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1 Introduction

Prediction problems are ubiquitous in the economy. To give a few examples, firms selling

products often want to predict customers’ willingness to pay and may use business analytics

tools to do so. Banks want to assess the credit risk of borrowers, and rely on predictive

models to guide their decisions. In science and engineering, researchers want to predict

the viability of compounds in domains ranging from drug discovery to materials science.

Campaigns and observers want to predict elections, and may commission polls to do so.

Making quantitative predictions usually involves collecting relevant data and training

statistical models based on that data. While firms, organizations, and individuals can con-

duct this modeling internally, many rely on external firms for these services. In this paper,

we provide an economic theory analysis of settings where firms sell prediction models. Our

focus is on how market structure and welfare depend on the statistical properties of the

models available to firms.

Before describing our analysis in some detail, we describe two high-level findings. First,

even identical firms servicing identical consumers will often choose differentiated models.

Second, firms can choose biased or excessively expensive models to deter competition or

to achieve more favorable divisions of the total surplus. This generates inefficient market

structures as well as inefficient choices of models.

We consider an agent, who we call a consumer, facing a prediction problem. The con-

sumer’s utility is the negative of the mean squared error of their prediction (or a fixed outside

option). To make predictions, the consumer purchases models from firms. These firms decide

whether to enter, choose models to train on their datasets (which we assume are independent

across firms), and set prices for the resulting predictions. We take an abstract approach to

model choice that can accommodate simple models such as linear or ridge regression but

also allows for more complex models. Importantly for our analysis, the consumer can use

a single model but can also purchase multiple models and use a weighted average of these

models.

A key part of the setup is what the consumer and competitors know about firms’ models,
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and we assume that model choices are observable but the underlying datasets are not. The

content of this assumption is that the consumer makes purchasing decisions based on knowl-

edge of the modeling techniques used by firms and the structure of their datasets but not

on information depending on the realized data points. As a consequence, market outcomes

given model choices can be expressed in terms of the bias-variance decompositions of the

models that firms sell. When a single firm enters the market, it can extract all surplus.

When multiple firms enter, each is paid the marginal value of combining their model with

other models. Our modeling choices therefore yield straightforward mappings from the sta-

tistical structures of firms’ models to outcomes and payoffs, and we use these mappings to

explore market structure under various circumstances.

We begin by considering firms making simultaneous choices about whether to enter the

market and what model to use. In this setting, efficient outcomes can always be supported

as equilibrium outcomes: because firms are paid the marginal value of their models to the

consumer, incentives can be aligned. But there can also be inefficient equilibria. Moreover,

even under efficient equilibria, the division of surplus between consumer and firms can depend

in nontrivial ways on the underlying statistical properties of the available models.

To illustrate firms’ entry choices, we consider a special case where all firms share the

same statistical model (and therefore the main strategic consideration is whether to enter).

Pure-strategy equilibria exist, and entry decisions at these equilibria are efficient. Higher

variance models induce more entry because noisier models allow scope for competitors to

enter. The effect of model variance on consumer surplus is non-monotonic: a higher variance

decreases total surplus but increases competition, and we show the consumer attains the

highest surplus when only two firms enter the market. Overall, decreasing model noise leads

to more concentrated markets, which can actually harm consumers.

Next, we analyze firms’ model choices and ask when firms will choose distinct models

at equilibrium. We consider a setting with a single consumer and firms with the same sets

of possible models, so any differentiation must be driven by complementarities between dif-

ferent modeling techniques. We derive necessary conditions for firms to choose the same
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model and decompose these conditions into interpretable forces favoring and opposing dif-

ferentiation. We provide examples of differentiation when firms use linear regression and

choose which covariates to include. We show firms can choose distinct subsets of covariates

for the regressions at equilibrium—even if each firm could costlessly include all covariates in

the true model. This corresponds to different companies offering predictive models based on

different types of data.

Finally, we consider a setting with an incumbent firm and a potential challenger and

describe strategies the incumbent can use to deter entry. The incumbent chooses a model,

and the challenger then decides whether to enter the market and choose a model. First,

we show that the incumbent can bias their model to deter entry. Intuitively, if available

modeling techniques share common biases, an incumbent firm can have little incentive to

correct those biases. Second, we show that the incumbent can overinvest in reducing model

variance. A natural interpretation is the incumbent firm acquiring a large dataset, e.g.,

artifical intelligence firms building ‘data moats’ to protect market position. Both behaviors

lead to both inefficient entry and inefficient model choices. The equilibrium markets are

monopolies although competitive markets would generate more surplus, and the incumbent

chooses a more biased or more expensive model than would be optimal given a monopoly.

The rest of this paper is organized as follows. The remainder of this section reviews the

existing literature relevant to this paper. Section 2 formally describes the problem and sets

up the model. Section 3 applies the model to the case where firms enter simultaneously,

including analyzing when equilibrium features model differentiation. Section 4 looks at the

problem with sequential entry and analyzes strategies to deter entry. Section 5 concludes.

All omitted proofs are deferred to Appendix A.

Related Literature Research on the economics of providing predictions, models, and

forecasts spans fields including economics, finance, and computer science. Like this paper,

some recent computer science work has considered agents or firms competing to provide

predictions (e.g., Ben-Porat and Tennenholtz (2017), Ben-Porat and Tennenholtz (2019),

Feng, Gradwohl, Hartline, Johnsen, and Nekipelov (2022), Jagadeesan, Jordan, Steinhardt,
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and Haghtalab (2024a), and Jagadeesan, Jordan, and Steinhardt (2024b)). A bit further

afield, recent research considers agents competing to provide algorithms to consumers in other

domains, including ranking alternatives (e.g., Immorlica, Kalai, Lucier, Moitra, Postlewaite,

and Tennenholtz (2011) and Kleinberg and Raghavan (2021)) and reinforcement learning

(e.g., Aridor, Mansour, Slivkins, and Wu (2020)).

We highlight three contributions relative to other work on markets for prediction models.

First, we provide a microfounded framework in which equilibrium outcomes depend straight-

forwardly on the bias-variance decompositions of firms’ chosen models. Relatedly, Feng et al.

(2022) take a class of models with a bias-variance tradeoff as a primitive in a contest model.

They find competition pushes toward higher variance and lower bias models. Second, we

ask what market structures emerge in a variety of settings with endogenous entry. Perhaps

closest, Jagadeesan et al. (2024b) also consider entry in a model focused on regulatory con-

straints. Third, we allow consumers the possibility of purchasing models from several firms

and find this can lead to quite different market structures.

Several strands of research in economics and finance consider agents competing to make

predictions or forecasts, with a focus on contests and related games. Montiel Olea, Ortoleva,

Pai, and Prat (2022) consider auctions when bidders use subjective models and evaluate

prediction error using those models (and not as correctly specified Bayesians). Ottaviani

and Sørensen (2006), Ottaviani and Sørensen (2007), and a subsequent financial economics

literature consider forecasters in contests and in cheap talk games. We instead focus on firms

selling models to consumers and ask about the resulting market structure. A common thread

is that there can be strategic reasons to provide biased models. We find the relevant strategic

forces are different in markets than in contests, however, e.g., choosing biased models to deter

entry.

Lastly, our work relates to a strand of literature on sender-receiver games with multiple

senders (Milgrom and Roberts, 1986, Gentzkow and Kamenica, 2016, 2017, Li and Norman,

2021). These papers focus on settings in which the incentives of senders and receiver are

misaligned, and study how competition influences the information that senders disclose in

4



equilibrium. Instead, we consider a setting in which the incentives of model providers and

the consumer are aligned, and focus on how market structure depends on the statistical

properties of the models available to firms.

2 Basic Setup

There are N ∈ N firms and a consumer. The consumer’s problem is to predict

y = f(x) + ϵ

where f : Rk → R and ϵ is an i.i.d., mean zero error term with variance σ2, whose distribution

is common knowledge among firms and the consumer. The function f is unknown and all

agents share a common prior F (·) over f . The vector x ∈ Rk is also unknown at the start

of the game, and all agents share a common prior G(·) over x.

Each firm chooses a model and then trains this model on an independent dataset. A

dataset D(i) is a finite set of n independent data points. Data points are (xj, yj) ∈ Rk+1,

where xj are drawn independently from distribution G(·), and yj = f(xj) + ϵj. We call the

set of possible datasets D.

A model is a measurable function M : Rk ×D → R. Given a dataset D ∈ D, each model

M defines an estimator f̂D : Rk → R by f̂D(x) = M(x,D). The consumer can buy at most

one model from each firm in the market to help with her prediction.

We study two versions of our game: one in which firms choose models simultaneously

(Section 3) and one in which firms choose models sequentially (Section 4). In both versions,

each firm i chooses an action Mi ∈ Mi ∪ ∅, where Mi is the set of available models to firm

i and ∅ denotes not entering the market. We allow entry costs to vary with the model that

firms choose: the cost of choosing model M ∈ Mi is c(M), with c :
⋃

i Mi → R+, while the

cost of choosing action ∅ is 0.

After firms choose their models, all firms publicly observe the model choices of all their

competitors, and simultaneously set prices (pi).
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The consumer observes the models and prices of the firms and decides which models

to buy. Call the set of models purchased by the consumer P ⊆ {1, 2, . . . , N}. To form a

prediction, the consumer combines the models she bought, and we assume that the consumer

does so by choosing non-negative weights wP ∈ {w ∈ R|P |
+ :

∑
i∈P wi = 1} for the models in P .

In the interim stage, each firm i privately observes its dataset D(i), and the consumer learns

the vector x. Each firm i ∈ P gives the consumer their prediction f̂i,D(i)(x) = Mi(x,D
(i)).

The consumer’s prediction is then

ϕ({f̂i,D(i)(x)}i∈P ) :=
∑
i∈P

wP
i f̂i,D(i)(x).

The consumer’s payoff is equal to the negative of the mean squared error in her prediction,

minus the prices of the models she bought. Hence, the consumer’s expected payoff from

buying models in P and using prediction ϕ({f̂i,D(i)(x)}i∈P ) is

−Ef,D,x,ϵ

[(
ϕ({f̂i,D(i)(x)}i∈P )− y

)2]
−
∑
i∈P

pi.

We assume that the consumer’s beliefs about the true model f , datasets D = (D(j))Nj=1,

vector x and noise ϵ are equal to the prior for any models that the firms choose; that is,

the consumer doesn’t update her beliefs after observing firms’ model choices. We denote

by u < 0 consumer’s utility from taking the outside option, which represents the expected

payoff from not buying any models and making the prediction on her own.

A firm that enters the market with model Mi earns profits pi1i∈P − c(Mi), and a firm

that does not enter the market earns zero profits. Our solution concept is subgame perfect

Nash equilibrium (SPNE).

We now present a preliminary result that will be useful in our analysis and several

illustrative examples. This first result is a bias-variance decomposition of the mean squared

loss, which is a standard result in statistics and machine learning (see, for example, James,

Witten, Hastie, Tibshirani, and Taylor (2023)).

Lemma 1. Suppose model M gives estimator f̂D(x) for each dataset D. The mean squared
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loss can be decomposed as:

Ef,D,x,ϵ[(f̂D(x)−y)2] = Ef,x

(ED[f̂D(x) | f, x]− f(x)︸ ︷︷ ︸
bias

)2

+Ef,x[ED[(ED[f̂D(x) | f, x]− f̂D(x))
2]︸ ︷︷ ︸

variance

]+σ2.

We now provide several examples of prediction problems and classes of models M, along

with the bias-variance decomposition for each.

Example 1. Suppose data points are signals y = θ+ ϵ about a Gaussian state θ ∼ N (0, ν2)

with Gaussian noise ϵ ∼ N (0, σ2) This is a special case of our framework where the functions

f = θ are constant and the prior F (·) is Gaussian.

If each firm observes a single data point, this recovers a standard model of forecasting

(e.g., Ottaviani and Sørensen (2006)). A standard class of models to consider is then

M = {ry : r ∈ [0, 1]}.

This corresponds to taking a weighted average of the prior belief about θ (which we have

normalized to 0) and the signal y. The model ry has bias (1− r)θ and variance r2σ2.

Example 2. Suppose the true models f(x) = xTβ are linear. Then a natural model is

ordinary least squares (OLS), which corresponds to f̂D(x) = xT β̂ where β̂ minimizes

∑
(xj ,yj)∈D

|yj − xT
j β̂|2.

In the classical regime k < n−1, the estimator is β̂ = (XTX)−1XTY, where X is the matrix

of covariates and Y is the vector of outcomes in the dataset D. This model has zero bias

and variance (conditional on β and x) equal to σ2xTED[(X
TX)−1]x.

Example 3. Suppose the true models f(x) = xTβ are linear. Another widely used model is
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ridge regression,1 which corresponds to f̂D(x) = xT β̂ where β̂ minimizes

∑
(xj ,yj)∈D

|yj − xT
j β̂|2 + λ∥β̂∥22.

Increasing the penalization parameter λ leads to lower variance but higher bias. The estima-

tor is

β̂ = (XTX + λI)−1XTY.

Writing X = UΣV T for the singular value decomposition of X (so U and V are orthogonal

matrices and Σ is a diagonal matrix) and σi = Σii, a standard calculation shows that the

estimator is

β̂ = V diag

(
σ2
1

σ2
1 + λ

, . . . ,
σ2
k

σ2
k + λ

)
V Tβ + V diag

(
σ1

σ2
1 + λ

, . . . ,
σk

σ2
k + λ

)
UT (Y −Xβ).

If the distribution of covariates G(·) is rotationally invariant, e.g., if the entries are i.i.d.,

then we can write the squared bias conditional on x and β as

(
1− Eσj

[
σ2
j

σ2
j + λ

])2

(xTβ)2,

where the expectation is taken over the singular values σj of the random matrix X. Thus

squared bias is increasing in λ.

One feature of Example 1 and Example 3 with rotationally invariant covariates is that

the choice of model affects the magnitude of biases but not the direction. This property will

be useful as a special case throughout and as an assumption for one of our results. We say

models have a common bias direction if for each model M ∈
⋃

i Mi,

ED[ f̂(x)− f(x) | f, x ] = αb0(f, x) (1)

1For an in-depth analysis of the ridge case see Colla Rizzi (2025), who considers a setting where the
Bayesian optimal model is a ridge regression and analyzes the value of data under this model.
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where α > 0 can depend on M but b0(f, x) does not. Intuitively, the condition holds when

the direction of the bias is the same for all available models.

2.1 Discussion

Before turning to our analysis we briefly discuss the setup and our assumptions. We assume

that the consumer makes purchasing decisions based on observing firms’ modeling choices

but not based on any information about the realized datasets. Our observability assump-

tions fit well if firms can communicate their modeling techniques but want to keep their

datasets proprietary. An alternative approach, which is more challenging to work with in

most settings, would be to let consumers calculate prediction errors given realized datasets.

We let consumers combine several models but restrict them to choosing weighted aver-

ages of these models. If the consumer could choose arbitrary functions of the predictions

purchased from firms, then they would adjust the predictions to remove biases. We remove

such concerns, which would lead to highly sophisticated behavior that we do not see as

matching the spirit of our approach. We do let the consumer choose the optimal weights to

average predictions across firms.

We note that a firm’s choice of model in our framework can capture both decisions about

the modeling technique (formally represented by M) and decisions about the structure of its

dataset. We focus on the former in our analysis. But for some discussions and examples, we

allow the size of firms’ datasets to depend on the model that they choose: as part of their

entry decision, firms may choose how many data points, or how many covariates, to collect.

Finally, we assume firms choose models from a restricted set rather than modeling firms

as unrestricted Bayesian agents. This lets our framework accomodate a range of modeling

techniques used in practice.

9



3 Simultaneous Entry

We now study the game we described above, in the case in which all firms choose their models

simultaneously. In particular, in the first stage of the game, each firm i simultaneously

chooses an action in Mi ≡ Mi ∪ ∅. In the second stage, firms’ model choices are publicly

observed, and all firms that entered the market simultaneously set prices. The consumer

then observes the firms’ models and prices, and chooses which models to purchase and their

weights. Lastly, all uncertainty is resolved: each firm i privately observes its datasetD(i); and

the consumer learns vector x, receives prediction f̂i,D(i)(x) = Mi(x,D
(i)) from each model i

she bought, and combines them according to the chosen weights.

We begin by describing the equilibrium pricing behavior of the firms. Let M = (Mi)
N
i=1

be the profile of actions chosen by the firms in the first stage. Let E(M) ≡ {i : Mi ̸= ∅} be

the set of firms that enter the market and NE = |E(M)| be the number of entrants. For any

non-empty subset E ′ ⊂ E(M), let U(E ′,M) denote the negative of the expected square loss

from purchasing models (Mi)i∈E′ = (f̂i,D(i))i∈E′ and weighting them optimally:

U(E ′,M) = −E

(∑
j∈E′

wE′

j f̂j,D(j)(x)− y

)2
 .

We also let U(∅,M) = u be the consumer’s payoff from not buying any models.

Proposition 1. Suppose firms choose models M = (Mi)i. Then, the subgame that starts at

the pricing stage has a SPNE in which the consumer purchases all models in E(M), with

prices satisfying

∀i ∈ E(M), pi = min
E′⊂E(M)\{i}

U(E(M),M)− U(E ′,M)−
∑

j∈E(M)\E′

j ̸=i

pj. (2)

Moreover, in every SPNE of the pricing subgame under which the consumer buys all models

in E(M), prices must satisfy (2).

To understand equation (2), consider first the case in which two or more firms enter the
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market. The utility that the consumer gets from purchasing all models is

U(E(M),M)−
∑

j∈E(M)

pj,

while the maximum utility that the consumer can get from not purchasing firm i’s model is

max
E′⊂E(M)\{i}

U(E ′,M)−
∑
j∈E′

pj.

The consumer is willing to buy firm i’s model if

min
E′⊂E(M)\{i}

U(E(M),M)− U(E ′,M)−
∑

j∈E(M)\E′

j ̸=i

pj − pi ≥ 0.

The price pi in (2) leaves the consumer indifferent between buying all models and not pur-

chasing i’s model.

When there is one entrant, that firm extracts all the surplus from the consumer by

charging a price of U(E(M),M)− U(∅,M) = U(E(M),M)− u.

In general, the system of equations (2) defines a fixed-point condition that can have many

solutions. We next show that a natural assumption simplifies this system considerably.

Assumption 1. We say that models satisfy decreasing marginal returns if, for all M ∈∏
i Mi, E ⊂ E(M), E ′ ⊂ E and j ∈ E ′

U(E ′,M)− U(E ′\{j},M) ≥ U(E,M)− U(E\{j},M).

In words, models have decreasing marginal returns if the marginal value for the consumer

of buying an additional model is decreasing in the number of models the consumer is already

buying. Note that Assumption 1 always holds when there are two firms in the market (i.e.,

N = 2) and the consumer’s outside option is sufficiently small. In Section 3.1, we show

that Assumption 1 also holds when all firms have access to the same unique model and

the consumer’s outside option is sufficiently small. Intuitively, models satisfy decreasing
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marginal returns unless (i) the outside option is high or (ii) certain sets of models are very

complementary because their biases at least partially cancel each other.

When models satisfy decreasing marginal returns, the pricing subgame has a simple

equilibrium. Each firm charges a price equal to the marginal value of their model to the

consumer, assuming the consumer purchases all other available models:

Corollary 1. Suppose Assumption 1 holds. Then, the subgame that starts at the pricing stage

has a SPNE in which the consumer purchases all models in E(M), with prices satisfying

∀i ∈ E(M), pi = U(E(M),M)− U(E(M)\{i},M). (3)

Going back to the firms’ entry decisions, we now show that any efficient action profile

is a Nash equilibrium of the simultaneous-move game. For any models M, let TS(M) =

U(E(M),M)−
∑

i∈E(M) c(Mi)−u denote the total surplus (adjusted for consumer’s outside

option u so that total equilibrium surplus is nonnegative) when firms choose models M.

Proposition 2. Suppose models satisfy decreasing marginal returns, and let M∗ be an action

profile that maximizes total surplus TS(M). Then, there exists a pure-strategy SPNE in

which firms choose actions M∗.

When models have decreasing marginal returns, each firm charges a price equal to its

marginal contribution to total surplus (see equation (3)). Hence, firms have incentives to

choose models that maximize total surplus.

As a Corollary of Proposition 2, we get the following existence result.

Corollary 2. Suppose models satisfy decreasing marginal returns. Then, the set of pure-

strategy SPNE is non-empty if argmax
M

TS(M) is non-empty.

In what follows, we focus on settings in which the conditions in Corollary 2 hold.

3.1 Entry with a Common Model

To illustrate the workings of our model, we consider a simple symmetric setting in which all

firms have access to one statistical model: for all i, Mi = {M}, though each firm i observes

12



an independent dataset D(i). Hence, the only decision of the firms is whether or not to enter.

We let c > 0 denote the cost of model M .

LetB = Ef,x

[(
ED[f̂D(x)− f(x) | f, x]

)2]
and V = Ef,D,x

[(
ED

[
f̂D(x) | f, x

]
− f̂D(x)

)2]
denote, respectively, the expected squared bias and variance of the model M(x,D) = f̂D(x)

available to all firms. We assume that the number N of potential entrants is large, with

V
N(N−1)

< c. We also assume that the consumer’s outside option is low enough so that at

least one firm enters the market, which holds when additionally u < −B − V − σ2 − c,

and low enough for Assumption 1 to hold, which we show in the appendix holds when

u < −B − 3
2
V − σ2. Assumption 1 and Corollary 1 together imply that, in this setting with

symmetric firms, the pricing subgame has a SPNE in which firms set prices according to (3)

and the consumer purchases all models.

We define producer surplus as the sum of firms’ profit, and consumer surplus as U(P,M)−∑
i∈P pi−u, that is, the negative of the prediction error using the models bought, minus the

price of the models, adjusted for the outside option u so that consumer surplus is nonnegative.

We can use this model to study how improvements in predictions affect entry and con-

sumer surplus. The effects of changes in bias are fairly straightforward, and we focus on the

more interesting case of changes in variance.

Proposition 3. Suppose all firms are symmetric and have access to the same model M with

expected variance V and expected squared bias B. Then:

(i) The number NE of entrants increases with V .

(ii) Consumer surplus attains a maximum at V = 2c, with NE = 2.

(iii) Total surplus is decreasing in V .

When variance increases, firms have a stronger incentive to enter because an additional

model decreases the variance of the consumer’s prediction. Additional entry increases the

consumer’s surplus by providing more competing models. But there is also a competing

effect: conditional on the number of firms in the market, a higher variance decreases consumer

surplus. It turns out that consumer surplus is maximized at the smallest level of variance
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such that NE = 2. Total surplus, however, is decreasing in model variance. One way to

see this is that entry decisions are efficient in the sense that they maximize total surplus, so

adding noise cannot help.

Figure 1: Equilibrium number of firms and surpluses as a function of model variance V .

To illustrate Proposition 3 numerically, consider the OLS model from Example 2, which

has zero bias. Figure 1 plots the number of entrants, producer surplus, consumer surplus,

and total surplus, as a function of the variance V of the model available to firms. Parameter

values are set to c = 0.25, u = −5, σ2 = 1. The change in variance could arise, for example,
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from a change in the number of data points available to firms.

3.2 Model Differentiation

Suppose multiple firms enter and choose models from the same set M. We now ask whether

these firms will all choose the same model or will select different models. Because firms

are symmetric and there is one consumer (or equivalently a population of homogeneous con-

sumers), any differentiation must be driven by complementarities between different modeling

choices.

We begin by presenting a general characterization of when firms will choose the same

interior model. The characterization relies on a rich set of available models, but illustrates

the main forces for and against differentiation. We then discuss several examples of model

differentiation. We focus for simplicity on the case of two firms; extending the analysis to

allow more firms is straightforward. The following proposition also assumes that all models

have cost c(M) = c, but can similarly be extended to allow heterogeneous model costs.

Suppose the two firms choose from the same set of models M and that this set of models

contains a one-parameter family {M(t)}t∈(t,t) ⊂ M for some t < t. Let V (t) be the expected

variance of M(t). Writing f̂D,t(x) for the estimator defined by M(t), let bt(f, x) = ED[f̂t(x) |

f, x] − f(x) be the conditional bias given f(x) and x, and let B(t) = Ef,x[bt(f, x)
2] be the

expected squared bias.

A key quantity in the following result is the angle

cos−1

(∫
bt(f, x)bt′(f, x)dFdG√

B(t)B(t′)

)

between the conditional biases of M(t) and M(t′). Fixing t0, we write θ(t) for the angle

between M(t) and M(t0). We note that θ(t) is identically zero when models have a common

bias direction, but can be non-zero more generally.

We assume that the expected variance V (t) and the conditional bias bt(f, x) are twice-

differentiable functions of t. Finally, we continue to assume that the outside option is suffi-
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ciently negative for Assumption 1 to hold.

Proposition 4. Suppose both firms choose model M(t0) at equilibrium, where t < t0 < t.

Then

V ′(t0) + 2B′(t0) = 0 (4)

and

−1

4
V ′′(t0)−

1

2
B′′(t0) +B′(t0)

2

(
1

8B(t0)
+

1

4V (t0)

)
+

B(t0)

2
θ′(t0)

2 ≤ 0. (5)

We obtain the result by simplifying the first-order condition and second-order condition

for both firms to choose model M(t0). One can show firms choose different models by ruling

out boundary models and showing the left-hand side of (5) is positive whenever the first-order

condition holds.

The first-order condition (4) is straightforward: if both firms choose model M(t0), the

consumer’s prediction error is
1

2
V (t0) +B(t0).

The expression places more weight on bias than variance because when two firms choose the

same model, the biases are identical while the variances are independent.

The left-hand side of the inequality (5) can be split into three interpretable terms, which

we discuss in turn:

(1) −1
4
V′′(t0)− 1

2
B′′(t0): These second derivatives measure the curvature of the bias-

variance tradeoff. The sign of this term, which can be positive or negative, determines

whether the firms prefer both choosing M(t0) to both choosing M(t) for t ̸= t0 nearby.

If 1
4
V (t) + 1

2
B(t) is concave, this rules out both firms choosing an interior model. The

interesting case is therefore when this term is negative.

(2) B′(t0)
2
(

1
8B(t0)

+ 1
4V(t0)

)
: The second term, which is always non-negative, measures the

benefits to differentiating between bias and variance. Because variances are independent

of biases, it can be beneficial for one firm to choose a higher variance model and the

other to choose a higher bias model. These benefits are larger when the bias-variance

tradeoff is steeper (B′(t) larger).
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(3) B(t0)
2

θ′(t0)
2: The third term, which is also always non-negative, measures the benefits

from choosing models with biases in different directions. This term is zero when models

have a common bias direction, but will be positive if perturbing t changes the angle

between the models M(t) and M(t0). When firms choose the same model, biases will

be equal. But if the firms choose differentiated models with non-parallel biases, these

biases will contribute less to prediction error.

A key step in the proof uses the envelope formula to simplify the consumer’s weights

when we calculate firm payoffs. We can do this because the firm and consumer are aligned

in their preferences over weights: both want to minimize the overall prediction error.

We now show through an example how differentiation can arise in equilibrium. We

consider the following setting:

y = xTβ + ϵ,

where x ∼ N(0, Ik), ϵ ∼ N(0, σ2), and β ∈ Rk. For tractability, we assume that the entries

of β are drawn i.i.d. from distribution Fβ.

Each firm observes n independent data points, and the models available to firms are

OLS models. In particular, firms choose the subset of covariates to include in their model:

models correspond to subsets 2{1,...,k}. Abusing notation, we identify models M ∈ M with

the corresponding subsets of covariates.

We assume that there are two firms. For i = 1, 2, let Mi denote firm i’s model. Firm

i’s dataset is D(i) = (Yi, Xi), where Yi ∈ Rn and Xi ∈ Rn×k. We assume n > k, so that

there are more datapoints than covariates. Let Xi,Mi
∈ Rn×|Mi| denote the submatrix of

Xi including only the coviarates in i’s model Mi. Firm i’s prediction is xT β̂(i), where the

estimator β̂(i) ∈ Rk is constructed as follows: for covariates l ∈ Mi, β̂
(i)
l are obtained from

the OLS estimator β̂
(i)
Mi

= (XT
i,Mi

Xi,Mi
)−1XT

i,Mi
Yi. For covariates l /∈ Mi, we set β̂

(i)
l = 0.

Finally, we consider entry costs that depend on model size: the cost of modelM is c(|M |),

where |M | is the number of covariates in M . We now show that, in this setting, firms may

choose models that include different covariates.
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Differentiation with large k. We start considering a setting in which the number of

covariates k is large. Assume that firms’ entry cost c(|M |) is strictly increasing and convex,

with c(1) small. We now argue that firms never choose the same model when k is large:

there is always differentiation in equilibrium. The details are in Appendix A.6, but the

result follows from two observations. First, because c(·) is strictly increasing and convex,

firms optimally choose models that exclude some covariates when k is large. Second, if

both firms choose the same model M that excludes some covariates, a firm strictly profits

from swapping a covariate in model M for a covariate that is not included in the model.

This deviation makes the biases of firms’ models different, reducing consumer’s prediction

error. An intuition for this is that firms’ models are more complementary when they include

different covariates; this increased complementarity allows firms to charge higher prices.

Differentiation with small k. The argument in the previous paragraph relies on the

assumption that entry costs are strictly increasing in model size. We note that differentiation

can also arise when all models are equally costly. To illustrate this, we assume k = 2 and

c(M) = c for all M ∈ M. In Appendix A.6 we show that, when the signal-to-noise EF [β2]
σ2

is in some intermediate range, in equilibrium firms choose different models with a single

covariate.

This example shows that market equilibria can feature firms selling models based on

different parts of a data set. Indeed, this can happen even if all relevant characteristics are

available to all firms at no additional cost.

In the examples above, differentiation increases the complementarity of firms’ models

and allows them to charge higher prices. We end this section by noting that this is a general

result: differentiation always benefits firms at the expense of the consumer.

Proposition 5. Suppose M1 = M2 and consider an equilibrium with model choices M1 ̸=

M2. There exists i ∈ {1, 2} such that the consumer surplus at this equilibrium is less than or

equal to consumer surplus in the equilibrium of the pricing subgame after both firms choose

Mi.
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The basic force is simple. The consumer’s payoff at the equilibrium is

U({1, 2}, (M1,M2))−
∑
i

pi = U({1, 2}, (M1,M2))−
∑
i

(U({1, 2}, (M1,M2))−U({i}, (M1,M2))),

and the right-hand side is actually decreasing in the utility U({1, 2}, (M1,M2)) from the

equilibrium prediction. Because the consumer must pay each firm the marginal value of

their model, improving the prediction by differentiating the two models (without improving

their individual prediction errors) harms the consumer.

4 Entry Deterrence

We have so far studied models in which all firms choose whether to enter simultaneously.

We now consider a sequential entry game in which an incumbent firm chooses a model and

then a competitor decides whether to enter. This can generate several new forces, and we

focus on two: the incumbent firm can choose a model with more bias to deter entry and can

choose an inefficiently expensive model to deter entry.

There is an incumbent firm (firm 1), a competitor firm (firm 2), and a consumer. The

consumer, firms, and informational environment continue to follow the basic setup from

Section 2. The incumbent firm first chooses a model M1 ∈ M1, where M1 is compact. The

competitor then observes this model choice and decides whether to enter. If the competitor

enters, they choose a model M2 ∈ M2, where M2 is also compact. We decompose model

costs c(M) into a fixed cost cf ∈ R and a model-dependent cost cm :
⋃

i∈{1,2}Mi → R+

so that we can easily vary entry costs. After choosing models, the firm(s) in the market

simultaneously choose prices pi for their model(s). The consumer can purchase one or both

of the models or choose the outside option.

So the timing is:

1. Firm 1 chooses a model M1 ∈ M1.

2. Firm 2 chooses a model M2 ∈ M2 or chooses not to enter.
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3. The firm(s) simultaneously set prices pi.

4. The consumer decides which model(s) to purchase.

We assume firm 1’s model is sold at a positive price in any equilibrium, ruling out some

cases where firm 1’s models have much higher bias than firm 2’s models.

4.1 Excessive Bias

We will show that the incumbent firm can choose a biased model to deter entry. The basic

force relies on the incumbent and entrant having models with “similar” biases. For simplicity,

we will assume a common bias direction, and it should be clear that we could obtain the

same result in cases with less structure. Recall this means that

ED[ f̂(x)− f(x) | f, x ] = αb0(f, x),

where the right-hand side only depends on the chosen model through α. We call α the bias

constant corresponding to model M and write B0 = Ef,x[∥b0(f, x)∥22], so that α2B0 is the

expected squared bias.

Suppose the outside option is sufficiently low for Assumption 1 to hold. Then Corollary 1

applies: there is a unique equilibrium of the pricing subgame under which both models are

purchased, with prices given by

p1 = −E
[(

w
{1,2}
1 f̂1(x) + w

{1,2}
2 f̂2(x)− y

)2]
+ E

[(
f̂2(x)− y

)2]
,

p2 = −E
[(

w
{1,2}
1 f̂1(x) + w

{1,2}
2 f̂2(x)− y

)2]
+ E

[(
f̂1(x)− y

)2]
.

When both of these prices are positive, this is the unique equilibrium of the pricing subgame.

When one of the prices is zero there can be other equilibria where that model is not purchased,

but these equilibria are payoff equivalent.

A consequence is that when models have a common bias direction, equilibria only depend
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on the bias constants αi and variances Vi = Ef,x,D[(ED[f̂i(x) | f, x] − f̂i(x))
2] of models

Mi ∈ Mi. Identifying models with (αi, Vi) ∈ R2, we can define the Pareto frontier of Mi

to be the set of models that are not dominated in this space. That is, Mi ∈ Mi with

bias constant and variance (αi, Vi) is contained in the Pareto frontier if there does not exist

M ′
i ∈ Mi with bias constant and variance (α′

i, V
′
i ) such that α′

i ≤ αi and V ′
i ≤ Vi with at

least one inequality strict.

We next show that when there is a binding bias-variance tradeoff, there are parameter

ranges where firm 1 will choose a more biased model to deter entry.

Proposition 6. Suppose models have a common bias direction. Let M∗
1 ∈ M1 be a model

minimizing mean-squared error and α∗ be its bias constant, and suppose the boundary of the

Pareto frontier is a smooth curve with M∗
1 in the interior of this curve. Then there is an

open subset of pairs (cf , u) such that at equilibrium, firm 1 chooses a model M1 ∈ M1 with

α1 > α∗ and firm 2 does not enter.

The proposition highlights two inefficiencies. To discuss these, it is easiest to consider

the case when there is only a fixed model cost c(M) = cf . First, there is inefficient model

choice conditional on entry. The incumbent firm biases their model relative to the optimal

monopoly model M∗ to maintain their market position. Second, there is inefficient entry

because firm 1 deters firm 2 from entering.

The basic idea is that combining two models decreases variance (as averaging noise terms

decreases variance) but does not substantially decrease bias under the common bias assump-

tion. The competitor enters when the marginal value they provide to the consumer is high.

This marginal value is high when the incumbent chooses a high variance model but low

when the incumbent chooses a high bias model. Therefore, the incumbent chooses a high

bias model to ensure monopoly profits.

As a simple example, suppose the available models for each firm are ridge regressions with

penalization parameters λ > 0 in some compact set. We saw in Example 3 that this set of

models satisfies the common bias assumption when the covariates are rotationally invariant.

The proposition then says that for an open subset of parameters c and u, the incumbent
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will choose a higher λ than would minimize mean squared error and the competitor will not

enter. Because all available models bias the coefficients β̂ toward zero, the incumbent can

deter entry by choosing a lower variance model with smaller coefficients.

4.2 Overinvestment

Next, we study entry deterrence when firms choose between models with different costs. To

do so, we allow the entry cost to depend on the model choice. We find that the incumbent

firm can choose a model that is too expensive to deter entry.

Suppose that the conditional biases ED[f̂D(x) | f, x]− f(x) are equal for all models M1

and that the cost cm(M) is a decreasing and continuous function of the expected variance

V = Ef,D,x[(ED[f̂D(x) | f, x]− f̂D(x))
2].

One example is linear regression (which has zero bias), with different models corresponding

to different dataset sizes. Collecting more data points is more costly but decreases variance.

When the set of models available to firm 1 has the structure described in the previous

paragraph, firm 1 can choose an inefficiently costly model to deter entry:

Proposition 7. Let M∗
1 ∈ M1 be an optimal choice of model for a monopoly incumbent.

Suppose there exists a model M ′
1 ∈ M1 with cost c(M ′

1) greater than c(M∗
1 ). Then there is

an open subset of pairs (cf , u) such that at equilibrium, firm 1 chooses a model M1 ∈ M1

with c(M1) > c(M∗
1 ) and firm 2 does not enter.

The proposition shows that incumbent firms can overinvest in modeling costs to maintain

market power. If we interpret the model cost as the cost of collecting data, this investment

corresponds to practices often termed building a ‘data moat’ in the context of artificial in-

telligence. The proposition illustrates potential inefficiencies associated with these practices.

An intuition is that investing to reduce variance makes entry less profitable for the com-

petitor, and the incumbent will make such an investment if doing so will deter entry. As

in Proposition 6, the result implies two inefficiencies. First, entry is inefficiently low at the
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equilibrium described in the result. Second, the firm spends an inefficiently high amount on

data even assuming a monopoly: the firm purchases data with cost higher than its value to

the consumer.

5 Conclusion

This paper proposed a theoretical framework to study how firms that sell prediction models

compete in the market. We showed that market outcomes can be expressed in terms of the

bias-variance decompositions of the models that firms sell. This tractable characterization

of market outcomes allowed us to study how market structure depends on the statistical

properties of the models available to firms.

Our analysis delivers several key insights. First, symmetric firms can choose distinct

models that are complementary, which allows them to charge higher prices. Second, firms

may choose inefficiently biased or costly models to deter entry by competitors or to achieve

higher profits.

A natural extension of our framework is to consider settings with heterogeneous con-

sumers. In such settings, firms would have incentives to differentiate themselves by offering

different models, targeted to different types of buyers. We note that market outcomes in

this setting would continue to depend on the bias-variance decomposition of the models that

firms sell. However, firms would have new strategic considerations when deciding which

models to sell. We leave the analysis of this extension for future work.
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A Proofs

A.1 Proof of Proposition 1

Proof. We start by showing that equation (2) has a solution with non-negative prices. Fix

M, and let Ψ(p) : RE(M) → RE(M) be defined by

Ψi(p) = min
E′⊂E(M)\{i}

U(E(M),M)− U(E ′,M)−
∑

j∈E(M)\E′

j ̸=i

pj

for each i ∈ E(M). Define

p ≡ max
j∈E(M)

U(E(M),M)− U(E(M)\{j},M)

p ≡ −(|E(M)− 1|)p.

Note that Ψ is continuous, and maps prices in [p, p]E(M) to prices in [p, p]E(M). Indeed, for

every p ∈ [p, p]E(M) and every i ∈ E(M),

Ψi(p) ≤ U(E(M),M)− U(E(M)\{i},M) ≤ p,

and

Ψi(p) ≥ −
∑
j ̸=i

pj ≥ p,

where the last inequality follows from the inequality pj ≤ p and the definition of p. Hence,

by Brouwer’s fixed point theorem, there exists p ∈ [p, p]E(M) with Ψ(p) = p.

Next, we show that any fixed point p of Ψ satisfies p ≥ 0. Let p be a fixed point of Ψ.

Fix i ∈ E(M), and let

E ∈ arg min
E′⊂E(M)\{i}

U(E(M),M)− U(E ′,M)−
∑

j∈E(M)\E′

j ̸=i

pj.

25



We consider two cases: (i) |E(M)\E| = 1, so E = E(M)\{i}, and (ii) |E(M)\E| ≥ 2. In

case (i),

pi = U(E(M),M)− U(E,M)−
∑

j∈E(M)\E
j ̸=i

pj = U(E(M),M)− U(E(M)\{i},M) ≥ 0,

since adding a model can only weakly increase the consumer’s payoff (because the consumer

can always assign zero weight to the added model). In case (ii), there exists k ̸= i with

k /∈ E, and so

pk = min
E′⊂E(M)\{k}

U(E(M),M)− U(E ′,M)−
∑

j∈E(M)\E′

j ̸=k

pj

≤ U(E(M),M)− U(E ∪ {i},M)−
∑

j∈E(M)\E∪{i}
j ̸=k

pj

=⇒
∑

j∈E(M)\E∪{i}

pj ≤ U(E(M),M)− U(E ∪ {i},M).

Hence,

pi = U(E(M),M)− U(E,M)−
∑

j∈E(M)\E
j ̸=i

pj

≥ U(E(M),M)− U(E,M)− (U(E(M),M)− U(E ∪ {i},M))

= U(E ∪ {i},M)− U(E,M) ≥ 0.

Hence, if p = Ψ(p), p ≥ 0.

Next, we show that given any p solving (2), the subgame that starts at the pricing stage

has a SPNE in which firms set prices p, and in which the consumer buys all models in E(M).

Consider first the case with NE = |E(M)| = 1, and note that the price pi of the only

entrant in (2) is pi = U(E(M),M)− U(∅,M) = U(E(M),M)− u: i.e., the entrant charges

a price that extracts all the surplus from the consumer. Clearly, this is the only equilibrium
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price of the pricing subgame when there is one entrant.

Next, consider the case with NE ≥ 2. Note first that, under the prices in (2), the

consumer finds it optimal to purchase all models. To see this, note that

∀i, pi = min
E′⊂E(M)\{i}

U(E(M),M)− U(E ′,M)−
∑

j∈E(M)\E′

j ̸=i

pj

⇐⇒ ∀i, U(E(M),M)−
∑

j∈E(M)

pj = max
E′⊂E(M)\{i}

U(E ′,M)−
∑
j∈E′

pj.

Hence, at these prices, the consumer (weakly) prefers to buy all models in E(M) than to

buy any subset of models (including not buying any model).

Next, note that the payoff that the consumer obtains from purchasing all models is

U(E(M),M)−
∑

j∈E(M)

pj,

while the payoff that the consumer gets from not purchasing model i ∈ E(M) is

max
E′⊂E(M)\{i}

U(E ′,M)−
∑
j∈E′

pj.

Hence, in any equilibrium of the pricing subgame in which the consumer buys all the models,

firm i charges a price pi that leaves the consumer indifferent between buying all models or

not buying model i:

0 =U(E(M),M)−
∑

j∈E(M)

pj −

(
max

E′⊂E(M)\{i}
U(E ′,M)−

∑
j∈E′

pj.

)

⇐⇒ pi = min
E′⊂E(M)\{i}

U(E(M),M)− U(E ′,M)−
∑

j∈E(M)\E′,j ̸=i

pj.
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A.2 Proof of Corollary 1

Proof. Fix models M, and suppose firm prices (pi) are given by (3). To establish the result,

we show that, under these prices, for each i ∈ E(M),

max
E′⊂E(M)\{i}

U(E ′,M) +
∑

j∈E(M)\E′

j ̸=i

pj = U(E(M)\{i},M). (6)

Note that this implies that prices (pi) given by (3) satisfy (2). Proposition 1 then implies

that these prices form a SPNE of the pricing subgame.

Note first that, when |E(M)| = 1, equation (6) automatically holds. Consider next the

case with |E(M)| ≥ 2. Pick i ∈ E(M), and E ′ ⊂ E(M)\{i}, E ′ ̸= E(M)\{i}, so that there

exists k ̸= i with k ∈ E(M) but k /∈ E ′. Let E ′′ = E ′ ∪ {k}, and note that

U(E ′,M) +
∑

j∈E(M)\E′

j ̸=i

pj

−

U(E ′′,M) +
∑

j∈E(M)\E′′

j ̸=i

pj


=U(E ′′\{k},M)− U(E ′′,M) + pk

=U(E ′′\{k},M)− U(E ′′,M) + U(E(M),M)− U(E(M)\{k},M) ≤ 0,

where the second equality follows since prices satisfy (3), and the inequality follows from

Assumption 1. Hence,

U(E ′′,M) +
∑

j∈E(M)\E′′

j ̸=i

pj = U(E ′ ∪ {k},M) +
∑

j∈E(M)\E′∪{k}
j ̸=i

pj ≥ U(E ′,M) +
∑

j∈E(M)\E′

j ̸=i

pj.

Since this inequality holds for all E ′ ⊂ E(M)\{i}, E ′ ̸= E(M)\{i}, it follows that

∀E ′ ⊂ E(M)\{i}, U(E(M)\{i},M) ≥ U(E ′,M) +
∑

j∈E(M)\E′

j ̸=i

pj,

and so (6) holds.
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A.3 Proof of Proposition 2

Proof. Fix models M = (Mi), and for each i let f̂i,D(i)(x) = Mi(x,D
(i)). The total surplus

from models M is

TS(M) = −E

 ∑
i∈E(M)

w
E(M)
i f̂i,D(i)(x)− y

2−
∑

i∈E(M)

c(Mi)− u.

Suppose the action profile M∗ maximizes total surplus. For each firm i, let f̂ ∗
i,D(i)(·) =

M∗
i (·, D(i)). Consider firm j and model M ′

j ̸= M∗
j . Let f̂

′
j,D(j)(·) = M ′

j(·, D(j)). Given optimal

weights and the prices in Corollary 1, the profit (net of entry costs) that firm j gets under

action profile M′ =
(
M∗

−j,M
′
j

)
is

Πj(M
′) =− E

 ∑
i∈E(M′)

w
E(M′)
i f̂i,Di(x)− y

2
+ E

 ∑
i∈E(M∗)\{j}

w
E(M∗)\{j}
i f̂ ∗

i,Di(x)− y

2− c(M ′
j)

=TS(M′)− TS
(
M∗

−j, ∅
)
.

Note then that,

Πj(M
′)− Πj(M

∗) = TS(M′)− TS
(
M∗

−j, ∅
)
− TS(M∗) + TS

(
M∗

−j, ∅
)

= TS(M′)− TS(M∗)

≤ 0.

Hence, the game has a SPNE in which firms choose M∗ and set the corresponding prices in

Corollary 1, and the consumer purchases all models and chooses weights optimally.
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A.4 Proof of Proposition 3

We begin with a lemma characterizing when Assumption 1 holds.

Lemma 2. Assumption 1 holds when all firms have access to the same model and u <

−B − 3
2
V − σ2.

Proof. Note first that, when all firms choose the same model, it is optimal for the consumer

to assign equal weights to each model. Hence, for any set E ⊂ E(M)

U(E,M) = −Ef,D,x

(∑
i∈E

1

|E|
f̂i,Di − y

)2


= −B − 1

|E|
V − σ2,

where the last equality uses Lemma 1, together with all models being identical with bias B

and variance V , and with datasets being iid across firms (so that the variance of the averaged

prediction is 1/|E| the variance of each model).

Fix E ⊂ E(M), a nonempty E ′ ⊂ E, and j ∈ E ′. If |E ′| ≥ 2, then

U(E ′,M)− U(E ′\{j},M) =
V

|E ′|(|E ′| − 1)

≥ V

|E|(|E| − 1)
= U(E,M)− U(E\{j},M).

If |E ′| = 1, then E ′ = {j}, and so

U(E ′,M)− U(E ′\{j},M) = −B − V − σ2 − u.

We consider two cases when |E ′| = 1. If E ′ = E, then

U(E ′,M)− U(E ′\{j},M) = U(E,M)− U(E\{j},M).
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If E ′ ⊊ E, then

U(E ′,M)− U(E ′\{j},M) = −B − V − σ2 − u

≥ 1

2
V ≥ V

|E|(|E| − 1)
= U(E,M)− U(E\{j},M),

where the first inequality follows by assumption.

The proposition follows from a second lemma, which describes equilibrium outcomes and

surpluses:

Lemma 3. Suppose all firms are symmetric and have access to the same model M with

expected variance V and expected squared bias B.

In every pure-strategy SPNE, firms’ entry decisions maximize total surplus.

(i) If V < 2c, in every pure-strategy SPNE one firm enters, and sets price p = −B− V −

σ2 − u. The consumer surplus is 0.

(ii) If V ≥ 2c, in every pure-strategy SPNE the number of entrants is

NE = max

{
j ∈ N :

V

j(j − 1)
≥ c

}
, (7)

and all firms that enter charge price p = V
NE(NE−1)

. The consumer surplus is −B −
2NE−1

NE(NE−1)
V − σ2 − u.

Proof. Consider first the pricing subgame. Suppose that NE = |E(M)| firms entered the

market, and each choose the model M . Since all firms have the same model, by Corollary 1,

in an equilibrium in which all models are bought, all firms set a price equal to their marginal

contribution. Further, since each firm sells the same model given their data, the consumer

must weigh each model equally, that is, wi =
1

NE
for all i.

Using the bias-variance decomposition in Lemma 1, we can explicitly compute the equi-

librium price. If there is only one entrant,

p = −Ef,x

[
(f̂1,D(1)(x)− y)2

]
− u = −B − V − σ2 − u.
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If there are two or more entrants, NE ≥ 2, then

p =− Ef,D,x

( 1

NE

NE∑
i=1

f̂i,Di(x)− y

)2
+ Ef,D,x

( 1

NE − 1

NE−1∑
i=1

f̂i,Di(x)− y

)2


= Ef,D,x

[
− 1

N2
E

NE∑
i=1

VarD

(
f̂i,Di(x) | x

)
+

1

(NE − 1)2

NE−1∑
i=1

VarD

(
f̂i,Di(x) | x

)]
=

V

NE(NE − 1)
.

Note that price is strictly decreasing in the number of firms in the market when NE ≥ 2, and

that a firm’s profit is independent of B. Intuitively, the marginal value for the consumer of

purchasing one model is that it reduces the variance. At the same time, since all firms have

access to the same model, buying one more model leaves the bias unchanged.

Next, consider the stage where the firms are making entry decisions. The equilibrium

price p should be higher than the cost of entry c so that firms are willing to enter. Hence, the

number of entrants is given by NE in (7). One can check that NE maximizes total surplus

TS = −B − 1
NE

V − σ2 −NEc− u.

Now we consider surpluses. A firm’s surplus in equilibrium is just the price minus the

entry cost: 
V

NE(NE−1)
− c if NE > 1

−B − V − σ2 − u− c if NE = 1

For consumer surplus, if NE = 1, the market is a monopoly and equilibrium price is

such that the consumer is indifferent between purchasing the model and the outside option.

The monopolist extracts all surplus and thus, consumer surplus is 0. If NE ≥ 2, consumer
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surplus is equal to

− Ef,x

( 1

NE

NE∑
i=1

f̂i(x)− y

)2
− pNE − u

=−B − V

NE

− σ2 − V

NE − 1
− u

=−B − 2NE − 1

NE(NE − 1)
V − σ2 − u.

This completes the proof.

A.5 Proof of Proposition 4

Proof. Suppose firm 1 chooses M(t) and firm 2 chooses M(t0). Let w(t) be the weight the

consumer places on firm 1’s prediction. Firm 1’s payoff is

Π(t) = V (t0) +B(t0)− (1− w(t))2(V (t0) +B(t0))− w(t)2(V (t) +B(t))

− 2w(t)(1− w(t))

∫
b0(f, x)bt(f, x)dFdG− c

= V (t0) +B(t0)− (1− w(t))2(V (t0) +B(t0))− w(t)2(V (t) +B(t))

− 2w(t)(1− w(t))
√

B(t0)B(t) cos(θ(t))− c.

The result will follow from computing the first-order condition and second-order condition

for optimality of the best response M(t0).

The optimal weights for the consumer also maximize firm 1’s payoff. So by the envelope

formula, we can calculate dΠ
dt

taking w(t) to be constant. We then compute

dΠ

dt
= −w(t)2 V ′(t)− w(t)2B′(t)− 2w(t)(1− w(t))

√
B(t0)

d

dt

[√
B(t) cos(θ(t))

]
= −w(t)2 V ′(t)− w(t)2B′(t)− 2w(t)(1− w(t))

√
B(t0)

(
B′(t)

2
√

B(t)
cos(θ(t))−

√
B(t) sin(θ(t)) θ′(t)

)
.
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We now evaluate at t = t0. By symmetry, we have w(t0) =
1
2
. Since θ(t0) = 0, we obtain

the first-order condition

−1

4
V ′(t0)−

1

2
B′(t0) = 0.

We next consider the second-order condition. To calculate the second derivative, it is

helpful to write

Z(t) =
√
B(t0)

(
B′(t)

2
√
B(t)

cos(θ(t))−
√

B(t) sin(θ(t)) θ′(t)

)

and calculate

Z ′(t) =
√

B(t0)

(
B′′(t)

2
√

B(t)
cos(θ(t))− B′(t)2

4B(t)3/2
cos(θ(t))− B′(t)√

B(t)
sin(θ(t))θ′(t)

−
√
B(t) cos(θ(t)) θ′(t)2 −

√
B(t) sin(θ(t)) θ′′(t)

)
.

We then have

d2Π

dt2
=− w(t)2 V ′′(t)− w(t)2B′′(t)− 2w(t)(1− w(t))Z ′(t)

− 2w(t)w′(t)(V ′(t) +B′(t))− 2(1− 2w(t))w′(t)Z(t).

We want to evaluate this expression at t = t0. Recall that w(t0) =
1
2
and θ(t0) = 0. We

can compute Z(t0) =
B′(t0)

2
and Z ′(t0) =

B′′(t0)
2

− B′(t0)2

4B(t0)
−B(t0)θ

′(t0)
2. So

d2Π

dt2

∣∣∣∣
t=t0

= −1

4
V ′′(t0)−

1

2
B′′(t0)− w′(t0)(V

′(t0) +B′(t0)) +
B′(t0)

2

8B(t0)
+

B(t0)

2
θ′(t0)

2.

The second-order condition requires that this quantity is non-positive. To complete the

proof, we will show that

−w′(t0)(V
′(t0) +B′(t0)) =

B′(t0)
2

4V (t0)
.
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We want to find w′(t0). The weight w(t) is chosen to minimize

w(t)2(V (t) +B(t)) + (1− w(t))2(V (t0) +B(t0)) + 2w(t)(1− w(t))
√

B(t)B(t0) cos(θ(t)).

The first-order condition for w(t) gives

w(t)(V (t) +B(t)) + (w(t)− 1)(V (t0) +B(t0)) + (1− 2w(t))
√

B(t)B(t0) cos(θ(t)) = 0.

Implicitly differentating in t, we obtain

w′(t)(V (t) +B(t) + V (t0) +B(t0)− 2
√
B(t)B(t0) cos(θ(t)))

+w(t)(V ′(t) +B′(t)) + (1− 2w(t))
√

B(t0)
d

dt

[√
B(t) cos(θ(t))

]
= 0.

Substituting t = t0, we have

w′(t0) = −V ′(t0) +B′(t0)

4V (t0)
.

Finally, the first-order condition V ′(t0) + 2B′(t0) = 0 gives

−(V ′(t0) +B′(t0))w
′(t0) =

B′(t0)
2

4V (t0)
.

Substituting into the expression for d2Π
dt2

∣∣∣
t=t0

above gives the result.

A.6 Differentiation in Linear Regression Models

Let β
2
= Eβ[β

2
l ]. The following Lemma gives the bias-variance decomposition of the expected

mean squared error for the linear regression setting.

Lemma 4. Suppose firm i chooses model Mi that includes |Mi| ≤ k covariates. Then, firm
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i’s prediction error is

E[(y − xT β̂(i))2] = σ2 + β
2
(k − |Mi|)︸ ︷︷ ︸

Bi=E[(xT β−xTE[β̂(i)])2]

+(β
2
(k − |Mi|) + σ2)

(
|Mi|

n− |Mi| − 1

)
︸ ︷︷ ︸

Vi=E[(xTE[β̂(i)]−xT β̂(i))2]

. (8)

Proof. Fix a modelMi with |Mi| = d ≤ k, and assume wlog that modelMi includes covariates

l = 1, ..., d. By Lemma 1, we have the following bias-variance decomposition:

E[(y−xT β̂(i))2] = σ2+Eβ,x[(x
Tβ−xTED(i)|β[β̂

(i)])2]+Eβ,D(i),x[(x
TED(i)|β[β̂

(i)]−xT β̂(i))2]. (9)

Consider the second term on the RHS of (9), and note that

Eβ,x[(x
Tβ − xTED(i)|β[β̂

(i)])2] = Eβ,x

( k∑
l=1

xl(βl − ED(i)|β[β̂
(i)
l ])

)2


= Eβ,x

[
k∑

l=1

x2
l (βl − ED(i)|β[β̂

(i)
l ])2

]

=

[
k∑

l=1

Ex[x
2
l ]Eβ(βl − ED(i)|β[β̂

(i)
l ])2

]
= Eβ[∥β − ED(i)|β[β̂

(i)]∥2],

where the second and third equalities use x ∼ N(0, Ik) and x independent of D(i) = (Xi, Yi)

and β, and the last equality again uses x ∼ N(0, Ik), and so E[x2
l ] = 1 for all l.

Consider next the last term on the RHS of (9):

Eβ,D(i),x[(x
TED(i)|β[β̂

(i)]− xT β̂(i))2] = Eβ,D(i),x

( k∑
l=1

xl(ED(i)|β[β̂
(i)
l ])− β̂

(i)
l

)2


= Eβ,D(i),x

[
k∑

l=1

x2
l (ED(i)|β[β̂

(i)
l ]− β̂

(i)
l )2

]

=

[
k∑

l=1

Ex[x
2
l ]Eβ,D(i)(ED(i)|β[β̂

(i)
l ]− β̂

(i)
l )2

]
= Eβ,D(i) [∥ED(i)|β[β̂

(i)]− β̂(i)∥2].
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Hence,

E[(y − xT β̂(i))2] = σ2 + Eβ[∥β − ED(i)|β[β̂
(i)]∥2] + Eβ,D(i) [∥ED(i)|β[β̂

(i)]− β̂(i)∥2]

Let βMi
= (βl)l∈Mi

denote the coefficients of the covariates included in Mi. Note that

β̂
(i)
Mi

= (XT
i,Mi

Xi,Mi
)−1XT

i,Mi
Yi = (XT

i,Mi
Xi,Mi

)−1XT
i,Mi

(Xi,Mi
βMi

+η) = βMi
+(XT

i,Mi
Xi,Mi

)−1XT
i,Mi

η

where η = Yi−Xi,Mi
βMi

=
∑k

l=d+1 xi,lβl+ ϵ ∼ N(0, σ2
d× I) with σ2

d =
∑k

l=d+1 β
2
l +σ2. Then,

ED(i)|β[β̂
(i)
Mi
] = βMi

+ ED(i)|β[(X
T
i,Mi

Xi,Mi
)−1XT

i,Mi
η] = βMi

,

where we used ED(i)|β[(X
T
i,Mi

Xi,,Mi
)−1XT

i,,Mi
η] = 0 (since η is independent of Xi,,Mi

, and

ED(i)|β[η] = 0). Since β̂
(i)
l = 0 for all l /∈ Mi, and using βMc

i
= (βl)l /∈Mi

and β
2
= Eβ[β

2
l ], we

get

Eβ[∥β − ED(i)|β[β̂
(i)]∥2] = Eβ[∥βMc

i
∥2] = β

2
(k − d) = β

2
(k − |Mi|).

Consider next the term Eβ,D(i) [∥ED(i)|β[β̂
(i)] − β̂(i)∥2]. Note that, since β̂

(i)
l = 0 for all

l /∈ Mi, Eβ,D(i) [∥ED(i)|β[β̂
(i)] − β̂(i)∥2] = Eβ,D(i) [∥ED(i)|β[β̂

(i)
Mi
] − β̂

(i)
Mi
∥2]. Hence, using β̂

(i)
Mi

=

βMi
+ (XT

i,Mi
Xi,Mi

)−1XT
i,Mi

η and ED(i)|β[β̂
(i)
Mi
] = βMi

, we get

Eβ,D(i) [∥ED(i)|β[β̂
(i)]− β̂(i)∥2] = Eβ[ED(i)|β[∥(XT

i,Mi
Xi,Mi

)−1XT
i,Mi

η∥2]]

= Eβ[ED(i)|β[η
TXi,Mi

(XT
i,Mi

Xi,Mi
)−1(XT

i,Mi
Xi,Mi

)−1XT
i,Mi

η]]

= Eβ[ED(i)|β[tr((X
T
i,Mi

Xi,Mi
)−1(XT

i,Mi
Xi,Mi

)−1XT
i,Mi

ηηTXi,Mi
)]]

= tr(Eβ[ED(i)|β[(X
T
i,Mi

Xi,Mi
)−1(XT

i,Mi
Xi,Mi

)−1XT
i,Mi

Eη[ηη
T ]Xi,Mi

]])

= tr
(
Eβ

[
ED(i)|β[(X

T
i,Mi

Xi,Mi
)−1]σ2

d

])
=

d

n− 1− d
(β

2
(k − d) + σ2)

where the fourth equality uses the independence of η and Xi,Mi
, the fifth equality uses

Eη[ηη
T ] = σ2

dI (since η ∼ N(0, σ2
dI), with σ2

d = (
∑k

l=d+1 β
2
l + σ2)), and the last equality
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follows since Eβ[β
2
l ] = β

2
and since (XT

i,Mi
Xi,Mi

)−1 has an inverse-Wishart distribution with

n degrees of freedom and scale matrix Id, and so ED(i)|β[(X
T
i,,Mi

Xi,Mi
)−1] = 1

n−1−d
Id.

Suppose firms 1 and 2 enter the market with models M1 and M2. Let w ∈ [0, 1] denote

the weight that the consumer puts on model 1. The price the consumer pays for model 1 is

p1 = E[(y − xT β̂(2))2]− E[(y − wxT β̂(1) − (1− w)xT β̂(2))2]

= E[(y − xT β̂(2))2]− σ2 − w2B1 − w2V1 − (1− w)2B2 − (1− w)2V2

− 2w(1− w)Ef,x[(f(x)− ED(1) [f̂1,D(1)(x)|f, x])(f(x)− ED(2) [f̂2,D(2)(x)|f, x])]

= E[(y − xT β̂(2))2]− σ2 − w2B1 − w2V1 − (1− w)2B2 − (1− w)2V2

− 2w(1− w)β
2|{l ∈ {1, .., k} : l /∈ M1 ∪M2}|, (10)

where f̂i,D(i)(x) = xT β̂(i) is i’s prediction. The last equality follows since, for i = 1, 2,

f(x)− ED(i) [f̂i,D(i)(x)|f, x] = xTβ − xTED(i)|β[β̂
(i)] =

∑
l /∈Mi

βlxl,

and so

Ef,x[(f(x)− ED(1) [f̂1,D(1)(x)|f, x])(f(x)− ED(2) [f̂2,D(2)(x)|f, x])]

= Ef,x

[∑
l /∈M1

(βlxl)
∑
l′ /∈M2

(βl′xl′)

]

= Ef,x

[ ∑
l /∈M1∪M2

x2
l β

2
l

]

= β
2|{l ∈ {1, .., k} : l /∈ M1 ∪M2}|,

where the second and third equalities use xl ∼ N(0, Ik) and β independent of x.

Assume that the entry cost c(|M |) is strictly increasing and convex, with c(1) small. We

claim that if k is large enough, there is no equilibrium in which both firms enter with the

same model. To see why, note first that since firms’ payoff from entering is bounded above
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by the consumer’s outside option, for k large enough a firm that enters will choose a model

that excludes some covariates.

Suppose by contradiction that there exists an equilibrium in which both firms enter with

the same model M . By our arguments above M must exclude at least one covariate. Pick

l ∈ M and l′ /∈ M , and let M ′ = M ∪{l′}\{l}. That is, model M ′ is equal to M , except that

it includes covariate l′ and does not include covariate l. Let B and V denote respectively,

expected squared bias and expected variance of model M . Note that since covariates are

exchangeable, model M ′ also has squared bias B and variance V .

Firm 1’s payoff from choosing model M when firm 2 chooses M is

E[(y − xT β̂(2))2]− 1

2
(B + V )− 1

2
β
2
(k − |M |)− σ2 − c(|M |),

where we used (10) together with the fact that the consumer optimally chooses a weight of

1/2 when both firms sell the same model.

Instead, firm 1’s payoff from choosing model M ′ when firm 2 chooses M is

E[(y − xT β̂(2))2]− 1

2
(B + V )− 1

2
β
2
(k − |M | − 1)− σ2 − c(|M ′|),

where we again used (10) and the fact that the consumer optimally chooses a weight of 1/2

when firms choose models M and M ′. Since models M and M ′ are equally costly, choosing

model M ′ is a strictly profitable deviation.

Next, we consider a setting with two covariates, and with entry costs that don’t depend

on model size; i.e., c(|M |) = c for all M . We show that there are parameter values such

that, in equilibrium, firm i = 1, 2 chooses model Mi = {i}.2 Since the model is symmetric

across covariates and firms, it is enough to show that if firm 2 chooses model {2}, it is a best

response for firm 1 to enter with model {1}.
For M ∈ M, let p1(M) denote firm 1’s price when firm 1 sells model M and firm 2 sells

2As explained in the main text, with a slight abuse of notation we identify models with the covariates
that are included. So model {i} is the model that includes only covariate i. We also let {0} denote the
model with zero covariates.

39



model {2}. Let B2 and V2 denote, respectively, the squared bias and variance of model {2}.
Using (8) and (10),

p1({1}) = B2 + V2 − min
w∈[0,1]

(
(w2 + (1− w)2)β

2
+ (w2 + (1− w)2)(β

2
+ σ2)

1

n− 2

)
p1({2}) = B2 + V2 − min

w∈[0,1]

(
(w2 + (1− w)2)β

2
+ (w2 + (1− w)2)(β

2
+ σ2)

1

n− 2
+ 2w(1− w)β

2
)

p1({1, 2}) = B2 + V2 − min
w∈[0,1]

(
(1− w)2β

2
+ (1− w)2(β

2
+ σ2)

1

n− 2
+ w2σ2 2

n− 3

)
p1({0}) = B2 + V2 − min

w∈[0,1]

(
w22β

2
+ (1− w)2β

2
+ (1− w)2(β

2
+ σ2)

1

n− 2
+ 2w(1− w)β

2
)

Clearly, p1({1}) > p1({2}). Next, note that, if

σ2 2

n− 3
> β

2
+ (β

2
+ σ2)

1

n− 2
⇐⇒ 1

n− 3
>

β
2

σ2
,

then p1({1}) > p1({1, 2}). Lastly, let

w∗ = arg min
w∈[0,1]

w22β
2
+ (1− w)2β

2
+ (1− w)2(β

2
+ σ2)

1

n− 2
+ 2w(1− w)β

2
,

and note that w∗ ∈ (0, 1). Then

2w∗β
2
> (w∗)2

(
β
2
+

β
2
+ σ2

n− 2

)
⇐⇒ β

2

σ2
>

w∗

2(n− 2)− w∗(n− 2)− w∗

implies p1({1}) > p1({0}). Indeed, the inequality implies

min
w∈[0,1]

w22β
2
+ (1− w)2β

2
+ (1− w)2(β

2
+ σ2)

1

n− 2
+ 2w(1− w)β

2

=2w∗β2 + (1− w∗)2β
2
+ (1− w∗)2(β

2
+ σ2)

1

n− 2

>((w∗)2 + (1− w∗)2)β
2
+ ((w∗)2 + (1− w∗)2)(β

2
+ σ2)

1

n− 2

≥ min
w∈[0,1]

(w2 + (1− w)2)β
2
+ (w2 + (1− w)2)(β

2
+ σ2)

1

n− 2
.
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Hence, if entry costs are smaller than p1({1}) > 0, and if

1

n− 3
>

β
2

σ2
>

w∗

2(n− 2)− w∗(n− 2)− w∗ ,

there is an equilibrium in which firm i = 1, 2 enters with model Mi = {i}.

A.7 Proof of Proposition 5

Proof. The consumer’s expected payoff at the equilibrium with models (M1,M2) is

U({1, 2}, (M1,M2))− p1 − p2 = U({1, 2}, (M1,M2))− (U({1, 2}, (M1,M2))− U({1}, (M1,M2)))

− (U({1, 2}, (M1,M2))− U({2}, (M1,M2)))

= U({1}, (M1,M2)) + U({2}, (M1,M2))− U({1, 2}, (M1,M2)).

We can assume without loss of generality that

U({1}, (M1,M2))− c(M1) ≥ U({2}, (M1,M2))− c(M2). (11)

The consumer’s expected payoff in the pricing subgame after firms choose models (M1,M1)

is

U({1, 2}, (M1,M1))− p1 − p2 = U({1, 2}, (M1,M1))− 2(U({1, 2}, (M1,M1))− U({1}, (M1,M1)))

= 2U({1}, (M1,M1))− U({1, 2}, (M1,M1)).

We must have

U({1, 2}, (M1,M1))− c(M1) ≤ U({1, 2}, (M1,M2))− c(M2) (12)

because otherwise firm 2 would deviate to chooseM1 in the equilibrium with models (M1,M2).

Further note that U({1}, (M1,M2)) = U({1}, (M1,M1)). Combining inequalities (11) and
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(12) and adding U({1}, (M1,M1)) to both sides gives

U({1}, (M1,M2))+U({2}, (M1,M2))−U({1, 2}, (M1,M2)) ≤ 2U({1}, (M1,M1))−U({1, 2}, (M1,M1)).

This inequality shows that the consumer surplus at the equilibrium with differentiation is

weakly less than consumer surplus in the equilibirum of the pricing subgame after both firms

choose model M1. We further note the inequality is strict if either of (11) and (12) are.

A.8 Proof of Proposition 6

Proof. Let V1 = Ef,x,D[(ED|f [f̂1(x)] − f̂1(x))
2] be the expected variance of M1. The payoff

to firm 2 from entering and choosing M2 with bias constant α2 and expected variance V2 =

Ef,D,x[(ED|f [f̂2(x)]− f̂2(x))
2] is p2 − c(M2), where (omitting superscripts from weights)

p2 = −E
[(

w1f̂1(x) + w2f̂2(x)− y
)2]

+ E
[(

f̂1(x)− y
)2]

= (1− w2
1)(α

2
1B0 + V1)− w2

2(α
2
2B0 + V2)− 2w1w2α1α2B0 by Lemma 1 and eq. (1).

So the payoff under firm 2’s optimal model choice is

max
w∈[0,1],M2∈M2

(1− w2)(α2
1B0 + V1)− (1− w)2(α2

2B0 + V2)− 2w(1− w)α1α2B0 − c(M2)

where w is the weight the consumer places on model M1. Firm 2 will enter if this maximum

is positive and will not enter if it is negative.

At M1 = M∗, we can perturb M1 such that the derivative of α2
1B0 + V1 is zero but the

derivative of α1 is positive. This decreases

(1− w2)(α2
1B0 + V1)− (1− w)2(α2

2B0 + V2)− 2w(1− w)α1α2B0 − c(M2)

for every feasible w and M2. Therefore this perturbation decreases the equilibrium payoff

for firm 2, which is the maximum over feasible w and M2 of this expression, and so decreases
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the value of entry. So there exists an interval of cf such that firm 2 would enter if firm 1

chooses any M1 with α1 ≤ α∗
1 (where α

∗
1 is the bias constant of M

∗) but not if firm 1 chooses

some M1 with α1 > α∗. If the outside option is sufficiently low, firm 1 will choose such a

model M1 at equilibrium.

A.9 Proof of Proposition 7

Proof. Suppose firm 1 chooses model M1 with expected variance V1. Firm 2’s payoff from

entering is

p2 = max
w∈[0,1],M2∈M2

(
φ(w,M2) + (1− w2)V1 − cm(M2)− cf

)
= (1− w2)V1 − cf + max

w∈[0,1],M2∈M2

(φ(w,M2)− cm(M2))

for some function φ(w,M2) that is independent of firm 1’s choice M1. So fixing cf , firm 2

chooses to enter if V1 is above a threshold level and not to enter if V1 is below this threshold

level.

Given ϵ > 0, we can choose cf such that this threshold level is V ∗
1 + ϵ, where V ∗

1 is the

expected variance of model M∗
1 . Taking ϵ sufficiently small, firm 2 would enter if firm 1

chooses model M∗
1 but not if firm 1 chooses model M ′

1. Then for u sufficiently negative,

it is optimal for firm 1 to choose a model such that firm 2 does not enter, which requires

c(M1) > c(M∗
1 ).
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