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Abstract

Cartels often form among heterogeneous firms, with large firms acting as leaders
and coordinating collusion. Motivated by these instances, I study optimal repeated-
game equilibria in a market with a cartel leader and several less patient competitors.
Optimal collusive equilibria may involve an initial phase with gradually increasing
prices, followed by a stationary phase in which prices are set at the monopoly level
and market shares remain constant. These dynamics align with the behavior of several
detected cartels, which initially exhibited gradual price increases. Methodologically, I
use Lagrangian techniques to characterize Pareto optimal repeated-game equilibria for
fixed (and possibly heterogeneous) discount factors.
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1 Introduction

Cartels often form among heterogeneous firms, with large firms acting as leaders and coor-

dinating collusion. For example, Connor (2007) documents that in the lysine price-fixing

conspiracy, executives from ADM – the largest US producer at the time – played an in-

strumental role in organizing meetings with their competitors and initiating the collusive

agreement. Similar dynamics took place in the citric acid conspiracy and in several of the

vitamins cartels, where the largest firms took the lead in organizing collusion (Connor, 2007).

In the electrical equipment price-fixing conspiracy, the two dominant firms – General Electric

and Westinghouse – were key in setting up the collusive scheme (Watkins, 1961).

Motivated by these instances of collusion, this paper studies optimal repeated-game equi-

libria in a market with a cartel leader and several less patient competitors. I show that

optimal equilibria may involve an initial phase with gradually increasing prices. Moreover,

play under optimal equilibria converges in finite time to a stationary profile in which prices

are set at the monopoly level and market shares remain constant. Methodologically, I use

Lagrangian techniques to characterize Pareto optimal repeated-game equilibria for fixed (and

possibly heterogeneous) discount factors.

I study an infinitely repeated Bertrand oligopoly game in a market with a cartel leader

and several competitors. The cartel leader is (weakly) more patient, while all other firms

share the same, weakly higher discount rate. One possible interpretation is that the cartel

leader is the largest firm in the industry, and faces a lower cost of capital. For simplicity, I

assume that all firms have the same constant marginal cost, normalized to zero.1 Firms face

a unit mass of buyers with reservation price r. In each period, the firm with the lowest price

serves the entire market. In case of ties, I allow firms to jointly determine market shares.

My first set of results concern the leader-optimal equilibrium. As an initial step, I charac-

terize the leader-optimal equilibrium under the constraint that, along the path of play, prices

are constant at all periods. I show that the optimal such equilibrium features constant mar-

1See the conclusion for a discussion on how the results in this paper extend to markets in which the more
patient firm also has a cost advantage.
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ket shares and prices at the monopoly level. I then characterize the overall leader-optimal

equilibrium and show that it features two phases. In the first phase, which lasts until a finite

date t∗, prices increase gradually and the leader captures the entire market. In the second

phase, which starts at date t∗, play is equal to the leader-optimal stationary equilibrium:

prices are set at the monopoly level and firms earn constant market shares.

Leader-optimal equilibria are consistent with the behavior of several detected cartels,

including the citric acid and lysine cartels, as well as several of the vitamin conspiracies,

which featured an initial phase with gradually increasing prices (Connor, 2007, Harrington,

2008, Marshall and Marx, 2012). In some of these cartels (e.g., beta carotene, vitamin B2

and biotin), the larger firms agreed to cede market share over time to smaller firms to entice

them into participating in the collusive agreement, and to incentivize them not to defect

from it (Connor, 2007). Previous work by Harrington (2004, 2005) showed that gradually

increasing prices may arise when a newly formed cartel seeks to avoid detection by an

antitrust authority. Instead, the price dynamics in my model are driven by maximization of

the leader’s profits. Indeed, the leader-optimal equilibrium features backloading of incentives,

as in many dynamic principal-agent models (Ray, 2002). This backloading structure gives

rise to gradually increasing prices.

My second set of results concern Pareto efficient equilibria that maximize the weighted

sum of the leader’s and competitors’ profits. When the weight on the leader is sufficiently

large, Pareto efficient equilibria retain the same key properties of leader-optimal equilibria:

there is an initial phase with gradually increasing prices and with the leader capturing the

entire market, and a second phase in which play is given by the leader-optimal equilibrium

with stationary prices. When the weight on the leader is small, Pareto efficient equilibria

also feature two phases: an initial phase in which the less patient firms capture the entire

market and prices are set at the monopoly level, and a second phase in which play is given

by the leader-optimal stationary equilibrium.

I also study an extension with stochastic demand, in the spirit of Rotemberg and Saloner

(1986). I focus on the equilibrium that maximizes the leader’s profits, and show that the key
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properties of the leader-optimal equilibrium with constant demand extend to this setting:

the leader-optimal equilibrium also features an initial phase with gradually increasing prices,

and a second phase with stationary prices and stationary market shares. In contrast to the

stationary equilibrium analyzed by Rotemberg and Saloner (1986), the stationary phase of

the leader-optimal equilibrium features market shares of fringe firms that vary pro-cyclically:

fringe firms capture a larger share of the market during booms, which deters them from

defecting.

From a methodological standpoint, I cast the problem of finding Pareto optimal equilibria

as that of solving a Lagrangian with countably infinite constraints, corresponding to the

firms’ incentive compatibility constraints and the feasibility constraints on prices and market

shares. I show that optimal Lagrange multipliers follow tractable recursive equations, which

can be solved in closed form. These optimal multipliers, together with the complementary

slackness conditions, can be used to back out optimal equilibrium play. Moreover, because

the dual problem of finding multipliers that minimize the Lagrangian provides an upper

bound on attainable payoffs, the methods in this paper could potentially be used more

broadly to compute an upper bound to the set of equilibrium payoffs.

The paper is structured as follows. The rest of the introduction discusses related lit-

erature. Section 2 introduces the model. Section 3 derives preliminary results. Section 4

studies leader-optimal equilibria. Section 5 characterizes Pareto optimal equilibria. Section

6 generalizes the model to settings with stochastic demand. Section 7 concludes. All proofs

are in the Appendix.

Related literature. This paper relates primarily to the literature that studies collusion in

repeated oligopoly games (e.g., Abreu, 1986, Abreu et al., 1986, Fudenberg et al., 1994, Athey

and Bagwell, 2001, Athey et al., 2004).2 The closest paper within this literature is Obara

and Zincenko (2017), who also study a repeated Bertrand oligopoly game with heterogeneous

2For more recent contributions, see Skrzypacz and Hopenhayn (2004), Harrington and Skrzypacz (2011),
Bernheim and Madsen (2017), Sugaya and Wolitzky (2018), Chassang and Ortner (2019), Kawai et al. (2022),
Ortner et al. (2024), Sugaya and Wolitzky (2024).
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discounting. The paper has two main results. First, they show that collusion is possible if

and only if the average discount factor across firms is larger than (n− 1)/n.3 Second, they

characterize optimal cartel equilibria within the class of equilibria featuring prices equal

to the monopoly price at all periods. They don’t characterize the set of Pareto optimal

equilibria, and don’t consider settings with stochastic demand. Moreover, the two papers

also differ in terms of the methods, as Obara and Zincenko (2017) don’t use Lagrangian

techniques.4

The current paper also relates to a set of papers studying repeated games with unequal

discounting (Lehrer and Pauzner, 1999, Chen and Takahashi, 2012, Sugaya, 2015).5 These

papers focus on characterizing the limiting equilibrium payoff set as players’ become infinitely

patient. In contrast, I characterize optimal equilibria for fixed discount factors.

In terms of methods, the closest paper is Marcet and Marimon (2019), who study optimal

dynamic contracts in settings with forward-looking constraints. Marcet and Marimon (2019)

show that, under suitable conditions, the Lagrangian follows a recursive functional equation

that characterizes payoffs under the optimal contract. Martimort (1999) also uses Lagrangian

methods to characterize optimal collusion-proof contracts in a dynamic principal-monitor-

agent setting.

Finally, as I highlighted above, the methods in this paper could potentially be applied

more broadly to compute the set of equilibrium payoffs in repeated games. This relates

my work to papers that develop methods to compute the set of repeated-game equilibrium

payoffs (Abreu et al., 1990, Judd et al., 2003, Abreu and Sannikov, 2014, Abreu et al., 2020).

3In a previous paper, Harrington (1989) established the same result, restricting attention to stationary
equilibria.

4In Section 5 I provide a more detailed discussion of the results in Obara and Zincenko (2017).
5See also Dasgupta and Ghosh (2022), who introduce the notion of self-accessibility to study equilibria in

repeated games with unequal discounting. Mailath and Zemsky (1991) study optimal static collusion among
firms with heterogeneous costs.
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2 Model

Stage game. Consider a market with firms N = {1, ..., n} producing a homogenous good

and competing in prices. All firms share the same constant marginal cost c, which I normalize

to c = 0.6 There is a unit mass of buyers with reservation price r = 1. If p = (pi)i∈N are

the prices chosen by firms in N , market shares are x = (xi)i∈N , with xi = 1 if pi < pj for all

j ̸= i and pi ≤ r = 1, xi = 0 if there exists j ̸= i with pj < pi, or if pi > r. In case of ties, I

allow firms to jointly determine the allocation. Formally, each firm i ∈ N chooses a number

ρi ∈ [0, 1] along with its price. In case of ties, the market share xi of a firm i that posted

the lowest price is xi =
ρi∑

j:pj=mink pk
ρj
, with the convention that xi = 1/|{j : pj = mink pk}|

if ρj = 0 for all j with pj = mink pk.
7 Firm i’s profits are xipi.

Repeated game. Firms play the stage game described above at all periods t ∈ N0. Each

firm i has a discount factor δi ∈ (0, 1), with δi = δ for all i ̸= 1 and δ1 ≥ δ. That is, firm 1 is

(weakly) more patient than the other firms, and all other firms are homogenous. I sometimes

refer to firm 1 as the leader, and firms i ̸= 1 as fringe firms. One interpretation is that the

leader is a large firm, facing a lower cost of capital, and fringe firms are smaller competitors.

I maintain the following assumption throughout the paper.

Assumption 1. δ1 + (n− 1)δ > n− 1.

Assumption 1 states that firms’ average discount factor is larger than (n − 1)/n. This

assumption is necessary for there to exist a collusive equilibrium: Obara and Zincenko (2017)

show that no collusion is possible if the average discount factor is smaller than (n− 1)/n.

For each s ∈ N0, let (ps, ρs) = (pi,s, ρi,s)i∈N denote firms’ actions in period s, and let

xs = (xi,s)i∈N denote firms’ market shares. The history at time t is ht = (ps, ρs)s<t. Let

Ht denote the set of all period t histories and H = ∪t≥0Ht the set of all histories. A (pure)

strategy σi for firm i is a mapping σi : ht 7→ (pi,t, ρi,t). For each strategy profile σ = (σi)i∈N ,

6See the conclusion for a discussion of settings in which firms have heterogeneous costs.
7Obara and Zincenko (2017) and Chassang and Ortner (2019) assume a similar endogenous tie-breaking

technology.
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each player i and each history h ∈ H, let Vi(σ|h) denote i’s continuation payoff under σ at

history h (evaluated using i’s discount factor), and let Vi(σ) = Vi(σ|h0) denote i’s payoff

under σ at the start of the game.

Let Σp denote the set of pure strategy subgame perfect Nash equilibria (SPNE). The

goal of the paper is to characterize Pareto optimal equilibria in Σp. In particular, for each

α ∈ [0, 1], I solve

V (α) ≡ sup
σ∈Σp

αV1(σ) + (1− α)
∑
i ̸=1

Vi(σ). (1)

That is, I focus on Pareto optimal equilibria that give the same weight to all fringe firms.

Section 4 characterizes the solution to (1) for α = 1; i.e., leader-optimal equilibria. Section

5 characterizes the solution to (1) for all α ∈ [0, 1].

3 Preliminaries

This section derives some preliminary results that will be useful for the analysis of Pareto op-

timal equilibria. Say that a sequence of prices and market shares (pt,xt)
∞
t=0 is implementable

if there exists σ ∈ Σp with the property that, at each period t, pt and xt = (xi,t)i∈N are the

lowest price and market shares on the equilibrium path under σ.

Lemma 1. A sequence of prices and market shares (pt,xt) is implementable if and only if

∀i, ∀t, (1− xi,t)pt ≤
∞∑

s=t+1

δs−t
i xi,sps. (IC)

In words, a sequence (pt,xt) is implementable if and only if firms don’t have an incentive

to undercut the lowest price at any period.

For each σ ∈ Σp, h ∈ H and i ∈ N , let πi(σ|h) denote firm i’s flow profits under σ

at history h. The next Lemma shows that, when it comes to aggregate cartel profits, it is

without loss to focus on equilibria under which all fringe firms obtain the same flow profits

at every history.

Lemma 2. For every σ ∈ Σp, there exists σ̂ ∈ Σp such that:
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(i) V1(σ̂) = V1(σ) and
∑

i ̸=1 Vi(σ̂) =
∑

i ̸=1 Vi(σ), and

(ii) for all i, j ̸= 1 and all histories h ∈ H, πi(σ̂|h) = πj(σ̂|h).

By Lemma 2, when looking for equilibria that solve (1), it is without loss to focus on

equilibria under which all fringe firms obtain the same flow profits at every history.

4 Leader-Optimal Equilibria

This section characterizes the solution to (1) for α = 1; i.e., firm 1’s optimal equilibrium.

Section 5 characterizes the solution to (1) for all α ∈ [0, 1].

As an initial step towards characterizing firm 1’s optimal equilibrium, I characterize firm

1’s optimal equilibrium under the constraint that prices are stationary on the equilibrium

path; i.e., along the path of play, mini∈N pi,t = p ∈ [0, 1] for all t. Then, I characterize firm

1’s overall optimal equilibrium. As I show below, under equilibria that solve (1), equilibrium

play converges in finite time to play under the leader-optimal stationary equilibrium.

Let Σst
p ⊂ Σp denote the set of pure strategy equilibria with stationary prices. The

problem of finding firm 1’s optimal equilibrium with stationary prices is V
st

1 ≡ supσ∈Σst
p
V1(σ),

while the problem of finding firm 1’s optimal equilibrium is V 1 ≡ supσ∈Σp
V1(σ).

4.1 Leader-Optimal Equilibria with Stationary Prices

The following result characterizes firm 1’s optimal equilibrium with stationary prices.

Proposition 1. There exists a leader-optimal equilibrium with stationary prices in which, at

every period along the path of play, the price is equal to the reservation price of 1, each fringe

firm earns a market share of 1− δ, and firm 1 earns a market share of 1− (n− 1)(1− δ).

Firm 1’s payoff under any leader-optimal equilibrium with stationary prices is

V
st

1 =
1− (n− 1)(1− δ)

1− δ1
.
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Firm 1’s optimal equilibrium with stationary prices features stationary market shares:

each fringe firm sells 1 − δ of the market each period, with firm 1 selling the remaining

1−(n−1)(1−δ) of the market. To see why market shares take this form, suppose that prices

are constant and equal to p ∈ (0, 1] at each period. To satisfy the incentive compatibility

constraints of fringe firms, for all t and all i ̸= 1, it must be that

(1− xi,t)p ≤
∞∑

s=t+1

δs−txi,sp,

where xi,s ∈ [0, 1] denotes i’s on path market share at time s. Assume that these incentive

constraints bind at every period, so that, for all t and i ̸= 1, 1 − xi,t =
∑∞

s=t+1 δ
s−txi,s.

Hence, for all t and all i ̸= 1,

1− xi,t = δxi,t+1 +
∞∑

s=t+2

δs−txi,s = δxi,t+1 + δ(1− xi,t+1) = δ,

and so xi,t = 1− δ for all i ̸= 1 and all t.

Finally, note that firm 1’s IC constraints are satisfied with slack under the scheme in

Proposition 1. Let xst
1,t = 1− (n− 1)(1− δ) and pstt = 1 denote, respectively, firm 1’s market

share and the price under the scheme in Proposition 1. Then, for all t,

(1− xst
1,t)p

st
t = (n− 1)(1− δ) <

δ1
1− δ1

(1− (n− 1)(1− δ)) =
∞∑

s=t+1

δs−t
1 xst

1,sp
st
s ,

where the strict inequality follows from Assumption 1.

4.2 Leader-Optimal Equilibria

I now solve for firm 1’s overall optimal equilibrium. Define

t∗ ≡ inf

{
t ∈ N0 :

t∑
τ=0

δt−τδτ1 ≥ δt1(n− 1)

}
. (2)
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Note that t∗ > 0 if and only if there are three or more firms (i.e., n > 2).8 The following

result characterizes the leader’s optimal equilibrium.

Proposition 2. There exists a leader-optimal equilibrium in which, at every period t along

the path of play,

(i) if t < t∗, the price is equal to δt
∗−t, and firm 1 captures the entire market;

(ii) if t ≥ t∗, the price is equal to the reservation price of 1, each fringe firm earns a market

share of 1− δ, and firm 1 earns a market share of 1− (n− 1)(1− δ).

Firm 1’s payoff under any leader-optimal equilibrium is V 1 =
∑t∗−1

t=0 δt1δ
t∗−t + δt

∗
1 V

st

1 .

Firm 1’s optimal equilibrium features two phases. In the second phase, which starts at

t∗, the cartel arrangement is the same as the optimal stationary arrangement in Proposition

1: prices are set at the monopoly level and each fringe firm obtains a market share of 1− δ.

In the initial phase, which lasts until t∗, prices increase gradually over time, reaching the

monopoly price at period t∗. Firm 1 serves the entire market during this initial phase. The

prices during this initial phase are the highest prices that satisfy fringe firms’ IC constraints.

Indeed, for all t < t∗, the continuation value of a fringe firm under the leader-optimal equilib-

rium is δt
∗−t
∑∞

s=t∗ δ
s−t∗(1− δ) = δt

∗−t. Hence, to satisfy fringe firms’ incentive compatibility

constraints, for all t < t∗ the price cannot be larger than δt
∗−t. In Section 4.4 I provide a

sketch of the proof of Proposition 2 and explain why the initial phase lasts exactly until t∗.

Under the leader-optimal equilibrium, the incentives of fringe firms are backloaded: fringe

firms’ continuation profits are increasing over time until time t∗, and the leader’s flow profits

are increasing until time t∗−1. This is reminiscent of the backloading structure that appears

in many dynamic principal-agent models (e.g., Ray, 2002).

To understand why the leader-optimal equilibrium features an initial phase in which the

leader serves the entire market, consider increasing the market share of fringe firms in period

t. Note that this increase in the market share relaxes the IC constraint of fringe firms at t,

allowing for a higher price at t. The overall effect is that fringe firms’ flow profits increase

8Lemma A.2 in Appendix A.2 implies that t∗ < ∞ whenever Assumption 1 holds.
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at t, and, in spite of the price increase, firm 1’s flow profits decrease at t if and only if there

are two or more fringe firms (i.e., n > 2).

At the same time, because it increases period t profits for fringe firms, an increase in the

market share of fringe firms at time t relaxes the incentive constraints of fringe firms for all

periods before t. For t small, the benefit from relaxing the IC constraints of fringe firms at

all s < t is small, so the optimal scheme sets the market share of fringe firms at zero when

n > 2. As t increases this benefit increases, and it becomes optimal to set the market share

of fringe firms at positive levels.

4.3 Empirical Implications

Proposition 2 shows that, under the leader-optimal equilibrium, prices start at a relatively

low level and increase gradually over time until they reach the monopoly price. Thus, a

period of gradual price increases, followed by a period of constant high prices, is a potential

marker of collusion.

It is worth highlighting that many detected cartels, like citric acid, lysine, and many of

the vitamin cartels, featured gradually increasing prices at the outset of collusion (see, e.g.,

Harrington, 2008, Marshall and Marx, 2012). Previous work by Harrington (2004, 2005)

showed that slowly increasing prices may arise when a newly formed cartel seeks to avoid

detection by an antitrust authority. Instead, the price dynamics in Proposition 2 are driven

by maximization of the leader’s equilibrium profits. Proposition 3 below shows that similar

price dynamics arise under all Pareto efficient equilibria that put enough weight on firm 1’s

profits.

The length t∗ of the initial phase depends on the number of firms and their discount

factors. In particular, t∗ is increasing in the number of firms, with t∗ > 0 if and only if there

are three or more firms. With three or more firms, t∗ is decreasing in δ, attaining a minimum

of n− 2 when fringe firms are as patient as firm 1. The following Corollary summarizes this:

Corollary 1. The length t∗ of the initial phase is increasing in the number of firms and is

decreasing in the discount factor of fringe firms.
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With two firms, there is no initial phase, and the leader-optimal equilibrium coincides

with the equilibrium with stationary prices in Proposition 1.

Another notable feature of the optimal equilibrium in Proposition 2 is that the market

share of fringe firms during the second phase of the equilibrium is decreasing in δ: the

less patient fringe firms are, the larger their market share has to be to prevent them from

defecting. For some parameter values, fringe firms’ market shares may be larger than the

market share of firm 1: 1− δ > 1− (n− 1)(1− δ) ⇐⇒ δ < n−1
n
.9

Lastly, under firm 1’s optimal equilibrium, the leader’s market share decreases over time:

the leader serves the entire market until t∗, and obtains the stationary market share of

Proposition 1 from t∗ onwards.10 Hence, a declining market share of the largest firms,

accompanied by rising prices, is also a potential marker of collusion.

I note that these dynamics are also broadly consistent with the way some of the vitamin

cartels were structured. Connor (2007) documents that the smaller firms in some of the

vitamin cartels (beta carotene, vitamin B2 and biotin) were promised increasing market

shares to entice them to join the collusive agreement, and to incentivize them not to defect

from it. These increasing market shares came at the expense of the largest firms in the

industry.11

Another case that featured a declining market share by a leading firm is United States

v. United States Steel Corporation (1920). In this landmark case, the US government

alleged that the US Steel Corporation had monopolized the market for steel. The US Steel

Corporation participated in regular meetings with its competitors, in which pricing and

production trends were discussed. These meetings “were instituted first in stress of panic,

but, their potency being demonstrated, they were afterwards called to control prices in

9Note that this inequality is consistent with Assumption 1. Indeed, Assumption 1 gives δ > n−1−δ1
n−1 , and

n−1−δ1
n−1 < n−1

n for all δ1 ∈ ((n− 1)/n, 1).
10In the Conclusion I discuss how these results change in the presence of capacity constraints. In particular,

if firm 1 does not have enough capacity to serve the entire market, fringe firms capture a positive fraction of
the market during the initial phase of the leader-optimal equilibrium.

11For example, in the beta carotene cartel, Roche, the largest producer with a 79% market share, agreed to
cede 1% of the market each year to its competitor, BASF (Connor, 2007). As I discuss in the Conclusion, in
an extension of my model in which firm 1 has a lower marginal cost than its competitors, the leader-optimal
equilibrium features the two phases described in Proposition 2 even if there are two firms in the market.
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periods of industrial calm” (United States v. United States Steel Corporation, 1920). In

spite of this, the lower court ruled against the government, and this ruling was later affirmed

by the US Supreme Court. One of the arguments used against the government’s claim

was that, during the period of alleged monopolization, the market share of the US Steel

Corporation declined steadily, from around 50% to around 41%. This was seen as evidence

that there was competition in the market. The model in the current paper rationalizes a

declining market share by a cartel leader as a way of backloading the incentives of competitors

to incentivize them to adhere to the collusive scheme.

4.4 Proof Sketch of Proposition 2

I now present a sketch of the proof of Proposition 2. Note first that, by Lemma 2, it is

without loss to focus on equilibria under which fringe firms obtain the same flow profits each

period. Hence, the problem of finding firm 1’s optimal equilibrium can be written as finding

market shares and prices (x, p) = (xt, pt)
∞
t=0 that solve

V 1 ≡ sup
(x,p)

∞∑
t=0

δt1(1− (n− 1)xt)pt (P)

s.t. ∀t, (1− xt)pt ≤
∞∑

s=t+1

δs−txsps (IC-fringe)

∀t, (n− 1)xtpt ≤
∞∑

s=t+1

δs−t
1 (1− (n− 1)xs)ps (IC-leader)

∀t, pt ∈ [0, 1], xt ∈ [0, 1/(n− 1)], (Feasibility)
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where xt ∈ [0, 1/(n−1)] is the period t market share of each fringe firm, and so 1− (n−1)xt

is firm 1’s market share. Consider the following relaxed program:

V̂1 ≡ sup
(x,p)

∞∑
t=0

δt1(1− (n− 1)xt)pt (P’)

s.t. ∀t, (1− xt)pt ≤
∞∑

s=t+1

δs−txsps (IC-fringe)

∀t, pt ≤ 1, ptxt ≥ 0. (Feasibility’)

Relative to program (P), program (P’) ignores firm 1’s IC constraints and the constraints

that xt ≤ (n− 1)/n for all t, and imposes the weaker constraints ptxt ≥ 0 for all t instead of

xt ≥ 0, pt ≥ 0 for all t. Hence, V̂1 ≥ V 1.

The Lagrangian associated with program (P’) is:

L(x, p, λ, µ, γ) =
∞∑
t=0

δt1 (1− (n− 1)xt) pt +
∞∑
t=0

λt

(
∞∑

s=t+1

δs−txsps − (1− xt)pt

)

+
∞∑
t=0

µtptxt +
∞∑
t=0

γt(1− pt),

where (λ, µ, γ) = (λt, µt, γt)
∞
t=0 are non-negative multipliers associated with the constraints

in (P’). By standard results in Lagrangian duality (e.g., Boyd and Vandenberghe, 2004)

inf
(λ,µ,γ)≥0

sup
(x,p)∈(R×R)N0

L(x, p, λ, µ, γ) ≥ sup
(x,p)∈(R×R)N0

inf
(λ,µ,γ)≥0

L(x, p, λ, µ, γ) = V̂1. (3)

The inequality in (3) is the standard max-min inequality. The equality in (3) follows since

infλ,µ,γ≥0 L(x, p, λ, µ, γ) = −∞ for any sequence (x, p) that doesn’t satisfy the constraints in

(P’), and inf(λ,µ,γ)≥0 L(x, p, λ, µ, γ) =
∑∞

t=0 δ
t
1(1 − (n − 1)xt)pt for any sequence (x, p) that

satisfies the constraints in (P’).

By equation (3), the Lagrangian dual infλ,µ,γ≥0 sup(p,x) L(x, p, λ, µ, γ) gives an upper

bound to firm 1’s optimal equilibrium profits. Moreover, if there exists non-negative multi-

pliers (λ∗, µ∗, γ∗) and market shares and prices (x∗, p∗) satisfying the constraints in (P’) such
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that,

∀(λ, µ, γ) ≥ 0,∀(x, p) ∈ (R× R)N0 ,

L(x∗, p∗, λ, µ, γ) ≥ L(x∗, p∗, λ∗, µ∗, γ∗) ≥ L(x, p, λ∗, µ∗, γ∗), (4)

then (λ∗, µ∗, γ∗) is a solution to inf(λ,µ,γ)≥0 sup(p,x)∈(R×R)N0 L(x, p, λ, µ, γ), and (x∗, p∗) is a

solution to program (P’).12

To establish Proposition 2, I find multipliers (λ∗, µ∗, γ∗) ≥ 0 that, together with the

market shares and prices (x∗, p∗) in the statement of the proposition, satisfy the saddle-

point condition in (4). I then show that (x∗, p∗) satisfies the constraints in (P’), and so

from the arguments above, (x∗, p∗) solves program (P’). To complete the proof, I verify that

(x∗, p∗) also satisfies the remaining constraints in program (P).

I now describe how I construct the optimal multipliers (λ∗, µ∗, γ∗). Note first that the

Lagrangian L(x, p, λ, µ, γ) can be re-written as

L(x, p, λ, µ, γ) =
∞∑
t=0

ptxt

(
−δt1(n− 1) +

t∑
τ=0

δt−τλτ + µt

)
+ pt(δ

t
1 − λt − γt) +

∞∑
t=0

γt. (5)

To see the intuition behind this expression, consider the effect of increasing the market share

xt of fringe firms in period t. First, this change decreases firm 1’s payoff by (n − 1)δt1pt.

Second, since it increases fringe firm’s profits in t, this change relaxes the IC constraint of

fringe firms in all periods τ ≤ t, increasing the Lagrangian by pt
∑t

τ=0 δ
t−τλτ . Third, this

change relaxes the non-negativity constraint on ptxt, increasing the Lagrangian by ptµt.

12If there exist (λ∗, µ∗, γ∗) ≥ 0 and (x∗, p∗) satisfying the constraints in (P’) such that (4) holds, then

sup
(x,p)

inf
(λ,µ,γ)≥0

L(x, p, λ, µ, γ) ≥ inf
(λ,µ,γ)≥0

L(x∗, p∗, λ, µ, γ) = L(x∗, p∗, λ∗, µ∗, γ∗)

= sup
(x,p)

L(x, p, λ∗, µ∗, γ∗) ≥ inf
(λ,µ,γ)≥0

sup
(x,p)

L(x, p, λ, µ, γ),

which, together with (3), implies that

inf
(λ,µ,γ)≥0

sup
(x,p)

L(x, p, λ, µ, γ) = sup
(x,p)

inf
(λ,µ,γ)≥0

L(x, p, λ, µ, γ) = L(x∗, p∗, λ∗, µ∗, γ∗) = V̂1.

Since (x∗, p∗) satisfies the constraints in (P’), V̂1 = L(x∗, p∗, λ∗, µ∗, γ∗) =
∑∞

t=0 δ
t
1(1− (n− 1)x∗

t )p
∗
t .
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Consider next the effect of increasing the price pt in period t. In addition to the effects

of increasing xt described above, this change also (i) increases firm 1’s profits by δt1; (ii)

tightens fringe firms’ IC constraints at t, lowering the Lagrangian by λt; and (iii) tightens

the constraint that pt ≤ 1, lowering the Lagrangian by γt.

Since (x∗, p∗) has to be a maximizer of L(x, p, λ∗, µ∗, γ∗), the terms in brackets in (5)

must all be equal to zero. Hence, the optimal multipliers (λ∗, µ∗, γ∗) solve

∀t,
t∑

τ=0

λ∗
τδ

t−τ + µ∗
t = δt1(n− 1), (6)

δt1 − λ∗
t − γ∗

t = 0. (7)

Next, note that under the scheme in Proposition 2, prices are below the reservation price

of 1 for all t < t∗. Hence, the multiplier γ∗
t on the constraint pt ≤ 1 must be zero for all

t < t∗. Equation (7) then implies that the multiplier λ∗
t on fringe firms’ IC constraint satisfies

λ∗
t = δt1 for all t < t∗. Using this in equation (6), for all t < t∗, the multiplier µ∗

t on the

non-negativity constraint ptxt ≥ 0 satisfies

µ∗
t = δt1(n− 1)−

t∑
τ=0

δτ1δ
t−τ .

The definition of t∗ in (2) guarantees that µ∗
t > 0 for all t < t∗. Intuitively, multiplier µ∗

t

is the shadow value of relaxing the non-negativity constraint on ptxt. A relaxation of this

constraint permits a lower market share xt of fringe firms at time t, increasing firm 1’s profits

by δt1(n−1). At the same time, lowering xt tightens fringe firms’ IC constraints for all t ≤ τ ,

and has a cost equal to
∑t

τ=0 λτδ
t−τ =

∑t
τ=0 δ

τ
1δ

t−τ . For t < t∗, the benefit outweighs the

cost, and so the leader-optimal equilibrium sets xt = 0.

For t ≥ t∗, the scheme in Proposition 2 sets x∗
t = 1 − δ > 0 and p∗t = 1. As shown in

Section 4.1, these market shares and prices guarantee that fringe firms’ IC constraints bind

at all periods t ≥ t∗. Hence, the multiplier µ∗
t on the non-negativity constraint ptxt ≥ 0 is

equal to zero for all t ≥ t∗. Using this in equation (6), for all t ≥ t∗ multipliers λ∗
t solve the
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recursive equation
∑t

τ=0 λ
∗
τδ

t−τ = (n− 1)δt1, and γ∗
t solves (7).

Finally, note that under the optimal multipliers (λ∗, µ∗, γ∗), for all (x, p) the Lagrangian

satisfies

L(x, p, λ∗, µ∗, γ∗) =
∞∑
t=0

γ∗
t ,

where the equality uses (5) and the fact that the optimal multipliers (λ∗, µ∗, γ∗) satisfy (6)

and (7). Intuitively, γ∗
t is the shadow value of relaxing the constraint that the price in period

t be less than 1. Since firm 1’s profits and fringe firms’ IC constraints are both linear in

prices, relaxing the constraints that pt ≤ 1 for all t uniformly by y% allows prices to be

uniformly increased by y%, raising firm 1’s discounted profits by y%.

5 Pareto Optimal Equilibria

I now turn to study equilibria that maximize a weighted sum of leader profits and fringe

firms’ profits. By Lemma 2, it is without loss to restrict attention to equilibria under which

all fringe firms obtain the same flow profits in every period. Hence, program (1) can be

written as:

V (α) ≡ sup
(x,p)

α

(
∞∑
t=0

δt1(1− (n− 1)xt)pt

)
+ (1− α)(n− 1)

(
∞∑
t=0

δtxtpt

)
(Pα)

s.t. (IC-fringe), (IC-leader) and (Feasibility).

For α = 1 this corresponds to program (P) in Section 4.

For α ∈ [1/2, 1], define

t∗(α) ≡ inf

{
t : α

t∑
τ=0

δτ1δ
t−τ ≥ αδt1(n− 1)− (1− α)δt(n− 1)

}
.

Lemma A.2 in the Appendix shows that under Assumption 1, t∗(α) < ∞ for all α ∈ [1/2, 1].

Note that t∗(α) is increasing in α, with t∗(1/2) = 0, and that t∗(1) is equal to t∗ in equation

(2). The following result characterizes the solution to (Pα) for α ∈ [1/2, 1].
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Proposition 3. For α ∈ [1/2, 1], there exists an equilibrium that attains V (α) in which, at

every period t along the path of play,

(i) if t < t∗(α), the price is equal to δt
∗(α)−t, and firm 1 captures the entire market;

(ii) if t ≥ t∗(α), the price is equal to the reservation price of 1, each fringe firm earns a

market share of 1− δ, and firm 1 earns a market share of 1− (n− 1)(1− δ).

Proposition 3 shows that, when the weight α on firm 1 is sufficiently large, the equilibrium

that attains V (α) shares the same features as firm 1’s optimal equilibrium. In particular,

this equilibrium also features two phases: an initial phase in which prices slowly increase over

time and in which firm 1 captures the entire market, and a second stationary phase in which

prices are equal to the monopoly price and in which fringe firms capture their stationary

market share of 1− δ.

The length t∗(α) of the initial phase is increasing in the number of firms and in the

weight on firm 1’s payoff, and is decreasing in fringe firms’ discount factor. Lastly, there is

no initial stage when there are two firms or when α = 1/2: in these cases, the equilibrium

in Proposition 3 coincides with the stationary equilibrium in Proposition 1.

The equilibria in Proposition 3 have the property that firm 1’s IC constraints are never

binding. Indeed, in the initial phase they are not binding since firm 1 serves the entire

market. And in the stationary phase they are not binding, as shown in Section 4.1. I now

characterize the solution to (Pα) for α ∈ [0, 1/2). A key difference with the equilibria in

Proposition 3 is that firm 1’s IC constraints may bind when α < 1/2.

Define the following two times:

t∗1(α) ≡ sup
{
t ∈ N0 : −αδt1 + (1− α)δt > 0

}
, and

t∗2 ≡ sup

{
t ∈ N0 :

δt1
1− δ1

(1− (n− 1)(1− δ)) ≥ 1

}
.

For α ∈ [0, 1/2), let t∗(α) ≡ min{t∗1(α), t∗2}. Note that t∗2 ∈ [0,∞), since, by Assumption 1,

1
1−δ1

(1− (n− 1)(1− δ)) > 1. Hence, t∗(α) < ∞. Note further that t∗(α) is decreasing in α.

Moreover, when δ1 > δ, t∗(α) = 0 for α < 1/2 close enough to 1/2.
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Proposition 4. For α ∈ [0, 1/2), there exists an equilibrium that attains V (α) in which, at

every period t along the path of play, the price is equal to the reservation price of 1, and

(i) if t < t∗(α), each fringe firm earns a market share of 1/(n− 1), and firm 1 earns zero

market share;

(ii) if t = t∗(α), each fringe firm earns a market share x∗ ∈ [(1 − δ), 1/(n − 1)], and firm

1 earns a market share of 1− (n− 1)x∗;

(iii) if t > t∗(α), each fringe firm earns a market share 1 − δ, and firm 1 earns a market

share of 1− (n− 1)(1− δ).

The equilibria in Proposition 4 also feature two phases: an initial phase in which fringe

firms capture the entire market, and a second phase in which fringe firms capture their

stationary market share of 1 − δ. In contrast to the equilibria in Proposition 3, prices are

constant and equal to the monopoly price throughout the two phases. The length t∗(α) of

the initial phase is decreasing in α, and is equal to zero for values of α close to 1/2. Hence,

for α ≈ 1/2, the optimal equilibrium again coincides with the stationary equilibrium in

Proposition 1.

To understand why equilibria that maximize the weighted sum of leader’s and fringe

firms’ payoffs take this form for α < 1/2, note that in this case the first-best outcome has:

(i) prices always equal to the reservation price of 1, (ii) fringe firms capturing the entire

market at all periods t ≤ t∗1(α), and (iii) firm 1 capturing the entire market at all periods

t > t∗1(α). When t∗(α) = t∗1(α) ≤ t∗2, optimal equilibria introduce one modification relative

to the first-best outcome: fringe firms obtain their stationary market share of 1 − δ at all

periods t > t∗1(α), so as to satisfy their IC constraints. When t∗1(α) > t∗2 = t∗(α), setting

firm 1’s market share equal to 0 at all periods t ≤ t∗1(α) and equal to 1 − (n − 1)(1 − δ) at

all periods t > t∗1(α) would violate firm 1’s IC constraint at t = 0. Hence, in this case, firm

1 starts capturing a positive market share at the earlier time t∗2 < t∗1(α).

The dynamics of Pareto optimal equilibria. Figure 1 plots the Pareto frontier for

parameter values δ1 = 0.92, δ = 0.9 and n = 7, with fringe firms’ profits on the horizontal
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Figure 1: Pareto frontier, with fringe firms’ payoffs on the horizontal axis and the leader’s
payoffs on the vertical axis. Parameter values: δ1 = 0.92, δ = 0.9, n = 7. The black circle
corresponds to the payoffs under the stationary equilibrium in Proposition 1.

axis and the leader’s profits on the vertical axis. The black circle corresponds to profits

under the stationary equilibrium in Proposition 1, which maximizes the weighted sum of

profits for α = 1/2. Points to the left of the circle correspond to Pareto optimal equilibria

for values of α larger than 1/2, and points to the right of the circle correspond to Pareto

optimal equilibria for values of α smaller than 1/2.

Consider first Pareto optimal equilibria for α > 1/2. On the path of play under these

equilibria, firms’ continuation payoffs move along the frontier towards the stationary payoffs

marked with the black circle. Indeed, at time t∗(α), continuation play under the equilibrium

that attains V (α) coincides with equilibrium play under the leader-optimal stationary equi-

librium. Consider next Pareto optimal equilibria with α < 1/2. Under such an equilibrium,

firms’ continuation payoffs on the path of play also move along the frontier towards the

stationary payoffs marked with the black circle, reaching that point at time t∗(α). The gray

arrows in Figure 1 illustrate these equilibrium dynamics.
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I end this section with a discussion of the relation between my results and those in Obara

and Zincenko (2017), who also study a repeated Bertrand oligopoly game with heterogeneous

discount factors. Obara and Zincenko (2017) focus on equilibria with the property that prices

are always equal to the monopoly price. They show that optimal equilibria within this class

have the same properties as the equilibria described in Proposition 4: less patient firms enter

the market weakly earlier than more patient firms, and equilibrium play converges to the

stationary equilibrium in Proposition 1. Propositions 3 and 4 show that equilibria with these

properties are Pareto efficient for α ∈ [0, 1/2], but not for α > 1/2.

Although they don’t characterize all Pareto optimal equilibria, Obara and Zincenko

(2017) do establish two additional results. First, they show that Pareto optimal equilib-

ria that don’t have constant prices feature industry profits that increase over time during

the first periods. Second, they show that under any Pareto efficient equilibrium, play even-

tually converges to a stationary profile. Propositions 3 and 4 strengthen these results by

characterizing the set of Pareto efficient equilibria.

6 Stochastic Demand

I now study an extension of the model with stochastic demand, in the spirit of Rotemberg

and Saloner (1986). The purpose of this section is two-fold. First, I show that optimal

equilibria under stochastic demand retain key properties of the equilibria in Sections 4 and

5. Second, the results in this section illustrate how Lagrangian methods can also be used to

characterize optimal equilibria in this stochastic setting.

The model is the same as in Section 2, with the only difference that at each time t

the buyers’ reservation price rt is drawn i.i.d. from a discrete distribution Fr supported on

{r1, ..., rK}, with 0 < r1 < r2 < ... < rK . For k = 1, ..., K, let qk = probFr
(r = rk). At

each period t, firms publicly observe the realization of the reservation price rt, and then

simultaneously choose actions (pt, ρt) = (pi,t, ρi,t)i∈N . Market shares are determined in the

same way as in the baseline model in Section 2. As in the model in Section 2, there is perfect

monitoring: the public history at time t is ht = (rs,ps, ρs)s<t.
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For conciseness, I focus on leader-optimal equilibria. Let Σp denote the set of pure

strategy SPNE of this game. The leader-optimal equilibrium payoff is V 1 ≡ supσ∈Σp
V1(σ),

where, for each strategy profile σ, V1(σ) is player 1’s expected discounted payoff under σ.

Let r ≡
∑

k qkrk denote the expected reservation price. I make the following assumption:

Assumption 2. (i) δr < r1;

(ii) (n− 1)(rK − δr) < min{rK , δ1((n− 1)rK − (n− 2)r)}.

Assumption 2 implies that demand shocks are not too large: Assumption 2(i) puts a lower

bound on the lowest demand shock r1, and Assumption 2(ii) implies that the highest demand

shock rK is such that rK(n − 2) < δr(n − 1). It is worth noting that, while Assumption 2

implies Assumption 1, the two assumptions are equivalent when demand is constant. Indeed,

if rk = r for all k, then Assumption 2(i) holds for all δ < 1, and Assumption 2(ii) becomes

(n − 1)(1 − δ) < δ1, which is Assumption 1. In the end of this section I describe the

leader-optimal equilibrium when Assumption 2 does not hold.

Note that Lemma 2 extends to this environment. Hence, it is without loss to focus on

equilibria under which fringe firms earn the same flow profits at all periods. The problem of

finding the leader-optimal equilibrium can then be written as

V 1 ≡ sup
(x,p)

E0

[
∞∑
t=0

δt1(1− (n− 1)xt)pt

]
(Ps)

s.t. ∀t, (1− xt)pt ≤ Et

[
∞∑

s=t+1

δs−txsps

]

∀t, (n− 1)xtpt ≤ Et

[
∞∑

s=t+1

δs−t
1 (1− (n− 1)xs)ps

]
∀t, pt ∈ [0, rt], xt ∈ [0, 1/(n− 1)],

where (x, p) = (xt, pt)
∞
t=0 is a stochastic process adapted to the filtration generated by (rt).

As a first step towards solving (Ps), consider a stationary equilibrium in which, at each

time t, prices are equal to the reservation price rt, and the market share of each fringe firm
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is equal to x(rt) ∈ [0, 1/(n− 1)] (with firm 1 obtaining market share 1− (n− 1)x(rt)). Pick

market shares (x(rk))
K
k=1 so that the IC constraints of fringe firms bind at all periods under

this stationary equilibrium: i.e., (x(rk))
K
k=1 solves

for k = 1, ..., K, rk(1− x(rk)) =
δ

1− δ

∑
k′

qk′rk′x(rk′). (8)

The right-hand side of (8) is the expected continuation payoff of fringe firms under this

stationary equilibrium: at each period, when the reservation price is rk′ , fringe firms serve

a fraction x(rk′) of the market at price rk′ . The left-hand side is the deviation gain: when

buyers’ reservation price is rk, a fringe firm can undercut the price and serve the entire

market.

The solution to (8) has x(rk) = rk−δr
rk

for k = 1, ..., K. Assumption 2 guarantees that

x(rk) ∈ (0, 1/(n − 1)) for all k. Moreover, Assumption 2 also guarantees that, under this

profile, firm 1’s IC constraints are also satisfied.13 Market shares (x(rk))
K
k=1 generalize the

stationary market shares of Proposition 1 to the current setting: when rk = r for all k,

x(rk) = 1− δ for all k.

It is worth highlighting that this stationary equilibrium differs from the symmetric sta-

tionary equilibrium in Rotemberg and Saloner (1986): instead of featuring countercyclical

pricing, this stationary equilibrium features pro-cyclical pricing (i.e., prices always equal

to the reservation price) and counter-cyclical market shares for the leader. Indeed, market

share x(r) is increasing in r, to satisfy fringe firms’ IC constraints; and so the leader’s market

share, 1− (n− 1)x(r), is decreasing in r.

Let Vf denote fringe firm’s expected discounted profits under this stationary equilibrium:

Vf =
1

1− δ

∑
k

qkrkx(rk) = r,

where the second equality uses x(rk) =
rk−δr
rk

for all k and r =
∑

k qkrk.

13The proof of Proposition 5 in Appendix A.3 shows this.
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Recall the definition of t∗ in equation (2):

t∗ ≡ inf

{
t ∈ N0 :

t∑
τ=0

δt−τδτ1 ≥ δt1(n− 1)

}
,

The following result characterizes the solution to (Ps).

Proposition 5. With stochastic demand, there exists a leader-optimal equilibrium in which,

at every period t along the path of play:

(i) if t < t∗, the price is equal to δt
∗−tr, and firm 1 captures the entire market;

(ii) if t ≥ t∗, the price is equal to the reservation price of rt, each fringe firm earns a

market share of x(rt), and firm 1 earns a market share of 1− (n− 1)x(rt).

Proposition 5 shows that the key properties of leader-optimal equilibria in Proposition 2

extend to this setting with stochastic demand. In particular, leader-optimal equilibria have

two phases: an initial phase with slowly increasing prices and with firm 1 capturing the

entire market, and the second phase with prices at the monopoly price and with stationary

market shares. As highlighted above, the market share of fringe firms during the stationary

phase is pro-cyclical, and the market share of the leader is counter-cyclical.

I end this section by discussing the role that Assumption 2 plays in Proposition 5, and

how the results generalize when the assumption does not hold. Note that Assumption 2(i)

guarantees that the price δt
∗−tr = Et[δ

t∗−tVf ] during the initial phase is always below the

reservation price (recall that Vf is fringe firm’s profits under the stationary equilibrium).

When Assumption 2 doesn’t hold, the leader-optimal equilibrium still features two phases:

an initial phase with prices equal to min{Et[δ
t∗−tVf ], rt} (and with the leader capturing the

entire market), and a second stationary phase.14

Interestingly, it can be shown that the length of the initial phase is random when As-

sumption 2 doesn’t hold. To see why, recall from the proof sketch of Proposition 2 in Section

14When Assumption 2 doesn’t hold, fringe firms’ market shares during the stationary phase may be equal
to zero at states with very low demand, and may be equal to 1/(n − 1) in states with very high demand.
Moreover, in states with very high demand, prices may be set below the reservation price to satisfy firms’
IC constraints.
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4.4 that the initial phase ends the first period t such that
∑t

τ=0 δ
t−τλτ is sufficiently large,

where λτ is the multiplier on the IC constraint of fringe firms at time τ . When Assumption

2 doesn’t hold, fringe firms’ IC constraints don’t bind in periods t < t∗ with rt < Et[δ
t∗−tVf ].

Hence, the multipliers (λt) (which are now a stochastic process adapted to (rt)) may be zero

at some periods during the initial phase, depending on the realized demand shocks. As a

result, the end of the initial phase, which is given by the first time
∑t

τ=0 δ
t−τλτ is large

enough, will be random.

7 Conclusion

This paper studies optimal collusive equilibria in a market with a cartel leader and several less

patient competitors. These equilibria have two key features. First, they may involve an initial

phase in which prices increase gradually over time. Second, under every optimal equilibrium,

play converges in finite time to a stationary profile with prices set at the monopoly level and

with constant market shares. From a methodological standpoint, the paper uses Lagrangian

methods to characterize Pareto efficient equilibria in a repeated Bertrand oligopoly game.

Perhaps an unsatisfactory feature of the equilibria in Propositions 2 and 3 is that firm 1

captures the entire market in the initial phase of the collusive scheme. The reason for this is

that, in this model, each firm is assumed to have enough capacity to serve the entire market

at every period. When firms are capacity constrained, leader-optimal equilibria have the

property that the leader sells at full capacity during the initial phase, and fringe firms serve

the remaining fraction of the market.

Throughout the paper, I maintained the assumption that firms have different time pref-

erences but share the same marginal cost. Another natural extension is to consider settings

in which firm 1, the most patient firm, also has a cost advantage relative to fringe firms.

It is possible to show that, when firm 1’s cost advantage is not too large, firm 1’s optimal

equilibrium shares the same features of the equilibrium in Proposition 2: there is an initial

phase in which prices rise slowly and in which firm 1 captures the entire market, followed

by a stationary phase in which prices are equal to the reservation price and in which market
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shares are stationary. Moreover, the length t∗ of the initial phase is positive even with two

firms (i.e., even if n = 2).

A Appendix

A.1 Proofs of Section 3

Proof of Lemma 1. Suppose (pt,xt) is implementable by some strategy profile σ ∈ Σp.

Then, for every history ht and each i ∈ N , player i’s continuation payoff at ht under σ is

Vi(σ|ht) =
∑∞

s=t δ
s−t
i xi,sps. Since σ ∈ Σp, it must be that for all i and all on-path histories ht

∞∑
s=t

δs−t
i xi,sps ≥ pt + δ0 ⇐⇒ (1− xi,t)pt ≤

∞∑
s=t+1

δs−t
i xi,sps.

The first inequality follows since firm i can get pt + δ0 at time t by undercutting price pt.

Hence, if (pt,xt) is implementable by some strategy profile σ ∈ Σp, (IC) must hold.

Next, let (pt,xt) be a sequence satisfying (IC), and consider the following strategy profile

σ. On the path of play, at each time t firm i ∈ N chooses pi,t = pt and ρi,t ∈ [0, 1], where

ρt = (ρj,t)j∈N ∈ [0, 1]n is such that, for all j ∈ N ,
ρj,t∑

k∈N ρk,t
= xj,t. Deviations by any player

i are punished by Nash reversion (i.e., pi,t = 0 and ρi,t = 1 for all i and all t following a

deviation). Since (pt,xt) satisfies (IC), no player has an incentive to deviate at any history

under σ, and so σ ∈ Σp . Hence, if (pt,xt) satisfies (IC), it is implementable by some strategy

profile σ ∈ Σp. ■

Proof of Lemma 2. Fix an equilibrium σ, and let (pt,xt) be the sequence of prices and

allocations implemented on the equilibrium path under σ. By Lemma 1, (pt,xt) satisfies

∀t,∀i, (1− xi,t)pt ≤
∞∑

s=t−1

δs−t
i xi,sps. (9)
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Summing (9) across all i ̸= 1 and diving by n− 1, we get

∀t,
(
1−

∑
i ̸=1 xi,t

n− 1

)
pt ≤

∞∑
s=t−1

δs−t

(∑
i ̸=1 xi,s

n− 1

)
ps (10)

Consider the sequence of allocations (x̂t) such that x̂1,t = x1,t for all t, and, for all i ̸= 1,

x̂i,t =
∑

i ̸=1 xi,s

n−1
. By (9) and (10), (pt, x̂t) satisfies (IC). By Lemma 1, there exists an equilib-

rium σ̂ ∈ Σp that implements (pt, x̂t). By construction V1(σ̂) = V1(σ),
∑

i Vi(σ̂) =
∑

i Vi(σ)

and, for all on path histories h and all i, j ̸= 1, πi(σ̂|h) = πj(σ̂|h). Moreover, without loss

we can choose σ̂ such that, off the equilibrium path, firms play the static Nash equilibrium.

Hence, for all h and all i, j ̸= 1, πi(σ̂|h) = πj(σ̂|h). ■

A.2 Proofs of Sections 4 and 5

Proof of Proposition 1. I first show that any equilibrium σ ∈ Σst
p that attains V

st

1 > 0

must have the property that, along the path of play, prices are equal to the monopoly price

of 1 at every period. To see why, consider an equilibrium σ ∈ Σst
p with V1(σ) > 0. Hence,

under σ, along the path of play the lowest price pt is equal to some p ∈ (0, 1] at every period.

Let (xi,t)
∞
i∈N,t=0 denote the market shares along the path of play under σ. Then, by

Lemma 1, it must be that

∀t,∀i, (1− xi,t) ≤
∞∑

s=t+1

δs−t
i xi,s (IC-st)

Since the price level p ∈ (0, 1] doesn’t affect the constraints in (IC-st), it is optimal to set

pt = r = 1 for all t.

Next, note that by the same argument as in the proof of Lemma 2, it is without loss to

consider equilibria such that, for all i ̸= 1 and all t, xi,t = xt ∈ [0, 1/(n − 1)]. Hence, I can
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re-write player 1’s problem as

V
st

1 = sup
x∈[0,1/(n−1)]N0

∞∑
t=0

δt1 (1− (n− 1)xt) s.t. (IC-st). (Pst)

Ignore for now the constraints that xt ∈ [0, 1/(n− 1)] for all t and the incentive compat-

ibility constraints of firm 1, and consider the following relaxed program:

V̂ st
1 = sup

x∈RN0

∞∑
t=0

δt1 (1− (n− 1)xt) (P ′
st)

s.t. ∀t, (1− xt) ≤
∞∑

s=t+1

δs−txs (IC’-i ̸= 1)

The Lagrangian associated with this program is

L(x, λ) =
∞∑
t=0

δt1 (1− (n− 1)xt) +
∞∑
t=0

λt

(
∞∑

s=t+1

δs−txs − (1− xt)

)
.

where λ = (λt)
∞
t=0 are non-negative multipliers associated with the constraints in (P ′

st). Note

then that,

inf
λ≥0

sup
x∈RN0

L(x, λ) ≥ sup
x∈RN0

inf
λ≥0

L(x, λ) = V̂ st
1 ,

where the inequality is the max-min inequality, and the equality follows since infλ≥0 L(x, λ) =∑∞
t=0 δ

t
1 (1− (n− 1)xt) for any x that satisfies the constraints in (P ′

st), and infλ≥0 L(x, λ) =

−∞ for any x that doesn’t satisfy these constraints.

Moreover, if we can find λ∗ ≥ 0 and x∗ ∈ [0, 1/(n− 1)]N0 such that

∀λ ≥ 0,∀x ∈ RN0 , L(x∗, λ) ≥ L(x∗, λ∗) ≥ L(x, λ∗), (11)

then λ∗ solves the dual program infλ≥0 supx∈RN0 L(x, λ), and x∗ solves program (P ′
st). In

addition, if x∗ also satisfies the remaining constraints in (Pst), then x∗ also solves (Pst).

Hence, to establish the Proposition, I find multipliers λ∗ that, together with the allocations

x∗ in the statement of the Proposition, satisfy the saddle-point condition (11). I then verify

28



that x∗ satisfies the remaining constraints in (Pst).

Let λ∗ = (λ∗
t ) be given by,

λ∗
t =

n− 1 if t = 0,

(n− 1)δt−1
1 (δ1 − δ) if t > 0.

Clearly, λ∗
t ≥ 0 for all t. I use the following Lemma.

Lemma A.1. For all t ≥ 0,
∑t

τ=0 δ
t−τλ∗

τ = (n− 1)δt1.

Proof. The proof is by induction. Note that for t = 0,
∑t

τ=0 δ
t−τλ∗

t = λ∗
0 = (n− 1)δ01. Next,

let t ≥ 1 and suppose
∑s

τ=0 δ
s−τλ∗

τ = (n− 1)δs1 for s = 0, ..., t− 1. Then,

t∑
τ=0

δt−τλ∗
τ = λ∗

t + δ
t−1∑
τ=0

δt−1−τλ∗
τ = (n− 1)δt−1

1 (δ1 − δ) + δ(n− 1)δt−1
1 = (n− 1)δt1,

where the second equality uses the induction hypothesis. Hence, for all t ≥ 0,
∑t

τ=0 δ
t−τλ∗

τ =

(n− 1)δt1.

Let x∗ be the allocation in the statement of the Proposition: i.e., x∗
t = 1 − δ for all t. I

now show that (x∗, λ∗) satisfies the saddle-point condition (11). Note first that, for all t,

∞∑
s=t+1

δs−tx∗
s =

δ

1− δ
(1− δ) = δ = 1− x∗

t .

Hence, (x∗, λ∗) satisfy the following complementary slackness conditions:

∀t, λ∗
t

(
∞∑

s=t+1

δs−tx∗
s − (1− x∗

t )

)
= 0.

This implies that, for all λ ≥ 0, L(x∗, λ) = L(x∗, λ∗), so the first inequalities in (11) hold.

Note next that the Lagrangian can be re-written as

L(x, λ∗) =
∞∑
t=0

(δt1 − λ∗
t ) +

∞∑
t=0

xt

(
−(n− 1)δt1 +

t∑
τ=0

δt−τλ∗
τ

)
=

∞∑
t=0

(δt1 − λ∗
t ),
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where the last equality follows from Lemma A.1. Hence, L(x∗, λ∗) = L(x, λ∗) for all x, and

so x∗ solves (P ′
st).

Finally, I show that x∗ also satisfies the remaining constraints in (Pst). By Assumption

1, x∗
t = 1− δ < 1/(n− 1). Next, note that the IC constraints of firm 1 hold since, for all t,

∞∑
s=t+1

δt1(1− (n− 1)x∗
t ) =

δ1
1− δ1

(1− (n− 1)(1− δ)) > (n− 1)(1− δ) = (n− 1)x∗
t ,

where the strict inequality follows from Assumption 1. ■

Proof of Proposition 2. Follows from Proposition 3. ■

Lemma A.2. Under Assumption 1, t∗(α) < ∞ for all α ∈ [1/2, 1].

Proof. Let β ≡ δ1
δ
≥ 1, and note that

α
t∑

τ=0

δτ1δ
t−τ ≥ αδt1(n− 1)− (1− α)δt(n− 1) ⇐⇒ α

t∑
τ=0

βτ ≥ αβt(n− 1)− (1− α)(n− 1).

When β = 1, the inequality holds if and only if t ≥ n− 2− 1−α
α

(n− 1), and so t∗(α) < ∞.

For β > 1,
∑t

τ=0 β
τ = βt+1−1

β−1
, and so

α

t∑
τ=0

βτ ≥ αβt(n− 1)− (1− α)(n− 1)

⇐⇒ αβt((n− 1)− β(n− 2)) ≥ α− (β − 1)(1− α)(n− 1).

By Assumption 1, (n − 1)δ > n − 1 − δ1 > n − 2 > δ1(n − 2), and so n − 1 − β(n − 2) =

1
δ
(δ(n− 1)− δ1(n− 2)) > 0. Note that this implies that t∗(α) < ∞.

Proof of Proposition 3. Ignore firm 1’s IC constraints and the constraints that xt ≤

1/(n − 1) for all t. Moreover, replace the constraints that xt ≥ 0 and pt ≥ 0 for all t with
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the weaker constraints ptxt ≥ 0. Consider then the following relaxation to program (Pα):

V̂ (α) ≡ sup
(xt,pt)∞t=0

∞∑
t=0

αδt1(1− (n− 1)xt)pt +
∞∑
t=0

(1− α)(n− 1)δtxtpt (P′
α)

s.t. ∀t, (1− xt)pt ≤
∞∑

s=t+1

δs−txsps (IC-i ̸= 1)

∀t, pt ≤ 1, ptxt ≥ 0. (Feasibility’)

Since this is a relaxation of program (Pα), V̂ (α) ≥ V (α) for all α ∈ [1/2, 1].

The Lagrangian associated with (P′
α) is

L(x, p, λ, µ, γ) =
∞∑
t=0

αδt1 (1− (n− 1)xt) pt +
∞∑
t=0

(1− α)(n− 1)δtxtpt

+
∞∑
t=0

λt

(
∞∑

s=t+1

δs−txsps − (1− xt)pt

)

+
∞∑
t=0

µtptxt +
∞∑
t=0

γt(1− pt),

where (λ, µ, γ) are non-negative multipliers associated with the constraints in (P′
α). To

prove the result, I construct multipliers (λ∗, µ∗, γ∗) ≥ 0 that, together with the prices and

allocations (p∗t , x
∗
t ) in the statement of the Proposition, satisfy the saddle-point condition

∀(λ, µ, γ) ≥ 0, ∀(x, p),

L(x∗, p∗, λ, µ, γ) ≥ L(x∗, p∗, λ∗, µ∗, γ∗) ≥ L(x, p, λ∗, µ∗, γ∗), (12)

As explained in Section 4.4, this implies that (p∗t , x
∗
t ) is a solution to the relaxed program

(P′
α). Lastly, I show that (p∗t , x

∗
t ) also satisfy the remaining constraints in program (Pα), so

it is also a solution that program.
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Consider the following multipliers λ∗, µ∗ and γ∗:

λ∗
t =


αδt1 if t < t∗(α)

αδt1(n− 1)− (1− α)δt(n− 1)− α
∑t−1

τ=0 δ
τ
1δ

t−τ if t = t∗(α)

αδt−1
1 (n− 1)(δ1 − δ) if t > t∗(α),

µ∗
t = 1t<t∗(α)

(
αδt1(n− 1)− (1− α)δt(n− 1)− α

t∑
τ=0

δτ1δ
t−τ

)
γ∗
t = αδt1 − λ∗

t ,

with the convention that
∑−1

τ=0 δ
τ
1δ

t−τ = 0. I use the following Lemma:

Lemma A.3. (i) (λ∗, µ∗, γ∗) ≥ 0;

(ii) For all t ≥ 0,
∑t

τ=0 λ
∗
τδ

t−τ = αδt1(n− 1)− (1− α)δt(n− 1)− µ∗
t .

Proof. I start by proving part (i). To economize on notation, in what follows I write t∗ instead

of t∗(α). Clearly, λ∗
t ≥ 0 for all t ̸= t∗. If t∗ = 0, then λ∗

t∗ = α(n− 1)− (1− α)(n− 1) ≥ 0,

where the inequality uses α ≥ 1/2. Suppose next that t∗ > 0, and note that

α
t∗−1∑
τ=0

δτ1δ
t∗−τ = αδ

t∗−1∑
τ=0

δτ1δ
t∗−1−τ < δ

(
αδt

∗−1
1 (n− 1)− (1− α)δt

∗−1(n− 1)
)

≤ δt
∗

1 α(n− 1)− (1− α)δt
∗
(n− 1)

where the strict inequality follows from the definition of t∗, and the weak inequality follows

since δ ≤ δ1. Hence, λ
∗
t ≥ 0 for all t.

Next, note that, by the definition of t∗, µ∗
t ≥ 0 for all t ≥ 0. Lastly, note that γ∗

t = 0 for

all t < t∗. For t = t∗,

γ∗
t∗ = αδt

∗

1 −

(
αδt

∗

1 (n− 1)− (1− α)δt
∗
(n− 1)− α

t∗−1∑
τ=0

δτ1δ
t∗−τ

)

= α
t∗∑

τ=0

δτ1δ
t∗−τ −

(
αδt

∗

1 (n− 1)− (1− α)δt
∗
(n− 1)

)
≥ 0
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where the inequality follows from the definition of t∗. For all t > t∗,

γ∗
t = αδt1 − αδt−1

1 (n− 1)(δ1 − δ) = αδt−1
1 (δ(n− 1)− δ1(n− 2)) > 0

where the strict inequality follows since, by Assumption 1, (n− 1)δ > n− 1− δ1, and since

n− 1− δ1 > δ1(n− 2) for all δ1 ∈ (0, 1). Hence, (λ∗, µ∗, γ∗) ≥ 0.

I now prove part (ii). For all t < t∗, the equality follows from the definition of µ∗
t and

from λ∗
τ = αδτ1 for all τ < t∗. For t = t∗,

λ∗
t = αδt1(n−1)−(1−α)δt(n−1)−α

t−1∑
τ=0

δτ1δ
t−τ ⇐⇒

t∑
τ=0

λ∗
τδ

t−τ = αδt1(n−1)−(1−α)δt(n−1)−µ∗
t ,

where I used λ∗
τ = αδτ1 for all τ < t∗ and µ∗

t∗ = 0. I now show that the equality also holds

for all t > t∗. Towards an induction, suppose the equality holds for s = 0, .., t, with t ≥ t∗.

Then,

αδt+1
1 (n− 1)− (1− α)δt+1(n− 1)−

t+1∑
τ=0

λ∗
τδ

t+1−τ − µ∗
t+1

=αδt+1
1 (n− 1)− (1− α)δt+1(n− 1)− λ∗

t+1 − δ
(
αδt1(n− 1)− (1− α)δt(n− 1)

)
= 0,

where the first equality follows since µ∗
t+1 = 0 and since, by the induction hypothesis and

using µ∗
t = 0,

∑t+1
τ=0 λ

∗
τδ

t+1−τ = λ∗
t+1+δ

∑t
τ=0 λ

∗
τδ

t−τ = λ∗
t+1+δ(αδt1(n−1)−(1−α)δt(n−1)),

and the last equality uses λ∗
t+1 = αδt1(n− 1)(δ1− δ). Hence,

∑t+1
τ=0 λ

∗
τδ

t+1−τ = αδt+1
1 (n− 1)−

(1− α)δt+1(n− 1)− µ∗
t+1.

Let (x∗, p∗) be the allocations and prices in the statement of the Proposition: i.e., x∗
t =

1t≥t∗(1− δ), p∗t = δt
∗−t for all t < t∗, and p∗t = 1 for all t ≥ t∗. I now show that (x∗, p∗) and

(λ∗, µ∗, γ∗) satisfy the saddle-point condition (12). I use the following Lemma.
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Lemma A.4. (x∗, p∗) satisfies the constraints in program (P′
α). Moreover, for all t,

λ∗
t

(
∞∑

s=t+1

δs−tx∗
sp

∗
s − (1− x∗

t )p
∗
t

)
= 0,

µ∗
tp

∗
tx

∗
t = 0,

γ∗
t (1− pt) = 0.

Proof. Note first that, under (x∗, p∗), incentive constraints for fringe firms bind for all t.

Indeed, for all t < t∗,

∞∑
s=t+1

δs−tx∗
sp

∗
s = δt

∗−t 1

1− δ
(1− δ) = δt

∗−t = p∗t = p∗t (1− x∗
t ).

For all t ≥ t∗,
∞∑

s=t+1

δs−tx∗
sp

∗
s =

δ

1− δ
(1− δ) = δ = (1− x∗

t )p
∗
t .

Moreover, the non-negativity constraint on p∗tx
∗
t ≥ 0 holds with equality for t < t∗, and is

slack for t ≥ t∗. Finally, the constraint on prices p∗t ≤ 1 holds with equality for t ≥ t∗, and

is slack for t < t∗.

Since fringe firms’ IC constraints bind at all t, the first equalities in the Lemma hold for

all t. The second equalities hold for all t since x∗
t = 0 for all t < t∗, and since µ∗

t = 0 for

all t ≥ t∗. The third equalities hold since γ∗
t = 0 for all t < t∗, and since p∗t = 1 for all

t ≥ t∗.

Note that the complementary slackness conditions in Lemma A.4, and the fact that

(x∗, p∗) satisfies all the constraints in (P′
α), implies that for all (λ, µ, γ) ≥ 0, L(x∗, p∗, λ, µ, γ) ≥

L(x∗, p∗, λ∗, µ∗, γ∗). Hence, the first set of inequalities in (12) hold.

I now show that the second set of inequalities in (12) also hold. Note that the Lagrangian
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L(x, p, λ, µ, γ) can be re-written as

L(x, p, λ, µ, γ) =
∞∑
t=0

ptxt

(
−α(n− 1)δt1 + (1− α)(n− 1)δt +

t∑
τ=0

δt−τλτ + µt

)

+
∞∑
t=0

pt(αδ
t
1 − λt − γt) +

∞∑
t=0

γt.

Using Lemma A.3(ii) and γ∗
t = αδt1−λ∗

t for all t, it follows that, for all (x, p), L(x, p, λ∗, µ∗, γ∗) =

L(x∗, p∗, λ∗, µ∗, γ∗) =
∑∞

t=0 γ
∗
t . Hence, the second set of inequalities in (12) also hold, and

so (x∗, p∗) solves (P′
α).

Lastly, I show that (x∗, p∗) also satisfies the constraints in program (Pα) that I ignored.

Clearly, p∗t ≥ 0 for all t. Moreover, note that x∗
t = 0 for all t < t∗, and x∗

t = 1 − δ for all

t ≥ t∗. By Assumption 1, (n − 1)(1 − δ) < δ1 < 1. Hence, for all t, x∗
t < 1/(n − 1). To see

that (x∗, p∗) also satisfies the incentive compatibility constraints of firm 1, consider t < t∗,

and note that

(n− 1)x∗
tp

∗
t = 0 <

∞∑
s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s,

where the equality uses x∗
t = 0 for all t < t∗. For t ≥ t∗, x∗

t = 1− δ and p∗t = 1, and so

(n− 1)x∗
tp

∗
t = (n− 1)(1− δ) <

δ1
1− δ1

(1− (n− 1)(1− δ)) =
∞∑

s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s,

where the strict inequality follows from Assumption 1. Hence, (x∗, p∗) also solves (Pα). ■

Proof of Proposition 4. Fix α ∈ [0, 1/2), and consider the following relaxation to
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program (Pα):

V̂ (α) ≡ sup
(xt,pt)∞t=0

∞∑
t=0

αδt1(1− (n− 1)xt)pt +
∞∑
t=0

(1− α)(n− 1)δtxtpt (P′′
α)

s.t. ∀t, (1− xt)pt ≤
∞∑

s=t+1

δs−txsps (IC-i ̸= 1)

∀t, (n− 1)xtpt ≤
∞∑

s=t+1

δs−t
1 (1− (n− 1)xs)ps (IC-1)

∀t, ptxt ≤ pt/(n− 1), pt ≤ 1. (Feasibility’)

Relative to program (Pα), (P
′′
α) replaces the constraints that pt ≥ 0 and xt ∈ [0, 1/(n − 1)]

with the weaker constraints ptxt ≤ pt/(n− 1). The Lagrangian associated to (P′′
α) is

L(x, p, λ, µ, γ) =
∞∑
t=0

αδt1 (1− (n− 1)xt) pt +
∞∑
t=0

(1− α)(n− 1)δtxtpt

+
∞∑
t=0

λf,t

(
∞∑

s=t+1

δs−txsps − (1− xt)pt

)

+
∞∑
t=0

λ1,t

(
∞∑

s=t+1

δs−t
1 (1− (n− 1)xs)ps − (n− 1)xtpt

)

+
∞∑
t=0

µtpt(1− (n− 1)xt) +
∞∑
t=0

γt(1− pt),

To prove the result, I construct multipliers (λ∗, µ∗, γ∗) ≥ 0 that, together with the allocations

and prices (x∗, p∗) in the statement of the Proposition, satisfy the saddle-point condition (12).

As explained in Section 4.4, if (x∗, p∗) satisfies the constraints in (P′′
α), this implies that

(x∗, p∗) solves the relaxed program (P′′
α). In addition, if (x∗, p∗) also satisfies the remaining

constraints in (Pα), then it also solves (Pα).
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Note that the Lagrangian can be re-written as follows:

L(x, p, λ, µ, γ) =
∞∑
t=0

ptxt

[
(n− 1)

(
−αδt1 + (1− α)δt − µt −

t∑
τ=0

δt−τ
1 λ1,τ

)
+

t∑
τ=0

δt−τλf,τ

]

+
∞∑
t=0

pt

(
αδt1 − λf,t − γt +

t−1∑
τ=0

δt−τ
1 λ1,τ + µt

)
+

∞∑
t=0

γt. (13)

Recall the definitions of t∗1(α) and t∗2 in the main text. Recall further that, for α ∈ [0, 1/2),

t∗(α) = min{t∗1(α), t∗2}. There are two cases to consider: (1) t∗2 ≤ t∗1(α), so that t∗(α) = t∗2,

and (2) t∗2 > t∗1(α), so that t∗(α) = t∗1(α). I start with case (1). To economize on notation,

from now on I write t∗1 and t∗ instead of t∗1(α) and t∗(α).

Case 1: t∗ = t∗2 ≤ t∗1. Consider the following multipliers (λ∗, µ∗, γ∗):

λ∗
1,t = 1t=0

(
(1− α)

(
δ

δ1

)t∗

− α

)
,

µ∗
t = 1t<t∗(1− α)δt1

((
δ

δ1

)t

−
(

δ

δ1

)t∗
)
,

γ∗
t =


α + (1− α)

(
1−

(
δ
δ1

)t∗)
if t = 0,

(1− α)δt if t ∈ (0, t∗] and t∗ > 0,

(1− α)δt
∗
δt−t∗−1
1 ((n− 1)δ − (n− 2)δ1) if t > t∗,

λ∗
f,t =

0 if t ≤ t∗,

(n− 1)(1− α)δt
∗
δt−t∗−1
1 (δ1 − δ) if t ≥ t∗ + 1.

I use the following Lemma:

Lemma A.5. (i) (λ∗, µ∗, γ∗) ≥ 0;

(ii) for all t, (n− 1)
(
−αδt1 + (1− α)δt −

∑t
τ=0 δ

t−τ
1 λ∗

1,τ − µ∗
t

)
+
∑t

τ=0 λ
∗
f,τδ

t−τ = 0;

(iii) for all t, αδt1 − λ∗
f,t +

∑t−1
τ=0 δ

t−τ
1 λ∗

1,τ + µ∗
t − γ∗

t = 0.
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Proof. I start with part (i). Clearly, λ∗
1,t ≥ 0 for all t > 0. For t = 0, λ∗

1,0 =
1
δt

∗
1

(
(1− α)δt

∗ − αδt
∗
1

)
,

which is strictly larger than zero since 0 ≤ t∗ ≤ t∗1, and since (1 − α)δt − αδt1 > 0 for all

t ≤ t∗1.

Next, note that δ1 ≥ δ implies
(

δ
δ1

)t
≥
(

δ
δ1

)t∗
for all t < t∗. Hence, µ∗

t ≥ 0 for all t.

Clearly, γ∗
t > 0 for all t ≤ t∗. Moreover, since Assumption 1 implies (n − 1)δ > (n − 2)δ1,

γ∗
t > 0 for all t > t∗. Lastly, δ1 ≥ δ implies λ∗

f,t ≥ 0 for all t.

I now turn to part (ii). Consider first t < t∗. Note that, for all such t,
∑t

τ=0 λ
∗
f,τδ

t−τ = 0,

and
∑t

τ=0 δ
t−τ
1 λ∗

1,τ = δt1λ
∗
1,0 = δt1

(
(1− α)

(
δ
δ1

)t∗
− α

)
. Hence, for all t < t∗,

(n− 1)

(
−αδt1 + (1− α)δt −

t∑
τ=0

δt−τ
1 λ∗

1,τ − µ∗
t

)
+

t∑
τ=0

λ∗
f,τδ

t−τ

=(n− 1)

(
(1− α)δt − δt1

(
(1− α)

(
δ

δ1

)t∗
)

− µ∗
t

)
= 0.

For t = t∗, we have
∑t∗

τ=0 δ
t−τ
1 λ∗

1,τ = δt
∗
1 λ

∗
1,0 = (1−α)δt

∗ −αδt
∗
1 , µ

∗
t∗ = 0, and

∑t∗

τ=0 δ
t−τλ∗

f,τ =

0. Hence, for t = t∗,

(n− 1)

(
−αδt

∗

1 + (1− α)δt
∗ −

t∗∑
τ=0

δt
∗−τ
1 λ∗

1,τ − µ∗
t∗

)
+

t∗∑
τ=0

λ∗
f,τδ

t∗−τ = 0

Lastly, I show that the equality holds for all t > t∗. To show this, I first show that, for all

t > t∗,
∑t

τ=0 δ
t−τλ∗

f,τ = (n− 1)(1−α)δt
∗
(δt−t∗

1 − δt−t∗). To see why, note that, for t = t∗ +1,

t∗+1∑
τ=0

δt
∗+1−τλ∗

f,τ = λ∗
f,t∗+1 = (n− 1)(1− α)δt

∗
(δ1 − δ),

so the equality holds for t = t∗ + 1. Towards an induction, suppose that the equality holds
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to all s = t∗ + 1, ..., t− 1. Note then that

t∑
τ=0

δt−τλ∗
f,τ = λ∗

f,t + δ

t−1∑
τ=0

δt−1−τλ∗
f,τ

= (n− 1)(1− α)δt
∗
δt−t∗−1
1 (δ1 − δ) + δ(n− 1)(1− α)δt

∗
(δt−1−t∗

1 − δt−1−t∗)

= (n− 1)(1− α)δt
∗ (

δt−t∗

1 − δt−t∗
)
,

where the second equality uses the definition of λ∗
f,t and the induction hypothesis. Hence,

for all t > t∗,
∑t

τ=0 δ
t−τλ∗

f,τ = (n− 1)(1− α)δt
∗
(δt−t∗

1 − δt−t∗). Using this equality, together

with
∑t

τ=0 δ
t−τ
1 λ∗

1,τ = δt1λ1,0 = (1− α)δt−t∗

1 δt
∗ − αδt1 and µ∗

t = 0 for all t > t∗, we have

(n− 1)

(
−αδt1 + (1− α)δt −

t∑
τ=0

δt−τ
1 λ∗

1,τ

)
+

t∑
τ=0

λ∗
τδ

t−τ

=(n− 1)
(
(1− α)δt − (1− α)δt

∗
δt−t∗

1

)
+ (n− 1)(1− α)δt

∗
(δt−t∗

1 − δt−t∗) = 0.

Lastly, I prove part (iii). Consider first t = 0, and note that

αδt1 − λ∗
f,t +

t−1∑
τ=0

δt−τ
1 λ∗

1,τ + µ∗
t − γ∗

t

=α + (1− α)

(
1−

(
δ

δ1

)t∗
)

− α− (1− α)

(
1−

(
δ

δ1

)t∗
)

= 0.

Consider first t ∈ (0, t∗], and note that

αδt1 − λ∗
f,t +

t−1∑
τ=0

δt−τ
1 λ∗

1,τ + µ∗
t − γ∗

t

=αδt1 + δt1

(
(1− α)

(
δ

δ1

)t∗

− α

)
+ (1− α)δt1

((
δ

δ1

)t

−
(

δ

δ1

)t∗
)

− (1− α)δt = 0.
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Consider next t = t∗, and note that

αδt
∗

1 − λ∗
f,t∗ +

t∗−1∑
τ=0

δt
∗−τ
1 λ∗

1,τ + µ∗
t∗ − γ∗

t∗

=αδt
∗

1 + δt
∗

1

(
(1− α)

(
δ

δ1

)t∗

− α

)
− (1− α)δt

∗
= 0.

Lastly, consider t > t∗, and note that

αδt1 − λ∗
f,t +

t−1∑
τ=0

δt−τ
1 λ∗

1,τ + µ∗
t − γ∗

t

=αδt1 − (n− 1)(1− α)δt
∗
δt−t∗−1
1 (δ1 − δ) + δt1

(
(1− α)

(
δ

δ1

)t∗

− α

)
− (1− α)δt

∗
δt−t∗−1
1 ((n− 1)δ − (n− 2)δ1) = 0.

Let (x∗, p∗) be the allocations and prices in the statement of the Proposition: i.e., p∗t = 1

for all t, x∗
t = 1/(n− 1) for t < t∗, and xt = 1− δ for t > t∗. For t = t∗, let x∗

t = x be such

that

δt
∗

1

(
(1− (n− 1)x) +

δ1
1− δ1

(1− (n− 1)(1− δ))

)
= 1.

Note that x ∈ (1− δ, 1/(n− 1)). To see why, note that for x ≥ 1/(n− 1)

δt
∗

1

(
(1− (n− 1)x) +

δ1
1− δ1

(1− (n− 1)(1− δ))

)
≤ δt

∗+1
1

1− δ1
(1− (n− 1)(1− δ))) < 1,

where the strict inequality follows from the definition of t∗2 and from t∗2 = t∗ (since I’m

considering the case with t∗2 ≤ t∗1). On the other hand, for x < 1− δ

δt
∗

1

(
(1− (n− 1)x) +

δ1
1− δ1

(1− (n− 1)(1− δ))

)
>

δt
∗
1

1− δ1
(1− (n− 1)(1− δ))) ≥ 1,

where the last inequality again follows from the definition of t∗2 and from t∗2 = t∗. Hence, it
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must be that x ∈ (1− δ, 1/(n− 1)).

I use the following Lemma, which shows that (x∗, p∗) satisfies all the constraints in

program (P′′
α), and that (x∗, p∗) and (λ∗, µ∗, γ∗) satisfy complementary slackness conditions.

Lemma A.6. (x∗, p∗) satisfies the constraints in program (P′′
α). Moreover, for all t,

λ∗
f,t

(
∞∑

s=t+1

δs−tx∗
sp

∗
s − (1− x∗

t )p
∗
t

)
= 0,

λ∗
1,t

(
∞∑

s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s − (n− 1)x∗

tp
∗
t

)
= 0,

µ∗
tp

∗
t (1− (n− 1)x∗

t ) = 0,

γ∗
t (1− pt) = 0.

Proof. Note first that, under (x∗, p∗), firm 1’s IC constraint binds at t = 0, and it is slack at

any t > 0. Indeed, for all t < t∗,

∞∑
s=t+1

δs−t
1 (1−(n−1)x∗

s)p
∗
s = δt

∗−t
1

(
1− (n− 1)x+

δ1
1− δ1

(1− (n− 1)(1− δ))

)
≥ 1 = (n−1)x∗

tp
∗
t ,

with equality at t = 0 and strict inequality for all t ∈ (0, t∗ − 1). For t ≥ t∗,

∞∑
s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s =

δ1
1− δ1

(1− (1− δ)(n− 1)) > (n− 1)(1− δ) = (n− 1)x∗
tp

∗
t ,

where the strict inequality follows from Assumption 1.

Next, note that the constraint p∗tx
∗
t = x∗

t ≤ 1/(n − 1) = p∗t/(n − 1) is satisfied for all t

(since, by Assumption 1, 1 − δ < 1/(n − 1)), with equality for all t < t∗. The constraint

that p∗t ≤ 1 is satisfied with equality at all t. Lastly, the IC constraints of fringe firms are

satisfied for all t ≥ 0, and bind for all t > t∗. Indeed, for all t ≤ t∗,

∞∑
s=t+1

δs−tx∗
sp

∗
s ≥

∞∑
s=t+1

δs−t(1− δ) = δ ≥ (1− x∗
t )p

∗
t
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where the first inequality follows since x∗
s = 1/(n − 1) for all s < t∗, x∗

t∗ = x ≥ 1 − δ, and

x∗
s = 1 − δ for all s > t∗ and since Assumption 1 implies 1 − δ < 1/(n − 1), and the last

inequality follows since x∗
s ≥ 1− δ for all s ≤ t∗. For t > t∗, we have that

∞∑
s=t+1

δs−tx∗
sp

∗
s =

δ

1− δ
(1− δ) = δ = (1− x∗

t )p
∗
t .

Hence, (x∗, p∗) satisfies the constraints in program (P′
α).

Next, note that the first equalities hold for all t ≤ t∗, since λ∗
f,t = 0 for all such t, and also

holds for all t > t∗ since fringe firms’ incentive constraints bind for all such t under (x∗, p∗).

Consider next the second set of equalities. Clearly, the equalities hold for all t > 0, since

λ∗
1,t = 0 for all such t. For t = 0 the equality also holds, since firm 1’s incentive constraint

binds at t = 0.

The third set of equalities holds since x∗
t = 1/(n− 1) for all t < t∗, and since µ∗

t = 0 for

all t ≥ t∗. Lastly, the fourth set of equalities holds since p∗t = 1 for all t.

The complementary slackness conditions in Lemma A.6, and the fact that (x∗, p∗) sat-

isfies all the constraints in (P′′
α), implies that for all (λ, µ, γ) ≥ 0, L(x∗, p∗, λ, µ, γ) ≥

L(x∗, p∗, λ∗, µ∗, γ∗). Hence, the first set of inequalities in (12) hold.

To see that the second set of inequalities in (12) also hold, note that equation (13)

and Lemma A.5(ii)-(iii) imply that, for all (x, p), L(x∗, p∗, λ∗, γ∗, µ∗) = L(x, p, λ∗, γ∗, µ∗) =∑∞
t=0 γ

∗
t . Hence, (x∗, p∗) solves (P′′

α). Finally, it is clear that (x∗, p∗) also satisfies the

remaining constraints (i.e., p∗t ≥ 0 for all t and x∗
t ≥ 0 for all t), and so (x∗, p∗) also solves

(Pα). This completes the proof of Case 1 (i.e., t∗2 ≤ t∗1).

42



Case 2: t∗2 > t∗1 = t∗. Consider the following multipliers (λ∗, µ∗, γ∗). For all t,

λ∗
1,t = 0,

µ∗
t = 1t≤t∗

(
−αδt1 + (1− α)δt

)
,

γ∗
t =


(1− α)δt if t ≤ t∗,

αδt1 − (n− 1)(αδt1 − (1− α)δt) if t = t∗ + 1,

αδt1 − (n− 1)αδt−1
1 (δ1 − δ) if t > t∗ + 1,

λ∗
f,t =


0 if t ≤ t∗,

(n− 1)(αδt1 − (1− α)δt) if t = t∗ + 1

(n− 1)αδt−1
1 (δ1 − δ) if t > t∗ + 1.

I use the following Lemma:

Lemma A.7. (i) (λ∗, µ∗, γ∗) ≥ 0;

(ii) for all t, (n− 1)
(
−αδt1 + (1− α)δt −

∑t
τ=0 δ

t−τ
1 λ∗

1,τ − µ∗
t

)
+
∑t

τ=0 λ
∗
f,τδ

t−τ = 0;

(iii) for all t, αδt1 − λ∗
f,t +

∑t−1
τ=0 δ

t−τ
1 λ∗

1,τ + µ∗
t − γ∗

t = 0.

Proof. Part (i). Clearly, λ∗
1,t ≥ 0 for all t. That µ∗

t ≥ 0 for all t follows since−αδt1+(1−α)δt >

0 for all t ≤ t∗1, and since we are considering the case with t∗2 > t∗1 = t∗1.

Next, note that λ∗
f,t ≥ 0 for all t ̸= t∗ + 1. Moreover, since −αδt1 + (1 − α)δt ≤ 0 for all

t > t∗1 = t∗, it follows that λ∗
f,t∗+1 ≥ 0.

Next, I show that γ∗
t ≥ 0 for all t. The inequality clearly holds for all t ≤ t∗. Consider

next t = t∗ + 1 = t∗1 + 1 (since we are in the case with t∗ = t∗1 < t∗2). Let β ≡ δ1
δ
≥ 1, and

note that

(1− α)δt
∗ − αδt

∗

1 ≥ 0 ⇐⇒ αβt∗ ≤ 1− α, (14)

where the first inequality follows since (1 − α)δt − αδt1 ≥ 0 for all t ≤ t∗1 and since t∗ = t∗1.
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Then,

γ∗
t∗+1 = (1− α)(n− 1)δt

∗+1 − α(n− 2)δt
∗+1
1

= δt
∗+1((1− α)(n− 1)− α(n− 2)βt∗+1)

≥ δt
∗+1((1− α)(n− 1)− (1− α)(n− 2)β) > 0,

where the weak inequality follows since αβt∗ ≤ 1 − α (by inequality (14)), and the strict

inequality follows since Assumption 1 implies (n− 1)δ− (n− 2)δ1 > 0, and so (n− 1)− (n−

2)β > 0. For t > t∗,

γ∗
t = αδt−1

1 ((n− 1)δ − (n− 2)δ1) > 0,

where the strict inequality follows from Assumption 1.

I now turn to part (ii). Consider first t ≤ t∗. Since λ∗
1,τ = λ∗

f,τ = 0 for all τ ≤ t∗, it

follows that, for all t ≤ t∗,

(n− 1)

(
−αδt1 + (1− α)δt −

t∑
τ=0

δt−τ
1 λ∗

1,τ − µ∗
t

)
+

t∑
τ=0

λ∗
f,τδ

t−τ

=(n− 1)
(
−αδt1 + (1− α)δt − µ∗

t

)
= 0,

where I used µ∗
t = −αδt1 + (1− α)δt for all t ≤ t∗.

Consider next t > t∗. Note first that, for all t > t∗,
∑t

τ=0 λ
∗
f,τδ

t−τ = (n − 1)(αδt1 − (1 −

α)δt). To see why, note that the equality holds for t = t∗ + 1, since λ∗
f,τ = 0 for all t ≤ t∗

and since λ∗
f,t∗+1 = (n− 1)(αδt

∗+1
1 − (1− α)δt

∗+1). Towards an induction, suppose that the

equality holds for all s = t∗ + 1, ..., t− 1. Then,

t∑
τ=0

λ∗
f,τδ

t−τ = λ∗
f,t + δ

t−1∑
τ=0

λ∗
f,τδ

t−1−τ

= (n− 1)αδt−1
1 (δ1 − δ) + δ(n− 1)(αδt−1

1 − (1− α)δt−1)

= (n− 1)(αδt1 − (1− α)δt).
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Hence, for all t > t∗,
∑t

τ=0 λ
∗
f,τδ

t−τ = (n− 1)(αδt1 − (1− α)δt). Then, for all t > t∗,

(n− 1)

(
−αδt1 + (1− α)δt −

t∑
τ=0

δt−τ
1 λ∗

1,τ − µ∗
t

)
+

t∑
τ=0

λ∗
f,τδ

t−τ

=(n− 1)
(
−αδt1 + (1− α)δt

)
+

t∑
τ=0

λ∗
f,τδ

t−τ = 0.

I turn prove part (iii). For all t ≤ t∗,

αδt1 − λ∗
f,t +

t−1∑
τ=0

δt−τ
1 λ∗

1,τ + µ∗
t − γ∗

t

=αδt1 − αδt1 + (1− α)δt − (1− α)δt = 0.

For t = t∗ + 1,

αδt1 − λ∗
f,t +

t−1∑
τ=0

δt−τ
1 λ∗

1,τ + µ∗
t − γ∗

t

=αδt1 − (n− 1)(αδt1 − (1− α)δt2)− (αδt1 − (n− 1)(αδt1 − (1− α)δt)) = 0.

Finally, for t > t∗,

αδt1 − λ∗
f,t +

t−1∑
τ=0

δt−τ
1 λ∗

1,τ + µ∗
t − γ∗

t

=αδt1 − (n− 1)αδt−1
1 (δ1 − δ)− (αδt1 − (n− 1)αδt−1

1 (δ1 − δ)) = 0.

Let (x∗, p∗) be the allocations and prices in the statement of the Proposition: i.e., p∗t = 1

for all t, x∗
t = 1/(n − 1) for all t ≤ t∗, and x∗

t = (1 − δ) for all t > t∗. I use the following

Lemma, which shows that (x∗, p∗) satisfies all the constraints in program (P′′
α), and that

(x∗, p∗) and (λ∗, µ∗, γ∗) satisfy complementary slackness conditions.
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Lemma A.8. (x∗, p∗) satisfies the constraints in program (P′′
α). Moreover, for all t,

λ∗
f,t

(
∞∑

s=t+1

δs−tx∗
sp

∗
s − (1− x∗

t )p
∗
t

)
= 0,

λ∗
1,t

(
∞∑

s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s − (n− 1)x∗

tp
∗
t

)
= 0,

µ∗
tp

∗
t (1− (n− 1)x∗

t ) = 0,

γ∗
t (1− pt) = 0.

Proof. Note first that, under (x∗, p∗), firm 1’s IC constraints are satisfied for all t ≥ 0.

Indeed, for all t ≤ t∗,

∞∑
s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s =

δt
∗+1−t
1

1− δ1
(1− (n− 1)(1− δ)) ≥ 1 = (n− 1)x∗

tp
∗
t ,

where the inequality follows since
δt1

1−δ1
(1 − (n − 1)(1 − δ))) ≥ 1 for all t ≤ t∗2, and since

t∗2 ≥ t∗1 + 1 = t∗ + 1. For t ≥ t∗ + 1,

∞∑
s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s =

δ1
1− δ1

(1− (1− δ)(n− 1)) > (n− 1)(1− δ) = (n− 1)x∗
tp

∗
t ,

where the strict inequality follows from Assumption 1.

Next, note that the constraint p∗tx
∗
t ≤ p∗t/(n−1) is satisfied for all t (since, by Assumption

1, 1 − δ < 1/(n − 1)), with equality for all t ≤ t∗. The constraint that p∗t ≤ 1 is satisfied

with equality at all t. Lastly, the IC constraints of fringe firms are satisfied with slack for

all t ≤ t∗, and are satisfied with equality for all t > t∗. Indeed, for all t ≤ t∗,

∞∑
s=t+1

δs−tx∗
sp

∗
s ≥

∞∑
s=t+1

δs−t(1− δ) = δ > (1− x∗
t )p

∗
t ,

where the first equality follows since x∗
s = 1/(n − 1) for all s ≤ t∗ and x∗

s = 1 − δ for all

s > t∗, and since Assumption 1 implies 1 − δ < 1/(n − 1), and the last inequality follows
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since x∗
t = 1/(n− 1) > 1− δ for all t ≤ t∗. For t > t∗,

∞∑
s=t+1

δs−tx∗
sp

∗
s =

δ

1− δ
(1− δ) = δ = (1− x∗

t )p
∗
t .

Hence, (x∗, p∗) satisfies the constraints in program (P′′
α).

Next, note that (x∗, p∗) and (λ∗, µ∗, γ∗) satisfy the first set of equalities in the Lemma,

since λ∗
f,t = 0 for all t ≤ t∗, and since fringe firms’ IC constraints are satisfied with equality

for all t > t∗. The second set of equalities also hold, since λ∗
1,t = 0 for all t. The third set of

equalities hold since x∗
t = 1/(n − 1) for all t ≤ t∗, and since µ∗

t = 0 for all t > t∗. The last

set of equalities hold since p∗t = 1 for all t.

The complementary slackness conditions in Lemma A.8, and the fact that (x∗, p∗) sat-

isfies all the constraints in (P′′
α), implies that for all (λ, µ, γ) ≥ 0, L(x∗, p∗, λ, µ, γ) ≥

L(x∗, p∗, λ∗, µ∗, γ∗). Hence, the first set of inequalities in (12) hold.

To see that the second set of inequalities in (12) also hold, note that equation (13)

and Lemma A.7(ii)-(iii) imply that, for all (x, p), L(x∗, p∗, λ∗, γ∗, µ∗) = L(x, p, λ∗, γ∗, µ∗) =∑∞
t=0 γ

∗
t . Hence, (x∗, p∗) solves (P′′

α). Finally, it is clear that (x∗, p∗) also satisfies the re-

maining constraints (i.e., p∗t ≥ 0 for all t and x∗
t ≥ 0 for all t), and so (x∗, p∗) also solves

(Pα). This completes the proof of Case 2 (i.e., t∗2 > t∗1). ■

A.3 Proofs of Section 6

Proof of Proposition 5. Consider the following relaxation of Program (Ps):

V 1 ≡ sup
(x,p)

E0

[
∞∑
t=0

δt1(1− (n− 1)xt)pt

]
(P′

s)

s.t. ∀t, (1− xt)pt ≤ Et

[
∞∑

s=t+1

δs−txsps

]
∀t, pt ≤ rt, ptxt ≥ 0.
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The Lagrangian associated with this program is

L(x, p, λ, µ, γ) = E0

[
∞∑
t=0

δt1(1− (n− 1)xt)pt +
∞∑
t=0

Et

[
λt

(
∞∑

s=t+1

δs−txsps − (1− xt)pt

)]

+
∞∑
t=0

Et [µtptxt] +
∞∑
t=0

Et [γt(rt − pt)]

]

= E0

[
∞∑
t=0

ptxt

(
−(n− 1)δt1 + µt +

t∑
τ=0

δt−τλτ

)
+

∞∑
t=0

pt
(
δt1 − λt − γt

)
+

∞∑
t=0

rtγt

]
,

(15)

where the equality follows from applying the Law of Iterated Expectations and combining

terms. I note that (x, p) and (λ, µ, γ) are now stochastic processes adapted to (rt).

To establish the proposition, I construct multipliers (λ∗, µ∗, γ∗) that, together with the

prices and allocations (p∗, x∗) in the statement of the proposition, satisfy the saddle-point

condition,

∀(λ, µ, γ) ≥ 0,∀(x, p)

L(x∗, p∗, λ, µ, γ) ≥ L(x∗, p∗, λ∗, µ∗, γ∗) ≥ L(x, p, λ∗, µ∗, γ∗). (16)

Consider the following (deterministic) multipliers (λ∗, µ∗, γ∗):

λ∗
t =


δt1 if t < t∗

δt1(n− 1)−
∑t−1

τ=0 δ
τ
1δ

t−τ if t = t∗

δt−1
1 (n− 1)(δ1 − δ) if t > t∗,

µ∗
t = 1t<t∗

(
δt1(n− 1)−

t∑
τ=0

δτ1δ
t−τ

)
γ∗
t = δt1 − λ∗

t .

Note that these are the multipliers in the proof of Proposition 3 when α = 1. Hence, the

following Lemma follows immediately from Lemma A.3.
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Lemma A.9. (i) (λ∗, µ∗, γ∗) ≥ 0;

(ii) For all t ≥ 0,
∑t

τ=0 λ
∗
τδ

t−τ = δt1(n− 1)− µ∗
t .

Let (x∗, p∗) be the allocations and prices in the statement of the Proposition: i.e., x∗
t = 0

and p∗t = δt
∗−t for all t < t∗, and x∗

t = x(rt) and p∗t = rt for all t ≥ t∗. I use the following

Lemma, which shows that (x∗, p∗) satisfies all the constraints in program (P′
s), and that

(x∗, p∗) and (λ∗, µ∗, γ∗) satisfy complementary slackness conditions,

Lemma A.10. (x∗, p∗) satisfies the constraints in program (P′
s). Moreover, for all t,

E0

[
λ∗
t

(
∞∑

s=t+1

δs−tx∗
sp

∗
s − (1− x∗

t )p
∗
t

)]
= 0,

E0 [µ
∗
tp

∗
tx

∗
t ] = 0,

E0[γ
∗
t (rt − pt)] = 0.

Proof. Note first that, under (x∗, p∗), incentive constraints for fringe firms bind for all t.

Indeed, for all t ≥ t∗, fringe firms’ IC constraints bind by construction (see equation (8)).

For all t < t∗,

Et

[
∞∑

s=t+1

δs−tx∗
sp

∗
s

]
= δt

∗−t 1

1− δ

∑
qkrkx(rk) = δt

∗−tr = p∗t = p∗t (1− x∗
t ),

where I used x(rk) =
rk−δr
rk

for all k and r =
∑

k qkrk. Moreover, the non-negativity constraint

on p∗tx
∗
t ≥ 0 holds with equality for t < t∗, and is slack for t ≥ t∗. Finally, the constraint on

prices p∗t ≤ rt holds with equality for t ≥ t∗, and is slack for t < t∗ (indeed, for all t < t∗,

p∗t = δt
∗−tr ≤ δr < r1, where the last inequality follows from Assumption 2).

Since fringe firms’ IC constraints bind at all t, the first set of equalities holds for all t.

The second set of equalities holds for all t since x∗
t = 0 for all t < t∗, and since µ∗

t = 0 for all

t ≥ t∗. The third set of equalities hold since γ∗
t = 0 for all t < t∗, and since p∗t = rt for all

t ≥ t∗.
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The complementary slackness conditions in Lemma A.10, and the fact that (x∗, p∗)

satisfies all the constraints in (P′
s), implies that for all (λ, µ, γ) ≥ 0, L(x∗, p∗, λ, µ, γ) ≥

L(x∗, p∗, λ∗, µ∗, γ∗). Hence, the first set of inequalities in (16) hold.

Next, note that equation (15) and Lemma A.9 imply that, for all (x, p), L(x, p, λ∗, µ∗, γ∗) =

L(x, p, λ∗, µ∗, γ∗). Hence, the second set of inequalities in (16) holds, and so (x∗, p∗) solves

(P′
s).

Lastly, I show that (x∗, p∗) also satisfies the constraints in program (Ps) that I ignored.

Clearly, p∗t ≥ 0 for all t. Moreover, note that x∗
t = 0 for all t < t∗, and x∗

t = x(rt) for all

t ≥ t∗. By Assumption 2, (n− 1)x(r) < 1 for all r, and so, for all t, x∗
t < 1/(n− 1). To see

that (x∗, p∗) also satisfies the incentive compatibility constraints for firm 1, consider t < t∗,

and note that

(n− 1)x∗
tp

∗
t = 0 < Et

[
∞∑

s=t+1

δs−t
1 (1− (n− 1)x∗

s)p
∗
s

]
,

where the equality uses x∗
s = 0 for all s < t∗ and x∗

s = x(rs) < 1/(n− 1) for all s ≥ t∗. For

t ≥ t∗, x∗
t = x(rt) =

rt−δr
rt

and p∗t = rt, and so

(n−1)x∗
tp

∗
t = (n−1)(rt−δr) <

δ1
1− δ1

∑
k

qkrk

(
1− (n− 1)

rk − δr

rk

)
= Et

[
∞∑

s=t+1

δs−t
1 (1− (n− 1)xs)ps

]
,

where the strict inequality follows since

δ1
1− δ1

∑
k

qkrk

(
1− (n− 1)

rk − δr

rk

)
=

δ1
1− δ1

r((n− 1)δ − (n− 2)) > (n− 1)(rK − δr),

where the inequality follows from Assumption 2(ii). Hence, (x∗, p∗) also solves (Ps). ■
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