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OA Extensions

OA.1 Alternative timing of decisions

The model in the main text assumes that the monitor and the agent collude after the agent

takes action c ∈ {0, 1}. This appendix studies the role of random incentives in settings in

which the monitor and the agent can collude before the agent chooses her action.

We start by considering a model in which the agent chooses action c ∈ {0, 1} after side-

contracting with the monitor, but which is otherwise the same as the model in Section 3. At

the side-contracting stage the agent makes a take-it-or-leave-it offer τ ≥ 0 to the monitor.

If the monitor accepts the agent’s offer, she commits to send report m = 0 to the principal

regardless of the agent’s action. Otherwise, if the monitor rejects the agent’s offer, she

sends the report m ∈ {0, 1} that maximizes her expected payoff. The principal detects false

messages with probability q. The monitor is compensated with an efficiency wage w ≥ 0,

and losses this wage if the principal detects that the message was false. We assume for now

that all monitors have a type η = 0 and that all agents have type πA < k. We relax these

assumptions later.

Lemma OA.1. The agent takes action c = 1 if and only if the monitor accepts her bribe.

Proof. If the monitor accepts the agent’s bribe τ , the agent’s payoffs from action c = 1 is

πA− τ , while her payoff from action c = 0 is −τ . If the monitor rejects the agent’s bribe, the

agent’s payoff from c = 1 is πA − k < 0 (since in this case the monitor will find it optimal

to send message m = 1), while her payoff from action c = 0 is 0. Therefore, the agent takes

action c = 1 if and only if the monitor accepts her bribe. �

Lemma OA.1 implies that the monitor’s payoff from accepting bribe τ is τ + (1 − q)w,

while her payoff from rejecting the bribe and sending a truthful message is w. Therefore, a

monitor with wage w accepts bribe τ if and only if τ > qw.

We now consider the case in which the principal compensates the agent with a determin-
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istic wage w. The following result generalizes Lemma 1 to the current setting; its proof is

identical to the proof of Lemma 1 and hence omitted.

Lemma OA.2. Suppose the principal uses a deterministic wage w. Under collusion, the

minimum cost of wages needed to induce the agent to take action c = 0 is equal to πA
q

.

Consider next the case in which the principal randomizes over the monitor’s wage. Sup-

pose the principal pays the monitor an efficiency wage drawn from the c.d.f. F . Note that

the agent’s payoff from making an offer τ ≥ 0 is F (τ/q)× (πA − τ) + (1− F (τ/q))× 0. Let

τ ∗F be the smallest solution to maxτ F (τ/q)(πA − τ). For any distribution F , the principal’s

expected payoff is

F

(
τ ∗F
q

)
πP − γwEF [w]− γqq.

Under wage distribution F , the monitor accepts the agent’s bribe when her wage is lower

than τ ∗F/q. In this case, the agent takes action c = 1 and the principal incurs cost πP < 0.

Proposition OA.1. Assume that the agent and monitor collude before the agent chooses

c ∈ {0, 1}. Then, the optimal wage distribution F̃ ∗ is described by,

∀w ∈
[
0,
πA
q

(
1− e

q
γw

πP
πA

)]
, F̃ ∗w(w) =

e
q
γw

πP
πA πA

πA − qw
. (O1)

When the principal pays the monitor a wage drawn from F̃ ∗w, the agent takes action c = 1

with probability F̃ ∗w(0) ∈ (0, 1).

Proof. Consider first distributions F such that F
(
τ∗F
q

)
= 0. Note that F

(
τ∗F
q

)
= 0 implies

that 0 ≥ maxτ F (τ/q)(πA−τ), and so F (τ/q) = 0 for all τ < πA. Therefore, for distributions

F such that F
(
τ∗F
q

)
= 0, the minimum cost of wages is achieved with a distribution that

puts all its mass at w = πA/q. The principal’s payoff under this distribution is −γw πAq −γqq.

Our arguments below show that such a distribution is never optimal.

Consider next distributions F such that F
(
τ∗F
q

)
> 0. Since τ ∗F ≥ 0 is the optimal offer,
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for all τ ≥ 0,

F

(
τ ∗F
q

)
(πA − τ ∗F ) ≥ F

(
τ

q

)
(πA − τ)⇐⇒ F

(
τ

q

)
≤ F

(
τ ∗F
q

)
πA − τ ∗F
πA − τ

. (O2)

By first order stochastic dominance, an optimal wage distribution F with F
(
τ∗F
q

)
> 0 must

be such that (O2) holds with equality for all τ such that F (τ/q) < 1.

Next, we show that the optimal distribution F with F
(
τ∗F
q

)
> 0 must be such that

τ ∗F = 0. Let F be such that τ ∗F > 0, and let F̂ be an alternative distribution described by:

F̂ (0) = F (τ ∗F/q) and F̂ (τ/q) = F̂ (0)πA
πA−τ

for all τ ∈ [0, πA(1 − F̂ (0))]. By construction, bribe

τ = 0 maximizes F̂ (τ/q)(πA−τ). Since F̂ (0) = F (τ ∗F/q), the probability that the agent takes

action c = 1 is the same under F̂ than under F . Moreover, for all τ such that F̂ (τ/q) < 1,

F̂ (τ/q) = F̂ (0) πA
πA−τ

> F (τ ∗F/q)
πA−τ∗F
πA−τ

≥ F (τ/q) (where the last inequality follows since offer

τ ∗F is optimal under policy F ). This implies that EF [w] > EF̂ [w], so the principal’s payoff is

larger under F̂ than under F .

Using the change in variable w = τ/q, the two paragraphs above imply that the optimal

wage distribution F with F
(
τ∗F
q

)
> 0 is such that τ ∗F = 0 and is described by

∀w ∈
[
0,
πA
q

(1− F (0))

]
, F (w) =

F (0)πA
πA − qw

.

The principal’s expected payoff from using this wage distribution is

F (0)πP − γwEF [w]− γqq = F (0)πP − γw
πA
q

(1− F (0) + F (0) lnF (0))− γqq.

This expression is strictly concave in F (0), and converges to −γw πAq − γqq as F (0) → 0.

Maximizing this expression with respect to F (0) yields F (0) = e
q
γw

πP
πA ∈ (0, 1). Therefore,

the optimal wage distribution is given by (O1). �

Proposition OA.1 shows that random incentives are optimal in this setting. We note
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that the principal can improve upon deterministic wages using simpler schemes. Suppose

the principal uses a two-wage distribution, paying the monitor wage w = 0 with probability

x ∈ [0, 1] and wage w = πA
q

(1 − x) with probability 1 − x. Under this wage distribution, it

is optimal for the agent to make a bribe offer of τ = 0. The principal’s payoff under this

distribution is xπp−γw(1−x)2 πA
q
−γqq, which is maximized by setting x = max{0, 1+ q

γw

πp
2πA
}.

Ambiguous optimal policy. Next, we extend Proposition 2 to this environment. As in

Section 4, we assume that monitors and agents are privately informed about their types,

with η distributed according to c.d.f. Fη with density fη and πA distributed according to

c.d.f FπA with density fπA .

Given wage distribution Fw, an agent with type πA offers bribe τ solving

U(πA) = max
τ∈[0,πA]

probFw(qw + η < τ)(πA − τ)

= max
τ∈[0,πA]

EFw [Fη(τ − qw)](πA − τ). (O3)

Equation (O3) can be used to extend Proposition 2 to this environment. Indeed, whenever

Fη is strictly concave (strictly convex) over the range [0, πA], the wage profile that minimizes

the agent’s payoff under any budget w0 > 0 is random (deterministic). Note, however, that

these statements relate to the agent’s payoff, and not to the probability that the agent is

criminal. It is also possible to find conditions on Fη under which the crime-minimizing policy

is deterministic. For instance, if Fη and fη are both strictly convex, and fη(τ − qw0)(πA− τ)

is strictly decreasing in τ , then the crime-minimizing policy is deterministic.1

1Proof: Fix a budget w0 and let Fw be any random policy with EFw
[w] = w0. Let τ0 be the highest

solution to maxτ (πA − τ)Fη(τ − qw0) and τFw be the highest solution to maxτ EFw [Fη(τ − qw)](πA −
τ). Suppose by contradiction that the probability with which the agent is criminal is higher under the
deterministic policy than under policy Fw, so Fη(τ0 − qw0) ≥ EFw

[Fη(τFw
− qw)]. Note that Fη strictly

convex implies τ0 > τFw
. Then,

(πA − τ0)fη(τ0 − qw0) = Fη(τ0 − qw0) ≥ EFw
[Fη(τFw

− qw)] = (πA − τFw
)EFw

[fη(τFw
− qw)],

where the first and last equalities follow since τ0 and τFw are optimal and satisfy the first-order conditions.
Finally, since τ0 > τFw

and fη(τ − qw0)(πA− τ) is strictly decreasing in τ , the inequality above implies that
(πA−τFw

)fη(τFw
−qw0) > (πA−τFw

)EFw
[fη(τFw

−qw)], which cannot be since fη is strictly convex. Hence,
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Policy evaluation. We now show how the policy evaluation results in Section 5 extend

to an environment in which the interaction between monitors and agents may be ex-ante or

ex-post. In particular, we consider a model in which a fraction µ ∈ (0, 1) of agents interact

with their monitors after taking action c ∈ {0, 1}, as in the main text, and a fraction 1−µ of

agents interact with their monitors before taking action c ∈ {0, 1}. Fraction µ is unknown to

the principal. We assume that the agent has all the bargaining power at the side-contracting

stage, and makes offers with probability 1.2

We allow monitors to report failed bribing attempts, in addition to reports of crime:

monitors now send crime reports mc ∈ {0, 1} and bribing attempt reports mb ∈ {0, 1}. As

in the baseline model, an agent who was reported mc = 1 incurs a cost of k if criminal, and

a cost k0 ≤ k if not criminal. In addition, an agent who was reported mb = 1 incurs a small

fine φ > 0 if she was not reported for crime; if she was reported mc = 1, she incurs cost

k if criminal and cost k0 if not criminal. We note that allowing monitors to report bribing

attempts is needed to generate variation in the monitors’ reports that can be used to evaluate

how different policies affect crime among those agents that interact with monitors ex-ante.

Indeed, by Lemma OA.1, agents who side-contract with monitors ex-ante take action c = 1

if and only if their monitor accepts the bribe. As a result, monitors who interact ex-ante

with agents always report mc = 0 regardless of the policy in place.

We start by considering agents who interact with monitors ex-ante. Given wage distri-

bution Fw, the expected payoff of an agent with type πA who interacts with her monitor

ex-ante and who engages in bribing behavior is

U ante
Fw (πA) = max

τ∈[0,πA]
probFw(qw + η < τ)(πA − τ) + probFw(qw + η > τ)(−φ)

= max
τ∈[0,πA]

probFw(qw + η < τ)(πA + φ− τ)− φ.

Such an agent will engage in bribing behavior if and only if U ante
Fw

(πA) > 0; if she engages

the crime-minimizing policy is deterministic.
2Our results extend to a setting with probabilistic take-it-or-leave-it offers provided that the monitor

observes the agent’s type.

6



in bribing behavior, she takes action c = 1 if and only if her bribe is accepted. We note

that monitors with type η > 0 who interact with an agent ex-ante have a strict incentive

to report failed bribing attempts. As a result, with probability 1, a monitor who interacts

ex-ante with an agent engaging in bribing behavior will report mb = 0 if she accepts the

agent’s bribe, and mb = 1 if she rejects it. By our arguments above, monitors who interact

ex-ante always report mc = 0.

Consider next agents who interact with monitors ex-post. Given policy Fw, the expected

payoff of a criminal agent of type πA who interacts with her monitor ex-post is

Upost
Fw

(πA) = πA − k + max
τ∈[0,k]

(k − τ)probFw(qw + η < τ).

An agent of type πA who interacts with her monitor ex-post chooses c = 1 if and only if

U ante
Fw

(πA) > 0. A monitor who interacts with a criminal agent ex-post reports mc = mb = 0

if she accepts the bribe, and reports mc = mb = 1 if she rejects it (by assumption, in the

latter case the agent incurs a punishment cost of k). On the other hand, a monitor who

interacts with a non-criminal agent reports mb = mc = 0.

We now show how a principal can use reports from failed bribing attempts to perform

local policy evaluations on agents who interact with monitors ex-ante. Take as given a wage

distribution with c.d.f. F 0
w and density f 0

w, and let f 1
w be a policy with supp f 1

w ⊂ supp f 0
w

and Ef0w [w] = Ef1w [w]. For any such policy f 1
w and any ε ∈ [0, 1], construct the mixture

f εw = (1− ε)f 0
w + εf 1

w.

Given policy f εw, we denote by R
b

ε(πA) the proportion of monitors who report mb = 1

and mc = 0 among monitors matched with an agent of type πA. We denote by U ante
fεw

(πA) the

payoff of an agent of type πA from engaging in bribing behavior:

U ante
fεw

(πA) = max
τ

probfεw(qw + η < τ)(πA + φ− τ)− φ

Fix a type πA such that U ante
f0w

(πA) > 0. For any f 1
w, denote by ∇f1w

U(πA) the gradient of the
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agent’s payoff from bribing in policy direction f 1
w:

∇f1w
U ante(πA) =

∂U ante
fεw

(πA)

∂ε
∣∣ε=0

.

For any wage w ∈ supp f 0
w, let Rb

0(w; πA) be the fraction of reports mb = 1 and mc = 0

from monitors with wage w who were matched with agents of type πA under policy f 0
w. For

any f 1
w with supp f 1

w ⊂ supp f 0
w, construct counterfactual reports

Rb
0(f

1
w; πA) ≡ Ef0w

[
Rb

0(w; πA)× f 1
w(w)

f 0
w(w)

]
. (O4)

The following result holds.

Proposition OA.2. For every πA with U ante
f0w

(πA) > 0, there exists a fixed coefficient ρ(πA) >

0 such that for all alternative policies f 1
w,

∇f1w
U(πA) = ρ(πA)

[
R
b

0(πA)−Rb
0(f

1
w; πA)

]
.

Proof. Take as given a policy f 1
w. Under wage schedule f εw, the payoff of an agent with type

πA who engages in bribing behavior is

U ante
fεw

(πA) = max
τ

(πA + φ− τ)[(1− ε)probf0w(qw + η < τ) + εprobf1w(qw + η < τ)]− φ.

Let τ0 be the highest solution to this maximization problem for ε = 0. By the Envelope

Theorem,

∇f1w
U(πA) = (πA + φ− τ0)

[
probf1w(qw + η < τ0)− probf0w(qw + η < τ0)

]
= (πA + φ− τ0)

1

1− µ

[
R
b

0(πA)−Rb
0(f

1
w; πA)

]
, (O5)

where 1 − µ ∈ (0, 1) is the fraction of agents that interact with monitors ex-ante. The

second equality above follows from two observations. First, mean reports of failed bribing
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attempts R
b

0(πA) are equal to the product of the fraction of agents of type πA who interact

with monitors ex-ante times the probability that their equilibrium bribes are refused:

R
b

0(πA) = (1− µ)× [1− probf0w(qw + η < τ0)].

Second, for any w̃ ∈ supp f 0
w, mean reports Rb

0(w; πA) are equal to the product of the fraction

of agents of type πA who interact with monitors ex-ante times the probability that a monitor

with wage w̃ refuses their bribe:

∀w̃ ∈ supp f 0
w, Rb

0(w; πA) = (1− µ)× [1− prob(qw̃ + η < τ0)]

⇒ Rb
0(f

1
w, πA) = (1− µ)× [1− probf1w(qw + η < τ0)].

This establishes the result. �

Proposition OA.2 shows that, under this alternative timing, a principal who can condition

on the type of the agent can evaluate how small changes in policy affect the agent’s payoff

from engaging in bribing behavior. We note that, even when the agent’s type is unobservable,

the identification result in Proposition OA.2 can still be useful if the principal can condition

on a sufficiently rich set of covariates.

Proposition OA.2 can be used to identify directions of policy change that lead to less

bribing behavior. We now show how this result can be leveraged to evaluate the effect of

local policy changes on crime rates among agents who interact ex-ante.

Let f 0
w be the original policy in place. For any policy fw, we let πante

A (fw) denote the cutoff

such that all agents with πA > πante
A (fw) who interact ex-ante engage in bribing behavior

under policy fw. Let f 1
w be a policy direction that reduces the set of agents who engage in

bribing behavior; i.e., a policy direction with ∇f1w
U(πante

A (f 0
w)) < 0. Fix ε > 0 small, and let

f εw = (1− ε)f 0
w + εf 1

w. Suppose that the principal changes her policy from f 0
w to f εw.

Let C
ante

0 and C
ante

ε denote, respectively, the fraction of agents who interact ex-ante that
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take action c = 1 under policies f 0
w and f εw. Let R

b

0 and R
b

ε denote, respectively, the fraction

of monitors who report bribing attempts and don’t report crime under policies f 0
w and f εw;

i.e., the fraction of monitors who report mb = 1 and mc = 0. The following result holds.

Proposition OA.3. Fix a policy f 0
w and a policy direction f 1

w such that ∇f1w
U(πante

A (f 0
w)) < 0.

Then, there exists a constant κ > 0 such that

C
ante

ε − Cante

0 ≤ κ× [R
b

0 −R
b

ε].

Proof. For every type πA and any policy fw, let τ(πA; fw) denote the bribe that agents of

type πA > πante
A (fw) who interact with monitors ex-ante offer under policy fw; i.e., τ(πA; fw)

maximizes probfw(qw + η < τ)(πA + φ− τ). Note that an agent of type πA > πante
A (fw) who

interacts ex-ante takes action c = 1 only when her bribe is accepted. Then, for x ∈ {0, ε},

the fraction of agents who interact ex-ante that take action c = 1 under policy fxw is

C
ante

x = (1− FπA(πante
A (fxw)))× EFπA [probfxw(qw + η < τ(πA; fxw))|πA > πante

A (fxw)]. (O6)

Note next that, under policy fw, an agent of type πA who interacts ex-ante gets reported

for a failed bribing attempt with probability 1{πA>πante
A (fw)}×(1−probfw(qw+η < τ(πA; fw))).

Moreover, only monitors who interact with agents ex-ante send reports mb = 1 and mc = 0.3

Thus, for x ∈ {0, ε}, the share of monitors reporting mb = 1 and mc = 0 under policy fxw is

R
b

x = (1− µ)× (1− FπA(πante
A (fxw)))× EFπA [1− probfxw(qw + η < τ(πA; fxw))|πA > πante

A (fxw)]

= (1− µ)× [(1− FπA(πante
A (fxw))− Cante

x ], (O7)

where we used equation (O6). Since policy direction f 1
w is such that ∇f1w

U(πante
A (f 0

w)) < 0, it

3Monitors who interact with agents ex-post send either mb = mc = 0 or mb = mc = 1.
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follows that πante
A (f 0

w) < πante
A (f εw). Using this together with equation (O7) yields

C
ante

ε − Cante

0 ≤ 1

1− µ
[R

b

0 −R
b

ε],

which establishes the result. �

We end this section by noting that the principal can perform local policy evaluations

on agents who interact ex-post using reports of crime. Indeed, since reports mc = 1 come

exclusively from monitors who interact with agents ex-post, Proposition 4 continues to hold

in this setting. This, combined with Propositions OA.2 and OA.3, allows the principal to

find policy directions that reduce overall crime rates.

OA.2 Extortion

This section shows how our results extend to settings in which the monitor can extort

transfers from non-criminal agents by committing to send a false report. The framework we

consider is essentially the same as in Section 4. The only difference is that a monitor who

makes an offer at the side-contracting stage can commit to sending a false report if the agent

rejects her proposal. A report m = 1 triggers an exogenous judiciary process that imposes

an expected cost k > πA on criminal agents and an expected cost k0 ∈ (0, k] on non-criminal

agents.

Lemma OA.3. If the monitor acts as proposer when the agent is non-criminal, she demands

a bribe τ = k0 if her type is η < k0, and she demands no bribe (i.e. τ = 0) if her type is

η ≥ k0. A non-criminal agent accepts any offer τ ≤ k0.

Proof. Suppose the monitor makes an offer τ to a non-criminal agent and commits to send-

ing a false message if her proposal is rejected. In this case, it is optimal for a non-criminal

agent to accept the offer if and only if τ ≤ k0: her payoff from accepting such an offer is −τ ,

while her payoff from rejecting the offer is −k0. The monitor’s payoff from making an offer
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τ ∈ (0, k0] is τ −η, while her payoff from not demanding a bribe is 0. A type η monitor finds

it optimal to make an offer τ = k0 if only if η < k0. �

Lemma OA.3 implies that the payoff of a non-criminal agent is −(1−λ)k0Fη(k0). On the

other hand, by the same arguments as in Section 4, the payoff of a criminal agent of type

πA is πA− k+ λmaxτ (k− τ)prob(qw+ η < τ). Therefore, when the monitor can commit to

sending a false report, an agent of type πA will take action c = 0 if only if

πA − (k − (1− λ)k0Fη(k0)) + λ max
τ∈[0,k]

(k − τ)prob(qw + η < τ) ≤ 0.

From the principal’s perspective, the possibility of extortion by the monitor reduces the

effective punishment cost that a criminal agent incurs when the monitor sends report m = 1

to k − (1 − λ)k0Fη(k0). Note that this term does not depend on the distribution of wages.

Hence, all the results in Sections 4 and 5 continue to hold when the monitor can commit to

sending a false message.

OA.3 Efficient contracting between the principal and monitor

Throughout the paper we assume that the principal compensates the monitor with an effi-

ciency wage contract. This appendix shows that random incentives continue to be valuable

when we allow for arbitrary contracts. We consider the same environment as in Section 3,

with one minor modification: we impose a participation constraint that the agent’s payoff

cannot be negative. We stress, however, that the results in the main text would remain

unchanged if we added this constraint.4 We also assume that the cost k0 that a non-criminal

agent expects from the judiciary is strictly positive.5

4Indeed, when the monitor is compensated with an efficiency wage w ≥ 0 the agent can guarantee herself
a payoff of 0 by taking action c = 0. When we allow for arbitrary contracts, the agent’s participation
constraint rules out wage structures under which the agent needs to bribe the monitor to get a favorable
report after taking action c = 0.

5As in the main text, we assume that the probability q of detecting a false report of m = 0 when the
agent took action c = 1 is the same as the probability of detecting a false report m = 1 when the agent took
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Let s ∈ {∅, f} denote the signal that the principal observes by scrutinizing the monitor’s

report: the principal observes signal s = f when she detects that the monitor’s report is false,

and observes signal s = ∅ otherwise.6 The principal offers a wage contract w(m, s) to the

monitor, which determines the monitor’s compensation as a function of the report she sends

and the principal’s signal. By limited liability, w(m, s) ≥ 0 for all (m, s) ∈ {0, 1} × {∅, f}.

We begin by noting that a monitor who is compensated with contract w(m, s) accepts a

bribe τ from a criminal agent if and only if τ > w(1, ∅)− (1− q)w(0, ∅)− qw(0, f).

Lemma OA.4. Let w(m, s) be a contract that induces the monitor to send message m = 0

when the agent takes action c = 0 and offers bribe τ = 0. Then, it must be that w(0, ∅) ≥

(1− q)w(1, ∅) + qw(1, f).

Proof. When the agent takes action c = 0 and offers bribe τ = 0, the monitor’s payoff

from sending message m = 0 is w(0, ∅), while her payoff from sending message m = 1 is

(1 − q)w(1, ∅) + qw(1, f). The monitor sends message m = c = 0 if and only if w(0, ∅) ≥

(1− q)w(1, ∅) + qw(1, f). �

Lemma OA.5. Under an optimal incentive scheme (either deterministic or random), a

principal who wants to induce the agent to take action c = 0 offers the monitor contracts

w(m, s) with w(0, ∅) = (1− q)w(1, ∅) and w(m, f) = 0 for m = 0, 1.

Proof. Suppose the incentive scheme induces the agent to take action c = 0 and satisfies the

agent’s participation constraint. By Lemma OA.4, any contract w(m, s) that the principal

offers to the monitor with positive probability must satisfy w(0, ∅) ≥ (1−q)w(1, ∅)+qw(1, f);

otherwise the agent’s expected payoff from action c = 0 would be strictly negative, either

because with positive probability the monitor sends a false report m = 1, or because the

action c = 0. Our results remain qualitatively unchanged if we allow these two probabilities to be different.
6When the monitor sends report m 6= c, the principal observes signal s = f with probability q and signal

s = ∅ with probability 1− q. When the monitor sends report m = c, the principal observes signal s = ∅ with
probability 1.
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agent needs to bribe the monitor for a report m = 0. In either case, this would violate the

agent’s participation constraint.

This implies that under an optimal incentive scheme that induces the agent to take action

c = 0, on the equilibrium path the monitor sends report m = 0 and receives a wage w(0, ∅).

If w(0, ∅) > (1− q)w(1, ∅) + qw(1, f) for some contract w(m, s) that is offered with positive

probability, the principal would be strictly better-off by reducing w(0, ∅) as this would reduce

wage payments and would also increase the cost of bribing the monitor.

By limited liability it must be that w(m, f) ≥ 0 for m = 0, 1. Setting w(0, f) = 0

is optimal as it increases the cost of bribing the monitor. Finally, since w(0, ∅) = (1 −

q)w(1, ∅) + qw(1, f), setting w(1, f) = 0 reduces the wage w(0, ∅) that the principal pays on

the equilibrium path and also increases the cost of bribing the monitor. �

We now consider the case in which the principal compensates the agent with a determin-

istic contract w(m, s). The following result generalizes Lemma 1 to the current setting.

Lemma OA.6. Suppose the principal uses a deterministic contract w(m, s). Under collu-

sion, the minimum cost of wages needed to induce the agent to be non-criminal is equal to

1−q
2−q

πA
q

.

Proof. A monitor with contract w(m, s) accepts a bribe τ from a criminal agent if and only

if τ > w(1, ∅)−(1−q)w(0, ∅)−qw(0, f) = w(1, ∅)−(1−q)w(0, ∅), where the equality follows

from OA.5. The agent’s payoff from taking action c = 1 is then πA −min{k, w(1, ∅)− (1−

q)w(0, ∅)}, while her payoff from taking action c = 0 is 0. To induce the agent to take action

c = 0, it must be that w(1, ∅)−(1−q)w(0, ∅) ≥ πA. By Lemma OA.5, w(0, ∅) = (1−q)w(1, ∅),

so the previous inequality yields w(0, ∅) ≥ 1−q
2−q

πA
q

. �

Consider next the case in which the principal randomizes over the monitor’s contract

w(m, s). By Lemma OA.5, it is optimal for the principal to offer contracts w(m, s) such

that w(0, ∅) = (1 − q)w(1, ∅) and w(m, f) = 0 for m = 0, 1. Therefore, it is without loss
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of optimality to focus on distributions over wages w(0, ∅), with the understanding that a

contract with w(0, ∅) = w ≥ 0 has w(1, ∅) = w
1−q and w(m, f) = 0 for m = 0, 1.

The following result generalizes Proposition 1 to the current setting.

Proposition OA.4. Under collusion, it is optimal for the principal to use random contracts.

The cost-minimizing distribution F̂ ∗w over wages w(0, ∅) that induces the agent to be non-

criminal is described by

∀w ∈
[
0,
πA
q

1− q
2− q

]
, F̂ ∗w(w) =

k − πA
k − qw 2−q

1−q
. (O8)

The corresponding cost of wages Ŵ ∗(πA) ≡ EF̂ ∗ [w] is

Ŵ ∗(πA) =
1− q
2− q

πA
q

[
1− k − πA

πA
log

(
1 +

πA
k − πA

)]
<

1− q
2− q

πA
q

πA
k
. (O9)

Proof. By our arguments above, a monitor with contract w(m, s) accepts a bribe τ from a

criminal agent if and only if τ > w(1, ∅)− (1− q)w(0, ∅)− qw(0, f) = 2−q
1−qqw(0, ∅), where the

last equality follows since w(1, ∅) = w(0,∅)
1−q and w(m, f) = 0 for m = 0, 1 (Lemma OA.5). A

distribution F over wages w(0, ∅) induces the agent to take action c = 0 if and only if, for

every bribe offer τ ≥ 0, πA− k+ (k− τ)prob(τ > 2−q
1−qqw) ≤ 0, or equivalently, if and only if,

for every τ ≥ 0, F
(
τ
q
1−q
2−q

)
≤ k−πA

k−τ . Using the change in variable w = τ
q
1−q
2−q , we obtain that

wage distribution F induces the agent to take action c = 0 if and only if,

∀w ∈
[
0,
πA
q

1− q
2− q

]
, F (w) ≤ k − πA

k − qw 2−q
1−q

. (O10)

By first-order stochastic dominance, it follows that in order to minimize expected wages, the

optimal distribution must satisfy (O10) with equality. This implies that the optimal wage

distribution is described by (O8). Expected cost expression (O9) follows from integration

and straightforward computations. �
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OA.4 Arbitrary bargaining

The model of Sections 3 and 4 simplifies the side-contracting stage by assuming take-it-or-

leave-it offers. This appendix shows that random wages remain valuable under arbitrary

bargaining mechanisms. We study a model in which the monitor and the agent can use any

individually rational and incentive compatible mechanism at the side-contracting stage, but

that is otherwise identical to the basic model in Section 3.

By the revelation principle, we can restrict attention to mechanisms under which the

monitor announces her private information (i.e. her wage) and this announcement determines

the bargaining outcome. Such a bargaining mechanism is characterized by two functions: (i)

P (w), the probability with which monitor and agent reach an agreement when the monitor’s

wage is w; and (ii) τ(w), the expected transfer from the agent to the monitor when the

monitor’s wage is w. The monitor commits to send message m = 0 if there is an agreement.

If there is no agreement, the monitor sends the message that maximizes her final payoff (i.e.,

she sends a truthful message).

Given a wage schedule F and a mechanism (P, τ), the agent’s expected payoff from crime

is UA = πA−k+
∫

(P (w)k − τ(w)) dF (w). The individual rationality constraint of a criminal

agent is UA ≥ πA − k, since a criminal agent can guarantee πA − k by not participating in

the mechanism.

The payoff that a monitor with wage w who announces wage w′ gets under mechanism

(P, τ) when the agent is criminal is ŨM(w,w′) = τ(w′) + (1 − P (w′)q)w. By incentive

compatibility, UM(w) ≡ ŨM(w,w) ≥ ŨM(w,w′) for all w′ 6= w. By individual rationality,

UM(w) ≥ w for all w, since a monitor with wage w obtains a payoff of w by not participating

in the mechanism and sending a truthful report.

Given a mechanism (P, τ) and a wage distribution F , the weighted sum of the agent’s

and monitor’s payoff when the agent is criminal is

(1− λ)

∫
UM(w)dF (w) + λUA, (O11)

16



where the weight λ ∈ [0, 1] represents the monitor’s bargaining power. For every wage

schedule F and every λ ∈ [0, 1], let Γ(F, λ) be the set of incentive compatible and indi-

vidually rational bargaining mechanisms that maximize (O11). We assume that, at the

side-contracting stage, the monitor and the agent use a bargaining mechanism in Γ(F, λ).

Let ŨA(F, λ) be the lowest utility that a criminal agent gets under a bargaining mechanism

in Γ(F, λ). The agent has an incentive to be non-criminal if ŨA(F, λ) ≤ 0.

The following result generalizes Proposition 1 to this setting.

Proposition OA.5. Suppose that, at the collusion stage, the monitor and the agent use an

incentive compatible and individually rational mechanism that maximizes (O11).

(i) If λ ∈ (1/2, 1], the cost minimizing wage distribution F̃ ∗w that induces the

agent to be non-criminal is described by

∀w ∈ [0, πA/q], F̃ ∗w(w) =

(
k − πA
k − qw

) 2λ−1
λ

. (O12)

(ii) If λ ∈ [0, 1/2], the cost minimizing wage distribution F̃ ∗w that induces the

agent to be non-criminal has F̃ ∗w(0) = 1.

Proof. By standard arguments, any incentive compatible mechanism (P, τ) must satisfy:

(i) P (w) is decreasing, and (ii) U ′M(w) = 1 − qP (w) a.e.. This last condition and the

monitor’s individual rationality constraint (i.e., UM(w) ≥ w for all w) imply that UM(w) =∫ w
w
qP (w̃)dw̃+w+ c for some constant c ≥ 0 (where w is the highest wage in the support of

F ). Since UM(w) = τ(w) + (1− qP (w))w, τ(w) = P (w)qw+
∫ w
w
qP (w̃)dw̃+ c. The weighted
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sum of payoffs when the agent is criminal is

(1− λ)

∫ w

w

UM(w)dF (w) + λUA

=

∫ w

w

[(1− λ)(τ(w) + (1− qP (w))w) + λ(P (w)k − τ(w))] dF (w) + λ(πA − k)

=

∫ w

w

[P (w)λ (k − qw) + (1− λ)w] dF (w) + λ(πA − k) + (1− 2λ)

(∫ w

w

qP (w)F (w)dw + c

)
.

(O13)

We use the following lemma.

Lemma OA.7. For all λ ∈ (1/2, 1], the mechanism (P, τ) that maximizes (O13) has: (i)

P (w) = 1 if w < w∗ and P (w) = 0 if w > w∗ for some w∗ ∈ [w,w], and (ii) τ(w) =

P (w)qw +
∫ w
w
qP (w̃)dw̃.

Proof. Note first that (O13) is maximized by setting c = 0 when λ ∈ (1/2, 1]. Moreover,

when λ ∈ (1/2, 1] any mechanism (P, τ) that maximizes (O13) must be such P (w) = 0 for

all w ≥ k/q.

We now show that the mechanism that maximize (O13) is such that P (w) only takes

values 0 or 1. From above, we know that P (w) = 0 for all w ≥ k/q. Suppose by contradic-

tion that there exists an interval V ⊂ [0, k/q] such that P (w) ∈ (0, 1) for all w ∈ V , and let

H ≡
∫
V
λ(k−qw)dF (w)+(1−2λ)

∫
V
qF (w)dw. If H ≥ 0, increasing P (w) over this interval

(subject to the constraint that P is decreasing) makes (O13) larger. If H < 0, decreasing

P (w) over this interval (subject to the constraint that P is decreasing) also makes (O13)

larger. Such improvements are exhausted when P (w) only takes values 0 and 1.7 Since

P (·) is decreasing, when P (·) only takes values 0 or 1 there must exist a wage w∗ such that

P (w) = 1 if w < w∗ and P (w) = 0 if w > w∗. Finally, since (O13) is maximized by setting

7Note that these changes in P (w) do not conflict with the participation constraints of monitor and agent.

Indeed, UM (w) =
∫ w
w
qP (w̃)dw̃+w ≥ w for any incentive compatible mechanism (P, τ). Moreover, for all w,

τ(w) = P (w)qw+
∫ w
w
qP (w̃)dw̃ ≤ P (w)k, where the inequality follows since any mechanism that maximizes

(O13) has P (w) = 0 for all w ≥ k/q and since P (·) is decreasing. Hence, UA = πA − k +
∫

(P (w)k −
τ(w))dF (w) ≥ πA − k.
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c = 0 when λ ∈ (1/2, 1], τ(w) = P (w)qw +
∫ w
w
qP (w̃)dw̃. Since P (w) = 1 if w < w∗ and

P (w) = 0 if w > w∗, it follows that τ(w) = qw∗ if w < w∗ and τ(w) = 0 if w > w∗. �

We now conclude the proof of Proposition OA.5, beginning with point (i). Fix λ ∈ (1/2, 1]

and let F be a cost-minimizing wage schedule that induces the agent to be non-criminal. Let

(P, τ) be the mechanism that maximizes the weighted sum of payoffs (O13) under distribution

F . By Lemma OA.7, P (w) = 1w≤w∗ and τ(w) = qw∗1w≤w∗ for some w∗. Under this

mechanism (O13) becomes

λ

[
F (w∗)k −

∫ w∗

0

qwdF (w) + πA − k
]

+ (1− λ)

∫
wdF (w) + (1− 2λ)

∫ w∗

0

qF (w)dw

=λ [F (w∗)(k − qw∗) + πA − k] + (1− λ)

∫
wdF (w) + (1− λ)

∫ w∗

0

qF (w)dw,

where we used
∫ w∗
0

qwdF (w) = qw∗F (w∗) −
∫ w∗
0

qF (w)dw. Since (P, τ) maximizes the

weighted sum of payoffs, for all ŵ 6= w∗ it must be that

λF (w∗)(k − qw∗) + (1− λ)

∫ w∗

0

qF (w)dw ≥ λF (ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF (w)dw

Otherwise, if the inequality did not hold for some ŵ 6= w∗, the weighted sum of payoffs would

be strictly larger under mechanism (P̂ , τ̂) with P̂ (w) = 1 if w < ŵ and P̂ (w) = 0 if w > ŵ.

For any ŵ ∈ suppF , let (Pŵ, τŵ) be the mechanism with Pŵ(w) = 1{w≤ŵ} and τŵ(w) =

1{w≤ŵ}qŵ. Recall that Γ(F, λ) is the set of bargaining mechanisms that maximize (O13) and

that ŨA(F, λ) is the lowest utility that a criminal agent gets under a mechanism in Γ(F, λ).

By our arguments above,

Γ(F, λ) =

{
(Pŵ, τŵ) : ŵ ∈ arg max

w′
λF (w′)(k − qw′) + (1− λ)

∫ w′

0

qF (w)dw

}
.

Suppose that there exists w1 and w2 > w1 such that (Pw, τw) ∈ Γ(F, λ) for w = w1, w2. Note

that the agent’s payoff from being criminal under mechanism (Pw, τw) is F (w)(k−qw)+πA−k.
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Since (Pw, τw) ∈ Γ(F, λ) for w = w1, w2,

λF (w1)(k − qw1) + (1− λ)

∫ w1

0

qF (w)dw = λF (w2)(k − qw2) + (1− λ)

∫ w2

0

qF (w)dw

and so F (w2)(k−qw2) < F (w1)(k−qw1). This implies that, ŨA(F, λ) = F (w̃)(k−qw̃)+πA−k,

where w̃ ≡ sup{ŵ ∈ suppF : ŵ ∈ arg maxw′ λF (w′)(k − qw′) + (1− λ)
∫ w′
0
qF (w)dw}. Since

F induces the agent to be non-criminal, ŨA(F, λ) = F (w̃)(k − qw̃) + πA − k ≤ 0.

Let w be the highest wage in the support of F . We now show that, if F is an opti-

mal distribution, it must be that w ∈ arg maxw′ λF (w′)(k − qw′) + (1 − λ)
∫ w′
0
qF (w)dw.

Suppose by contradiction that this is not true, so that w > w̃ = sup{ŵ ∈ suppF : ŵ ∈

arg maxw′ λF (w′)(k − qw′) + (1− λ)
∫ w′
0
qF (w)dw}. Pick ε ∈ (0, w− w̃) small and let F ε be

a c.d.f. with F ε(w) = F (w) for all w < w − ε and F ε(w − ε) = 1. By first-order stochastic

dominance, EF ε [w] < EF [w]. By the definition of w̃,

λF (w̃)(k − qw̃) + (1− λ)

∫ w̃

0

qF (w)dw ≥ λF (ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF (w)dw,

for all ŵ, with strict inequality for all ŵ ∈ (w̃, w]. Therefore, there exists ε > 0 small enough

such that, for all ŵ,

λF ε(w̃)(k − qw̃) + (1− λ)

∫ w̃

0

qF ε(w)dw ≥ λF ε(ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF ε(w)dw

This implies that mechanism (Pw̃, τw̃) is still optimal under distribution F ε, and so ŨA(F ε, λ) ≤

F (w̃)(k − qw̃) + πA − k ≤ 0. But this cannot be, since F is a cost-minimizing distribution

that induces the agent to be non-criminal. Therefore, if F is optimal it must be that

w = sup{ŵ ∈ suppF : ŵ ∈ arg maxw′ λF (w′)(k − qw′) + (1− λ)
∫ w′
0
qF (w)dw}. The agent’s

payoff from being criminal under mechanism (Pw, τw) is k − qw + πA − k ≤ 0⇐⇒ w ≥ πA
q

.
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By the arguments above, for all ŵ ∈ [0, w],

λ(k − qw) + (1− λ)

∫ w

0

qF (w)dw ≥ λF (ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF (w)dw

⇐⇒ λ(k − qw) + (1− λ)

∫ w

ŵ

qF (w)dw ≥ λF (ŵ)(k − qŵ) (O14)

We now show that, if F is an optimal distribution, (O14) must hold with equality for all

ŵ ∈ [0, w]. Suppose by contradiction that there is an interval [w1, w2] ⊂ [0, w) such that

(O14) is slack for all ŵ ∈ [w1, w2]. By first-order stochastic dominance, increasing F (·) over

[w1, w2] (subject to the constraint that F is increasing) reduces expected wage payments.

Moreover, increasing F (·) over [w1, w2] relaxes (O14) for all ŵ < w1 and does not affect

(O14) for all ŵ > w2. This implies that mechanism (Pw, τw) still maximizes the weighted

sum of payoffs (O13) after increasing F (·) slightly over [w1, w2], and so the agent’s payoff

from being criminal is k− qw+πA−k ≤ 0. But this cannot be, since F is a cost-minimizing

distribution that induces the agent to be non-criminal. Therefore, if F is optimal, (O14)

must hold with equality for all ŵ ≤ w.

Since (O14) holds with equality for all ŵ ≤ w, λF (ŵ)(k − qŵ) + (1− λ)
∫ ŵ
0
qF (w)dw is

constant over [0, w]. Differentiating this expression with respect to ŵ, it must be that

F ′(ŵ)λ[k − qŵ] + qF (ŵ)(1− 2λ) = 0. (O15)

The solution to the differential equation (O15) is F (w) = C
(

1
k−qw

) 2λ−1
λ

, where C is a

constant such that F (w) = 1; i.e., C = (k−qw)
2λ−1
λ . Finally, by our arguments above, under

distribution F the agent will have an incentive to be non-criminal as long as k−qw+πA−k ≤

0⇐⇒ w ≥ πA
q

. Since the constant C is decreasing in w, an optimal distribution must have

w = πA
q

. Hence, C = (k − πA)
2λ−1
λ , so the optimal distribution is (O12).

We now turn to point (ii). When λ ≤ 1/2, the mechanism (P, τ) that maximizes (O13)

must make the constant c as large as possible, subject to the agent’s IR constraint; that

is, subject to πA − k +
∫

[P (w)k − τ(w)]dF (w) ≥ πA − k. Recall that τ(w) = P (w)qw +
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∫ w
w
qP (w̃)dw̃+c. The maximum is achieved by choosing c such that

∫
[P (w)k−τ(w)]dF (w) =

0. Therefore, for λ ≤ 1/2 the agent’s payoff from engaging in crime under a mechanism that

maximizes (O13) is πA− k < 0, regardless of the wage schedule. This implies that the agent

has an incentive to be non-criminal even when F has all its mass at w = 0. �

We end this appendix by noting that the results above generalize to settings in which

the agent is privately informed about the benefit πA from crime. Given a wage profile

Fw, the payoff an agent of type πA gets from taking action c = 1 is UA(πA) = πA − k +∫
(P (w;Fw)k − τ(w;Fw)) dF (w), where (P (w), τ(w) is the mechanism that maximizes the

weighted sum of payoffs (O13).8 Since UA(πA) is increasing in πA, agents follow a threshold

strategy: for any wage schedule Fw, there is a cutoff πA(Fw) such that an agent of type πA

is criminal if and only if πA > πA(Fw). For any cutoff πA, Proposition OA.5 characterizes

the cheapest wage distribution that attains this cutoff.

8Note that, given wage profile Fw, the mechanism (P (w), τ(w)) that maximizes (O13) is independent of
the agent’s type πA.
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