), p}.
Finally, consider c such that c(1) < p and ce < p. We now show that, in an optimal

equilibrium, βW (c) = p. Indeed, by (O7), a winning bid βW (c) > p > ce can only be

implemented if xe(c) = 1. But this is clearly suboptimal for the cartel. Indeed, the cartel

could make strictly positive profits by having a firm with cost c(1) bidding p; and doing this

would also strictly reduce the short-lived firm’s expected payoff from entering. Therefore, in

an optimal equilibrium it must be that βW (c) = p. �

Proposition OB.1 characterizes bidding behavior under an optimal equilibrium. In peri-

ods in which the short-lived firm does not participate, the cartel’s bidding behavior is the

same as in Section 2. Entry by a short-lived firm reduces the cartels profits in two ways: (i)

the cartel losses the auction whenever the entrant’s procurement cost is low enough, and (ii)

entry leads to weakly lower winning bids when the cartel wins the auction.

By Proposition OB.1, the winning bid when the entrant wins the auction is β∗p(c) =

max{c(e), p}. For p ≤ c, the entrant earns zero payoff from participating in the auction.
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Therefore, for p ≤ c the entrant participates in the auction if and only if its entry cost is

equal to zero.13 For p > c, the entrant’s payoff from participating in the auction is strictly

positive. From now on we assume that the distribution of entry costs Fk has a mass point

at zero, so that there is positive probability of entry for all minimum prices p.

Our last result in this section extends Proposition 2 to the current setting. Recall that

β∗0(c) is the lowest bid under minimum price p = 0.

Proposition OB.2 (worse case punishment – entry). (i) V i,0 = 0, and V i,p > 0 when-
ever p > c;

(ii) there exists η > 0 such that, for all p ∈ [β∗0(c), β∗0(c) + η], V p −
∑

i∈N V i,p ≤ V 0 −∑
i∈N V i,0. The inequality is strict if p ∈ (β∗0(c), β∗0(c) + η].

Proof. We first establish part (i). Suppose that p ≤ c and fix equilibrium payoffs {Vi}i∈N .

Fix j ∈ N and consider the following strategy profile. At t = 0, firms’ behavior depends on

whether j ∈ N̂ or j /∈ N̂ . If j ∈ N̂ , all firms i ∈ N̂e bid min{cj, ĉ(2)} (where ĉ(2) is the second

lowest procurement cost among firms in N̂e). Firm i ∈ N̂e chooses γi = 1 if ci = mink∈N̂e
ck,

and chooses γi = 0 otherwise. Note that this bidding profile constitutes an equilibrium of

the stage game. If j /∈ N̂ , at t = 0 participating firms play according to some equilibrium

of the stage game. If all firms bid according to this profile, firm j’s transfer is Tj = −δVj at

the end of the period regardless of whether j ∈ N̂ or j /∈ N̂ . The transfer of firm i ∈ N\{j}
is Ti = 1

n−1
δVj at the end of the period, so

∑
i Ti = 0. If no firm deviates at the bidding

or transfer stage, at t = 1 firms play according to an equilibrium that delivers payoffs {Vi}.
If firm i deviates at the bidding stage, there are no transfers and at t = 1 firms play the

strategy just described with i in place of j. If no firm deviates at the bidding stage and firm

i deviates at the transfer stage, at t = 1 firms play the strategy just described with i in place

of j (if more than one firm deviates at the bidding or transfer stage, from t = 1 firms play

according to an equilibrium that delivers payoffs {Vi}i∈N). Note that this strategy profile

gives player j a payoff of 0. Moreover, no firm has an incentive to deviate at t = 0, and so

V i,p = 0 for all p ≤ c.

Suppose next that p > c, and note that

V i,p ≥ ui,p ≡
1

1− δ
prob(i ∈ N̂)EFi

[
1

N̂ + 1
1ci≤p(p− ci)|i ∈ N̂

]
> 0,

13We assume that the short-lived firm participates in the auction whenever its indifferent.
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where the inequality follows since firm i can always guarantee a payoff at least as large as

ui,p by bidding p whenever ci ≤ p and bidding b ≥ ci otherwise. This establishes part (i).

We now turn to part (ii). Note that β∗0(c) = c.14 Fix η > 0 and p ∈ [c, c+η]. For E = 0, 1,

let (βE, γE) be the bidding profile that firms use on the equilibrium path at periods in which

the short-lived firm’s entry decision is E under an equilibrium that attains V p when the

minimum price is p. Let β∗p(c) and xp(c) denote, respectively, the winning bid and the

allocation under this optimal equilibrium. The cartel’s expected payoff under this optimal

equilibrium satisfies

(1− δ)V p =prob(E = 0|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci) |E = 0


+ prob(E = 1|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci) |E = 1

 .
Suppose there is no minimum price and consider the following bidding profile for cartel

members. For E = 0, 1 and all c such that β∗p(c) > p, participating firms bid according to

(βE, γE). For E = 0 and all c such that β∗p(c) = p, all participating cartel members bid

c(2); firm i ∈ N̂ with ci = c(1) = minj∈N̂ cj sets γi = 1, and firm i ∈ N̂ with ci > c(1) sets

γi = 0. For E = 1 and all c such that β∗p(c) = p, all participating firms bid min{c(2), ce};
firm i ∈ N̂e sets γi = 1 if ci = mink∈N̂e

ck and sets γi = 0 otherwise. Note that, for c

such that β∗p(c) = p, the bidding profile that firms use constitutes an equilibrium of the

stage game when there is no minimum price. Note further that the entrant earns a lower

expected payoff under this bidding profile than under the optimal equilibrium for minimum

price p ∈ [c, c + η]; indeed, under this bidding profile, the entrant earns the same payoff

than under the optimal equilibrium whenever β∗p(c) > p, and earns a payoff of zero whenever

β∗p(c) = p. Therefore, the probability of entry under this strategy profile is lower than under

the optimal equilibrium when minimum price is p. Let β(c) and x(c) denote the winning

bid and the allocation that this bidding profile induces. Let V̂p be the cartel’s total surplus

14Indeed, by Proposition OB.1, β∗0(c) = c whenever E = 1 and ce = c.
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under this strategy profile, and note that

(1− δ)V̂p =prob(E = 0|no min price)E

∑
i∈N̂

xi(c)(β(c)− ci) |E = 0


+ prob(E = 1|no min price)E

∑
i∈N̂

xi(c)(β(c)− ci) |E = 1


≥prob(E = 0|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci)1β∗p(c)>p |E = 0


+ prob(E = 1|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci)1β∗p(c)>p |E = 1

 ,
where we used the fact that the prob(E = 0|p) ≤ prob(E = 0|no min price) and that the

cartel’s payoff conditional on E = 0 is weakly larger than its payoff conditional on E = 1.

Note that b∗p(c) ≥ c+
δ(V p−

∑
i∈N V i,p)

n−1
> c.15 By Proposition OB.1, β∗p(c) = max{p, b∗p(c)}

whenever E = 0. Therefore, for η > 0 small enough and for E = 0, β∗p(c) > p for all c and

all p ∈ [c, c + η]. For all such η > 0 and for all p ∈ [c, c + η], prob(β∗p(c) = p|E = 0) = 0.

Moreover, Proposition OB.1 also implies that prob(β∗p(c) = p|E = 1) = Fe(p) for all p ∈
[c, c+ η].16 Therefore, for η > 0 small enough and for p ∈ [c, c+ η],

(1− δ)(V p − V̂p) ≤prob(E = 1|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci)1β∗p(c)=p |E = 1


≤prob(E = 1|p) n

n+ 1
Fe(p)E[(p− c(1))1c(1)≤p].

where the second inequality follows since the probability with which the cartel wins the

auction when the entrant’s cost is below p is bounded above by n
n+1

, and since the cartel’s

payoff from winning the auction at price p is bounded above by (p− c(1))1c(1)≤p. Let F be a

distribution with support [c, c] such that E[(p−c(1))1c(1)≤p] ≤
∫ p
c

(p−c)n(1−F (c))n−1f(c)dc.17

15Indeed, infc b
∗
p(c) is attained when all cartel members participate and they all have a cost equal to c.

In this case, b∗p(c) = c+
δ(V p−

∑
i∈N V i,p)

n−1 .
16Indeed, b∗p(c) > p for all c and all p ∈ [c, c + η]. Therefore, by Proposition OB.1, for all p ∈ [c, c + η]

and for E = 1, the winning bid β∗p(c) is equal to p only when the entrant’s cost is below p.
17For instance, choose F such that for all i ∈ N and all c ∈ [c, c], F (c) ≥ Fi(c).
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Note then that

(1− δ)(V p − V̂p) ≤ prob(E = 1|p) n

n+ 1
Fe(p)

∫ p

c

(p− c)n(1− F (c))n−1f(c)dc.

On the other hand, for each i ∈ N ,

(1−δ)V i,p ≥ ui,p ≥
n

n+ 1
prob(i ∈ N̂)EFi

[(p−ci)1ci≤p] =
n

n+ 1
prob(i ∈ N̂)

∫ p

c

(p−c)fi(c)dc.

Note that, for p = c, V̂p ≥ V p −
∑

i∈N V i,p = V p. Note further that

∂

∂p
∣∣
p=c

Fe(p)

∫ p

c

(p− c)n(1− F (c))n−1f(c)dc = 0

∂2

∂p2 ∣∣
p=c

Fe(p)

∫ p

c

(p− c)n(1− F (c))n−1f(c)dc = 0

∂

∂p
∣∣
p=c

∫ p

c

(p− c)fi(c)dc = 0

∂2

∂p2 ∣∣
p=c

∫ p

c

(p− c)fi(c)dc = fi(c) > 0.

Therefore, there exists η > 0 small enough such that V̂p ≥ V p−
∑

i∈N V i,p for all p ∈ [c, c+η],

with strict inequality if p > c. To establish part (ii) of the Lemma, we show that V 0 ≥ V̂p

for all p ∈ [c, c+ η].

Suppose there is no minimum price, and consider the following strategy profile. Along

the equilibrium path, bidders bid according to the bidding profile described above, which

generates surplus V̂p for the cartel. If firm i ∈ N̂ deviates at the bidding stage, there are

no transfers and in the next period cartel members play an equilibrium that gives firm i a

payoff of V i,0 = 0 (if more than one firm deviates, cartel members punish the lowest indexed

firm that deviated). If no firm deviates at the bidding stage, each firm i ∈ N makes transfer

Ti(c) to be determined below. If a firm i ∈ N deviates at the transfer stage, in the next

period firms play an equilibrium that gives firm i a payoff of V i,0 = 0 (if more than one firm

deviates, cartel members again punish the lowest indexed firm that deviated). Otherwise, if

no firm deviates at the bidding and transfer stages, in the next period firms continue playing

the same strategies as above.

Let {Vi}i∈N be a payoff profile with
∑

i Vi = V̂p and Vi ≥ V i,0 = 0 for all i. The transfers
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Ti(c) are determined as follows. For all c such that β∗p(c) = p, Ti(c) = 0 for all i ∈ N .

Otherwise,

Ti(c) =

{
−δVi + (1− xpi (c))(β∗p(c)− ci) + ε(c) if i ∈ N̂ , ci ≤ β∗p(c),

−δVi + ε(c) otherwise,

where ε(c) ≥ 0 is a constant to be determined.18 Note that∑
i

Ti(c)− nε(c) = −δV̂p +
∑
i

(1− xpi (c))[β∗p(c)− ci]+ ≤ 0,

where the inequality follows since β∗p(c) is implementable with minimum price p, and since

V̂p ≥ V p−
∑

i∈N V i,p. We set ε(c) ≥ 0 such that
∑

i Ti(c) = 0. This strategy profile generates

total surplus V̂p for the cartel. One can check that no firm has an incentive to deviate at

any stage, and so this strategy profile constitutes an equilibrium. Hence, it must be that

V 0 ≥ V̂p ≥ V p−
∑

i∈N V i,p for all p ∈ [c, c+η], and the second inequality is strict if p > c. �

Proof of Proposition 5. Consider first a collusive environment and suppose that E ∈
{0, 1}. By Propositions OB.1 and OB.2, for all p ∈ [β∗0(c), β∗0(c) + η], β∗p(c) ≤ β∗0(c) for all c

such that β∗0(c) ≥ p. Therefore, for all p ∈ [β∗0(c), β∗0(c) + η] and all q > p, prob(β∗p ≥ q|β∗p ≥
p, E) ≤ prob(β∗0 ≥ q|β∗0 ≥ p, E). This completes the proof of part (i).

Consider next a competitive environment. Let ĉ(2) be the second lowest cost among all

participating firms (including the entrant if E = 1). Then, for all p > 0 and all q > p,

prob(βcomp
p ≥ q|βcomp

p > p,E) = prob(ĉ(2) ≥ q|ĉ(2) > p,E) = prob(βcomp
0 ≥ q|βcomp

0 > p,E).

This completes the proof of part (ii). �

Proof of Proposition 6. We start with part (i). As a first step, we show that for

E = 0, 1, prob(β∗p ≥ q|β∗p ≥ p, E, cartel wins) ≤ prob(β∗0 ≥ q|β∗0 ≥ p, E, cartel wins). In

the case of E = 0, the result follows from Proposition 5(i). Suppose next that E = 1,

and consider cost realizations c such that the cartel wins. By Propositions OB.1 and OB.2,

for all p ∈ [β∗0(c), β∗0(c) + η], β∗p(c) ≤ β∗0(c) whenever β∗0(c) ≥ p. Therefore, for all p ∈
[β∗0(c), β∗0(c) + η] and all q > p, prob(β∗p ≥ q|β∗p ≥ p, E = 1, cartel wins) ≤ prob(β∗0 ≥ q|β∗0 ≥
p, E = 1, cartel wins).

18Recall that xp(c) is the allocation under an optimal equilibrium when the minimum price is p. Therefore,
xp(c) is such that xpi (c) = 0 for all i with ci > β∗p(c).
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It then follows that, for any p ∈ [β∗0(c), β∗0(c) + η] and any q > p,

prob(β∗p ≥ q|β∗p ≥ p, cartel wins) = prob(E = 0|p > 0)prob(β∗p ≥ q|β∗p ≥ p, E = 0, cartel wins)

+ prob(E = 1|p > 0)prob(β∗p ≥ q|β∗p ≥ p, E = 1, cartel wins)

≤ prob(E = 0|p > 0)prob(β∗0 ≥ q|β∗0 ≥ p, E = 0, cartel wins)

+ prob(E = 1|p > 0)prob(β∗0 ≥ q|β∗0 ≥ p, E = 1, cartel wins)

≤ prob(E = 0|p = 0)prob(β∗0 ≥ q|β∗0 ≥ p, E = 0, cartel wins)

+ prob(E = 1|p = 0)prob(β∗0 ≥ q|β∗0 ≥ p, E = 1, cartel wins)

= prob(β∗0 ≥ q|β∗0 ≥ p, cartel wins),

where the first inequality follows from the arguments in the previous paragraph, and the

second inequality follows since prob(E = 1|p = 0) ≤ prob(E = 1|p > 0) (i.e., the probability

of entry increases with the minimum price) and since the cartel’s winning bid is lower when

the entrant participates.

We now turn to part (ii). Consider cost realizations c such that the entrant wins. By

Proposition OB.1, β∗0(c) = c(e) and β∗p(c) = max{c(e), p}. Therefore, for all p > 0 and all

q > p, prob(β∗p ≥ q|β∗p > p, entrant wins) = prob(β∗0 ≥ q|β∗0 > p, entrant wins). This com-

pletes the proof of part (ii). �

OC Participation by non-performing bidders

The official rationale for introducing minimum prices is that it reduces the incidence of

non-performing bidders, i.e. bidders unable to execute the tasks described in the procure-

ment contract. In addition to reducing the cost of procured services, the auctioneer is also

interested in reducing the likelihood that a contract is assigned to a non-performing bidder.

The effect of minimum prices can be captured in the framework of Section 4. Non-

performing bidders can be modeled as entrants whose cost of production is set to 0. To

simplify the analysis, we further assume that the cost of entry of non-performing bidders is

equal to 0, and that other bidders are informed of the non-performing status of the entrant.

We denote by q the likelihood that a non-performing entrant is present.

It is immediate that the characterization of equilibrium bids given by Proposition OB.1

and the results in Proposition 5 and Proposition 6 continue to hold: they rely only on the

bidder-side of the market. Hence the possibility of non-performance does not affect our
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analysis. We now clarify the effect of minimum bids on non-performance.

Lemma OC.1 (likelihood of non-performance). Under both competition and collusion, the

likelihood that the contract is awarded to a non-performing entrant is equal to q×E
[

1∑
i∈N̂t

1ci,t≤p

]
.

It is decreasing in minimum price p.

Proof. Since costs are public information across participants, the only equilibrium under

competition is such that the equilibrium bid is equal to max{p, c(2)}, the maximum between

the minimum price and the second lowest cost. Hence the non-performing bidder wins: with

probability 1 when all other bidders have a cost of production above p; by tie-breaking when

several other bidders have a cost of production below p.

Under collusion, the assumption that non-performing entrants have a cost of entry of

0, and the assumption that their non-performing status is known to other bidders, imply

that the cartel is unable to deter entry by non-performing entrants. As a result, when a

non-performing entrant is present, cartel members do not bid below their cost of production.

Hence, the non-performing entrant wins the contract for the same configuration of costs as

in the case of competition. �

OD Endogenous participation

OD.1 Model

We extend the model in the main text to allow for endogenous participation by cartel mem-

bers. The main point of the extension is to show that, in an optimal equilibrium, the cartel

will actively manage the number of firms that participate at each auction. This allows a

cartel to sustain high prices even if it’s composed of a large number of firms. We also

show that firms can implement the optimal equilibrium by dividing themselves into different

sub-cartels.

At each period t ∈ N, firms in N = {1, ..., n} simultaneously choose whether or not to

participate in the auction. We let Ei,t ∈ {0, 1} denote the entry decision of firm i ∈ N , with

Ei,t = 1 denoting entry.19 For simplicity, we assume that procurements costs of those firms

that enter the market are independently drawn from c.d.f. F with support [c, c] and density

f . We denote by Ñt = {i ∈ N : Ei,t = 1} the set of firms that participate at period t, and

19Note that we assume that all firms in N can participate at every period. The model can be easily
extended to allow the set of potential participants to be randomly drawn at each period.
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by ct = (ci,t)i∈Ñt
the cost realization of all firms in Ñt. Note that cost vector ct contains

information about the set participants Ñt at period t.

The timing of information and decisions within period t is as follows.

1. Firms i ∈ N simultaneously make entry decisions Ei,t ∈ {0, 1}. Entry decisions are

publicly observed.

2. Production costs ct = (ci,t)i∈Ñt
of participating firms are drawn and publicly observed.

3. Participating firms submit public bids bt = (bi,t)i∈Ñt
and numbers γt = (γi,t)i∈Ñt

,

resulting in allocation xt = (xi,t)i∈Ñt
.20

4. Firms make transfers Ti,t.

The history among cartel members at the beginning of time t is

ht = {cs,bs, γs,xs,Ts}t−1
s=0.

Let Ht denote the set of period t public histories and H =
⋃
t≥0Ht denote the set of all

histories (note that, for all s, cost vector cs = (ci,s)i∈Ñs
contains information about the firms

that participate at time s). Our solution concept is subgame perfect equilibrium (SPE), with

strategies

σi : ht 7→ (Ei,t, bi,t(ct), γi,t(ct), Ti,t(ct,bt, γt,xt))

such that entry decisions Ei,t, bids (bi,t(ct), γi,t(ct)) and transfers Ti,t(ct,bt, γt,xt) can depend

on all public data available at the time of decision-making.

OD.2 Optimal collusion

For any SPE σ and any history ht, we denote by V (σ, ht) the surplus generated by σ under

history ht. As in the main text, we denote by V p the highest surplus that firms can sustain in

a SPE. Given a history ht and a strategy profile σ, we denote by E(ht, σ) and by β(ct|ht, σ)

the entry profile and bidding profile induced by strategy profile σ at history ht.

Lemma OD.1 (stationarity). Consider a subgame perfect equilibrium σ that attains V p.

Equilibrium σ delivers surplus V (σ, ht) = V p after all on-path histories ht.

20The allocation is determined in the same way as in the main text.
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There exists an integer ñ ≤ n and a bidding profile β∗ such that, in an equilibrium that

attains V p, ñ firms enter and bid according to β(ct|ht, σ) = β∗(ct) after all on-path histories

ht.

Proof. The proof is identical to the proof of Lemma 1 and hence omitted. �

We denote by V p the lowest possible equilibrium payoff for a given firm . Similarly, for

any Ñ ⊂ N , we denote V |Ñ |p the lowest equilibrium payoff for a firm starting at a history at

which |Ñ | firms chose to participate in the current auction (and before their procurement

costs are drawn). Since firms are assumed to be symmetric, V p and V |Ñ |p are the same across

firms.

Given a bidding profile (β, γ), let us denote by βW (c) and x(c) the induced winning bid

and allocation profile for realized costs c = (ci)i∈Ñ .21 Recall that, for each firm i,

ρi(β
W , γ,x)(c) ≡ 1βW (c)>p +

1βW (c)=p

1 +
∑

j∈Ñ\{i}:xj(c)>0 γj(c)
.

is a deviator’s highest possible chance of winning the contract by attempting to undercut

the equilibrium winning bid.

Lemma OD.2 (enforceable bidding and participation). Entry profile E ∈ {0, 1}N leading

to set of participants Ñ = {i ∈ N : Ei = 1}, winning bid profile βW (c) and allocation x(c)

are sustainable in SPE if and only if for all c = (ci)i∈Ñ ,∑
i∈Ñ

(ρi(β
W , γ,x)(c)− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−
≤ δ(V p − |Ñ |V p)− (n− |Ñ |)V |Ñ |+1

p . (O9)

The second term on the right-hand side of (O9) captures the cost of keeping potential

participants out of the auction. Indeed, when the set of participants Ñ is a strict subset of

N , the cartel has to promise firms that stay out of the auction a payoff at least as large as

V |Ñ |+1
p . Note that when all firms enter the auction (i.e., when Ñ = N), obedience constraint

(O9) is the same as the obedience constraint in our baseline model (under the assumption

of symmetry; i.e., V i,p = V p for all i).

21Recall that the cost vector c = (ci)i∈Ñ contains information about the set of entrants. Hence, βW (c)
and x(c) are allowed to depend on the set of entrants.
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Proof. We start with some preliminary observations. Fix an SPE σ and a history ht.

Let E, β(c), γ(c) and T (c,b, γ,x) be the entry, bidding and transfer profile that firms

use in this equilibrium after history ht. Let βW (c) and x(c) be, respectively, the win-

ning bid and the allocation induced by bidding profile (β(c), γ(c)). Let ht+1 = ht t
(c,b, γ,x,T) be the concatenated history composed of ht followed by (c,b, γ,x,T), and

let {V (ht+1)}i∈N be the vector of continuation payoffs after history ht+1. We let ht+1(c) =

htt(c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c))) denote the on-path history that follows ht when

current costs are c. Note that the following inequalities must hold:

(i) for all i ∈ N such that Ei = 1 and ci ≤ βW (c),

xi(c)(βW (c)−ci)+Ti(c, β(c), γ(c),x(c))+δVi(ht+1(c)) ≥ ρi(β
W , γ,x)(c)(βW (c)−ci)+δV p.

(O10)

(ii) for all i ∈ N such that Ei = 1 and ci > βW (c),

xi(c)(βW (c)− ci) + Ti(c, β(c), γ(c),x(c)) + δVi(ht+1(c)) ≥ δV p. (O11)

(iii) for all i ∈ N such that Ei = 0,

Ti(c, β(c), γ(c),x(c)) + δVi(ht+1(c)) ≥ V |Ñ |+1
p . (O12)

(iv) for all i ∈ N ,

Ti(c, β(c), γ(c),x(c)) + δVi(ht+1(c)) ≥ δV p. (O13)

Relative to our baseline model, the new constraint is (O12). This inequality must hold since

bidder i ∈ N with Ei = 0 can obtain at least V |Ñ |+1
p by participating in the current auction

rather than staying out.

Conversely, suppose there exists an entry profile E, a winning bid profile βW (c), an

allocation x(c), a transfer profile T and equilibrium continuation payoffs {Vi(ht+1(c))}i∈N
that satisfy inequalities (O10)-(O13) for some γ(c) that is consistent with x(c) (i.e., γ(c)

is such that xi(c) = γi(c)/
∑

j:xj(c)>0 γj(c) for all i with xi(c) > 0). Then, (E, βW ,x,T)

can be supported in an SPE as follows. Firms in N adopt entry decisions given by E. Let

Ñ = {i ∈ N : Ei = 1}. For all c = (ci)i∈Ñ , firms i ∈ Ñ bid βW (c). Firms i ∈ Ñ with

xi(c) = 0 choose γ̃i(c) = 0, and firms i ∈ Ñ with xi(c) > 0 choose γ̃i(c) = γi(c). Note

that, for all i ∈ Ñ , xi(c) = γ̃i(c)/
∑

j γ̃j(c) and ρi(β
W , γ̃,x)(c) = ρi(β

W , γ,x)(c). If no
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firm deviates at the entry and bidding stages, firms make transfers Ti(c, β(c), γ(c),x(c)).

If no firm deviates at the transfer stage, in the next period firms play an SPE that gives

payoff vector {V (ht+1(c))}i∈N . If firm i /∈ Ñ enters, the cartel reverts to an equilibrium that

gives firm i a payoff of V |Ñ |+1
p ; if firm i ∈ Ñ does not participate, the cartel reverts to an

equilibrium that gives bidder i a continuation payoff of V p; if a firm i ∈ Ñ deviates at the

bidding stage, there are no transfers and the cartel reverts to an equilibrium that gives firm

i a continuation payoff of V p; if firm i ∈ N deviates at the transfer stage, the cartel reverts

to an equilibrium that gives firm i a continuation payoff of V p (deviations by more than one

firm go unpunished). Since (O10) holds, under this strategy profile no participating firm has

an incentive to undercut the winning bid βW (c). Since (O11) holds, no participating firm

with ci > βW (c) and xi(c) > 0 has an incentive to bid above βW (c) and lose. Moreover,

(O10) and (O11) also guarantee that firms i ∈ Ñ have an incentive to participate. Upward

deviations by a firm i ∈ Ñ with ci < βW (c) who wins the auction are not profitable since

the firm would lose the auction by bidding b > βW (c). Since (O12) holds, firms i /∈ Ñ have

no incentive to participate. Finally, since (O13) holds, all firms have an incentive to make

their required transfers.

We now turn to the proof of Lemma OD.2. Suppose there is an SPE σ and a history ht

at which firms bid according to a bidding profile (β, γ) that induces winning bid βW (c) and

allocation x(c). Since the equilibrium must satisfy (O10)-(O13) for all c,∑
i∈Ñ

{
(ρi(β

W , γ,x)(c)− xi(c))
[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≤
∑
i∈N

Ti(c, β(c), γ(c),x(c)) + δ
∑
i∈N

Vi(ht+1(c))− δ|Ñ |V p − (n− |Ñ |)V |Ñ |+1
p

≤δ(V p − |Ñ |V p)− (n− |Ñ |)V |Ñ |+1
p ,

where we used
∑

i Ti(c, β(c), γ(c),x(c)) = 0 and
∑

i Vi(ht+1(c)) ≤ V p.

Next, consider an entry profile E, a winning bid profile βW (c) and an allocation x(c)

that satisfy (O9) for all c = (ci)i∈Ñ for some γ(c) consistent with x(c) (i.e., such that

xi(c) = γi(c)/
∑

j:xj(c)>0 γj(c) for all i ∈ Ñ with xi(c) > 0). We now construct an SPE that

supports E, βW (·) and x(·) in the first period. Let {Vi}i∈N be an equilibrium payoff vector

with
∑

i Vi = V p. For each c = (ci)i∈Ñ and each i ∈ N , we construct transfers Ti(c) as
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follows:

Ti(c) =


−δ(Vi − V p) + (ρi(β

W , γ,x)(c)− xi(c))(βW (c)− ci) + ε(c) if i ∈ Ñ , ci ≤ βW (c),

−δ(Vi − V p)− xi(c)(βW (c)− ci) + ε(c) if i ∈ Ñ , ci > βW (c),

−δVi + V |Ñ |+1
p + ε(c) if i /∈ Ñ ,

where ε(c) ≥ 0 is a constant to be determined below. Note that, for all c,∑
i∈N

Ti(c)− nε(c) =− δ(V p − |Ñ |V p) + (n− |Ñ |)V |Ñ |+1
p

+
∑
i∈Ñ

{
(ρi(β

W , γ,x)(c)− xi(c))
[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−} ≤ 0,

where the inequality follows since βW and x satisfy (O9). We set ε(c) ≥ 0 such that transfers

are budget balance; i.e., such that
∑

i∈N Ti(c) = 0.

The SPE we construct is as follows. At t = 0, for each c all participating firms

bid βW (c). Firms i ∈ Ñ with xi(c) = 0 choose γ̃i(c) = 0, and firms i ∈ Ñ with

xi(c) > 0 choose γ̃i(c) = γi(c). Note that, for all i ∈ Ñ , xi(c) = γ̃i(c)/
∑

j γ̃j(c) and

ρi(β
W , γ̃,x)(c) = ρi(β

W , γ,x)(c). If no firm deviates at the entry stage nor at the bidding

stage, firms exchange transfers Ti(c). If no firm deviates at the transfer stage, from t = 1

onwards they play an SPE that supports payoff vector {Vi}. If firm i ∈ N deviates either

at the bidding stage or at the transfer stage, from t = 1 onwards firms play an SPE that

gives firm i a payoff V p (if more than one firm deviates, firms punish the lowest indexed

firm that deviated). If firm i /∈ Ñ deviates at the entry stage and enters, firms revert to an

equilibrium that gives firm i a payoff of V |Ñ |+1
p . If firm i ∈ Ñ does not enter, firms revert

to an equilibrium that gives firm i a payoff of V p starting at t = 1. This strategy profile

satisfies (O10)-(O13), and so βW and x are sustainable in SPE. �

For each Ñ and each c = (ci)i∈Ñ , we define

b∗p(c; Ñ) ≡ sup

b ≤ r :
∑
i∈Ñ

(1− x∗i (c)) [b− ci]+ ≤ δ(V p − |Ñ |V p)− (n− |Ñ |)V |Ñ |+1
p

 ,

where x∗(c) is the efficient allocation (ties broken randomly). Let βp(c; Ñ) = max{p, b∗p(c; Ñ)},
and let xp(c) = (xi,p)i∈Ñ be the most efficient allocation that is consistent with (O9) given

c and the winning bid βp(c; Ñ). Finally, let Ñ∗p ∈ arg maxÑ∈2N E[β∗p(c; Ñ)−
∑

i∈Ñ xi,p(c)ci].
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Proposition OD.1. In any efficient equilibrium, on the equilibrium path, |Ñ∗p | bidders enter

the auction at every period and the winning bid is set equal to β∗p(c; Ñ∗p ). Moreover, the

allocation is conditionally efficient: whenever β∗p(c; Ñ∗p ) > p, the contract is allocated to the

bidder with the lowest procurement cost.

Proof. By Lemma OD.1, there exists an optimal equilibrium in which, at every on-path

history, the same number of firms participate and participating firms use the same bidding

profile (β, γ). For each cost vector c = (ci)i∈Ñ , let βW (c) and x(c) denote the winning bid

and the allocation induced by this bidding profile under cost vector c.

We next show that, if an optimal equilibrium is such that |Ñ | firms participate in the

auction at each period along the equilibrium path, then the winning bid must be equal to

βp(c; Ñ) for all cost vectors c = (ci)i∈Ñ .

Consider first cost vectors c such that b∗p(c; Ñ) > p. Towards a contradiction, suppose

there exists c with βW (c) 6= b∗p(c; Ñ) > p. Since x∗(c) is the efficient allocation, the procure-

ment cost under allocation x(c) is at least as large as the procurement cost under allocation

x∗(c). Since bidding profile (β, γ) is optimal, it must be that βW (c) > b∗p(c; Ñ) > p. Indeed,

if βW (c) < b∗p(c; Ñ), then the cartel would strictly prefer to use a bidding profile that allo-

cates the contract efficiently and has winning bid b∗p(c; Ñ) under cost vector c than to use

bidding profile (β(c), γ(c)). By Lemma OD.2, βW (c) and x(c) must satisfy

δ(V p − |Ñ |V p)− (n− |Ñ |)V |Ñ |+1
p ≥

∑
i∈Ñ

{
(1− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≥
∑
i∈Ñ

(1− x∗i (c))
[
βW (c)− ci

]+
,

which contradicts βW (c) > b∗p(c; Ñ) > p. Therefore, βW (c) = b∗p(c; Ñ) for all c such that

b∗p(c; Ñ) > p.

Next, we show that βW (c) = p for all c such that b∗p(c; Ñ) ≤ p. Towards a contradiction,

suppose there exists c with b∗p(c; Ñ) ≤ p and βW (c) > p. By Lemma OD.2, βW (c) and x(c)

satisfy

δ(V p − |Ñ |V p)− (n− |Ñ |)V |Ñ |+1
p ≥

∑
i∈Ñ

{
(1− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≥
∑
i∈Ñ

(1− x∗i (c))
[
βW (c)− ci

]+
,

which contradicts βW (c) > p ≥ b∗p(c; Ñ). Therefore, βW (c) = p for all c such that b∗p(c; Ñ) ≤
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p. Combining this with the arguments above, βW (c) = β∗p(c; Ñ) = max{p, b∗p(c; Ñ)}.
The results above show that if in an optimal equilibrium |Ñ | firms participate in the

auction at each period along the equilibrium path, then the winning bid is equal to βp(c; Ñ)

for all cost vectors c = (ci)i∈Ñ . For any Ñ ⊂ N , winning with βp(c; Ñ) and allocation xp(c)

are sustainable in a SPE.22 Therefore, in an optimal equilibrium, the number of firms that

participate must be equal to |Ñ∗p | for some Ñ∗p ∈ arg maxÑ∈2N E[β∗p(c; Ñ)−
∑

i∈Ñ xi,p(c)ci].

�

Proposition OD.1 characterizes entry and bidding behavior of firms in an efficient equi-

librium. We note that a large group of firms can achieve the highest surplus V p by dividing

themselves into sub-cartels of size |N∗p |. Under such equilibria, firms would coordinate on

the auctions at which each subcartel will be active. We note that this type of bidding ar-

rangement is broadly consistent with our data. Indeed, as we show in Appendix OA, the

firms that participate frequently in Tsuchiura appear to be organized in smaller subgroups

of firms that interact frequently among each other.

Our next result clarifies how minimum prices affect the set of payoffs that firms can

sustain in SPE.

Proposition OD.2 (worst case punishment). (i) V 0 = 0, and V p > 0 whenever p > c;

∀Ñ ⊂ N , V
|Ñ |
0 = 0, and V |Ñ |p > δV p > 0 whenever p > c;

(ii) there exists p > c such that for all p ∈ [c, p],

δ(V p − |N∗p |V p)− (n− |N∗p |)V
|N∗p |+1
p < δ(V 0 − |N∗0 |V 0)− (n− |N∗0 |)V

|N∗0 |+1
0 .

Proof. We first establish part (i). Suppose that p = 0. Consider the following entry and

bidding profile. All firms in N enter the auction. Then, for all cost realizations c = (ci)i∈N ,

all firms i ∈ N bid c(1) = mink∈N ck. Firm i ∈ N chooses γi = 1 if ci = c(1) and chooses γi = 0

otherwise. Note that this entry and bidding profile constitute an equilibrium of the stage

game, and so the infinite repetition of this strategy profile constitutes an SPE. Moreover,

this strategy profile gives all players a payoff of 0, so V 0 = 0.

Consider next a subgame at which Ñ ⊂ N entered the auction. Consider the following

bidding profile: for all c = (ci)i∈Ñ , all firms i ∈ Ñ bid c(1) = mink∈Ñ ck. Firm i ∈ Ñ chooses

γi = 1 if ci = c(1) and chooses γi = 0 otherwise. Then, regardless of how firms behave,

22Recall that xp(c) is the most efficient allocation that is consistent with (O9) when the winning bid is

βp(c; Ñ).
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starting from the next period firms play an equilibrium that gives all bidders a payoff of

V 0 = 0. One can check that no firm has an incentive to deviate in the initial period, so this

strategy profile constitutes an SPE. Moreover, this strategy profile gives all players a payoff

of 0, so V
|Ñ |
0 = 0.

Suppose next that p > c, and note that

V p ≥ vp ≡
1

1− δ
E
[

1

n
1ci≤p(p− ci)

]
> 0,

where the first inequality follows since vp is the minimax payoff for a firm in an auction with

minimum price p. Similarly, note that for all Ñ ,

V |Ñ |p ≥ E
[

1

|Ñ |
1ci≤p(p− ci)

]
+ δV p.

Indeed, firm i can obtain at least E
[

1
|Ñ |1ci≤p(p− ci)

]
in an auction in which |Ñ | firms

participate; and its continuation value starting the next period must be at least as large as

δV p. Finally, since E
[

1
|Ñ |1ci≤p(p− ci)

]
> 0 for all p > c, it follows that V |Ñ |p > δV p. This

establishes part (i).

We now turn to the proof of part (ii). Fix p > c, and let |N∗p |, xp(·) and β∗p(·) =

max{p, b∗p(·)} be, respectively, the number of participants, the allocation, and the winning

bid in an optimal equilibrium with minimum price p. The surplus that the cartel generates

in an optimal equilibrium under minimum price p is

V p =
1

1− δ
E
[
β∗p(c)−

∑
xpi (c)ci

∣∣|N∗p | bidders participate
]
,

Consider next a setting without minimum price, and consider the following strategy

profile for the cartel. For all on-path histories, |N∗p | firms participate in the auction. All

participating bidders bid β(c) = b∗p(c); participating bidder i chooses γi(c) = 1 if ci is the

lowest cost in c, and γi(c) = 0 otherwise. Note that the allocation induced by this bidding

profile is the efficient allocation x∗. Let V̂p be the total payoff that the cartel generates under

this entry and bidding profile:

V̂p =
1

1− δ
E
[
b∗p(c)−

∑
x∗i (c)ci

∣∣|N∗p | bidders participate
]
.

If no firm deviates at the entry and bidding stages, firms make transfers Ti(c) to be de-

termined below. If no firm deviates at the transfer stage, in the next period firms continue
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playing the same entry and bidding profile. If a firm who was not suppose to participate in the

auction enters, the cartel reverts to an equilibrium that gives firm i a payoff of V
|N∗p |+1

0 = 0;

if firm i who was supposed to enter does not participate, the cartel reverts to an equilibrium

that gives bidder i a continuation payoff of V 0 = 0; if a firm i that participates in the auction

deviates at the bidding stage, there are no transfers and the cartel reverts to an equilibrium

that gives firm i a continuation payoff of V 0 = 0; if firm i ∈ N deviates at the transfer

stage, the cartel reverts to an equilibrium that gives firm i a continuation payoff of V 0 = 0

(deviations by more than one firm go unpunished).

Before constructing the transfers T (c), note that

V p − V̂p =
1

1− δ
E
[(
p− b∗p(c)−

∑
(xpi (c)− x∗i (c))ci

)
1b∗p(c)<p

∣∣|N∗p | bidders participate
]

≤ 1

1− δ
E
[
(p− b∗p(c))1b∗p(c)<p

∣∣|N∗p | bidders participate
]
,

where the first equality follows since xp(c) = x∗(c) whenever β∗p(c) = b∗p(c) > p, and the

inequality follows since x∗ is the efficient allocation. Note that b∗p(c) ≥ c + ∆ for some

∆ > 0.23 Let p ≡ c + ∆. Then, for all p ∈ (c, p), b∗p(c) ≥ p, and so δV̂p ≥ δV p >

δ(V p − |N∗p |V p) − (n − |N∗p |)V
|N∗p |+1
p (where the last inequality follows from part (i) of the

Lemma).

Set p ∈ (c, p). The transfers we construct are as follows. Let N∗p ⊂ N be the set of firms

that participate. Then, for all i ∈ N ,

Ti(c) =

{
−δ V̂p

n
+ (1− x∗i (c))(b∗p(c)− ci) + ε(c) if i ∈ N∗p , ci ≤ β(c),

−δ V̂p
n

+ ε(c) if i /∈ Ñ∗p ,

where ε(c) ≥ 0 is a constant to be determined below. Note that, for all c,∑
i∈N

Ti(c)− nε(c) =− δV̂p +
∑
i∈N∗p

(1− x∗i (c))
[
b∗p(c)− ci

]+
<− δ(V p − |N∗p |V p) + (n− |N∗p |)V

|N∗p |+1
p +

∑
i∈N∗p

(1− x∗i (c))
[
b∗p(c)− ci

]+ ≤ 0,

where the first inequality follows since δV̂p > δ(V p − |N∗p |V p) − (n − |N∗p |)V
|N∗p |+1
p , and the

last one follows from the definition of b∗p(c).

23Indeed, b∗p(c) attains its lowest value equal to when all participating firms have cost c; this lowest value

is c+ 1
|N∗p |−1

(δ(V p − |N∗p |V p)− (n− |Ñ∗p |)V
|Ñ∗p |+1
p ).
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One can check that, under this strategy profile, no firm has an incentive to deviate

at any stage. Hence, this strategy profile is a SPE, and so V 0 ≥ V̂p. Since δV̂p >

δ(V p−|N∗p |V p)−(n−|N∗p |)V
|N∗p |+1
p , it follows that δV 0 > δ(V p−|N∗p |V p)−(n−|N∗p |)V

|N∗p |+1
p .

�

Proposition OD.2 shows that, when entry is endogenous, minimum prices limit the cartel’s

surplus in two ways. First, as in our baseline model, minimum prices limit the cartel’s

ability to punish firms that deviate at the bidding stage, thereby reducing the bids that

can be sustained in a SPE. Second, minimum prices increase the cost of keeping potential

participants out of the auction.

OD.3 Large cartel limit

We now discuss the cartel’s ability to sustain high prices at the large cartel limit, i.e. when

the number n of cartel members grows large. We first consider the case where minimum

prices p are set to 0.

We first consider the case of exogenous participation described in the main text. In

this case we assume that |N̂t| ≥ ρn for some ρ ∈ (0, 1). The highest sustainable price is

determined by condition (1) in the main text. Since pledgeable surplus is bounded above

by 1
1−δ (r − c) (since production costs are bounded below by c), it must be that the highest

sustainable price converges to c almost surely as the cartel size n becomes large. As a result

expected cartel profits must go to zero as the cartel grows large.

In contrast, when the number of participants is endogenous as in the previous subsection,

expected profits are weakly increasing in cartel size. This follows from the fact that when

minimum price p is equal to zero the cartel can costlessly control the number of participants in

each auction. Since costs are public, any non-equilibrium entrant can be deprived of surplus

by setting prices to her cost of production. In formal terms, V
|Ñ |+1
p=0 = 0 (see Proposition

OD.2).

This implies that in the absence of minimum prices, the fact that the number of cartel

members in our data is large does not hinder the cartel’s ability to sustain high prices. What

matters isn’t the total size of the cartel, but the number of cartel members participating in

each auction. This finding is consistent with our data. While the number of high-frequency

participants in our data ranges from 0 to 13 across years, the median number of participants

in a given auction is equal to 3. We also note that large cartels are not unheard off in the

field of construction. A 2008 press release by the UK’s Office of Fair Trading noted that it
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had filed a case against 112 firms in the construction sector.24 Reportedly, at least 80 of

these firms have admitted engaging in bid-rigging.25 We also note that firms in this cartel

used monetary transfers. Another example of large scale collusion is the Dutch construction

cartel, which included approximately 650.26

Interestingly, minimum prices also make sustaining cartels with endogenous participation

more difficult. It is no longer costless to keep potential participants from entering since

V |Ñ |+1
p > 0 whenever p > c. As a result, the introduction of minimum prices increases

participation by cartel members, making it more difficult to sustain high prices. Table OA.2

shows that this is true in our data. Following the introduction of minimum prices the number

of both cartel participants and entrants increases.

OE Measurement Error and Ommited Variable Bias

OE.1 Measurement Error

Proposition 6 requires conditioning on the entrant vs. long-run player status of the winning

bidder. In this Appendix we show that Proposition 6 is robust to some forms of measurement

error. The main requirement is that no long-run player be wrongly classified as an entrant.

This motivates our choice to err on the side of inclusiveness when classifying firms as long-run

players in our empirical analysis.

Let EW ∈ {0, 1} denote the entrant (EW = 1) or long-run player (EW = 0) status of the

winning bidder. Proposition 6 establishes that under collusion, there exists η > 0 such that,

for all p ∈ [β∗0(c), β∗0(c) + η] and all q > p:

(i) prob(β∗p ≥ q|β∗p ≥ p, EW = 0) ≤ prob(β∗0 ≥ q|β∗0 ≥ p, EW = 0);

(ii) prob(β∗p ≥ q|β∗p > p,EW = 1) = prob(β∗0 ≥ q|β∗0 > p,EW = 1).

Now assume that we only observe a signal ÊW ∈ {0, 1} of EW . In our empirical anal-

ysis, ÊW = 0 if the auction winner is a sufficiently frequent participant. By adjusting the

participation-threshold above which a bidder is declared a long-run player, we can trade-off

the misclassification of entrants as long-run players, and the misclassification of long-run

players as entrants.

24http://webarchive.nationalarchives.gov.uk/20140402142426/http://www.oft.gov.uk/news/

press/2008/52-08.
25https://en.wikipedia.org/wiki/Price_fixing_cases#Construction.
26https://www.oecd.org/regreform/sectors/41765075.pdf.
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Assumption OE.1. Assume that

(i) prob(EW |ÊW , βW , p) = prob(EW |ÊW );

(ii) prob(EW = 0|ÊW = 1) = 0.

Assumption OE.1 states that measurement error is independent of winning bids, and

that true long-run players are never classified as entrants.

Proposition OE.1. If Assumption OE.1 holds, then there exists η > 0 such that, for all

p ∈ [β∗0(c), β∗0(c) + η] and all q > p:

(i) prob(β∗p ≥ q|β∗p ≥ p, ÊW = 0) ≤ prob(β∗0 ≥ q|β∗0 ≥ p, ÊW = 0);

(ii) prob(β∗p ≥ q|β∗p > p, ÊW = 1) = prob(β∗0 ≥ q|β∗0 > p, ÊW = 1).

Proof. Let p be such that Proposition 6 holds. We first establish point (ii). Assume firms

are collusive. We have that

prob(β∗p ≥ q|β∗p > p, ÊW = 1) =prob(β∗p ≥ q|β∗p > p,EW = 0)prob(EW = 0|ÊW = 1)

+ prob(β∗p ≥ q|β∗p > p,EW = 1)prob(EW = 1|ÊW = 1)

=prob(β∗p ≥ q|β∗p > p,EW = 1)prob(EW = 1|ÊW = 1)

=prob(β∗0 ≥ q|β∗0 > p,EW = 1)prob(EW = 1|ÊW = 1)

=prob(β∗0 ≥ q|β∗0 > p, ÊW = 1)

where we used the assumption that prob(EW = 0|ÊW = 1) and Proposition 6 (ii).

Point (i) follows from a similar line of reasoning. We have that

prob(β∗p ≥ q|β∗p ≥ p, ÊW = 0) =prob(β∗p ≥ q|β∗p ≥ p, EW = 0)prob(EW = 0|ÊW = 0)

+ prob(β∗p ≥ q|β∗p ≥ p, EW = 1)prob(EW = 1|ÊW = 0)

≤prob(β∗0 ≥ q|β∗0 ≥ p, EW = 0)prob(EW = 0|ÊW = 0)

+ prob(β∗p ≥ q|β∗p ≥ p, EW = 1)prob(EW = 1|ÊW = 0)

(O14)

Observe that if EW = 1, then β∗p > p and β∗0 > p both imply that β∗p = β∗0 . Hence

prob(β∗p ≥ q|β∗p ≥ p, EW = 1) =prob(β∗p ≥ q|β∗p > p,EW = 1)prob(β∗p > p|β∗p ≥ p, EW = 1)

=prob(β∗0 ≥ q|β∗0 > p,EW = 1)prob(β∗p > p|β∗p ≥ p, EW = 1)
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Since β∗0 = p implies β∗p = p it follows that prob(β∗p > p|β∗p ≥ p, EW = 1) ≤ prob(β∗0 >

p|β∗0 ≥ p, EW = 1). Substituting into (O14), and we get that indeed

prob(β∗p ≥ q|β∗p ≥ p, ÊW = 0) ≤ prob(β∗0 ≥ q|β∗0 ≥ p, ÊW = 0). �

OE.2 Omitted variable bias

If participation is correlated with both unobserved auction characteristics and the introduc-

tion of minimum prices, OLS estimates of the impact of minimum prices on winning bids

controlling for the number of auction participants will be biased.

Consider the simple linear model of centered winning bids βW

βW = 〈X,α〉+ γZ + ε

where: centered observable characteristics X = (min price, N) include minimum-price-status

and participation; Z is an unobserved auction characteristic correlated with participation.

Then the OLS estimator α̂ takes the form

α̂ = (X ′X)−1X ′βW = α + γ(X ′X)−1X ′Z + (X ′X)−1X ′ε.

Note that we can always change the sign of the omitted variable so that γ > 0. The free

variable is then the correlation between the omitted variable and participation. We assume

the omitted variable is uncorrelated to minimum-pricestatus.

We address the possibility of omitted variable bias in two ways. First, we formulate

a simple instrumentation strategy using recent past participation for similar auctions as an

instrument. Second, in case it cannot be successfully resolved by instrumentation, we discuss

the potential sign of this bias.

Instrumentation. One omitted variable of prominent interest that could be taken care of

by this strategy is erroneously high reserve prices: if city engineers sometimes overestimate

maximum costs, this may jointly lead to more entry and higher prices.

To address this type of bias, we propose to use the number of bidders in previous compa-

rable auctions as an instrument for current participation. This variable is strongly correlated

with the current number of bidders and uncorrelated with auction-specific omitted variables

– plausibly including erroneously high reserve prices.
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Our empirical findings are reported in Table OA.3 of the main Appendix. Our main

empirical results continue to hold when we instrument the number of bidders with its lagged

value:

• the introduction of a minimum price has a negative effect on winning bids, and

• the effect of the policy change is concentrated on the auctions won by bidders who

participate frequently.

Likely sign of the bias. It is useful to evaluate the sign of potential bias absent instru-

mentation, in the event that the assumptions needed for successful instrumentation do not

hold.

Denote

(
σ2

1 σ12

σ12 σ
2
2

)
the coefficients of (X ′X). Matrix (X ′X)−1 takes the form

1

σ2
1σ

2
2 − σ2

12

(
σ2

2 −σ12

−σ12 σ2
1

)
.

Since σ2
1σ

2
2 − σ2

12 > 0 (by Cauchy-Schwarz) and X ′Z =

(
0

NZ

)
, it follows that the bias has

the sign of

(
−σ12NZ

σ2
1NZ

)
.

We are specifically interested in −σ12NZ: this is the bias in our estimate of the impact

of minimum prices on winning bids. Note that the covariance σ12 between minimum price

status and participation is positive. Hence the bias in our estimate of the impact of minimum

prices is: positive if participation is negatively correlated with the omitted variable; negative

if participation is positively correlated with the omitted variable.

Subjectively, it seems more plausible that entry will be positively correlated with omitted

variables that also increase winning bids. This would be the case if the omitted variable is

erroneously high reserve prices. In this case, omitted variable bias would go against our

findings.

OF Calibration

Our calibration exercise seeks to gauge the range of plausible treatment effects one may have

expected from a model such as ours. As a result we do not seek to estimate costs from bids.
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Instead, we consider distribution of costs obtained by deflating winning bids with a fixed

markup. This rough assumption lets us get back-of-the-envelope estimates of average and

conditional treatment effects.

Equilibrium computation. We start by describing briefly how equilibrium bids can be

computed. The optimal bidding behavior described by Proposition 1 is entirely determined

by values V p and (V i,p)i∈N . These values are the solution to the usual fixed-point problem:

winning bids are a function of equilibrium values, and equilibrium values are a function of

winning bids. Solving this fixed point numerically presents no particular difficulty since it’s

monotone. We illustrate how to proceed in the case in which there is no minimum price. In

this case values V i,p are equal to 0, and V p=0 is the only free parameter. For each candidate

value V ≥ 0 and every cost profile c, let

β0(c;V ) ≡ sup

b ≤ r :
∑
i∈N̂

(1− x∗i (c))[b− ci]+ ≤ δV

 .

For every V ≥ 0, define

U0(V ) ≡ 1

1− δ
E

∑
i∈N̂

x∗i (c)(β0(c;V )− ci)

 .
U0(V ) is the total surplus generated by the optimal enforceable bidding profile when the

continuation value is V . U0 is an increasing function whose largest fixed-point is equal to

V 0, which can be computed as the limit of (Un
0 (V ))n≥0 for any seed value V sufficiently high.

Modeling choices and degrees of freedom. We implement directly the model of Section

4. Our key modeling choices and degrees of freedom are the following:

• We fix the number of cartel bidders to three in each auction. An entrant participates

with probability q in the range [.6, .7]. In data from Tsuchiura, on average three cartel

members participate in each auction, and bidders labelled as entrants are present in

66% of auctions.

• We keep the firms’ yearly discount factor δY as a free parameter in the range [.7, .9].

We note that auctions are not regularly spread out within the year, but rather occur
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in batches. This generates an effective discount factor δ = δ
D
365
Y , where D is the average

number of days between batches. The mean delay is 19 days.

• We do not estimate a cost distribution from winning bids but investigate treatment

effects for not-implausible cost-distributions obtained in the following back of the en-

velope manner. Given the empirical distribution of winning bids b, we draw 4 inde-

pendent values c̃i, i ∈ {1, · · · , 4} according to distribution ci ∼ 1
1+M

b, where M is a

fixed markup taking values in the range [.2,.6]. We then set as costs

∀i ∈ {1, 2, 3}, ci = λ

∑3
i=1 c̃i
3

+ (1− λ)c̃i

c4 = λ

∑3
i=1 c̃i
3

+ (1− λ)c̃4

where λ parametrizes the correlation between the costs of participating cartel members.

Given λ, the correlation between the costs of two cartel members is λ2 + 2
3
λ(1 − λ).

Cost c4 is the entrant’s cost if an entrant enters. In our data, correlation between bids

is above 99%. We consider values of λ in the range [.95,.99].

The reserve price r is set at

r = (1 +m)×
∑3

i=1 ci
3

where m is in the range [.4, .6].

• Minimum prices are a constant ratio of the reserve price. Consistent with our data we

set this minimum price ratio in the range [.75, .8].

• We assume that cartel members follow the equilibrium strategies of the model in Section

4.27 Values are computed by iterating, starting from an upper bound to values.

Findings. For each configuration of the parameters above, we simulate 1000 auctions with

and without a minimum price. We compute the percentage change in average winning bids

following the introduction of minimum prices for the unconditional distribution of winning

bids, and for the conditional distribution of winning bids above the minimum price. We refer

to these percentage changes in average procurement costs as the average and conditional

treatment effects.

27We describe these strategies in detail in Appendix OB.3.
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Figure OF.1: Conditional treatment effects.

Figure OF.1 reports the conditional treatment effects for each of the configurations of

parameters above.28 As anticipated, conditional treatment effects are negative. Their range,

goes from −28% to −.3% and includes conditional treatment effects of the magnitude we

find in our data.

Figure OF.2 reports the unconditional treatment effects for each of the configuration of

parameters above. Treatment effects can be negative or positive. Their range, goes from

−11% to +11% and includes unconditional treatment effects of the magnitude we find in

our data. As Figure OF.3 shows, a key factor in explaining whether the average treatment

effect is negative is the minimum price ratio. When it is relatively low, the truncation of

the left tail of winning bids does not affect average winning bids much. When it is high, the

truncation of the left tail of winning bids cannot be compensated by a drop in the right tail

of winning bids.

28Therefore the distribution of treatment effects is the one induced by placing a uniform distribution over
the product set of parameters we consider.
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Figure OF.2: Unconditional treatment effects.
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Figure OF.3: Unconditional treatment effect increase with the minimum price ratio.
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