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Abstract

I study the problem of a durable goods monopolist who lacks commitment power

and whose marginal cost of production varies stochastically over time. I show that

a monopolist with stochastic costs usually serves the different types of consumers at

different times and charges them different prices. When the distribution of consumer

valuations is discrete, the monopolist exercises market power and there is inefficient

delay. When there is a continuum of types, the monopolist cannot extract rents and

the market outcome is efficient.
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1 Introduction

Consider a monopolist who produces a durable good and who cannot commit to a path of

prices. For settings in which production costs do not change over time, Coase (1972) argued

that this producer would not be able to sell at the static monopoly price. After selling the

initial quantity, the monopolist has the temptation to reduce prices to reach consumers with

lower valuations. This temptation leads the monopolist to continue cutting prices after each

sale. Forward-looking consumers expect prices to fall, so they are unwilling to pay a high

price. Coase conjectured that these forces would lead the monopolist to post an opening

price arbitrarily close to marginal cost. The monopolist would then serve the entire market

“in the twinkling of an eye” and the market outcome would be efficient.

The classic papers on durable goods monopoly (i.e., Stokey (1981); Fudenberg et al.

(1985); Gul et al. (1985)) provide formal proofs of the Coase conjecture: in any stationary

equilibrium, as the period length goes to zero the monopolist’s opening price converges to the

lowest consumer valuation. In the limit all buyers trade immediately, the market outcome

is efficient and the monopolist is unable to extract rents from buyers with higher valuations:

she obtains the same profits she would have earned if she were selling to a market in which

all consumers had the lowest valuation.

The goal of this paper is to study the problem of a durable goods monopolist who lacks

commitment power and whose cost of production varies stochastically over time. The as-

sumption that costs are subject to stochastic shocks is natural in many markets. Stochastic

costs may arise due to changes in input prices. For instance, high-tech firms face uncertain

and time-varying costs, partly because the prices of their key inputs tend to fall over time

and partly due to fluctuations in the prices of the raw materials that they use. Changes in

exchange rates also lead to stochastic costs if the monopolist sells an imported good or if

she uses imported inputs. The results in this paper show how changes in costs affect the

dynamics of prices, the timing of sales and the seller’s profits in durable goods markets.

The model is set up in continuous-time and the monopolist’s marginal cost evolves as a

geometric Brownian motion.1 Costs are publicly observable and at each moment the monop-

olist can produce any quantity at the current marginal cost. Continuous-time methods are

especially suitable to perform the option value calculations that arise with time-varying costs,

allowing me to obtain a tractable characterization of the equilibrium. The model delivers

simple expressions for equilibrium prices, allowing for the computation of profit margins as

1Section 2 considers a simple case in which costs fall deterministically over time; Section 8 discusses how
the results in the paper extend to a setting in which costs evolve as a Markov chain.
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a function of costs and the level of market penetration.

When the monopolist’s costs are time-varying, serving the entire market immediately is in

general not efficient. The reason for this is that changes in costs introduce an option value of

delaying trade. The efficient outcome in this setting is for the monopolist to serve consumers

with valuation v the first time costs fall below a threshold zv which is increasing in v. The

efficient outcome can be implemented by choosing a stochastically decreasing path of prices

that induces consumers to buy at the efficient time; for instance, consumers will buy at the

efficient time if the seller prices at marginal cost at all times.

This observation suggests the following generalization of the Coase conjecture for markets

with time-varying costs. Given a distribution of consumer valuations, say that an outcome

is Coasian if (i) it is Pareto efficient, and (ii) the monopolist earns the same profit as she

would earn if she were selling to a market in which all consumers had the lowest valuation.

Note that these conditions do not require the monopolist to sell to all consumers at the same

time or at the same price; in fact, doing so would be inefficient.

In this paper, I show that a durable goods monopolist with stochastic costs typically serves

the different types of consumers at different points in time and charges them different prices.

The market outcome is Coasian only when the set of consumer valuations is a continuum.

Indeed, when types are discrete the monopolist is able to extract rents from consumers

with higher valuations, and the equilibrium may feature inefficient delays. Consistent with

empirical evidence (e.g., Zhao (2008); Conlon (2012)), the monopolist’s profit margins are

initially large and decrease over time together with costs. These results contrast with those

obtained when costs don’t change over time, where the Coase conjecture holds for any value

distribution.

To see why the market outcome is in general not Coasian, consider a setting with two types

of consumers with valuations v2 > v1 > 0. Suppose first that costs decrease monotonically,

and note that efficiency requires serving high types when costs fall below a threshold z2

and serving low types when costs fall below z1 < z2. After selling to all high types, the

monopolist finds it optimal to sell to low types when costs fall to z1, charging them a price

of v1. This allows the monopolist to extract rents from high types when costs are above

z1. Indeed, high types expect prices to remain high until costs fall to z1, and are therefore

willing to pay a high price. Moreover, when costs are Brownian the equilibrium outcome is

not efficient. Intuitively, if the outcome were efficient the monopolist would serve high and

low types immediately when costs are initially below z1. The seller would thus extract rents

from high types when costs are above z1, but would not extract any rents from them when

costs are below z1. This introduces an option value to delay trade: a seller with cost close
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to z1 finds it profitable to wait and speculate with an increase in costs. In equilibrium the

monopolist doesn’t completely delay trade; instead, she sells to high types gradually at a

high price and attains the same profits as if she did delay.

Consider next a market with a continuum of consumer types. In contrast to the discrete

case, in this setting the monopolist has an incentive to cut her price immediately after each

sale to reach consumers with lower valuations. This erodes her ability to extract rents from

high type buyers: the profit margin she earns on them is equal to the expected discounted

profit margin she earns from consumers with the lowest valuation. Moreover, the market

outcome is efficient regardless of whether costs fall monotonically or not. Indeed, the incentive

to inefficiently delay trade disappears when types are a continuum, since the seller is unable

to extract rents from higher types even when costs are high.

Coase’s original arguments illustrate how commitment problems may prevent a monopo-

list producer of a durable good from exercising market power. The results in this paper show

that these forces are more general than what Coase described. In particular, these forces do

not rely on serving the entire market immediately, nor on serving every buyer at the same

price. In markets with time-varying costs, to attain efficiency and zero rent extraction it is

enough that the monopolist cannot credibly commit to delay trade from one sale to the next.

A natural interpretation of a model with discrete types is that it represents a market

in which there is a clear segmentation among consumers. With this interpretation, my

results imply that a dynamic monopolist with time-varying costs will be able to obtain more

profits in segmented markets, possibly at the expense of efficiency. For intermediary durable

goods, market segmentation arises naturally when the monopolist sells to firms in different

industries. For consumer durable goods, market segmentation may arise when buyers can

make investments prior to participating in the market. For instance, when the seller’s good is

complementary to some other good, the value distribution can be approximated by a two-type

distribution (i.e., those who own the complementary good and those who don’t).

The literature on durable goods monopoly has identified different ways in which a dynamic

monopolist can exercise market power. For instance, a durable goods monopolist can amelio-

rate her lack of commitment power by renting her good rather than selling it (Bulow (1982)),

or by introducing best-price provisions (Butz (1990)). The Coase conjecture also fails when

the monopolist faces capacity constraints (Bulow (1982); Kahn (1986); McAfee and Wiseman

(2008)), when consumers use non-stationary strategies (Ausubel and Deneckere (1989)), or

when buyers have an outside option (Board and Pycia (2014)).2 The current paper studies

2A dynamic monopolist can also extract rents when there is a deadline of trade; see, for instance, Güth
and Ritzberger (1998) and Hörner and Samuelson (2011).
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the problem of a durable goods monopolist with time-varying costs and identifies a new set-

ting in which such a seller can exercise market power: when costs are time-varying and types

are discrete a dynamic monopolist can extract rents from buyers with higher valuations.3

This paper relates to Biehl (2001), who studies a durable goods monopoly model in

which the valuations of the buyers are subject to idiosyncratic stochastic shocks (see also

Deb (2011)). Biehl (2001) shows that the monopolist may charge a constant high price in

this setting. Intuitively, idiosyncratic changes in valuations lead to a renewal of high type

consumers, allowing the seller to truthfully commit to a constant high price. In contrast, time-

varying costs produce aggregate changes in the net valuations of the buyers (i.e., valuations

minus marginal cost), leading to a different equilibrium dynamics.

This paper also shares some features with models of bargaining with one-sided incomplete

information. Deneckere and Liang (2006) study a bargaining game in which the valuation

of the buyer is correlated with the cost of the seller (see also Evans (1989); Vincent (1989)).

They show that there are recurring bursts of trade in equilibrium, with short periods of high

probability of agreement followed by long periods of delay. In the current paper there are

also recurring bursts of trade when types are discrete. For instance, with two types of buyers

the monopolist first sells to all high types when costs are initially large, and then sells to low

types when costs fall below some given threshold.

Fuchs and Skrzypacz (2010) study a one-sided incomplete information bargaining game

in which a new trader may arrive according to a Poisson process. The payoffs that the seller

and the buyer get upon an arrival depend on the buyer’s valuation for the seller’s good; for

instance, upon arrival the seller may run a second price auction between the original buyer

and the new trader. Fuchs and Skrzypacz (2010) show that the seller is unable to extract

rents in this setting: her inability to commit to a path of offers drives her profits down to

her outside option of waiting until the arrival of a new buyer. Moreover, the possibility of

arrivals leads to inefficient delays, with the seller slowly screening out high type buyers. In

the current paper, the monopolist is also unable to extract rents when there is a continuum

of types. However, the equilibrium outcome is efficient in this setting, with the seller serving

the different buyers at the point in time that maximizes total surplus.4

3Other papers study dynamic monopoly models in non-stationary environments. Stokey (1979) solves
the full commitment path of prices of a durable good monopolist when costs fall deterministically over time.
Sobel (1991) studies the problem of a dynamic monopolist in a setting in which new consumers enter the
market each period. Board (2008) characterizes the full commitment strategy of a durable good monopolist
when incoming demand varies over time. Garrett (2012) solves the full commitment strategy of a durable
good monopolist in a setting in which buyers arrive over time and their valuations are time-varying.

4In Fuchs and Skrzypacz (2010), achieving an efficient outcome requires the seller to post an initial price
weakly below the buyer’s lowest valuation. This can never be an equilibrium outcome in their model, since
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The possibility of arrivals in Fuchs and Skrzypacz (2010) introduces interdependencies

in the net valuations of the buyer and the seller, making their setting similar to the model

in Deneckere and Liang (2006). In a different paper, Fuchs and Skrzypacz (2013) consider

the model in Deneckere and Liang (2006) with a continuum of types. They show that the

equilibrium of this model converges to the outcome in Fuchs and Skrzypacz (2010) as the gap

between the seller’s lowest cost and the buyer’s lowest valuation converges to zero. The seller

is therefore unable to extract rents from the buyer in this gapless limit. In the current paper,

the monopolist also loses the ability to extract rents as valuations become a continuum.

The difference, however, is that this result holds for any model with a continuum of types,

regardless of the lowest consumer valuation, i.e., regardless of the size of the gap.

Finally, Bagnoli et al. (1989), von der Fehr and Kühn (1995) and Montez (2013) show

that the Coase conjecture fails when the monopolist faces a discrete number of buyers: in this

setting there are inefficient equilibria under which the monopolist exercises market power. In

contrast, the model in the current paper considers a monopolist with time-varying costs who

faces a continuum of consumers, each of whom is individually infinitesimal. In this setting,

whether the market outcome is efficient or not depends on the distribution of consumer

valuations (i.e., on whether types are discrete or a continuum).5

2 A simple example

This section illustrates some of the main results in the paper through a simple example in

which the seller’s costs fall deterministically over time. For conciseness, I keep the exposition

at an informal level and focus on one equilibrium of the game.6

Suppose the monopolists’ marginal cost at time t ≥ 0 is xt = x0e
µt, with x0 > 0 and

µ < 0. The monopolist faces a unit mass of buyers indexed by i ∈ [0, 1]. Each consumer is in

the market to buy a single unit of the seller’s good. Consumer i’s valuation is f(i) ∈ [v, v],

with v > v > 0. All players share the same discount rate r > 0. Costs are publicly observable

and it is common knowledge among buyers and seller that costs fall at rate µ.

the seller’s profits from posting this low price would be strictly below what she would earn by waiting until
a new buyer arrives. As a result, any equilibrium must necessarily involve inefficiencies.

5More broadly, this paper also relates to the growing literature that uses continuous-time methods to
analyze strategic interactions. For instance, continuous-time methods have been used to study the provision
of incentives in dynamic settings (Sannikov (2007, 2008)), political campaigns and political bargaining (Gul
and Pesendorfer (2012); Ortner (2015)) and dynamic markets for lemons (Daley and Green (2012)).

6Arguments similar to those in Sections 3-7 can be used to show that the equilibrium I present is the
unique stationary equilibrium satisfying certain “natural” properties.
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First-best. The first-best outcome is to serve buyers with value v at the time that solves

Vv(x0) = max
t≥0

e−rt(v − xt).

The solution to this problem is to sell the first time costs fall below zv = r
r−µv; i.e., to sell at

time tv(x0) = max{0, 1
µ

ln( zv
x0

)}. Note for all x > zv, Vv(x) = −µ
r−µv

(
zv
x

)−r
µ .

Markets with two types of buyers. Consider a market with two types of consumers:

high types with valuation v2 > 0 and low types with valuation v1 ∈ (0, v2). Let α ∈ (0, 1) be

the fraction of high type consumers in the market.

As is standard in durable goods monopoly models, consumers with high valuation buy

earlier, since delaying trade is costlier for them. Suppose that the game reaches a point at

which all high types have bought and left the market, and let x be the monopolist’s cost at

that point. Since all remaining buyers have valuation v1, the seller can charge them price v1

and extract all their surplus. Therefore, the seller’s continuation profits at this point are

Π(x) = max
t≥0

e−rt(1− α)(v1 − xeµt) = (1− α)Vv1(x).

The monopolist finds it optimal to sell to low types at the efficient time tv1(x) = max{0, 1
µ

ln(
zv1
x

)}.
Consider next a point in time at which high type buyers are still in the market. High

types know that, after they buy, the monopolist will sell to low types when costs fall to zv1 .

When costs are x, high types are willing to pay P (x, v2) = v2 − e−rtv1 (x)(v2 − v1), which is

the price that leaves them indifferent between buying now or waiting and buying together

with low types. High type consumers are willing to pay a price strictly larger than v1 when

costs are above zv1 , since they know that the seller won’t serve low types until costs fall to

zv1 . Thus, unlike the standard setting with time-invariant costs, the monopolist is able to

extract additional profits from high types.7 The rent that a v2-consumer gets from buying

at price P (x, v2) is e−rtv1 (x)(v2 − v1).

Given that high types are willing to pay P (x, v2), the monopolist sells to them at the

7Note that for x ∈ (zv1 , zv2 ], the profit margin from selling at price P (x, v2) is strictly larger than the
discounted profit margin from selling at price v1 when costs fall to zv1 ; indeed P (x, v2)− x− e−rtv1 (x)(v1 −
xeµtv1 (x)) = v2 − x− e−rtv1 (x)(v2 − xeµtv1 (x)) > 0.
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time that solves

max
t≥0

e−rt [α(P (xt, v2)− xt) + Π(xt)|x0 = x]

= max
t≥0

e−rt
[
(α(v2 − xt − e−rtv1 (xt)(v2 − v1)) + (1− α)e−rtv1 (xt)(v1 − xtv1 (xt))|x0 = x

]
The solution to this problem is tv2(x) = max{0, 1

µ
ln(

zv2
x

)}; that is, the monopolist finds it

optimal to serve high types at the efficient time. Indeed, since the monopolist sells to low

types when costs reach zv1 , the discounted payoff that she gets from serving high types at

time t is equal to the total surplus e−rt(v2−xeµt) minus the rent e−rtv1 (x)(v2−v1). Therefore,

it is optimal for the seller to serve high types at the efficient time.

More generally, in markets with a finite number of consumer types, the monopolist sells

to the different consumers at the efficient time. For any valuation vk, the price that vk-

consumers are willing to pay is P (x, vk) = vk − e−rtvk−1
(x)(vk − P (xtvk−1

(x), vk−1)). By an

induction argument, P (x, vk) = vk −
∑k−1

m=1 e
−rtvm (x)(vm+1 − vm). Note that the rent that a

consumer with valuation vk gets in this market is
∑k−1

m=1 e
−rtvm (x)(vm+1 − vm).

Markets with a continuum of types. Consider next a market with a continuum of

consumer valuations [v, v]. This setting can be approximated by a sequence of discrete

models with valuations Vj = {vj1, ..., vjnj} ⊂ [v, v] such that Vj becomes dense as j →∞.

Fix a valuation v ∈ [v, v] and a sequence vjkj ∈ Vj such that limj→∞ v
j
kj

= v. For any

model j in the sequence and for all x > zvjkj
, the price that consumers with valuation vjkj are

willing to pay is

P j(x, vjkj) = vjkj −
kj−1∑
m=1

(zvjm
x

)−r
µ

(vjm+1 − vjm)→ v −
∫ v

v

(zṽ
x

)−r
µ
dṽ as j →∞,

where I used e−rtvm (x) =
(
zvm
x

)−r
µ . If costs are initially larger than zv, the monopolist will

sell to buyers with valuation v at the time costs reach zv = rv
r−µ . The price at which such a

consumer buys is

v −
∫ v

v

(
zṽ
zv

)−r
µ

dṽ = zv + Vv(zv).

Note that the seller losses her ability to extract rents when she faces a continuum of types:

the profit margin she obtains from buyers with valuation v > v is exactly equal to Vv(zv),

which is the expected discounted profits she gets from a buyer with value v. Intuitively, when
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there is a continuum of types the monopolist has an incentive to reduce her price immediately

after each sale. Forward looking buyers anticipate this, so they are not willing to pay a high

price.

Why is the seller’s profit margin from serving consumers with valuation v > v exactly

equal to Vv(zv)? Since the outcome is efficient, the total surplus from selling to a buyer with

valuation v is Vv(zv). By the Envelope Theorem ∂Vv(x)
∂v

= e−rtv(x) = (zv/x)
−r
µ , so Vv(zv) =

Vv(zv) +
∫ v
v

(zv/x)
−r
µ dṽ. Of this surplus, a buyer with value v gets rents

∫ v
v

(zv/x)
−r
µ dṽ, and

the seller gets Vv(zv).

This deterministic example illustrates how changes in costs can affect the equilibrium

dynamics in durable goods markets. To summarize, the main takeaways of the example are:

(i) the monopolist is able to extract rents when types are discrete; (ii) this ability to extract

rents disappears when the set of consumer valuations is a continuum; and (iii) the market

outcome is always efficient.

The rest of the paper considers an environment in which the monopolist’s marginal cost

evolves as a geometric Brownian motion. Some of the results in this section carry through

when costs are stochastic; in particular, the monopolist can only extract rents when types

are discrete. Importantly, stochastic costs also lead to new results. Indeed, in contrast to

this deterministic environment, there is inefficient delay when costs are stochastic.

3 Model

A monopolist faces a continuum of consumers indexed by i ∈ [0, 1]. Consumers are in the

market to buy one unit of the monopolist’s good. Time is continuous and consumers can

make their purchase at any time t ∈ [0,∞). The valuation of consumer i ∈ [0, 1] is given

by f(i), where f : [0, 1]→ R+ is a non-increasing and left-continuous function that is right-

continuous at 0. All players are risk-neutral expected utility maximizers and discount future

payoffs at rate r > 0. I assume that f is a step function taking n values v1, ..., vn, with

0 < v1 < ... < vn. Section 7 studies the case in which f approximates a continuous function.

Let B = {Bt,Ft : 0 ≤ t < ∞} be a standard Brownian motion on a probability space

(Ω,F , P ). The monopolist’s marginal cost xt evolves as a geometric Brownian motion,

dxt = µxtdt+ σxtdBt, (1)

with σ > 0 and µ < r. The constants µ and σ measure the expected rate of change and the
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percentage volatility of xt, respectively. Let x0 > 0 be the (degenerate) initial level of cost.

At any time t the monopolist can produce any quantity at marginal cost xt. I assume that

the cost of maintaining an inventory is sufficiently large that the monopolist always finds it

optimal to produce on demand.8 The process xt is publicly observable and its structure is

common knowledge: seller and buyers commonly know that xt evolves as (1).

A (stationary) strategy for consumer i ∈ [0, 1] is a function p : R+ → R+ that describes

the cutoff price for i given the current level of costs. Suppose consumer i is still in the market

at time t. Under strategy p (·) consumer i purchases the good at time t if and only if the

price that the monopolist charges is weakly lower than p (xt).
9

Let P = P (x, i) be a strategy profile for the consumers, with P (·, i) denoting the strategy

of consumer i ∈ [0, 1]. Optimal behavior by the buyers implies that P (x, i) must satisfy the

skimming property : for all i < j, P (x, i) ≥ P (x, j) for all x. That is, buyers with higher

valuations are willing to pay higher prices. The reason for this is that it is costlier for buyers

with higher valuation to delay their purchase: if a buyer with valuation v finds it weakly

optimal to buy at some time t given a future path of prices, then buyers with valuation

v′ > v find it strictly optimal to buy at t. For technical reasons, I restrict attention to

strategy profiles such that P (x, i) is left-continuous in i and continuous in x (this restriction

guarantees that payoffs are well defined).

The skimming property implies that at any time t there exists a cutoff qt ∈ [0, 1] such

that consumers i ≤ qt have already left the market, while consumers i > qt are still in the

market. The cutoff qt describes the level of market penetration at time t. At each time t, the

level of market penetration and the monopolist’s marginal cost describe the payoff relevant

state of the game.

The monopolist chooses an Ft-progressively measurable and right-continuous path of

prices {pt} to maximize her profits. Given a strategy profile P of the consumers and a path

of prices {pt}, at each time s ≥ 0 all consumers remaining in the market whose cutoff is above

ps make their purchase; that is, the set of consumers that buy at time s are those consumers

i ∈ [0, 1] with P (xs, i) ≥ ps who have not bought before s.

Since P satisfies the skimming property and since consumers use stationary strategies, for

any path of prices {pt} there is a unique process {qt} which describes the induced evolution of

8When the production technology is “reversible”, so that the monopolist can transform at each time t a
unit of his good into xt dollars, the assumption that µ < r guarantees that she would always find it optimal
to produce on demand.

9These stationary strategies are the natural counterpart to the strategies that buyers use along the
equilibrium path in a stationary equilibrium of the standard durable goods monopoly model with constant
costs; see, for instance, Gul et al. (1985).
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market penetration.10 Moreover, the monopolist will find it optimal to charge price P (xt, q) if

consumer q is the marginal buyer at time t. Thus, I can alternatively specify the monopolist’s

problem as choosing a non-decreasing process {qt} with q0− = 0 and qt ≤ 1 for all t, describing

the level of market penetration at each time t. With this specification, under strategy {qt}
the seller charges P (xt, qt) at every time t, and at this price all buyers i ≤ qt who are still in

the market buy. Since the monopolist sells to all consumers whose cutoff is above the current

price, the process {qt} must be such that, for all t, P (xt, i) ≥ P (xt, qt) implies qt ≥ i.

Monopolist’s problem. Given a strategy profile P of the consumers, a strategy for the

seller is an Ft-progressively measurable process {qt} satisfying the conditions above such that

q0− = 0, qt is non-decreasing with qt ≤ 1 for all t, and {qt} is right-continuous with left-hand

limits.11 Let AP denote the set of all such processes. Given a strategy profile P of the

consumers and a strategy {qt} ∈ AP, the monopolist’s profits are

Π = E

[∫ ∞
0

e−rt (P (xt, qt)− xt) dqt
]
. (2)

Let Π (x, q) denote the monopolist’s future discounted profits conditional on the current

state being (x, q), and let AP
q,t denote the set of processes {qt} ∈ AP such that qt− = q. The

monopolist’s payoffs conditional on the state at time t− being equal to (x, q) are12

Π (x, q) = sup
{qt}∈AP

q,t

E

[∫ ∞
t

e−r(s−t) (P (xs, qs)− xs) dqs
∣∣∣∣Ft] . (3)

Consumer’s problem. Given a strategy {qt} of the monopolist and a strategy profile P

of the consumers, the path of prices is {P (xt, qt)}. The strategy P (x, i) of each consumer

i must be optimal given the path of prices {P (xt, qt)}: the payoff that consumer i gets

from buying at the time strategy P (x, i) tells her to buy must be weakly larger than what

she would get from purchasing at any other point in time. Formally, for any time t before

consumer i buys, it must be that f (i) − p ≤ supτ E[e−r(τ−t)(f (i) − P (xτ , qτ ))|Ft] for all

p > P (x, i), and f (i)− p ≥ supτ E[e−r(τ−t)(f (i)− P (xτ , qτ ))|Ft] for all p ≤ P (x, i).

10Indeed, for any strategy profile P of the consumers and any path of prices {pt}, the process {qt} is
described by: q0− = 0 and, for all t ≥ 0, qt = max{max{qs}s<t, sup{i ∈ [0, 1] : P (xt, i) ≥ pt}}.

11These continuity requirements on {qt} together with the continuity requirements on P (x, i) guarantee
that the integrals in (2) and (3) are well-defined.

12Note that the profits Π (x, q) are conditional on the state at time t−. The reason for this is to preserve
the right-continuity of {qt}, since this process may jump at time t.
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I impose two additional conditions on the strategies of the consumers. The first condition

says that v1-consumers pay their valuation:

∀i such that f (i) = v1, P (x, i) = v1 for all x. (4)

The second condition says that, for k > 1, the incentive compatibility constraint of vk-

consumers is tight: the price at which the last consumer with valuation vk buys leaves this

consumer indifferent between paying that price or waiting and buying when the monopolist

sells to vk−1-consumers. Formally, fix a strategy profile (P, {qt}). For k = 1, ..., n, let

αk = max{i ∈ [0, 1] : f (i) = vk} and let τk = inf{t : qt > αk+1} be the (random) time at

which the monopolist starts selling to consumers with valuation vk. Then, for k = 2, ..., n,

vk − P (x, αk) = E
[
e−r(τk−1−t)

(
vk − P

(
xτk−1

, qτk−1

))∣∣Ft] , (5)

whenever the state at t is (x, αk).

Definition 1 A strategy profile (P, {qt}) is an equilibrium if:

(i) {qt} is optimal for all states (x, q) ∈ R+ × [0, 1] given P (i.e., {qt} satisfies (3)),

(ii) for each i ∈ [0, 1], P (x, i) is optimal given {qt} and P, and

(iii) P satisfies conditions (4) and (5) given {qt}.

Conditions (i) and (ii) in Definition 1 require that the strategies of the seller and the

buyers be optimal. Condition (iii), on the other hand, imposes additional restrictions on the

buyers’ strategies. These restrictions determine the rents that the monopolist extracts from

different types of consumers. Consider first a time at which all consumers remaining in the

market have valuation v1. Since there is a single type of consumer left and the monopolist

has all the bargaining power (i.e., she is posting the prices), she should be able to extract

all the rents from the remaining buyers. This is what equation (4) requires. Similarly, when

all consumers with valuation v ≥ vk+1 have left the market, the monopolist knows that the

highest remaining types have valuation vk. These buyers have the option of mimicking vk−1-

consumers, getting a rent of E
[
e−r(τk−1−t)

(
vk − P

(
xτk−1

, qτk−1

))∣∣Ft]. Since the monopolist

has all the bargaining power, she should be able to leave vk-consumers with only this much

rent; this is what equation (5) requires.

The Online Appendix shows that the restrictions that condition (iii) imposes on the

buyers’ strategies necessarily hold in any subgame perfect equilibrium (SPE) of a discrete
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time version of this model. However, without imposing condition (iii), the continuous-time

game would have equilibria in which (4) or (5) are violated. The following example illustrates.

Example 1 Assume there are two types of buyers, high types with valuation v2 > 0 and low

types with valuation v1 ∈ (0, v2). I construct a strategy profile under which consumers are

never willing to pay more than the monopolist’s marginal cost; i.e., such that P (x, i) ≤ x for

all x ∈ R+ and all i ∈ [0, 1]. This strategy profile satisfies conditions (i) and (ii) in Definition

1, but doesn’t satisfy (iii).

The strategy profile I construct is as follows. For each i ∈ [0, 1] with f(i) = vk,

P (x, i) = vk − sup
τ∈T

E[e−rτ (vk − xτ )|x0 = x],

where T is the set of stopping times. The solution to supτ∈T E[e−rτ (vk − xτ )|x0 = x] is of

the form τk = inf{t : xt ≤ zk} for some cutoff zk ∈ (0, vk) such that z1 < z2 (see Lemma 1

below). Therefore, for all i ∈ [0, 1] with f(i) = vk,

P (x, i) =

{
vk − E[e−rτk(vk − xτ )|x0 = x] if x > zk,

x if x ≤ zk.

Note that P (x, i)− x = vk − x− supτ∈T E[e−rτ (vk − xτ )|x0 = x] < 0 for all x > zk, so under

this strategy profile buyers are never willing to pay more than marginal cost. Therefore, an

optimal strategy for the monopolist is to set prices always equal to marginal cost (i.e., choose

{pt} = {xt}), and sell to all consumers with valuation vk at time τk = inf{t : xt ≤ zk}.
Moreover, each individual buyer finds it optimal to buy the first time costs fall below zk (and

pay a price equal to marginal cost) when the monopolist follows this strategy. Thus, this

strategy profile satisfies conditions (i) and (ii) in Definition 1. However, this strategy profile

doesn’t satisfy condition (iii). First, when x < v1, consumers with valuation v1 are willing to

pay a price strictly lower than v1. Moreover, for all xt ∈ (z1, z2] and for all i with f(i) = v2,

v2 − P (xt, i) = v2 − xt > E[e−r(τ1−t)(v2 − xτ1)|Ft] = E[e−r(τ1−t)(v2 − P (xτ1 , qτ1))|Ft],

where the inequality follows since τ2 = inf{t : xt ≤ z2} solves supτ E[e−rτ (v2 − xτ )|x0 = x].

In a discrete-time version of this game, the strategy profile that buyers use in Example

1 can never be part of a SPE. To see this, suppose the game is in discrete-time and let

∆ > 0 be the time period. Consider a buyer with valuation vk who expects to buy in the

next period at a price equal to marginal cost. If current costs are x, today this consumer
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is willing to pay any price p such that vk − p > E[e−r∆(vk − xt+∆)|x0 = x]. Note that

vk − x > E[e−r∆(vk − xt+∆)|x0 = x] for x small. Therefore, when x is small this consumer

finds it strictly optimal to buy at a price strictly larger than marginal cost.13

Intuitively, in a discrete-time game buyers incur a fixed cost of delay if they choose not

to buy at the current price, since they must wait one time period for the seller to post a

new price. This cost of delay limits the rents that buyers can get in an SPE. Indeed, low

type buyers get a payoff of zero in any SPE of the discrete-time game (Lemma OA10 in the

Online Appendix). Similarly, the rents that high type buyers get in discrete-time are equal

to the payoff they get from mimicking low types (Lemma OA11 in the Online Appendix). In

contrast, buyers do not face a fixed cost of delay when the game is in continuous-time. As a

result, without imposing condition (iii) there would be equilibria in which the monopolist is

completely unable to extract any rents from consumers.14

4 First-best outcome

To compute the first-best outcome, consider first the problem of choosing the surplus maxi-

mizing time at which to serve a homogeneous group of buyers with valuation vk:

Vk (x) = sup
τ∈T

E
[
e−rτ (vk − xτ )

∣∣x0 = x
]
. (6)

Let λN be the negative root of 1
2
σ2λ (λ− 1) +µλ = r. Note that for any y < x, the expected

discounted time until xt reaches y when x0 = x is (x/y)λN . Let zk = −λN
1−λN

vk.

Lemma 1 The stopping time τk = inf {t : xt ≤ zk} solves (6). Moreover,

Vk (x) =

 (vk − zk)
(
x
zk

)λN
if x > zk,

vk − x if x ≤ zk.
(7)

Proof. Appendix B.1.

Lemma 1 captures the option value that arises when costs vary stochastically over time.

13This also implies that, in an SPE, the monopolist will not charge price equal to marginal cost the next
period, and so the price that consumers with valuation vk are willing to pay is even higher.

14The fact that, without additional restrictions, the continuous-time game has equilibria that can never
arise as limits of discrete-time SPE is related to the multiplicity of equilibria that arises in continuous-time
bilateral bargaining games in which there are no restrictions on the timing of offers and counteroffers; see,
for instance, Bergin and MacLeod (1993) and the discussion in Perry and Reny (1993), pp. 66-67.
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The total surplus from serving a group of buyers with valuation vk is maximized by waiting

until costs fall below the threshold zk. The threshold zk is increasing in µ and decreasing in

σ, so it is optimal to wait longer when costs fall faster or when they are more volatile. By

Lemma 1, under the first-best outcome the monopolist serves consumers with valuation vk

at time τk. Proposition 1 summarizes this result.

Proposition 1 Under the first-best outcome, the monopolist serves buyers with valuation vk

at time τk = inf{t : xt ≤ zk}.

Proposition 1 characterizes the first-best outcome when costs follow a geometric Brownian

motion. Note that limσ→0 zk = r
r−µvk whenever µ < 0; that is, when µ < 0 and σ → 0 the

outcome in Proposition 1 converges to the first-best outcome in Section 2. Finally, note that

the first-best outcome can be implemented by choosing a stochastically decreasing path of

prices that induces buyers to purchase at the optimal time. For example, consumers will buy

at the efficient time if the seller prices at marginal cost at all points in time.

5 Markets with two types of consumers

In this section I study markets with two types of buyers. Section 5.1 characterizes the

equilibrium. Section 5.2 discusses the most salient features of the equilibrium.

5.1 Equilibrium

Consider a market with two types of buyers, with values v2 > v1 > 0. Let α ∈ (0, 1) be the

fraction of high type buyers, so that f (i) = v2 for all i ∈ [0, α] and f (i) = v1 for all i ∈ (α, 1].

By equation (4), consumers with valuation v1 are willing to pay a price equal to v1.

For any q ∈ [α, 1], let Π (x, q) denote the monopolist’s profits when the level of market

penetration is q and costs are x. Note that at such a state only consumers with valuation

v1 remain in the market. Since all v1-consumers are willing to pay v1, at any state (x, q)

with q ≥ α the monopolist’s problem is to optimally choose the time at which to sell to all

remaining consumers; that is, Π (x, q) = (1− q) supτ E[e−rτ (v1 − xτ )|x0 = x]. By Lemma

1, the solution to this problem is τ1 = inf{t : xt ≤ z1}. Note then that, for all q ∈ [α, 1],

Π (x, q) = (1− q)V1 (x) =

 (1− q) (v1 − z1)
(
x
z1

)λN
if x > z1,

(1− q)(v1 − x) if x ≤ z1.
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Figure 1: Strategy P (x, α) of consumer α;
Parameters: v1 = 1

2 , v2 = 1, µ = −0.02, σ = 0.2 and r = 0.05.

Consider next a level of market penetration q ∈ [0, α). Recall that P (x, α) is the strategy

of consumer α, the last consumer with valuation v2. After consumer α buys, the monopolist

sells to low types when costs fall below z1 at price v1. By equation (5), P (x, α) satisfies

P (x, α) = v2 − E
[
e−rτ1 (v2 − v1)

∣∣x0 = x
]
. (8)

Figure 1 plots P (x, α). When xt > z1, consumer α knows that the monopolist won’t lower

her price to v1 until costs fall to z1, so she is willing to pay strictly more than v1. On the other

hand, when xt ≤ z1 consumer α knows that the monopolist will serve types immediately after

she buys, so she is only willing to pay v1.

For future reference, note that P (x, α) has a kink at z1. This kink is related to the seller’s

incentives to delay trade with low types. For levels of costs below z1, the seller always sells to

low types immediately after high types leave the market. As a result, in this range of costs,

small changes in x don’t affect the price that high types are willing to pay. In contrast, for

costs weakly above z1 an increase in costs strictly increases the expected waiting time until

the monopolist serves low types. Therefore, P (x, α) is strictly increasing in this range.

Lemma 2 P (x, α)− x > V1 (x) for all x ∈ (z1, z2]. Moreover,

P (x, α) =

 v2 − (v2 − v1)
(
x
z1

)λN
x > z1,

v1 x ≤ z1,
(9)
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types gradually 

Figure 2: Description of seller’s equilibrium strategies.

where λN is the negative root of 1
2
σ2λ (λ− 1) + µλ = r.

Proof. Appendix B.1.

Since the strategy profile of the buyers satisfies the skimming property, P (x, i) ≥ P (x, α)

for all x and all i < α. This implies that for q < α, the monopolist has the following

strategy available: choose optimally when to sell to all remaining high type consumers at

price P (xt, α), and then play the continuation game optimally. Therefore, for all states (x, q)

with q ∈ [0, α), the monopolist’s profits are bounded below by

L (x, q) = sup
τ∈T

E
[
e−rτ [(α− q) (P (xτ , α)− xτ ) + Π (xτ , α)]

∣∣x0 = x
]
. (10)

Theorem 1 There exists a unique equilibrium. In equilibrium, at every state (x, q) with

q ∈ [0, α) the monopolist’s profits are L (x, q). Moreover, for all t ≥ 0 with qt− < α, there

exists x (qt−) < z1 and x (qt−) ∈ (z1, z2) such that

(i) if xt > z2, the monopolist doesn’t sell;

(ii) if xt ∈ [x (qt−) , z2], the monopolist sells to all remaining high type consumers at price

P (xt, α), so dqt = α− qt−;

(iii) if xt ≤ x (qt−), the monopolist sells to all remaining consumers (high and low types) at

price v1, so dqt = 1− qt−;

(iv) if xt ∈ (x (qt−) , x (qt−)), the monopolist sells gradually to high type consumers at price

P (xt, qt) = xt − Lq (xt, qt) , (11)
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and qt evolves according to

dqt
dt

=
r (v2 − xt) + µxt

Lqq (xt, qt)
> 0. (12)

Proof. Appendix A.1.

Theorem 1 shows that the monopolist’s equilibrium profits are exactly equal to the lower

bound L(x, q). Figure 2 summarizes the monopolist’s equilibrium strategies.15

The force that drives the monopolist’s profits down to the lower bound L(x, q) is her

inability to commit to future prices. As in the standard model with time-invariant costs,

the monopolist has the temptation to accelerate trade whenever the prices that the buyers

are willing to pay are too high. To avoid this temptation, the price that the marginal high

type buyer is willing to pay when costs are in (x (q) , x (q)) is such that the monopolist is

indifferent between selling to high type buyers at any rate. The prices in equation (11) are

determined by this indifference condition of the seller.

At the same time, in equilibrium all high type buyers must obtain the same expected

payoff. Since high types buy at different points in time when costs are in (x (q) , x (q)), prices

must fall in expectation at a rate that leaves these consumers indifferent between buying now

and waiting. This indifference condition determines the rate (12) at which the monopolist

sells to high types when costs are in this region.

The equilibrium is efficient when costs are initially large. The intuition for this is the

same as in the example in Section 2. The profit margin the seller gets from serving all high

types at cost x is P (x, α)−x = v2−x−E[e−rτ1(v2− v1)|x0 = x]. When x0 is large, the rents

E[e−rτ1(v2 − v1)|x0 = x] that high types get are independent of the time at which the seller

serves them. As a result, it is optimal for the seller to serve high types at the efficient time.

On the other hand, the equilibrium is inefficient when x ∈ (x(q), x(q)). This feature of

the equilibrium can be best understood by studying the properties of the solution to the

optimal stopping problem in (10). Lemma B2 in the appendix shows that the solution to

this optimal stopping problem consists of delaying trade with high types when costs are in

(x(q), x(q)); that is, for all x in (x(q), x(q)), the monopolist prefers to completely delay trade

with high types than to sell to all of them immediately.

15There are two ways of interpreting the gradual sales when xt ∈ (x (qt−) , x (qt−)). The first one is to
assume, as I do, that different consumers with valuation v2 use different strategies, and therefore buy at
different points in time. An alternative interpretation is that buyers with valuation v2 mix between buying
and not buying when xt ∈ (x (qt−) , x (qt−)).
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Figure 3: Equilibrium profits L(x, q);
Parameters: v1 = 1

2 , v2 = 1, α = 0.7, µ = −0.02, σ = 0.25 and r = 0.05.

To see why, for all q < α and all x let g (x, q) be the seller’s profits from selling to all high

types immediately at state (x, q); i.e., g (x, q) = (α − q)(P (x, α) − x) + Π(x, α). Note that

L (x, q) = supτ∈T E[e−rτg (xτ , q)|x0 = x]. Since P (x, α) has a convex kink at z1, g (x, q) also

has a convex kink at z1. As a result, when x is close to z1 the monopolist can obtain larger

profits by delaying trade with high types than by serving all of them immediately. Intuitively,

the seller benefits from delaying trade when costs are close to z1, since an increase in costs

allows her to extract more rents from high types. However, delaying trade with high types is

also costly for the seller, since this means that she must also delay trade with low types. The

cutoffs x(q) and x(q) are the points at which the benefits from delaying trade by an instant

are equal to the costs. Figure 3 plots L(x, q) and g(x, q) and illustrates the gains the seller

gets by waiting when x ∈ (x (q) , x (q)).

Since L(x, q) > g(x, q) for all x ∈ (x(q), x(q)), the monopolist does not sell to all remaining

high types immediately when costs are in this range. However, instead of delaying trade

completely with high types, the monopolist sells to them gradually and attains the same

profits as if she delayed. Indeed, not making any sales when x ∈ (x(q), x(q)) cannot be

equilibrium behavior. To see why, suppose that the monopolist doesn’t make any sales when

costs are in (x(q), x(q)). Since this delay is inefficient, there exist a price at which consumers

and monopolist would strictly prefer to trade immediately than to wait; offering such a price

constitutes a profitable deviation for the monopolist.

I end this section by providing a brief sketch of the arguments I use to show that the

seller’s profits are equal to L(x, q). To establish this, I start by showing that when q < α, the
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monopolist makes sales at a positive rate if and only if her costs are below z2 (Lemma B8). If

the monopolist sells to all remaining high types, her profits are (α−q)(P (x, α)−x)+Π(x, α) ≤
L(x, q). In this case the monopolist earns exactly L(x, q), since this is a lower bound to profits.

If instead the monopolist sells to some remaining high types, the price that she charges them

cannot be too high; otherwise, the monopolist would have a temptation to accelerate trade.

Indeed, the proof of Theorem 1 shows that, when the monopolist sells to a fraction of the

remaining high types, the price that she charges must leave her indifferent between making

these sales or waiting and selling to all remaining high-type consumers at a future date

τ (Lemmas B12-B14). Letting Π(x, q) be the seller’s equilibrium payoff at state (x, q), this

implies that Π(x, q) = E[e−rτ ((α−q)(P (xτ , α)−xτ )+Π(xτ , α))] ≤ L(x, q). Since equilibrium

profits are bounded below by L(x, q), it must be that Π(x, q) = L(x, q).

5.2 Features of the equilibrium

In this section I present the most salient features of the equilibrium. I start by discussing

how the equilibrium outcome relates to the results on the Coase conjecture. In markets with

time-invariant costs the Coase conjecture predicts that the monopolist will post an opening

price equal to the lowest valuation. All buyers trade immediately at this price, the market

outcome is efficient, and the seller earns the same profits she would have earned if all buyers

in the market had the lowest valuation.

With time-varying costs, selling to all consumers immediately is in general not efficient.

By Proposition 1, efficiency requires the monopolist to serve the different types of consumers

sequentially as costs decrease. On the other hand, the monopolist’s profits would be V1 (x) =

supτ E[e−rτ (v1 − xτ )|x0 = x] if all consumers had the lowest valuation, since in this case

she would sell to all buyers at a price equal to v1. This observation suggests the following

generalization of the Coase conjecture for markets with time-varying costs:

Definition 2 Say that an outcome is Coasian if (i) it is efficient, and (ii) the monopolist’s

profits are equal to V1(x0).

Under a Coasian outcome the monopolist is unable to extract more rents from buyers

with higher valuations than what she extracts from buyers with valuation v1. Note that

V1 (x0) → 0 as v1 → 0: under a Coasian outcome the seller’s profits converge to zero as the

lowest valuation goes to zero.

The equilibrium outcome is not Coasian when there are two types of buyers in the market.

First, the monopolist extracts rents from high type buyers: by Lemma 2, P (x, α)−x > V1 (x)
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for all x ∈ (z1, z2], so L (x, 0) > V1 (x) for all x ∈ (z1, z2]. Second, the equilibrium outcome is

inefficient when x0 ∈ (x (0) , x (0)). The following result summarizes this discussion.

Corollary 1 With two types of consumers, the equilibrium outcome is not Coasian.

A way to measure the size of the rents that the monopolist extracts from high type buyers

is to compare her profits L (x, 0) to the profits ΠFC (x) she would earn if she could commit to

a path of prices. In the Online Appendix I show that ΠFC (x) = E[e−rτ2α (v2 − xτ )|x0 = x]

when αv2 > v1. That is, under full commitment the monopolist finds it optimal to sell

only to high types when the share of high types is large. The following result shows that a

monopolist with time-varying costs may get profits close to full-commitment profits.

Proposition 2 For all x > 0, equilibrium profits L(x, 0) converge to full commitment profits

ΠFC(x) as v1 → 0.

Proof. Appendix B.4.

Intuitively, the monopolist effectively commits not to serve low types when v1 goes to

zero. Indeed, when costs evolve as a geometric Brownian motion, the optimal time to sell to

v1 consumers becomes unboundedly large as v1 goes to zero. As a result, the monopolist can

extract all the rents from high types. While Proposition 2 depends crucially on the geometric

Brownian motion specification for costs, the idea that a monopolist with time-varying costs

may extract more rents from high types as v1 decreases is robust to other cost specifications.

Another salient feature of the equilibrium is that the price that the monopolist charges at

time t > 0 may depend upon the history of costs. To see this, suppose that x0 ∈ (x (0) , x (0))

and let τ = inf{t : xt /∈ (x (qt) , x (qt))}. By equation (12), the rate at which the monopolist

sells at time s ∈ [0, τ) depends on the current cost xs and on the current level of market

penetration qs. Therefore, for all t ∈ [0, τ) the level of market penetration qt =
∫ t

0
dqs depends

upon the path of costs from time zero to t; and so the price P (xt, qt) that the seller charges

at time t also depends upon the history of costs. Figure 4 plots the path of prices and the

evolution of market penetration for a path of costs with x0 ∈ (x (0) , x (0)) (the dashed lines

in the top-left figure are the quantities x(qt) and x(qt)).
16

The next result characterizes the evolution of prices in this market.

16Under the parameters in Figure 4 the efficient cutoffs are z1 ≈ 0.23 and z2 ≈ 0.47. Therefore, under the
cost path in Figure 4 the efficient outcome would be to sell to all high types immediately.
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Figure 4: Sample path of costs xt (top, left), and its associated paths of market penetration qt
(top, right) and of prices P (xt, qt) (bottom).

Parameters: v1 = 0.5, v2 = 1, α = 0.7, µ = −0.02, σ = 0.2 and r = 0.05.

Proposition 3 For all t such that qt < α and xt ∈ (x(qt), x(qt)), there exists γt such that

dP (xt, qt) = −r(v2 − P (xt, qt))dt− γtdBt. (13)

Proof. Appendix B.4.

The expected rate at which prices fall in (13) is determined by the indifference condition

of high type buyers: when prices fall at rate −r(v2 − P (x, q)), high types remain indifferent

between buying now or delaying trade by an instant. Note that equation (13) can be used

to estimate the valuation of high types from observed evolution of prices. Moreover, since

P (x, q) is increasing in x, by equation (13) prices fall faster when costs are smaller. Lastly,

equation (13) implies that d(P (xt, qt)− xt) = (−r(v2 − P (xt, qt))− µxt)dt + βtdBt for some

βt. Since v2 > P (xt, qt), the seller’s profit margin falls over time when the rate at which costs

fall is not too large. This is consistent with the evidence in Zhao (2008) and Conlon (2012),

who show that prices fall faster than costs in high-tech markets.

The next result studies settings in which costs fall deterministically over time by analyzing

the limiting properties of the equilibrium when µ < 0 and σ → 0. Recall from Sections 2

and 4 that the efficient outcome in this case is for the monopolist to serve consumers with
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valuation vk the first time costs fall below r
r−µvk.

Proposition 4 Suppose µ < 0. Then, in the limit as σ → 0 the market outcome becomes

efficient: the monopolist sells to all buyers with valuation v2 the first time costs fall below
r

r−µv2 and sells to all buyers with valuation v1 the first time costs fall below r
r−µv1.

Proof. Appendix B.4.

The intuition behind Proposition 4 is as follows. When µ < 0 and σ > 0 there is positive

probability that costs will go up if the monopolist delays trade with high type buyers. Since

the price P (x, α) is increasing in x, this increase in costs would allow the monopolist to

extract more rents from high types. This gives rise to an option value of delaying trade.

However, the probability that costs will increase becomes negligible when µ < 0 and σ → 0.

As a result, inefficiently delaying trade with high types is no longer profitable in this limiting

case. These results suggest that we should expect to see delays and inefficiencies in markets

in which costs are subject to significant stochastic shocks. One such example is firms that

act as intermediaries of durable commodities, like steel, who face large and rapid variations

in costs, and who therefore have strong incentives to engage in pricing speculation.17

The last result of this section studies the limiting properties of the equilibrium as the

drift and volatility of costs converge to zero. For any x ∈ [0, v2], let p (x) denote the lowest

consumer valuation that is larger than x: p (x) = v1 if x ≤ v1 and p (x) = v2 if x ∈ (v1, v2].

Proposition 5 Suppose x0 ≤ v2. Then, as (σ, µ) → (0, 0) the monopolist sells at t = 0 to

all consumers with valuation larger than x0 at a price p (x0).

Proof. Appendix B.4.

Proposition 5 shows that the market outcome converges to the standard Coase conjecture

outcome when costs become time-invariant: if costs are initially below v1 the monopolist’s

opening price converges to v1 as (σ, µ)→ (0, 0) and all buyers trade immediately.

6 Markets with n > 2 types of consumers

This section generalizes the results in Section 5 to settings in which the function f : [0, 1]→
[v, v] describing the valuations of the consumers takes n > 2 values v1 < ... < vn. For

k = 1, ..., n, let αk = max{i ∈ [0, 1] : f (i) = vk} be the last vk-consumer. Let αn+1 = 0.

17See Hall and Rust (2000) for high-frequency cost and pricing data of an intermediary seller of steel.
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As a first step, note that at states (x, q) with q ∈ [α3, 1) there are one or two types of

buyers in the market: buyers with valuation v1 and, if q < α2, buyers with valuation v2.

Thus, for states (x, q) with q ∈ [α3, 1) the equilibrium is the one derived in Section 5.

Consider next states (x, q) with q ∈ [α4, α3), at which there are α3 − q buyers with

valuation v3 remaining in the market. By equation (5), it must be that P (x, α3) = v3 −
E[e−rτ2 (v3 − P2 (xτ2 , qτ2))|x0 = x], where τ2 = inf{t : xt ≤ z2} is the time at which the

monopolist starts selling to consumers with valuation v2 when all consumers with valuation

v3 have left the market. The skimming property implies that P (x, i) ≥ P (x, α3) for all i ≤ α3,

so the monopolist can sell to all buyers with valuation v3 at price P (x, α3). Therefore, at

states (x, q) with q ∈ [α4, α3) the seller’s profits are bounded below by

L (x, q) = sup
τ∈T

E
[
e−rτ ((α3 − q) (P (xτ , α3)− xτ ) + L (xτ , α3))

∣∣x0 = x
]
, (14)

where L(x, α3) are the seller’s profits at state (x, α3).

Following the same steps as in the derivation of (14), I can extend L (x, q) to all q ∈ [0, 1]

in a way such that, for k = 2, ..., n and all q ∈ [αk+1, αk),

L (x, q) = sup
τ∈T

E
[
e−rτ ((αk − q) (P (xτ , αk)− xτ ) + L (xτ , αk))

∣∣x0 = x
]
, (15)

where P (x, αk) is the price at which the monopolist can sell to all consumers with valuation

vk, and L (x, αk) is the lower bound to the monopolist’s profits at state (x, αk). For q ∈ [α2, 1],

let L (x, q) = (1− q)V1 (x).

Theorem 2 Suppose f is a step function taking n > 2 values. Then, there exists a unique

equilibrium. In equilibrium, the monopolist’s profits are equal to L (x, q) at every state (x, q).

Proof. Online Appendix.

Figure 5 plots L(x, q) for an environment with three types of consumers. For all q < α3, let

g(x, q) be the profits that the monopolist earns from selling to all consumers with valuation

v3 immediately when costs are x and market penetration is q:

g(x, q) = (α3 − q)(P (x, α3)− x) + L(x, α3)

⇒ L(x, q) = sup
τ
E[e−rτg(xτ , q)|x0 = x].

The solution to this stopping problem involves delaying when xt lies in (x(q, 1), x(q, 1)) ∪
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Figure 5: Lower bound to profits L(x, q);
Parameters: v1 = 1

2 , v2 = 1, v3 = 3
2 , α2 = 17

20 , α3 = 1
2 , µ = −0.02, σ = 0.25 and r = 0.05.

(x(q, 2), x(q, 2)) or when xt > z3, and stopping otherwise.18 In equilibrium, when x is in the

delay region (x(q, 1), x(q, 1))∪ (x(q, 2), x(q, 2)) the monopolist sells gradually to buyers with

valuation v3 at price P (x, q) = x− Lq (x, q). If x > z3, the seller waits until costs fall to z3,

and at this point sells to all buyers with valuation v3 at price P (x, α3). Finally, if x lies in

the stopping region, the seller serves all remaining buyers with valuation v3 at price P (x, α3).

As in the model with two types, in this setting the monopolist is also able to extract

rents from buyers with higher valuations. Indeed, arguments similar to those in Lemma 2

imply that, for all k ≥ 2, P (x, αk) − x > V1 (x) for all x ∈ (z1, zk]. Since the monopolist

can sell to all consumers with valuation vk and higher at a price of P (x, αk), it follows that

L (x, q) > (1− q)V1 (x) for all x ∈ (z1, zk] and q < α2. Moreover, the equilibrium outcome is

inefficient: when x0 < zn lies in the delay region of (15) the efficient outcome is to serve all

buyers with valuation vn immediately, but the monopolist serves them gradually.

7 Markets with a continuum of types

In this section I study markets in which the buyers’ valuations are described by a continuous

and decreasing function h : [0, 1]→ R+, with h (0) = v > v = h (1) > 0. I study such markets

by considering a sequence of discrete models {f j} → h, where f j : [0, 1]→ [v, v] takes finitely

18In Figure 5, the quantities of z1 ∈ (x(q, 1), x(q, 1)) and z2 ∈ (x(q, 2), x(q, 2)) are the values of x at which
g(x, q) has kinks.
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many values for each j = 1, 2, .... For all j, f j satisfies the assumptions in Section 3.

Given such a sequence {f j}, for each j = 1, 2, ... let Lj (x, q) denote the monopolist’s

profits at state (x, q) in an environment in which the valuations of the consumers are described

by f j. For each v ∈ [v, v], let Vv (x) = supτ E[e−rτ (v − xτ )|x0 = x], zv = −λN
1−λN

v and

τv = inf{t : xt ≤ zv}. Note that the seller’s profits would be Vv(x) if all buyers had value v.

Theorem 3 Fix a sequence of step functions {f j} such that {f j} → h. Then, the market

outcome becomes Coasian as j → ∞: the monopolist’s profits converge to Vv (x) and the

limiting market outcome is efficient.

Proof. Appendix A.2.

To see intuition behind Theorem 3, consider first a setting with two types of buyers: high

types with valuation v, and low types with valuation v. After high types buy, the monopolist

can commit to keep high prices until costs fall below zv = −λN
1−λN

v. High type buyers know

that prices won’t fall to v until xt falls below zv, so they are willing to pay higher prices when

costs are above zv. Consider next a setting with three types of buyers, with valuations v,

(v+v)/2 and v. In this setting, after all consumers with valuation v buy, the monopolist can

only commit not to cut prices until costs fall below −λN
1−λN

v+v
2

, since at this point it becomes

optimal for her to sell to buyers with intermediate valuation. This puts a limit to the price

buyers with valuation v are willing to pay, since they can now wait for costs to fall to −λN
1−λN

v+v
2

and get the good at a lower price.

More generally, the proof of Theorem 3 shows that the price consumers are willing to pay

decreases as the set of values becomes dense. In the limit, the rents that the monopolist ex-

tracts from high type buyers is the same as the expected discounted rent that the monopolist

obtains from consumers with the lowest valuation v. As a result of this, the monopolist no

longer profits from inefficiently delaying trade, and the market outcome becomes efficient.

Why do the monopolist’s profits converge to Vv(x)? The reason is the same as in the

example in Section 2. Since the market outcome is efficient, the total surplus from selling

to a buyer with valuation v is Vv(x). By the Envelope Theorem, ∂Vv(x)
∂v

= E[e−rτv |x0 = x],

and so Vv(x) = Vv(x) +
∫ v
v
E[e−rτṽ |x0 = x]dṽ. Out of this total surplus, a consumer with

valuation v gets rents equal to
∫ v
v
E[e−rτṽ |x0 = x]dṽ and the seller gets Vv(x); i.e., when costs

are x, she charges price Vv(x) + x and earns a profit margin of Vv(x).19

19Unlike the setting with discrete types, in this case the monopolist’s profit margin increases in expectation
over time. Indeed, for all xt > zv, dVv(xt) = (µxtV

′
v(xt) + 1

2σ
2x2tV

′
v(xt))dt + σxtV

′
v(xt)dBt = rVv(xt)dt +

σxtV
′
v(xt)dBt, where I used rVv(x) = µxV ′v(x) + 1

2σ
2x2V ′v(x) for all x > zv (see proof of Lemma 1).
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When costs are time-invariant, the literature on the Coase conjecture refers to the dif-

ference between the lowest consumer valuation and the monopolist’s cost as the gap. When

costs don’t change over time, the market outcome becomes competitive as the gap goes to

zero: the monopolist sets a price equal to marginal cost and earns zero profits. In this paper’s

setting the lowest valuation v measures the gap. Note that Vv (x)→ 0 as v → 0. Therefore,

with a continuum of types the market outcome converges to the perfectly competitive out-

come as the gap goes to zero: in the limit as v → 0 the monopolist charges marginal cost

and earns zero profits. The following corollary summarizes this discussion.

Corollary 2 As v → 0, the monopolist sells at marginal cost and earns zero profits.

I now turn to study settings in which costs fall deterministically over time. I do this by

analyzing the limiting properties of the market outcome when µ < 0 and σ → 0. Since the

market outcome is efficient with a continuum of types, in the limit as σ → 0 the monopolist

sells to consumers with valuation v the first time costs fall below z∗v = limσ→0 zv = r
r−µv and

the seller’s profits converges to V ∗v (x) = limσ→0 Vv (x) = (v−z∗v)
(
x/z∗v

) r
µ ; i.e., the equilibrium

outcome converges to the outcome in Section 2. The next corollary summarizes these results.

Corollary 3 Suppose µ < 0 and x0 > v. Then, as σ → 0 the monopolist serves consumers

with valuation v the first time costs fall below r
r−µv and the seller’s profit converges to V ∗v (x0).

Remark 1 The assumption that the function h : [0, 1] → [v, v] is continuous implies that

the distribution of consumer valuations has convex support. This assumption is crucial

for Theorem 3. Indeed, suppose that there is a gap in the support of the distribution of

valuations; for example, suppose h(i) = 1 − γi − β1i>q̂ for some q̂ ∈ (0, 1), where γ ∈ (0, 1)

and β ∈ (0, 1−γ). In such a setting, after selling to all consumers i ≤ q̂ the monopolist won’t

reduce her price until costs fall below −λN
1−λN

h (q̂+). This allows the seller to extract rents from

buyers with valuation larger than h (q̂) when costs are above −λN
1−λN

h (q̂+). Moreover, this

ability of the monopolist to extract rents creates a wedge between profit maximization and

efficiency, just as in the two types case of Section 5. As a result, the market outcome fails to

be efficient in this setting. Finally, note that the seller’s ability to extract rents depends on

the size of the discontinuity at q̂; i.e., depends on how large β is. As β → 0 the gap in the

set of valuations vanishes and the monopolist again losses her ability to extract rents. On

the other hand, note that the model of Section 5 can be approximated by letting γ → 0.

Remark 2 This section studies markets with a continuum of consumer types by taking

limits of discrete type models. It is worth noting that the limiting equilibrium that obtains
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is also an equilibrium of the game with a continuum of types. Indeed, under this equilibrium

the monopolist charges price pt = Vv(xt) + xt at each point in time. Given this path of

prices, buyers find it optimal to purchase at the efficient time.20 Theorem 3 shows that

this equilibrium of the game with a continuum of types is the unique limiting equilibrium of

“close-by” games with discrete types.

8 Other cost processes

This section discusses how the results in the paper extend to settings in which costs follow

a (continuous-time) Markov chain. For concision, I consider the case in which the Markov

chain takes values xL ≥ 0 and xH > xL. I show that the main results of the paper continue

to hold under this cost process: (i) with discrete types the monopolist earns rents and there

are inefficiencies if costs are likely increase; (ii) with a continuum of types the monopolist

does not earn rents, and the market outcome is efficient.

First-best. Let v∗ be the value that solves v∗ − xH = E[e−rτL(v∗ − xL)|x0 = xH ], where

τL = inf{t : xt = xL}. Note that the first-best outcome in this setting is to serve buyers with

value v ≥ v∗ when costs are xH , and to serve buyers with value v ≤ v∗ when costs are xL.

Markets with two types of buyers. Suppose that there are two types of buyers, with

valuations vH > v∗ and vL ∈ (xL, v
∗). If costs are initially xH , in continuous-time the

monopolist serves all high type buyers immediately, and then sells to low types at time

τL = inf{t : xt = xL} at price vL. The price the seller charges high types when x = xH is

PH = vH − E[e−rτL(vH − vL)|x0 = xH ], which leaves high types indifferent between buying

when costs are xH or waiting and buying together with low types. The seller extracts rents

from high types when costs are xH , since she can commit not to cut prices until costs fall.21

Suppose next that the initial level of costs is xL. If the monopolist sells to all high

types immediately she has to charge them a price equal to vL, since high types know that

20Formally, consumers use the following strategy profile under this equilibrium. Consumer i ∈ [0, 1] with
valuation h(i) > v uses strategy P (x, i) = h(i)− supτ E[e−rτ (h(i)− Vv(xτ ) + xτ )|x0 = x], and consumer i ∈
[0, 1] with valuation h(i) = v uses strategy P (x, i) = v. It can be shown that the solution to supτ E[e−rτ (h(i)−
Vv(xτ ) + xτ )|x0 = x] is τh(i) = inf{t : xt ≤ zh(i)}, so consumers find it optimal to buy at the efficient time.
Note that P (x, i) ≤ Vv(x) + x for all x, with strict inequality for all x > zh(i). Therefore, given this strategy
profile the monopolist finds it optimal to charge price pt = Vv(xt) + xt.

21Indeed, the profit margin the monopolist gets from high types when costs are xH is strictly larger than
the expected discounted profit margin she gets from low types: PH − xH − E[e−rτL(vL − xL)|x0 = xH ] =
vH − xH − E[e−rτL(vH − xL)|x0 = xH ] > 0.
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the monopolist would then sell to low types immediately after they all buy. However, the

monopolist has the option of waiting until costs go up to xH and then selling to all high

types at price PH . If the fraction of high types remaining in the market is large enough,

if the expected waiting time until costs increase to xH is short and if the price PH is large

enough compared to vL, the monopolist would find it more profitable to delay trade with high

types when costs are xL than to sell to all of them at price vL. In this case, in equilibrium

the monopolist sells to high types gradually over time when costs are initially low, and the

equilibrium outcome is inefficient.

Markets with a continuum of types. Consider now a setting with a continuum of types

[v, v], with v∗ ∈ (v, v) and v > xL. When costs are initially xH , in continuous-time the

monopolist sells to all buyers with valuation v ∈ [v∗, v] immediately at t = 0, and then sells

to the rest of the buyers at time τL (charging them price v). The price that the monopolist

charges when costs are xH is equal to Pv∗ = v∗ −E[e−rτL(v∗ − v)|x0 = xH ], which leaves the

marginal consumer v∗ indifferent between buying now or getting the good at time τL at price v.

The profit margin that the monopolist earns on consumers with valuation above v∗ when costs

are xH is Pv∗ − xH = v∗− xH −E[e−rτL(v∗− v)|x0 = xH ] = E[e−rτL(v− xL)|x0 = xH ], where

the last equality follows since the valuation v∗ satisfies v∗−xH = E[e−rτL(v∗−xL)|x0 = xH ].

That is, the profit margin that the seller earns from buyers with type higher than v∗ is equal

to the expected discounted profit margin she earns from buyers with valuation v.

Finally, with a continuum of types the market outcome is efficient. Indeed, by the pre-

vious paragraph the market outcome is efficient when costs are initially xH . On the other

hand, when costs are initially xL, in continuous-time the monopolist sells to all consumers

immediately at price v and the market closes. Indeed, in this setting the monopolist does

not have an incentive to delay trade with higher types until costs are xH , since she is not

able to extract rents from them when costs are high.22

9 Conclusion

This paper studies the problem of a durable goods monopolist who lacks commitment power

and who faces uncertain and time-varying costs. I show that a durable goods monopolist

22The profit margin that the monopolist earns from selling to consumers with valuations above v∗ imme-
diately when costs are xL is v−xL. This profit margin is strictly larger than the expected discounted margin
that the monopolist would get by delaying trade with these consumers until costs are xH , since the margin
she gets on buyers with type above v∗ when costs are xH is E[e−rτL(v − xL)|x0 = xH ] < v − xL.
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with time-varying costs usually serves the different types of buyers at different times and

charges them different prices. When the distribution of valuations has non-convex support,

the monopolist extracts rents from buyers with higher valuations and there is inefficient

delay. When the set of types is a continuum, the monopolist is unable to extract rents and

the market outcome is efficient.

The model assumes that the seller’s costs are publicly observable. This assumption ap-

proximates situations in which the seller’s production cost is to a large extent determined by

one or more commodities whose prices are publicly observable (e.g, minerals, oil or cement).

Another example in which the evolution of costs is publicly observable is that of a monopo-

list who sells an imported good or uses imported intermediary goods, and who is therefore

exposed to exchange rate risk. An interesting avenue for future research is to extend the

current analysis to settings in which costs are only observed by the firm, and in which buyers

can only observe the history of prices and of past sales. In such a model, one would expect

there to be equilibria in which the seller can signal the evolution of costs through her choice

of prices. While solving this model is beyond the scope of the current paper, it is worth

noting that privately observed costs would introduce additional incentive constraints on the

sellers’ side, leading to a different equilibrium dynamic. Indeed, we already know from the

literature on bargaining with two-sided asymmetric information (e.g. Cho (1990); Ausubel

and Deneckere (1992)) that, with time-invariant costs, the standard Coasian dynamics may

not arise when the monopolist has private information about her production cost.

A Appendix

A.1 Proof of Theorem 1

Proof of Theorem 1. Appendix B.3 shows that, in any equilibrium, the monopolist’s

profits are equal to L (x, q) for all (x, q) with q < α. Here, I complete the proof of Theorem

1 by constructing the unique equilibrium. In order for the monopolist to obtain profits equal

to L (x, q), she must sell to all high types at price P (xt, α) when xt ∈ [0, x (qt−)]∪ [x (qt−) , z2]

(and also to low types when xt ≤ x (qt−)). Moreover, by Lemma B8 in Appendix B.3, the

monopolist sells at a positive rate when xt ∈ (x (qt) , x (qt)). I now determine the price that

the monopolist charges and the rate at which she sells when xt ∈ (x (qt) , x (qt)).

Suppose xt ∈ (x (qt) , x (qt)) and let τ = inf{s > t : xs /∈ (x (qs) , x (qs))}. At any s ∈ [t, τ),
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the seller’s expected discounted profits (which are equal to L (xs, qs)) are given by

L (xs, qs) = E

[∫ τ

s

e−r(u−s) (P (xu, qu)− xu) dqu + e−r(τ−s)L (xτ , qτ )

∣∣∣∣Fs] .
By the Law of Iterated Expectations, the process

Ys =

∫ s

0

e−ru (P (xu, qu)− xu) dqu + e−rsL (xs, qs) (A.1)

= E

[∫ τ

0

e−ru (P (xu, qu)− xu) dqu + e−rτL (xτ , qτ )

∣∣∣∣Fs] ,
is a continuous martingale for all s ∈ [t, τ). By the Martingale Representation Theorem

(Karatzas and Shreve (1998), p. 182), there exists a progressively measurable and square

integrable process β such that dYs = e−rsβsdBs. Differentiating (A.1) with respect to s gives

dYs = e−rs (P (xs, qs)− xs) dqs − re−rsL (xs, qs) ds+ e−rsdL (xs, qs)

⇒ dL (xs, qs) = rL (xs, qs) ds− (P (xs, qs)− xs) dqs + βsdBs.

Since L (x, q) ∈ C2 for all x ∈ (x (q) , x (q)) and all q ∈ [0, α) (Lemma B6 in Appendix B.2),

we can apply Ito’s Lemma to get

dL (xs, qs) =

(
µxsLx (xs, qs) +

σ2x2
s

2
Lxx (xs, qs)

)
ds+ Lq (xs, qs) dqs + σxLx (xs, qs) dBs.

From these two equations, it follows that the seller’s profit function must satisfy

rL (xs, qs) ds = (P (xs, qs)− xs + Lq (xs, qs)) dqs + µxsLx (xs, qs) ds+
σ2x2

s

2
Lxx (xs, qs) ds,

at all states (xs, qs) with xs ∈ (x (qs) , x (qs)). On the other hand, the proof of Lemma B2

shows that L(x, q) satisfies

rL(x, q) = µxLx(x, q) +
1

2
σ2x2Lxx(x, q),

for all x ∈ (x(q), x(q)) (Lemma B6 in Appendix B.2). Comparing these two equations it

follows that P (xs, qs) − xs = −Lq (xs, qs) for all (xs, qs) with xs ∈ (x (qs) , x (qs)). That is,

the profit margin P (xs, qs) − xs that the monopolist earns from selling to high types must

be equal to the cost −Lq (xs, qs) that she incurs in terms of a lower continuation payoff. This
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expression pins down the prices that the seller charges when xs ∈ (x (qs) , x (qs)) (and hence

the buyers’ strategy profile in this region). It is worth noting that, since L(x, q) is the solution

solves the stopping (10), P (x, q)− x = −Lq(x, q) = E[e−rτ(q)(P (xτ(q), α)− xτ(q))|x0 = x] for

all x ∈ (x(q), x(q)).

Finally, I pin down the rate dqt at which the monopolist sells when xt ∈ (x (qt) , x (qt)).

Note that in equilibrium all high types must get the same payoff; otherwise, a buyer getting

a lower payoff would find it strictly optimal to deviate and mimic the strategy of one who

is getting a larger payoff. Therefore, prices must evolve in such a way that high types are

indifferent between buying at any s ∈ [t, τ) (where τ = inf{s > t : xs /∈ (x (qs) , x (qs))}).
That is,

e−rs (v2 − P (xs, qs)) = E
[
e−ru (v2 − P (xu, qu))

∣∣Fs] , (A.2)

for any s, u ∈ [t, τ), s < u. By the Law of Iterated Expectations, the process Ms =

E [e−ru (v2 − P (xu, qu))| Fs] is a continuous martingale. By the Martingale Representation

Theorem, there exists a progressively measurable process γ such that dMs = e−rsγsdBs.

Differentiating (A.2) with respect to s gives

dMs = −re−rs (v2 − P (xs, qs)) ds− e−rsdP (xs, qs)

⇒ dP (xs, qs) = −r (v2 − P (xs, qs)) ds− γsdBs. (A.3)

Equation (A.3) shows that, in expectation, prices must fall at rate −r(v2−P (xs, qs)) in order

to keep high types indifferent between buying at any time s ∈ [t, τ). By the arguments above,

P (xs, qs) = xs−Lq (xs, qs) for all s ∈ [t, τ). The proof of Lemma B2 shows that L (x, q) ∈ C2

for all x ∈ (x (q) , x (q)), so P (x, q) ∈ C2,1 for all x ∈ (x (q) , x (q)). Ito’s Lemma then gives

dP (xs, qs) =

(
µxsPx (xs, qs) +

σ2x2
s

2
Pxx (xs, qs)

)
ds+ Pq (xs, qs) dqs + Px (xs, qs)σxsdBs,

for all s ∈ [t, τ). This equation and (A.3) give two expressions for dP (xs, qs). Since these

expressions must be equal, it follows that

dqs
ds

=
−r (v2 − P (xs, qs))− µxsPx (xs, qs)− 1

2
σ2x2

sPxx (xs, qs)

Pq (xs, qs)
.

The proof of Lemma B2 shows that Lq (x, q) solves rLq(x, q) = µxLqx(x, q)+ σ2x2

2
Lqxx(x, q) for

all x ∈ (x (q) , x (q)) (footnote 24 in Appendix B.2). Using this with the fact that P (xs, qs)−
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xs = −Lq (xs, qs) gives dqs
ds

= − r(v2−xs)+µxs
Pq(xs,qs)

= r(v2−xs)+µxs
Lqq(xs,qs)

> 0, where the equality follows since

Pq(x, q) = −Lqq(x, q), and the inequality follows since Lqq (x, q) > 0 for all x ∈ (x (q) , x (q))

(Lemma B7 in Appendix B.2) and since r (v2 − x) + µx > 0 for all x < z2.

A.2 Proof of Theorem 3

Fix a sequence {f j} → h, with f j : [0, 1] → [v, v] taking finitely many values for all j. For

j = 1, 2, ..., let vj1 < vj2 < ... < vjnj be the set of possible valuations under f j. For k = 1, ..., nj,

let zjk = −λN
1−λN

vjk. For each j, define the function P j (x) as follows. For x ≤ zj1, P j (x) = vk1 .

For k = 2, ..., nj and x ∈ (zjk−1, z
j
k], P

j (x) = P j(x, αjk). Equation (5) then implies that, for

k = 2, ..., nj and x ∈ (zjk−1, z
j
k], P

j (x) = vjk − E[e−rτ
j
k−1(vjk − P j(zjk−1))|x0 = x], where for

k = 1, ..., nj, τ
j
k = inf{t : xt ≤ zjk} is the time at which the monopolist starts selling to buyers

with valuation vjk when vjk is the highest valuation remaining in the market.

Lemma A1 For k = 2, ..., nj and x ∈ (zjk−1, z
j
k], P

j (x) = vjk −
∑k−1

m=1(vjm+1 − vjm)(x/zjm)λN .

Proof. The proof is by induction. By equation (9) in the main text, P j (x) = vj2 − (vj2 −
vj1)(x/zj1)λN for x ∈ (zj1, z

j
2], so the statement is true for k = 2. Suppose the statement is true

for l = 2, .., k−1. By Corollary B1 in Appendix B.1, P j (x) = vjk− (vjk−P j(zjk−1))(x/zjk−1)λN

for all x ∈ (zjk−1, z
j
k]. The induction hypothesis then implies that P j (x) = vjk − (vjk −

P j(zjk−1))(x/zjk−1)λN = vjk −
∑k−1

m=1(vjm+1 − vjm)(x/zjm)λN for x ∈ (zjk−1, z
j
k].

Let z = −λN
1−λN

v and z = −λN
1−λN

v, and let Vv (x) = supτ E[e−rτ (v − xτ )|x0 = x]. By Lemma

1, Vv (x) = E[e−rτ (v − xτ )|x0 = x], where τ = inf{t : xt ≤ z}.

Lemma A2 P j (x)− x→ Vv (x) uniformly on [0, z] as j →∞.

Proof. I first show that limj→∞ P
j (x) = Vv (x) + x for all x ∈ [0, z]. Note first that,

for all x ≤ z, limj→∞ P
j (x) = limj→∞ v

j
1 = v = Vv (x) + x. Next, fix x ∈ (z, z] and for

j = 1, 2, ..., let kj be such that x ∈ (zjkj−1, z
j
kj

]. Let v (x) = 1−λN
−λN

x. Lemma A1 and the

fact that x/zjm = v (x) /vjm imply that P j (x) = vjkj −
∑kj−1

m=1(vjm+1 − vjm)(v (x) /vjm)λN . Since

x ∈ (zjkj−1, z
j
kj

] for all j and since limj→∞ z
j
kj−1 − z

j
kj

= 0, it follows that zjkj = −λN
1−λN

vjkj → x

as j → ∞. Hence, limj→∞ v
j
kj

= 1−λN
−λN

x = v (x). Since (v (x) /v)λN is Riemann integrable,

limj→∞ P
j (x) = v (x) −

∫ v(x)

v
(v (x) /v)λN dv = x + (v − z) (x/z)λN = x + Vv (x). Finally,

since P j (x) is increasing in x for all j and since limj→∞ P
j (x) = Vv (x) + x for all x ∈ [0, z],

it follows that P j (x)→ Vv (x) + x uniformly on [0, z] as j →∞. Thus, P j (x)− x→ Vv (x)

uniformly on [0, z] as j →∞.
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Proof of Theorem 3. I first show that, for all x, Lj (x, 0)→ Vv (x) as j →∞. Note first

that Lj (x, 0) ≥ Vv (x) for all x, since at any state (x, 0) the monopolist can wait until time τ j1

and sell to all buyers at price vj1 ≥ v, obtaining a profit of E[e−rτ
j
1 (vj1−xτ j1 ) | x0 = x] ≥ Vv (x).

Consider the case in which x0 = x ≥ z. In this case, for any model j, in equilibrium

the monopolist sells to consumers with valuation vjk at time τ jk = inf{t : xt ≤ zjk} (for k =

1, ..., nj) at a price P (zjk, α
j
k) = P j(zjk) (see Corollary C3 in Appendix C.1). Let αjnj+1 = 0.

Then, the seller’s profits are Lj (x, 0) =
∑nj

k=1E[e−rτ
j
k (P j

(
zjk
)
− zjk)|x0 = x](αjk − αjk+1).

Since P j (x) − x → Vv (x) uniformly on [0, z] as j → ∞, for every η > 0 there exists N

such that P j (x) − x − Vv (x) < η for all j > N and all x ∈ [0, z]. Thus, for j > N ,

Lj (x, 0) <
∑nj

k=1 dα
j
kE[e−rτ

j
kVv(xτ jk

)|x0 = x] + η, where dαjk = αjk − α
j
k+1 (so

∑nj
k=1 dα

j
k = 1).

Note further that for x ≥ z and k = 1, 2, .., nj,

E[e−rτ
j
kVv(xτ jk

)|x0 = x] = E[e−rτ
j
k [e−r(τv−τ

j
k)(v − xτv)|xτ jk ]|x0 = x] = Vv (x) .

Using this and the fact
∑nj

k=1 dα
j
k = 1, it follows that Vv (x) ≤ Lj (x, 0) < V (x) + η for all

j > N . Therefore, limj→∞ L
j (x, 0) = Vv (x) for all x ≥ z.

Consider next the case with x0 = x < z, and suppose by contradiction that Lj (x, 0) 9
Vv (x) as j →∞. Since Lj (x, 0) ≥ Vv (x) for all j, there exists a subsequence {jr}, N and γ >

0 such that Ljr (x, 0) > Vv (x)+γ for all jr > N . Fix y ≥ z and let τx = inf{t : xt ≤ x}. Since

the seller can delay trade until time τx, it must be that Ljr (y, 0) ≥ E[e−rτxLjr (xτx , 0) |x0 =

y]. Thus, for all jr > N , Ljr (y, 0) > E[e−rτxVv(xτx)|x0 = y] + E[e−rτxγ|x0 = y]. But

this contradicts limjk→∞ L
jk(y, 0) = Vv (y), since E[e−rτxVv(xτx)|x0 = y] = Vv(y) and since

E[e−rτxγ|x0 = y] > 0. Thus, limj→∞ L
j (x, 0) = Vv (x).

Finally, I show that the limiting equilibrium outcome is efficient. Note that Lemma A2

implies that, for all i ∈ [0, 1], the price P j (x, i) that consumer i is willing to pay converges

to Vv (x) + x for all x ≤ −λN
1−λN

h (i) as j → ∞. This in turn implies that, in the limit as

j →∞, the monopolist always sells at price Vv (xt) +xt. By the same arguments used in the

proof of Lemma 1, for all v ∈ [v, v], the solution to supτ E [e−rτ (v − Vv (xτ )− xτ )|x0 = x]

is τv = inf{t : xt ≤ −λNv
1−λN

}. Since the seller always charges Vv (xt) + xt as j → ∞ and since

buyers buy at the time that maximizes their surplus, in the limit a buyer with valuation v

buys at the efficient time τv.
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B Omitted proofs

B.1 Proofs of Lemmas 1 and 2

Fix y2 > y1 > 0 and let τy = inf{t : xt /∈ (y1, y2)} and τy1 = inf{t : xt ≤ y1}. Note that τy

and τy1 are random variables, whose distributions depend on the initial level of costs x0.

Lemma B1 Let g be a bounded function and let W be the solution to

rW (x) = µxW ′ (x) +
1

2
σ2x2W ′′ (x) , (B.1)

with W (yi) = g (yi) for i = 1, 2. Then, W (x) = E[e−rτyg
(
xτy
)∣∣x0 = x] for all x ∈ (y1, y2).

Proof. Let W satisfy (B.1) with W (y1) = g (y1) and W (y2) = g (y2). The general solution to

(B.1) is W (x) = AxλN +BxλP , where λN < 0 and λP > 1 are the roots of 1
2
σ2λ (λ− 1)+µλ =

r, and where A and B are constants determined by the boundary conditions:

A =
g (y2) yλP1 − g (y1) yλP2

yλP1 yλN2 − y
λN
1 yλP2

and B = −g (y2) yλN1 − g (y1) yλN2

yλP1 yλN2 − y
λN
1 yλP2

(B.2)

Let f (x, t) = e−rtW (x). By Ito’s Lemma, for all xt ∈ (y1, y2)

df (xt, t) = e−rt
(
−rW (xt) + µxW ′ (xt) +

1

2
σ2x2W ′′ (xt)

)
dt+ e−rtσxW ′ (xt) dBt

= e−rtσxW ′ (xt) dBt,

where the second equality follows from the fact that W solves (B.1). Then,

E
[
e−rτyg

(
xτy
)∣∣x0 = x

]
= E

[
f
(
xτy , τy

)∣∣x0 = x
]

= f (x, 0) + E

[∫ τy

0

df (xt, t)

∣∣∣∣x0 = x

]
= W (x) + E

[∫ τy

0

e−rtσxW ′ (xt) dBt

∣∣∣∣x0 = x

]
= W (x) ,

since
∫ τy

0
e−rtσxW ′ (xt) dBt is a Martingale with expectation zero.

Corollary B1 Let g be a bounded function and let w be a solution to (B.1) with w (y1) =

g (y1) and limx→∞w (x) = 0. Then, w (x) = E[e−rτy1g(xτy1 )
∣∣x0 = x] for all x > y1. More-

over, w (x) = g (y1) (x/y1)λN for all x > y1.

Proof. Since w solves (B.1), it follows that w (x) = CxλN +DxλP . The conditions w (y1) =
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g (y1) and limx→∞w (x) = 0 imply D = 0 and C = g (y1) (1/y1)λN , so w (x) = g (y1) (x/y1)λN .

Next, note that for all x0 > y1, τy → τy1 as y2 → ∞. By Dominated convergence,

W (x) = E
[
e−rτyg

(
xτy
)∣∣x0 = x

]
→ E

[
e−rτy1g

(
xτy1

)∣∣x0 = x
]

as y2 → ∞. By Lemma B1,

W (x) = AxλN + BxλP for x ∈ (y1, y2), with A and B satisfying (B.2). Since limy2→∞B = 0

and limy2→∞A = g (y1) /yλN1 , it follows that E[e−rτy1g(xτy1 )
∣∣x0 = x] = limy2→∞W (x) =

g (y1) (x/y1)λN = w (x) for all x > y1.

Proof of Lemma 1. Let Vk (·) be as in the statement of the Lemma. Note that Vk is

twice differentiable with a continuous first derivative. One can show that Vk (x) > vk − x for

x > zk, so Vk (x) ≥ vk − x for all x ≥ 0. Note also that Vk (·) solves (B.1) for all x > zk, with

Vk (zk) = vk − zk and limx→∞ Vk (x) = 0. By Corollary B1, Vk (x) = E[e−rτk(vk − xτk)|x0 =

x]. Moreover, r (vk − x) = rVk (x) > µxV ′k (x) + 1
2
σ2x2V ′′k (x) = −µx, for all x ≤ zk.

By the previous paragraph, Vk is twice differentiable with a continuous first derivative

and satisfies

−rVk (x) + µxV ′k (x) +
1

2
σ2x2V ′′k (x) ≤ 0, with equality on (zk,∞) .

Then, by standard verification theorems (Theorem 3.17 in Shiryaev (2008)) Vk solves (6).

Remark B1 Since Vk is the solution to the optimal stopping problem (6), then e−rtVk (xt) is

superharmonic; i.e., Vk (x) ≥ E[e−rτVk (xτ )|x0 = x] for any stopping time τ (e.g., Theorem

10.1.9 in Oksendal (2007)). I will use this property of Vk in the proof of Lemma B2 below.

Proof of Lemma 2. By Corollary B1, E[e−rτ1(v2 − v1)|x0 = x] = (v2 − v1)(x/z1)λN for all

x > z1. This gives equation (9). Moreover, for all x ∈ (z1, z2],

P (x, α)− x− V1 (x) = v2 − x− E
[
e−rτ1 (v2 − v1)

∣∣x0 = x
]
− E

[
e−rτ1 (v1 − xτ1)

∣∣x0 = x
]

= v2 − x− E[e−rτ1(v2 − xτ1)
∣∣x0 = x] > 0

since by Lemma 1, v2 − x = V2 (x) > E[e−rτ1(v2 − xτ1)|x0 = x] for all x ∈ (z1, z2].

B.2 Solution to (10)

The following Lemma characterizes the solution to (10).

Lemma B2 For every q ∈ [0, α), there exists x (q) ∈ (0, z1) and x (q) ∈ (z1, z2) such that

τ (q) = inf{t : xt ∈ [0, x (q)]∪[x (q) , z2]} solves (10). Moreover, x (·) and x (·) are continuous,

with limq→α x (q) = limq→α x (q) = z1.
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The proof of Lemma B2 is organized as follows. Lemmas B3 and B4 give properties of

solutions to equation (B.1). Lemma B5 uses these properties to characterize the solution

to the optimal stopping problem (10). Finally, Lemmas B6 and B7 prove properties of the

solution to (10).

Lemma B3 Let U and Ũ be two solutions to (B.1). If Ũ (y) ≥ U (y) and Ũ ′ (y) > U ′ (y) for

some y > 0, then Ũ ′ (x) > U ′ (x) for all x > y, and so Ũ (x) > U (x) for all x > y. Similarly,

if Ũ (y) ≤ U (y) and Ũ ′ (y) > U ′ (y) for some y > 0, then Ũ ′ (x) > U ′ (x) for all x < y, and

so Ũ (x) < U (x) for all x < y.

Proof. I prove the first statement of the Lemma. The proof of the second statement is

symmetric and omitted. Suppose the claim is not true, and let y1 > y be the smallest point

with U ′ (y1) = Ũ ′ (y1). Therefore, Ũ ′ (x) > U ′ (x) for all x ∈ [y, y1), so Ũ (y1) > U (y1). Since

U and Ũ solve (B.1), then Ũ ′′ (y1) = 2(rŨ(y1)−µy1Ũ ′(y1))

σ2y2
1

> 2(rU(y1)−µy1U ′(y1))

σ2y2
1

= U ′′ (y1). But this

implies that U ′ (y1 − ε) > Ũ ′ (y1 − ε) for ε > 0 small, a contradiction.

Lemma B4 Fix q ∈ [0, α) and y ∈ (0, z1), and let Uy (x) be the solution to (B.1) with

Uy (y) = (1− q) (v1 − y) and U ′y (y) = −(1− q). Then, Uy (x) is strictly convex for all x > 0.

Moreover, if y < y′ < z1, then Uy (x) > Uy′ (x) for all x ≥ y′.

Proof. Since Uy (·) solves (B.1), it follows that Uy (x) = AxλN + BxλP . The constants A

and B are determined by the conditions Uy (y) = (1− q) (v1 − y) and U ′y (y) = −(1− q):

A = y−λN (1− q) λP (v1 − y) + y

λP − λN
> 0 and B = y−λP (1− q) − (v1 − y)λN − y

λP − λN
> 0,

where B > 0 follows since y < z1 = −v1λN/(1− λN). Thus, U ′′y (x) = λN(λN − 1)AxλN−2 +

λP (λP − 1)BxλP−2 > 0 for all x > 0 (since λN < 0 and λP > 1). Finally, let y < y′ <

z1. Since Uy (·) is strictly convex, it follows that Uy (y′) > (1− q) (v1 − y′) = Uy′ (y
′) and

U ′y (y′) > − (1− q) = U ′y′ (y
′). Hence, by Lemma B3 Uy (x) > Uy′ (x) for all x ≥ y′.

For q ∈ [0, α) and x > 0, let g (x, q) = (α − q)(P (x, α) − x) + Π(x, α), so that L(x, q) =

supτ E[e−rτg (xτ , q)|x0 = x]. Note that g (x, q) = (1− q) (v1 − y) for all x ≤ z1.

Lemma B5 For all q ∈ [0, α), there exists x (q) ∈ (0, z1) and x (q) ∈ (z1, z2) such that

τ (q) = inf{t : xt ∈ [0, x (q)] ∪ [x (q) , z2]} solves (10). Moreover,

(i) for all x ∈ (x (q) , x (q)) ∪ (z2,∞), L (x, q) solves (B.1), with limx→∞ L (x, q) = 0.

36



(ii) for all x ≤ x (q) and all x ∈ [x (q) , z2], L (x, q) = g (x, q).

(iii) the cutoffs x (q) and x (q) are such that

L (x (q) , q) = g (x (q) , q) , L (x (q) , q) = g (x (q) , q) , (VM)

Lx (x (q) , q) = gx (x (q) , q) , Lx (x (q) , q) = gx (x (q) , q) . (SP)

Proof. First I show that there exists a function G (x, q) satisfying (i)-(iii). Then I show that

G (x, q) = supτ E[e−rτg (xτ , q)|x0 = x] = L (x, q). Let W (x) be the solution to (B.1) with

limx→∞W (x) = 0 and W (z2) = g (z2, q). By Corollary B1, W (x) = g (z2, q) (x/z2)λN . Note

that W ′(z2) = λN
z2
g(z2, q), and that, for all x > z1

∂

∂x
g (x, q)

∣∣∣∣
x=z2

=
λN
z2

[
(α− q)

(
−(v2 − v1)

(
z2

z1

)λN
− z2

λN

)
+ (1− α)(v1 − z1)

(
z2

z1

)λN]

=
λN
z2

[
(α− q)

(
v2 − (v2 − v1)

(
z2

z1

)λN
− z2

)
+ (1− α)(v1 − z1)

(
z2

z1

)λN]
=

λN
z2

g(z2, q),

where the second equality follows since v2− z2 = v2

1−λN
= − z2

λN
. It then follows that W ′(z2) =

gx(z2, q). Moreover, one can check that W (x) > g (x, q) for all x > z2 and that g (x, q) <

W (x) for all x < z2. For all x ≥ z2, let G(x, q) = W (x).

Next, I show that there exists a function G (x, q) and unique cutoffs x (q) < z1 and

x (q) ∈ (z1, z2) such that G (x, q) solves (B.1) on (x (q) , x (q)) and satisfies (iii). For each

y < z1, let Uy be the solution to (B.1) with Uy (y) = g (y, q) = (1− q) (v1 − y) and U ′y (y) =

gx (y, q) = − (1− q). Since solutions to (B.1) are continuous in initial conditions, then the

solutions I’m considering are continuous in y. If y is small enough, then Uy (x) will remain

above g (x, q) for all x > y. On the other hand, if y is close to z1 then Uy will cross g (x, q)

at some x̃ > z1 (see solutions I-IV in Figure B1). Since Uy′′(x) > Uy′(x) for all y′′ < y′

and all x ≥ y′ (Lemma B4), the point at which Uy crosses g(x, q) moves to the right as

y decreases. Let x (q) = inf{y : Uy(x) = g(x, q) for some x > z1}, and let x (q) > z1 be

such that Ux(q)(x(q)) = g(x(q), q). Since a solution with y < x (q) never reaches g (x, q),

it follows that Ux(q) (x) ≥ g (x, q) for all x. Thus, Ux(q)(x) is tangent to g (x, q) at x (q),

so U ′x(q) (x (q)) = gx (x (q) , q) (see solution III in Figure B1). Let G (x, q) = Ux(q) (x) for

x ∈ [x (q) , x (q)].

Note that by construction it must be that x (q) ∈ (0, z1) and that x (q) > z1. I now show
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Figure B1: Solutions Uy to ODE (B.1).

that x (q) < z2. To see this, suppose by contradiction that x (q) ≥ z2. Recall that W (x)

is the solution to (B.1) with limx→∞W (x) = 0 and W (z2) = g (z2, q). Recall further that

W ′ (z2) = gx (z2, q). If x (q) = z2, then Ux(q)(x) and W (x) both solve (B.1), with Ux(q)(z2) =

W (z2) = g(z2, q) and U ′x(q)(z2) = W ′(z2) = gx(z2, q). This implies thatW (x) = Ux(q)(x) for all

x, which cannot be since Ux(q)(x) = AxλN+BxλP for some B > 0 (see proof of Lemma B5) and

W (x) = g (z2, q) (x/z2)λN . Suppose next that x (q) > z2. Since W (x) > g(x, q) for all x > z2

and since Ux(q) (x) > g(x, q) for all x ∈ (x(q), x(q)), then W (x (q)) > Ux(q)(x (q)) = g(x (q) , q)

and W (z2) = g(z2, q) < Ux(q)(z2). Moreover, since W (x) > g(x, q) for all x < z2, it follows

that Ux(q)(x(q)) < W (x(q)). By the intermediate value theorem, there exists y1 ∈ (x(q), z2)

and y2 ∈ (z2, x(q)) with Ux(q)(yi) = W (yi) for i = 1, 2. This implies that Ux(q)(x) = W (x) for

all x, since Ux(q) and W both solve (B.1) on (y1, y2) with Ux(q)(yi) = W (yi) for i = 1, 2. But

this cannot be, since W (x) = g (z2, q) (x/z2)λN and since Ux(q)(x) = AxλN + BxλP for some

B > 0. Hence, it must be that x(q) < z2.

Finally, for all x ≤ x (q) and for all x ∈ [x (q) , z2] let G (x, q) = g (x, q). Note that, by

construction, G (x, q) satisfies (i)-(iii).

I now show that G (x, q) = L (x, q) = supτ E[e−rτg (xτ , q)|x0 = x]. By construction,

G (x, q) ≥ g (x, q) for all x ≥ 0. Moreover, G (x, q) is twice differentiable in x, with a

continuous first derivative. Finally, the function G (x, q) satisfies:

−rG (x, q) + µxGx (x, q) +
1

2
σ2x2Gxx (x, q) ≤ 0, with equality on (x (q) , x (q)) ∪ (z2,∞).

(B.3)

Indeed, G (x, q) satisfies (B.3) with equality on (x (q) , x (q)) ∪ (z2,∞) since it solves (B.1)
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in this region. One can also check that rG (x, q) ≥ µxGx (x, q) + 1
2
σ2x2Gxx (x, q) for all

x ∈ [0, x (q)] ∪ [x (q) , z2].23 Therefore, by standard verification theorems (e.g., Theorem 3.17

in Shiryaev, 2008), G (x, q) = supτ E[e−rτg (xτ , q)|x0 = x] = L (x, q). Finally, note that

Lemma B1 and Corollary B1 imply that L (x, q) = E[e−rτ(q)g
(
xτ(q), q

)∣∣x0 = x], so τ (q)

solves (10).

Lemma B6 L (x, q) ∈ C2 for all x ∈ (x (q) , x (q)) and all q ∈ [0, α). Moreover, x (q) and

x (q) are C2, with limq→α x (q) = limq→α x (q) = z1.

Proof. By Lemma B5, L (x, q) = A (q)xλN + B (q)xλP for all x ∈ (x (q) , x (q)), where

A (q), B (q), x (q) and x (q) are determined by the system of equations (VM) + (SP). Denote

this system of equations by F (x (q) , x (q) , A (q) , B (q)) = 0. One can check that F ∈ C2

and its Jacobian at (x (q) , x (q) , A (q) , B (q)) has a non-zero determinant. By the Implicit

Function Theorem, the functions A (q), B (q), x (q) and x (q) are all C2 with respect to q.

Since L (x, q) = A (q)xλN + B (q)xλP for all x ∈ (x (q) , x (q)), it follows that L (x, q) ∈ C2

for all x ∈ (x (q) , x (q)).24

Next, I show that limq→α x (q) = limq→α x (q) = z1. Let x = limq→α x (q) and x =

limq→α x (q). Since x (q) < z1 and x (q) > z1 for all q < α (Lemma B5), it follows that

x ≤ z1 ≤ x. Let τ̂ = inf{t : xt ∈ [0, x] ∪ [x, z2]}, so τ (qn) → τ̂ for every sequence

{qn} → α. Note that L (x, q) ≥ g (x, q) ≥ Π (x, α) = (1− α)V1 (x) for all q ≤ α, so

limq→α L (x, q) ≥ (1− α)V1 (x).

Fix a sequence {qn} → α. Since limq→α g (x, q) = (1 − α)V1 (x), by Dominated Conver-

gence, L (x, qn) = E
[
e−rτ(qn)g

(
xτ(qn), qn

)∣∣x0 = x
]
→ E

[
e−rτ̂ (1− α)V1 (x)

∣∣x0 = x
]

as n →
∞. Suppose by contradiction that x < z1. Then, for x ∈ (x, z1), E

[
e−rτ̂V1 (x)

∣∣x0 = x
]
<

V1 (x), where the inequality follows from Lemma 1. But this implies that limq→α L (x, q) =

(1− α)E[e−rτ̂V1 (x)
∣∣x0 = x] < (1− α)V1 (x) for all x ∈ (x, z1), which contradicts L (x, q) ≥

(1− α)V1 (x) for all q < α. Thus, it must be that x = z1.

23Indeed, for all x ≤ x(q), rG(x, q) = r(1− q)(v1 − x) > µxGx (x, q) + 1
2σ

2x2Gxx (x, q) = −µx(1− q). For
all x ∈ [x(q), z2],

G(x, q) = (α− q)(v2 − x)− (α− q)(v2 − z1)

(
x

z1

)λN

+ (1− α)V1(x).

Note that r(v2−x) = rV2(x) ≥ µxV ′2(x)+ σ2x2

2 V ′′2 (x) = −µx for all x ≤ z2. Since r(α−q)(v2−z1)
(
x
z1

)λN

and

r(1− α)V1(x) both solve (B.1) for all x ∈ [x(q), z2], it follows that rG (x, q) ≥ µxGx (x, q) + 1
2σ

2x2Gxx (x, q)
for all x ∈ [x(q), z2].

24Note that this implies that Lq (x, q) = A′ (q)xλN + B′ (q)xλP for all x ∈ (x (q) , x (q)), so Lq (x, q) also
solves (B.1) in this range.
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Suppose next that x > z1 = x. Let U (x) = E[e−rτ̂ (P (xτ̂ , α)− xτ̂ )
∣∣x0 = x] and Yt =

e−rt(P (xt, α)− xt). By Ito’s Lemma, for all xt ∈ (z1, x),

dYt = e−rt
((
−r (P (xt, α)− xt) + µxt (Px (xt, α)− 1) +

σ2x2
t

2
Pxx (xt, α)

)
dt+ σxtPx (xt, α) dBt

)
= e−rt (−r (v2 − xt)− µxt) dt+ e−rtσxtPx (xt, α) dBt,

where the second equality follows since equation (9) implies that rP (x, α) = rv2+µxPx (x, α)+
σ2x2

2
Pxx (x, α) for all x > z1. Therefore, for x ∈ (z1, x),

U (x) = E [Yτ̂ |x0 = x] = Y0 + E

[∫ τ̂

0

e−rt (−r (v2 − xt)− µxt) dt
∣∣∣∣x0 = x

]
.

Note that −r (v2 − x) < µx for all x < x ≤ z2, so U (x) < Y0 = P (x, α)− x for all such x.

For each q ∈ [0, α), letW (x, q) = E[e−rτ(q)
(
P
(
xτ(q), α

)
− xτ(q)

)∣∣x0 = x]. Pick a sequence

{qn} → α, so that τ (qn)→ τ̂ as n→∞. By dominated Convergence, W (x, qn)→ U (x) as

n → ∞. Fix x ∈ (z1, x). Since U (x) < P (x, α) − x, there exists N such that W (x, qn) <

P (x, α)− x for all n > N . On the other hand, E[e−rτ(qn)V1

(
xτ(qn)

)∣∣x0 = x] ≤ V1 (x) for all

x and all n (see Remark B1). Therefore, for n > N

L (x, qn) = E
[
e−rτ(qn)

(
(α− qn)

(
P
(
xτ(qn), α

)
− xτ(qn)

)
+ (1− α)V1

(
xτ(qn)

))∣∣x0 = x
]

< (α− qn) (P (x, α)− x) + (1− α)V1 (x) = g (x, qn) ,

which contradicts the fact that L (x, qn) = supτ E [e−rτg (xτ , qn)|x0 = x]. Thus, x = z1.

Proof of Lemma B2. Follows from Lemmas B5 and B6.

Lemma B7 L (x, q) is strictly convex in q for all x ∈ (x (q) , x (q)).

Proof. I first show that, for all q′ < q < α, either x(q) 6= x(q′) and/or x(q) 6= x(q′). For q̂ ∈
[0, α), letW (x, q̂) = E[e−rτ(q̂)(P

(
xτ(q̂), α

)
− xτ(q̂))

∣∣x0 = x] and U (x, q̂) = E[e−rτ(q̂)V1

(
xτ(q̂)

)∣∣x0 =

x], where τ(q̂) is the solution to (10). Note that L (x, q̂) = (α− q̂)W (x, q̂) + (1− α)U (x, q̂).

Fix q′ < q < α and suppose by contradiction that x(q) = x(q′) and x(q) = x(q′). Note that

this implies that τ(q) = τ(q′), and so W (x, q) = W (x, q′) and U(x, q) = U(x, q′). By Lemma

B5, it must be that Lx(x(q̂), q̂) = gx(x(q̂), q̂) = −(1 − q̂) for all q̂ < α. Since L (x, q̂) =

(α− q̂)W (x, q̂) + (1− α)U (x, q̂) for all q̂ < α (and hence Lx (x, q̂) = (α− q̂)Wx (x, q̂) +
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(1− α)Ux (x, q̂)), it follows that,

−(1− q′) = Lx(x(q′), q′) = (α− q′)Wx(x(q′), q′) + (1− α)Ux(x(q′), q′)

= (α− q′)Wx(x(q), q) + (1− α)Ux(x(q), q)

= (α− q)Wx(x(q), q) + (1− α)Ux(x(q), q) + (q − q′)Wx(x(q), q)

= −(1− q) + (q − q′)Wx(x(q), q),

where the second line follows since W (x, q) = W (x, q′), U(x, q) = U(x, q′) and x(q) = x(q′),

and the last equality follows since Lx(x(q), q) = (α − q)Wx(x(q), q) + (1 − α)Ux(x(q), q) =

−(1 − q). The equalities above imply that Wx(x(q), q) = −1. Since −(1 − q) = (α −
q)Wx(x(q), q) + (1− α)Ux(x(q), q), this in turn implies that Ux(x(q), q) = −1.

Note next that by Lemma B1, U (x, q) = E[e−rτ(q)V1

(
xτ(q)

)∣∣x0 = x] solves (B.1) for all

x ∈ (x (q) , x (q)) with U (x (q) , q) = v1 − x (q) = V1 (x (q)) and U (x (q) , q) = V1 (x (q)).

Since Ux(x(q), q) = −1, it follows from Lemma B4 that U(x, q) is strictly convex for all

x ∈ [x(q), x(q)]. This implies that Ux(x, q) > −1 and U(x, q) > v1 − x for all x > x(q); in

particular, Ux(z1, q) > −1 = V ′1(z1) and U(z1, q) > v1 − z1 = V1(z1). Since both U(x, q) and

V1(x) solve equation (B.1) for all x ∈ [z1, x(q)], it follows from Lemma B3 that U(x, q) > V1(x)

for all x ∈ [z1, x(q)], a contradiction to the fact that U (x (q) , q) = V1 (x (q)). Hence, it must

be that either x(q) 6= x(q′) or x(q) 6= x(q′).

Finally, I show that L (x, q) is strictly convex in q for all x ∈ (x (q) , x (q)). Take q′ <

q < α, and for each γ ∈ (0, 1) let qγ = γq + (1− γ)q′. By the previous paragraphs, the pairs

{x(q), x(q)}, {x(q′), x(q′)} and {x(qγ), x(qγ)} are all different, which in turn implies that the

stopping times τ(q), τ(q′) and τ(qγ) are all different. Note that g(x, qγ) = (α− qγ)(P (x, α)−
x) + (1− α)V1(x) = γg(x, q) + (1− γ)g(x, q′). Therefore,

L (x, qγ) = E
[
e−rτ(qγ)g(xτ(qγ), qγ)

∣∣x0 = x
]

= γE
[
e−rτ(qγ)g(xτ(qγ), q)

∣∣x0 = x
]

+ (1− γ)E
[
e−rτ(qγ)g(xτ(qγ), q

′)
∣∣x0 = x

]
< γL (x, q) + (1− γ)L (x, q′) ,

for all x ∈ (x (q) , x (q)), so L (x, q) is strictly convex in q on (x (q) , x (q)).

B.3 Supplement to proof of Theorem 1

This appendix shows that, with two types of buyers, in any equilibrium the seller’s profits at

state (x, q) with q < α are equal to L(x, q). The proof is divided into a series of lemmas.
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Lemma B8 Let ({qt} ,P) be an equilibrium. Then,

(i) if xt ≤ z2 and qt− < α, then qs > qt− for all s > t (i.e., the monopolist makes positive

sales between t and s > t),

(ii) if xt > z2 and qt− < α, then qs = qt− for all s ∈ (t, τ2) (i.e., the monopolist doesn’t

make sales until costs reach z2).

Proof. (i) Suppose that xt ≤ z2, and that there exists s > t such that qs = qt− . Let τ =

inf{u > t : qu > qt}, so τ > t. By payoff maximization, the price that the marginal buyer q+
t =

limε↓0 qt + ε is willing to pay at time t satisfies P
(
xt, q

+
t

)
= v2 − Et[e−r(τ−t)(v2 − P (xτ , qτ )],

where Et[·] = E[·|Ft]. The monopolist gets a profit margin of Et[e
−r(τ−t)(P (xτ , qτ ) − xτ )]

from selling to consumer q+
t at time τ , while she would get P

(
xt, q

+
t

)
− xt = v2 − xt −

Et[e
−r(τ−t)(v2 − P (xτ , qτ )] from selling to consumer q+

t at time t. Note that

P
(
xt, q

+
t

)
− xt − Et[e−r(τ−t)(P (xτ , qτ )− xτ )] = v2 − xt − Et[e−r(τ−t)(v2 − xτ )] > 0,

where the inequality follows since v2 − xt > Et[e
−r(τ−t) (v2 − xτ )] for all τ > t when xt ≤ z2

(Lemma 1). Thus, the seller is better off selling to q+
t at t. Finally, since limi↓qt P (x, i) =

P
(
x, q+

t

)
, there exists ε > 0 such that the monopolist is better off selling to all i ∈ (q+

t , q
+
t +ε]

at time t than after time τ , so ({qt} ,P) cannot be an equilibrium.

(ii) Suppose that the monopolist makes sales while xt > z2. Let τα denote the time at

which consumer α buys and recall that τ2 = inf{t : xt ≤ z2}. Let τ = min {τα, τ2}. I first

show that the price at which the monopolist sells at any s ∈ [t, τ2] satisfies P (xs, qs) =

v2 − Es[e−r(τ2−s) (v2 − P (xτ2 , qτ2))]. To see this, note that all high types must get the same

payoff in equilibrium. Hence, for all s < τ and u ∈ [s, τ ], the price at which the monopolist

sells at s satisfies P (xs, qs) = v2 − Es[e
−r(u−s) (v2 − P (xu, qu))]. Thus, if τα ≥ τ2, then

P (xs, qs) = v2 − Es[e
−r(τ2−s) (v2 − P (xτ2 , qτ2))] for all s ∈ [t, τ2]. On the other hand, if

τα < τ2, then P (xs, qs) = v2 − Es[e−r(τα−s) (v2 − P (xτα , α))] for all s ∈ [t, τα]. By equation

(8),

P (xτα , α) = v2 − Eτα
[
e−r(τ1−τα) (v2 − v1)

]
= v2 − Eτα

[
e−r(τ2−τα) (v2 − P (xτ2 , α))

]
,

where the second equality follows since P (xτ2 , α) = v2−E
[
e−r(τ1−τ2) (v2 − v1)

∣∣Fτ2]. The law

of iterated expectations and the fact that qτ2 = α whenever τα < τ2 imply that P (xs, qs) =

v2 − Es[e−r(τα−s) (v2 − P (xτα , α))] = v2 − Es[e−r(τ2−s) (v2 − P (xτ2 , qτ2))].

The profits that the monopolist gets from selling to high valuation consumers between

time t and τ2 are Et[e
−r(s−t) ∫ τ2

t
(P (xs, qs)−xs)dqs]. If instead the monopolist waits until time
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τ2 and sells to all consumers i ∈ [qt− , qτ2 ] at that instant at price P (xτ2 , qτ2), her profits are

Et[e
−r(τ2−t)(P (xτ2 , qτ2)−xτ2)(qτ2−qt−)]. Since P (xs, qs) = v2−Es[e−r(τ2−s) (v2 − P (xτ2 , qτ2))]

for all s ∈ [t, τ2),

P (xs, qs)− xs − Es
[
e−r(τ2−s) (P (xτ2 , qτ2)− xτ2)

]
= v2 − xs − Es

[
e−r(τ2−s) (v2 − xτ2)

]
< 0,

since, by Lemma 1, v2 − xs < Es[e
−r(τ2−s) (v2 − xτ2)] whenever xs > z2. Hence, the seller is

better off by delaying sales until τ2, so ({qt} ,P) cannot be an equilibrium.

Lemma B9 Let ({qs} ,P) be an equilibrium. Then, for all x ∈ (0, z2], P (x, ·) is continuous

on [0, α).

Proof. Suppose that there exists x′ ∈ (0, z2] such that P (x′, ·) is discontinuous at j ∈ [0, α),

with P (x, j) > P (x, j+). Since P (·, i) is assumed to be continuous for all i, there must exist

xa > x′ > xb such that P (x, ·) is discontinuous at j for all x ∈ (xa, xb). By Lemma B8, the

monopolist always makes sales when the level of market penetration is below α and costs

are below z2. This implies that, in equilibrium, when q = j and x ∈ (xa, xb), prices must

jump down immediately after consumer j buys. But this cannot happen in equilibrium, since

consumer j would be strictly better-off delaying trade than buying at price P (x, j). Hence,

P (x, ·) is continuous on i ∈ [0, α) for all x ∈ (0, z2].

Lemma B10 Let ({qs} ,P) be an equilibrium and let t ∈ [0,∞) be such that qt− < α. If

{qs} is continuous and strictly increasing in [t, τ) for some τ > t, then there exists u > t

such that P (xt, qt)− xt = Et[e
−r(s−t)(P (xs, qt)− xs)] for all s ∈ [t, u].

Proof. Note first that, for all times t, s ≥ t and i < α, Et[e
−r(s−t)(P (xs, i)−xs)] is continuous

in s (this follows since P (x, i)− x is a continuous function of x, and since the distribution of

xs conditional on xt is continuous in s).

For all s ≥ t and i, define ∆(s, i) := P (xt, i) − xt − Et[e−r(s−t)(P (xs, i) − xs)]. By the

previous paragraph, ∆(·, i) is continuous for all s ≥ t. Moreover, by Lemma B9, ∆(s, ·) is

continuous on [0, α) for all s close enough to t.25 Suppose that the result is not true, so that

for all u > t there exists s ∈ (t, u] with ∆(s, qt) 6= 0. Since ∆(·, qt) is continuous, there exist

u > 0 such that either (i) ∆(s, qt) > 0 for all s ∈ (t, u] or (ii) ∆(s, qt) < 0 for all s ∈ (t, u].

Consider case (i) first, so that ∆(s, qt) is strictly increasing in s at s = t. Since ∆(s, i) is

continuous in i for all s close to t, there must exist i∗ > qt such that ∆(s, i) is increasing in

s at s = t for all i ∈ [qt, i
∗] (i.e., ∆(s, i) > 0 for all i ∈ [qt, i

∗] and all s close enough to t).

25Indeed, by Lemma B8, if qt is strictly increasing in [t, τ) for some τ > t, it must be that xt < z2.
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I now show that, in this case, the monopolist has a profitable deviation. For each i ∈ [0, 1],

let τ(i) = inf{s : qs ≥ i} be the time at which consumer i buys. Let Π (xt, qt) be the seller’s

continuation payoff at time t, and note that for all q > qt

Π(xt, qt) = Et

[∫ τ(q)

t

e−r(s−t) (P (xs, qs)− xs) dqs + e−r(τ(q)−t)Π
(
xτ(q), q

)]
. (B.4)

Note that for any q > qt, at time t the monopolist can get profits arbitrarily close to∫ q
qt

(P (xt, i)−xt)di+Et[e−r(τ(q)−t)Π(xτ(q), q)] by selling to consumers in [qt, q] immediately and

then not making any sale until time τ(q). Since ∆(s, i) > 0 for all i ∈ [qt, i
∗] and all s close

enough to t, there exists q ∈ (qt, i
∗) such that

∫ q
qt

(P (xt, i) − xt)di + Et[e
−r(τ(q)−t)Π(xτ(q), q)]

is strictly larger than the monopolist’s profits in (B.4). But this contradicts the fact that

({qs} ,P) is an equilibrium, so ∆(s, qt) must be weakly decreasing at s = t.

Consider next case (ii), so that ∆(s, qt) is strictly decreasing in s at s = t. Since ∆(s, i)

is continuous in i and s, there must exist i∗ > qt such that ∆(s, i) is decreasing in s = t for

all i ∈ [qt, i
∗] (i.e., ∆(s, i) < 0 for all i ∈ [qt, i

∗] and all s close enough to t). I now show that,

if this were the case, the monopolist would also have a profitable deviation.

Note that for any q > qt, at time t the monopolist can get profits arbitrarily close to

Et[e
−r(τ(q)−t)(

∫ q
qt

(P (xτ(q), i)− xτ(q))di+ Π(xτ(q), q))] by not making any sales until time τ(q),

selling to all consumers i ∈ [qt, q] arbitrarily fast at time τ(q), and then continuing playing

the equilibrium. Since ∆(s, i) < 0 for all i ∈ [qt, i
∗] and all s close enough to t, there exists

a q ∈ (qt, i
∗) such that Et[e

−r(τ(q)−t)(
∫ q
qt

(P (xτ(q), i) − xτ(q))di + Π(xτ(q), q))] is larger than

the monopolist’s profits in (B.4), which cannot be since ({qs} ,P) is an equilibrium. Hence,

∆(s, qt) must be weakly increasing at s = t. Together with the arguments above, there must

exist u > t such that ∆(s, qt) = 0 for all s ∈ [t, u].

Lemma B11 Let ({qs} ,P) be an equilibrium and let Π (x, q) be the seller’s profits. Let

t ∈ [0,∞) be such that qt− < α and such that {qs} is continuous in [t, τ) for some τ > t.

Then there exists u ∈ (t, τ ] such that Π (xt, qt) = Et[e
−r(s−t)Π (xs, qt)] for all s ∈ [t, u].

Proof. Suppose first that {qs} is constant on [t, τ). Then, Π (xt, qt) = Et[e
−r(u−t)Π (xu, qt)]

for all u ∈ [t, τ), since the monopolist doesn’t make any sales on [t, τ).

Suppose next that {qs} is continuous and increasing in [t, τ). Note first that Π (xt, qt) ≥
Et
[
e−r(u−t)Π (xu, qt)

]
for all u > t, since the monopolist can always choose to make no sales

between t and u > t. Suppose by contradiction that the statement in the Lemma is not true.
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Hence, for every u > t there exists s ∈ (t, u] such that

Π (xt, qt) = Et

[∫ s

t

e−r(s̃−t)(P (xs̃, qs̃)− xs̃)dqs̃ + e−r(s−t)Π(xs, qs)

]
> Et

[
e−r(s−t)Π (xs, qt)

]
.

Note that Π (xs, qt) ≥
∫ qs
qt

(P (xu, i)− xu)di+ Π (xs, qs), since at state (xs, qt) the monopolist

can get profits arbitrarily close to
∫ qs
qt

(P (xu, i) − xu)di + Π (xs, qs) by selling to all buyers

i ∈ [qt, qs] arbitrarily fast. Combining this with the equation above, it follows that for all

u > t there exists s ∈ (t, u] such that

Et

[∫ s

t

e−r(s̃−t)(P (xs̃, qs̃)− xs̃)dqs̃
]
> Et

[
e−r(s−t)

∫ qs

qt

(P (xs, i)− xs) di
]
. (B.5)

Equation (B.5) in turn implies that, for all u ∈ (t, τ ] there exists s ∈ (t, u] and i ∈ [qt, qs)

such that P (xτ(i), i)− xτ(i) > Eτ(i)

[
e−r(s−τ(i)) (P (xs, i)− xs)

]
(where τ(i) = inf{t : qt ≥ i} is

the time at which consumer i buys), which contradicts Lemma B10.

Lemma B12 Let ({qt} ,P) be an equilibrium and let Π (x, q) be the seller’s profits. Suppose

{qs} is continuous in [t, τ) for some τ > t. Then, there exists τ̂ > t such that {qs} is

discontinuous at state (xτ̂ , qt−); i.e., {qs} jumps up at this state. Moreover,

Π (xt, qt−) = Et
[
e−r(τ̂−t) ((P (xτ̂ , qt + dqτ̂ )− xτ̂ ) dqτ̂ + Π (xτ̂ , qt + dqτ̂ ))

]
,

where dqτ̂ denotes the jump of {qs} at state (xτ̂ , qt−).

Proof. Let τ̂ = sup{u > t : Π(xt, qt) = Et[e
−r(s−t)Π (xs, qt)] for all s ∈ [t, u]}. By Lemma

B11, τ̂ > 0. I now show that {qt} jumps at state (xτ̂ , qt). Suppose not. Then, by Lemma

B11 there exists u′ > τ̂ such that Π(xτ̂ , qt) = Et[e
−r(s−τ̂)Π (xs, qt)] for all s ∈ [τ̂ , u′]. By

the Law of Iterated Expectations, Π(xt, qt) = Et[e
−r(τ̂−t)Π (xτ̂ , qt)] = Et[e

−r(u′−t)Π (xu′ , qt)],

which contradicts the definition of τ̂ . Hence, it must be that {qt} jumps at state (xτ̂ , qt),

with Π (xτ̂ , qt) = (P (xτ̂ , qt + dqτ̂ )− xτ̂ )dqτ̂ + Π(xτ̂ , qt + dqτ̂ ). Therefore,

Π (xt, qt) = Et
[
e−r(τ̂−t) ((P (xτ̂ , qt + dqτ̂ )− xτ̂ ) dqτ̂ + Π (xτ̂ , qt + dqτ̂ ))

]
.

Lemma B13 Let ({qt} ,P) be an equilibrium and let Π (x, q) be the seller’s profits. If {qs} is

continuous and strictly increasing in [t, τ) for some τ > t, then −Πq (xs, qs) = P (xs, qs)− xs
for all s ∈ [t, τ).
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Proof. Note first that for all ε > 0 and for all s ∈ [t, τ), it must be that

Π (xs, qs) ≥ (P (xs, qs + ε)− xs) ε+ Π (xs, qs + ε) , (B.6)

since the monopolist can always choose at time s to sell to all buyers i ∈ [qs, qs + ε] at price

P (xs, qs + ε). Next, I show that for all s ∈ [t, τ) it must also be that

Π (xs, qs) ≤ (P (xs, qs)− xs) ε+ Π (xs, qs + ε) , (B.7)

for all ε > 0 small enough. To see this, let τε = inf{u : qu ≥ qs + ε}, so that

Π (xs, qs) = Es

[∫ τε

s

e−r(u−s) (P (xu, qu)− xu) dqu + e−r(τε−s)Π (xτε , qs + ε)

]
.

Note that Π (xs, qs + ε) ≥ Es[e
−r(τε−s)Π(xτε , qs+ ε)], since at state (xs, qs+ ε) the monopolist

can always achieve profits Es[e
−r(τε−s)Π(xτε , qs + ε)] by not making any sales until time τε.

Combining this with the equation above, it follows that

Π (xs, qs)− (P (xs, qs)− xs) ε− Π (xs, qs + ε)

≤ Es

[∫ τε

s

e−r(u−s) (P (xu, qu)− xu) dqu
]
− (P (xs, qs)− xs) ε (B.8)

To establish (B.7) it suffices to show that the right-hand side of (B.8) is less than zero for

ε > 0 small enough. By Lemma B10, there exists û > s such that, for all u ∈ [s, û],

P (xs, qs) − xs = Es
[
e−r(u−s) (P (xu, qs)− xu)

]
≥ Es

[
e−r(u−s) (P (xu, qu)− xu)

]
, where the

inequality follows since qu > qs and since P (x, i) is decreasing in i. Hence, for ε > 0 small

the right-hand side of (B.8) is less than zero, and so (B.7) holds.

Finally, by (B.6) and (B.7), for ε > 0 small, P (xs, qs + ε) − xs ≤ −Π(xs,qs+ε)−Π(xs,qs)
ε

≤
P (xs, qs) − xs. Since P (x, q) is continuous in q at (xs, qs) (Lemma B9), −Πq (xs, qs) =

P (xs, qs)− xs.

Corollary B2 Let ({qt} ,P) be an equilibrium and let Π (x, q) be the seller’s profits. For all

states (x, q) with x ≤ z2 and q ∈ [0, α), −Πq (x, q) = P (x, q)− x.

Proof. Fix a state (x, q) with x ≤ z2 and q ∈ [0, α) and note that by Lemma B8 {qt}
is strictly increasing at time s if (xs, qs−) = (x, q). There are two possibilities: (i) {qt}
is continuous and increasing at time s if (xs, qs−) = (x, q), or (ii) {qt} jumps at time s if

(xs, qs−) = (x, q). In case (i), the Corollary follows from Lemma B13. In case (ii), Π(x, q) =
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(P (x, q+ dq)− x)dq+ Π(x, q+ dq), where dq > 0 is the amount by which {qt} jumps at time

s if (xs, qs−) = (x, q). Hence, in this case −Πq(x, q) = P (x, q + dq)− x. Finally, note that in

this latter case it must be that P (x, i) = P (x, q + dq) for all i ∈ [q, q + dq]: all buyers in this

range know that the monopolist will charge price P (x, q+dq) at state (x, q), so in equilibrium

they are not willing to pay a higher price. It then follows that −Πq(x, q) = P (x, q)− x.

Lemma B14 Let ({qt} ,P) be an equilibrium and let Π (x, q) denote the monopolist’s profits.

Then, Π (x, q) = L (x, q) for all states (x, q) with q < α.

Proof. By the arguments in the main text, Π (x, q) ≥ L (x, q) for all states (x, q) with q < α.

I now show that Π (x, q) ≤ L (x, q) for all states (x, q) with q < α.

Fix a state (x, q) with q < α, and suppose (xt, qt−) = (x, q). Note that at this state

either {qu} jumps at t (i.e., dqt = qt − qt− > 0) or {qu} is continuous on [t, s) for some

s > t. In the first case, Π(xt, qt−) = (P (xt, qt− + dqt) − xt)dqt + Π(xt, qt− + dqt). In

the second case, by Lemma B12 there exists τ̂ > t and dqτ̂ > 0 such that Π (xt, qt−) =

Et[e
−r(τ̂−t)((P (xτ̂ , qt− + dqτ̂ )− xτ̂ ) dqτ̂ + Π (xτ̂ , qt− + dqτ̂ ))]. Let

τ̃ = sup{τ ≥ t : Π (xt, qt−) = Et[e
−r(τ−t)((P (xτ , qt− + dqτ )− xτ ) dqτ + Π (xτ , qt− + dqτ ))]}.

Note that if dqτ̃ ≥ α− qt− , then

(P (xτ̃ , qt− + dqτ̃ )− xτ̃ )dqτ̃ + Π(xτ̃ , qt + dqτ̃ )

≤(P (xτ̃ , α)− xτ̃ )(α− qt−) + (P (xτ̃ , qt− + dqτ̃ )− xτ̃ )(dqτ̃ − α + qt−) + Π(xτ̃ , qt− + dqτ̃ )

≤(P (xτ̃ , α)− xτ̃ )(α− qt−) + (1− α)V1(xτ̃ ) = g(xτ̃ , qt−),

where the first inequality follows since P (xτ̃ , qt− + dqτ̃ ) ≤ P (xτ̃ , α) and the second inequality

follows since (1 − α)V1(xτ̃ ) ≥ (P (xτ̃ , qt− + dqτ̃ ) − xτ̃ )(dqτ̃ − α + qt−) + Π(xτ̃ , qt− + dqτ̃ )

when dqτ̃ ≥ α − qt− . This implies that Π(xt, qt−) ≤ Et[e
−r(τ̃−t)g(xτ̃ , qt−)] ≤ L (xt, qt−) =

supτ E[e−rτg(xτ , qt−)], and so Π (xt, qt−) = L (xt, qt−). The rest of the proof establishes that,

indeed, dqτ̃ ≥ α− qt− .

Towards a contradiction, suppose that dqτ̃ = qτ̃ − qt− < α − qt− , so that Π (xτ̃ , qt−) =

(P (xτ̃ , qτ̃ ) − xτ̃ )(qτ̃ − qt−) + Π (xτ̃ , qτ̃ ). By Lemma B12, there exists τ ′ > τ̃ such that

Π (xτ̃ , qτ̃ ) = Eτ̃ [e
−r(τ ′−τ̃)((P (xτ ′ , qτ̃+dqτ ′)−xτ ′)dqτ ′+Π(xτ ′ , qτ̃+dqτ ′))], where dqτ ′ denotes the

jump of {qt} at state (xτ ′ , qτ̃ ). This implies that −Πq(xτ̃ , qτ̃ ) = Eτ̃ [e
−r(τ ′−τ̃)(P (xτ ′ , qτ̃ +dqτ ′)−

xτ ′)]. On the other hand, by Corollary B2 it must be that P (xτ̃ , qτ̃ ) − xτ̃ = −Πq (xτ̃ , qτ̃ ),
26

26Indeed, by Lemma B8 the monopolist only sells to high types when x ≤ z2, so it must be that xτ̃ ≤ z2.
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and so P (xτ̃ , qτ̃ )−xτ̃ = Eτ̃ [e
−r(τ ′−τ̃)(P (xτ ′ , qτ̃ +dqτ ′)−xτ ′)]. Since Π (xτ̃ , qt−) = (P (xτ̃ , qτ̃ )−

xτ̃ )(qτ̃ − qt−) + Π(xτ̃ , qτ̃ ) and since Π(xτ̃ , qτ̃ ) = Eτ̃ [e
−r(τ ′−τ̃)((P (xτ ′ , qτ̃ + dqτ ′) − xτ ′)dqτ ′ +

Π(xτ̃ , qτ̃ + dqτ ′))], it follows that

Π (xτ̃ , qt−) = Eτ̃

[
e−r(τ

′−τ̃) ((P (xτ ′ , qτ ′)− xτ ′) (dqτ ′ + qτ̃ − qt−) + Π (xτ ′ , qτ ′))
]
.

By the Law of Iterated Expectations,

Π (xt, qt−) = Et[e
−r(τ̃−t)((P (xτ̃ , qt− + dqτ̃ )− xτ̃ ) dqτ̃ + Π (xτ̃ , qτ̃ ))]

= Et

[
e−r(τ

′−t) ((P (xτ ′ , qτ ′)− xτ ′) (dqτ ′ + dqτ̃ ) + Π (xτ ′ , qτ ′))
]
,

which contradicts the definition of τ̃ . Hence, it must be that that dqτ̃ ≥ α− qt− .

B.4 Proofs of Section 5.2

Proof of Proposition 2. Note first that

lim
v1→0

P (x, α) = lim
v1→0

v2 − (v2 − v1)(x/z1)λN = v2,

where the last equality follows since λN < 0 and since z1 = −λNv1

1−λN
→ 0 as v1 → 0.

The seller’s full commitment profits are ΠFC (x) = E[e−rτ2α (v2 − xτ )|x0 = x] when

v1 < αv2 (see Appendix C.3). On the other hand, the seller’s equilibrium profits L(x, 0) are

larger than E[e−rτ2α(P (xτ2 , α)− xτ2)|x0 = x]. Therefore, when v1 < αv2

ΠFC (x) = E[e−rτ2α (v2 − xτ )
∣∣x0 = x] ≥ L(x, 0) ≥ E[e−rτ2α (P (xτ2 , α)− xτ2)

∣∣x0 = x].

Since limv1→0 P (x, α) = v2, it follows that the seller’s equilibrium profits converge to her full

commitment profits as v1 → 0.

Proof of Proposition 3. The result follows from equation (A.3) in Appendix A.1.

Proof of Proposition 4. Let µ < 0 and fix a sequence σn → 0. For each n, let λnN be

the negative root of 1
2
σ2
nλ (λ− 1) + µλ = r. For k = 1, 2, let znk =

−λnN
1−λnN

vk. Let P n (x, α)

be buyer α’s strategy when σ = σn. By Theorem 1, for each n there exists xn (0) < zn1 and

xn (0) ∈ (zn1 , z
n
2 ) such that the monopolist sells at t = 0 to all high types at price P n (x, α)

when x0 ∈ [xn (0) , zn2 ], and sells at t = 0 to all buyers at price v1 when x0 ≤ xn (0). Let

x∗ = limn→∞ x
n (0) and x∗ = limn→∞ x

n (0). Since limn→∞ z
n
k = z∗k := r

r−µvk for k = 1, 2,
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and since xn (0) < zn1 and xn (0) ∈ (zn1 , z
n
2 ) for all n, it follows that x∗ ≤ z∗1 and x∗ ≥ z∗1 . To

prove Proposition 4, it suffices to show that x∗ = x∗ = z∗1 .

Suppose by contradiction that x∗ < x∗. Let Ln(x0, 0) = En[e−rτn(0)(α(P n(xτn(0), α) −
xτn(0)) + Πn(xτn(0), α))] be the seller’s profits when σ = σn, where τn (0) = inf{t : xt ∈
[0, xn (0)] ∪ [xn (0) , zn2 ]} and where En [·] and Πn (x, α) denote, respectively, the expectation

operator and the seller’s profits at state (x, α) when σ = σn. Let τ̂ = inf{t : xt ≤ x∗}
and note that τn (0) → τ̂ as n → ∞ when x0 ∈ (x∗, x∗): as σ → 0 the probability that xt

reaches x∗ before it reaches x∗ approaches zero if x0 ∈ (x∗, x∗) and µ < 0. Moreover, note

that P n (x∗, α)→ v1 and Πn(x∗, α)→ (1− α)(v1 − x∗) as n→∞. Thus, limn→∞ L
n(x, 0) =

limn→∞E
n[e−rτ̂ (v1 − x∗)|x0 = x] for x ∈ (x∗, x∗). There are two cases to consider: (i)

x∗ < z∗1 , or (ii) x∗ > z∗1 . In case (i), for n large enough the seller’s profits Ln(x, 0) ≈
En[e−rτ̂ (v1 − x∗)|x0 = x] are strictly lower than v1 − x0 when x0 ∈ (x∗, z∗1), since, by Lemma

1, v1 − x > En[e−rτ (v1 − xτ )|x0 = x] for all τ and x < zn1 . This contradicts the fact that

Ln(x, 0) ≥ v1 − x for all x ≤ zn1 , so x∗ = z∗1 . In case (ii), Ln(x, 0) ≈ En[e−rτ̂ (v1 − x∗)|x0 =

x] < (P n(x, α)−x)α+ Πn(x, α) for all x ∈ (z∗1 , x) and for n large enough, since by Lemma 2,

P n(x, α) − x > supτ E
n[e−rτ (v1 − xτ )|x0 = x] for all x ∈ (zn1 , z

n
2 ) and since Πn(x, α) ≥ (1 −

α)En[e−rτ̂ (v1−x∗)|x0 = x]. But this cannot be, since Ln(x, 0) ≥ (P n(x, α)−x)α+ Πn(x, α).

Hence, x∗ = z∗1 .

Proof of Proposition 5. Fix a sequence (σn, µn)→ 0. For each n, let λnN be the negative

root of 1
2
σ2
nλ (λ− 1) + µnλ = r. For i = 1, 2, let zni =

−λnN
1−λnN

vi. Note that limn→∞ λ
n
N = −∞

and limn→∞ z
n
i = vi. Let P n (x, α) be buyer α’s strategy when (σ, µ) = (σn, µn). Note

that limn→∞ P
n (x, α) = v1 for x ≤ v1 and limn→∞ P

n (x, α) = v2 for x > v1. By Theorem

1, for each n there exists xn (0) < zn1 and xn (0) ∈ (zn1 , z
n
2 ) such that the monopolist sells

at t = 0 to all high types at price P n (x, α) when x0 ∈ [xn (0) , zn2 ], and sells at t = 0 to

all buyers at price v1 when x0 ≤ xn (0). To prove the Proposition it suffices to show that

x∗ = limn→∞ x
n (0) = v1 and x∗ = limn→∞ x

n (0) = v1.

Since xn (0) < zn1 and xn (0) ∈ (zn1 , z
n
2 ) for all n and since limn→∞ z

n
1 = v1, x∗ ≤ v1 and

x∗ ≥ v1. Suppose by contradiction that x∗ 6= v1 or x∗ 6= v1, so that x∗ < x∗. Thus, there

exists N and y < y such that xn (0) ≤ y and xn (0) ≥ y for all n ≥ N . Let Ln (x, 0) be

the monopolist’s profits at state (x, 0) when (σ, µ) = (σn, µn). By Theorem 1, Ln(x0, 0) =

En[e−rτn(0)(α(P n(xτn(0), α) − xτn(0)) + Πn(xτn(0), α))], where τn (0) = inf{t : xt ∈ [0, xn (0)] ∪
[xn (0) , zn2 ]} and where En [·] and Πn (x, α) denote, respectively, the expectation operator and

the seller’s profits at state (x, α) when (σ, µ) = (σn, µn). Let τ̂ = inf{t : xt /∈ (y, y)} and note

that for all n ≥ N , τn (0) ≥ τ̂ whenever x0 ∈ [y, y]. Fix x ∈ (y, y). Since P n(xτn(0), α) < v2
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and Πn(xτn(0), α) < (1− α) v2 for all n, Ln (x, 0) < v2E
n
[
e−rτ̂

]
for all n ≥ N . Finally,

note that limn→∞E
n
[
e−rτ̂

]
= 0 when x0 ∈ (y, y): as (σ, µ) → 0 it takes arbitrarily long

until costs leave the interval (y, y). This implies that Ln (x, 0) → 0, which cannot be since

Ln (x, 0) ≥ α(P n (x, α)− x) + (1− α)Πn (x, α) > 0 for all x < zn2 . Thus, x∗ = x∗ = v1.

C Online Appendix

C.1 Proof of Theorem 2

The proof of Theorem 2 is organized as follows. First, I show that the lower bound L(x, q)

(i.e., the value function of the optimal stopping problem (15)) is well defined for all q ∈ [0, 1].

I then show that the monopolist’s equilibrium profits are equal to L(x, q) for all states (x, q).

I begin by showing that the lower bound L(x, q) is well defined for all q ∈ [0, 1]. I use the

following result in optimal stopping problems.

Lemma OA1 Let h : R+ → R be a continuous function that is bounded on any compact

subset of [0,∞). Then,

W (x) = sup
τ
E[e−rτh(xτ )|x0 = x], (C.1)

is continuous in x. Moreover, the stopping time τ(S) = inf{t : xt ∈ S} solves (C.1), where

S = {x ∈ [0,∞) : W (x) = h(x)}.

The proof of Lemma OA1 can be found in Dayanik and Karatzas (2003).

Lemma OA1 can be used to show that L(x, q) is well defined for all q ∈ [0, 1] and all x.

Indeed, by Lemma B2, L(x, q) is well-defined for all q ∈ [α3, 1]. Consider next q ∈ [α4, α3),

and let

g(x, q) = (α3 − q)(P (x, α3)− x) + L(x, α3)

⇒ L(x, q) = sup
τ
E[e−rτg(xτ , q)|x0 = x]. (C.2)

Note that g(x, q) is continuous and bounded on any compact subset of [0,∞) (since P (x, α3)−
x and L(x, α3) satisfy these conditions). Therefore, by Lemma OA1, L(x, q) is continuous

in x for all q ∈ [α4, α3). Moreover, the stopping time τ(q) = inf{t : xt ∈ S(q)} solves

(C.2), where S(q) = {x ∈ (0,∞) : L(x, q) = g(x, q)}. Repeating this argument inductively

establishes that, for all k, L(x, q) is continuous in x for all q ∈ [αk+1, αk).
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Note that since L(x, q) and g(x, q) are continuous, the optimal stopping region S(q) is a

union of intervals. Fix x /∈ S(q). When x0 = x, the stopping time τ(q) is equal to the first

time at which xt reaches either z(x) = inf{y ∈ S(q), y > x} or z(x) = sup{y ∈ S(q), y < x}
(if the first set is empty, set z(x) = ∞; if the second set is empty, set z(x) = 0). Let

τx = inf{t : xt /∈ (z(x), z(x))}, and note that L(y, q) = E[e−rτxg(xτx , q)|x0 = y] for all

y ∈ (z(x), z(x)). By Lemma B1, for all y ∈ (z(x), z(x)), L(y, q) solves27

rL(y, q) = µyLy(y, q) +
σ2y2

2
Lyy(y, q). (C.3)

The following results are the counterparts of Lemmas B8-B13 to the current setting with

n > 2 types of consumers. Their proofs are the same as the proofs of Lemmas B8-B13, and

hence omitted for conciseness.

Lemma OA2 Let ({qt} ,P) be an equilibrium.

(i) if xt ≤ zk and qt− ∈ [αk+1, αk), qs > qt− for all s > t (i.e., the monopolist makes

positive sales between t and s > t),

(ii) if xt > zk and qt− ∈ [αk+1, αk), qs = qt− for all s ∈ (t, τk) (i.e., the monopolist doesn’t

make sales until costs reach zk).

Lemma OA3 Let ({qs} ,P) be an equilibrium. Then, for all k and all x ∈ (0, zk], P (x, ·) is

continuous on [αk+1, αk).

Lemma OA4 Let ({qs} ,P) be an equilibrium and let t ∈ [0,∞) be such that qt− < α2. If

{qs} is continuous and increasing in [t, τ) for some τ > t, then there exists u > t such that

P (xt, qt)− xt = Et[e
−r(s−t)(P (xs, qt)− xs)] for all s ∈ [t, u].

Lemma OA5 Let ({qs} ,P) be an equilibrium and let Π (x, q) be the seller’s profits. Let

t ∈ [0,∞) be such that qt− < α2 and such that {qs} is continuous in [t, τ) for some τ > t.

Then there exists u > t such that Π (xt, qt) = Et[e
−r(s−t)Π (xs, qt)] for all s ∈ [t, u].

Lemma OA6 Let ({qt} ,P) be an equilibrium and let Π (x, q) be the seller’s profits. Let

t ∈ [0,∞) be such that qt− < α2 and such that {qs} is continuous in [t, τ) for some τ > t.

27The boundary condition at z(x) depends on whether z(x) < ∞ or z(x) = ∞. In the first case,
L(z(x), q) = g(z(x), q); in the second case, limx→∞ L(x, q) = 0. Similarly, the boundary condition at z(x)
depends on whether z(x) > 0 or z(x) = 0. In the first case, L(z(x), q) = g(z(x), q); in the second case,
limx→0 L(x, q) = 0.

51



Then, there exists τ̂ > t such that {qt} is discontinuous at state (xτ̂ , qt); i.e., {qt} jumps up

at this state. Moreover,

Π (xt, qt) = Et
[
e−r(τ̂−t) ((P (xτ̂ , qt + dqτ̂ )− xτ̂ ) dqτ̂ + Π (xτ̂ , qt + dqτ̂ ))

]
,

where dqτ̂ denotes the jump of {qt} at state (xτ̂ , qt).

Lemma OA7 Let ({qt} ,P) be an equilibrium and let Π (x, q) be the seller’s profits. Let

t ∈ [0,∞) be such that qt− < α2 and such that {qs} is continuous in [t, τ) for some τ > t.

Then, −Πq (xs, qs) = P (xs, qs)− xs for all s ∈ [t, τ).

The following result, which is the counterpart of Lemma B14 to the current setting, uses

Lemmas OA2-OA7 to establish that in any equilibrium the monopolist’s profits are equal to

L(x, q) for all states (x, q).28

Lemma OA8 Let ({qt} ,P) be an equilibrium and let Π (x, q) denote the monopolist’s profits.

Then, Π (x, q) = L (x, q) for all states (x, q) with q ∈ [0, 1].

Proof. By the arguments in the main text, Π (x, q) ≥ L (x, q) for all states (x, q) with

q ∈ [αk+1, αk). I now show that Π (x, q) ≤ L (x, q) for all such states.

The proof is by induction on k. From Theorem 1, we know that the result is true for

all states (x, q) with q ≥ α3. Suppose next that the result holds for all states (x, q) with

q ∈ [αk̃+1, αk̃) with k̃ ≤ k − 1. I now show that this implies that the result also holds for all

states (x, q) with q ∈ [αk+1, αk).

Fix a state (x, q) with q ∈ [αk+1, αk), and suppose (xt, qt−) = (x, q). Note that at this

state either {qu} jumps at t (i.e., dqt = qt − qt− > 0) or {qu} is continuous on [t, s) for

some s > t. In the first case, Π(xt, qt−) = (P (xt, qt− + dqt) − xt)dqt + Π(xt, qt− + dqt). In

the second case, by Lemma OA6 there exists τ̂ > t and dqτ̂ > 0 such that Π (xt, qt−) =

Et[e
−r(τ̂−t)((P (xτ̂ , qt− + dqτ̂ )− xτ̂ ) dqτ̂ + Π (xτ̂ , qt− + dqτ̂ ))]. Let

τ̃ = sup{τ ≥ t : Π (xt, qt−) = Et[e
−r(τ−t)((P (xτ , qt− + dqτ )− xτ ) dqτ + Π (xτ , qt− + dqτ ))]}.

28I include the proof of Lemma OA8, since it uses an induction argument that is not present in the proof
of Lemma B14.
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Note that if dqτ̃ ≥ αk − qt− , then

(P (xτ̃ , qt− + dqτ̃ )− xτ̃ )dqτ̃ + Π(xτ̃ , qt− + dqτ̃ )

≤(P (xτ̃ , αk)− xτ̃ )(αk − qt−) + (P (xτ̃ , qt− + dqτ̃ )− xτ̃ )(dqτ̃ − αk + qt−) + Π(xτ̃ , qt− + dqτ̃ )

≤(P (xτ̃ , αk)− xτ̃ )(αk − qt−) + L(xτ̃ , αk) = g(xτ̃ , qt−),

where the first inequality follows since P (xτ̃ , qt−+dqτ̃ ) ≤ P (xτ̃ , αk) and the second inequality

follows since, by the induction hypothesis, L(xτ̃ , αk) ≥ (P (xτ̃ , qt−+dqτ̃ )−xτ̃ )(dqτ̃−αk+qt−)+

Π(xτ̃ , qt− + dqτ̃ ) when dqτ̃ ≥ αk − qt− . This implies that Π(xt, qt−) ≤ Et[e
−r(τ̃−t)g(xτ̃ , qt−)] ≤

L (xt, qt−) = supτ E[e−rτg(xτ , qt−)], and so Π (xt, qt−) = L (xt, qt−). The rest of the proof

establishes that, indeed, dqτ̃ ≥ αk − qt− .

Towards a contradiction, suppose that dqτ̃ = qτ̃ − qt− < αk − qt− , so that Π (xτ̃ , qt−) =

(P (xτ̃ , qτ̃ ) − xτ̃ )(qτ̃ − qt−) + Π (xτ̃ , qτ̃ ). By Lemma OA6, there exists τ ′ > τ̃ such that

Π (xτ̃ , qτ̃ ) = Eτ̃ [e
−r(τ ′−τ̃)((P (xτ ′ , qτ̃ + dqτ ′)− xτ ′)dqτ ′ + Π(xτ ′ , qτ̃ + dqτ ′))], where dqτ ′ denotes

the jump of {qt} at state (xτ ′ , qτ̃ ). This implies that −Πq(xτ̃ , qτ̃ ) = Eτ̃ [e
−r(τ ′−τ̃)(P (xτ ′ , qτ̃ +

dqτ ′)−xτ ′)]. On the other hand, by Lemma OA7 it must be that P (xτ̃ , qτ̃ )−xτ̃ = −Πq (xτ̃ , qτ̃ ),

and so P (xτ̃ , qτ̃ )−xτ̃ = Eτ̃ [e
−r(τ ′−τ̃)(P (xτ ′ , qτ̃ +dqτ ′)−xτ ′)]. Since Π (xτ̃ , qt−) = (P (xτ̃ , qτ̃ )−

xτ̃ )(qτ̃ − qt−) + Π(xτ̃ , qτ̃ ) and since Π(xτ̃ , qτ̃ ) = Eτ̃ [e
−r(τ ′−τ̃)((P (xτ ′ , qτ̃ + dqτ ′) − xτ ′)dqτ ′ +

Π(xτ̃ , qτ̃ + dqτ ′))], it follows that

Π (xτ̃ , qt−) = Eτ̃

[
e−r(τ

′−τ̃) ((P (xτ ′ , qτ ′)− xτ ′) (dqτ ′ + qτ̃ − qt−) + Π (xτ ′ , qτ ′))
]
.

By the Law of Iterated Expectations,

Π (xt, qt−) = Et[e
−r(τ̃−t)((P (xτ̃ , qt− + dqτ̃ )− xτ̃ ) dqτ̃ + Π (xτ̃ , qτ̃ ))]

= Et

[
e−r(τ

′−t) ((P (xτ ′ , qτ ′)− xτ ′) (dqτ ′ + dqτ̃ ) + Π (xτ ′ , qτ ′))
]
,

which contradicts the definition of τ̃ . Hence, it must be that that dqτ̃ ≥ αk − qt− .

By Lemma OA8, in any equilibrium the monopolist’s profits are equal to the lower bound

L(x, q). Using this, the equilibrium strategies can be constructed as in the proof of Theorem

1. For any q ∈ [αk+1, αk) and any x ∈ S(q), the monopolist sells to all consumers with

valuation vk at price P (x, αk).
29 For all x /∈ S(q), x > zk, the monopolist does not make

sales. Finally, for all x /∈ S(q), x ≤ zk, the monopolist sells gradually to consumers with

29For all x ∈ S(q), the equilibrium strategy of all buyers i ∈ [q, αk] is P (x, i) = P (x, αk).
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valuation vk. By the same arguments as in the proof of Theorem 1, for all xs /∈ S(qs), xs ≤ zk

rL(xs, qs)ds = (P (xs, qs)− xs + Lq(xs, qs))dqs + µxsLx(xs, qs)ds+
σ2x2

s

2
Lxx(xs, qs)ds.

Comparing this equation with (C.3), it follows that P (x, q) − x = −Lq(x, q) for all x /∈
S(q), x ≤ zk. This pins down the prices that consumers are willing to pay for all x /∈
S(q), x ≤ zk. Note that, for all q ∈ [αk+1, αk) and all x /∈ S(q),

L(x, q) = E[e−rτ(q)[(αk − q)(P (xτx , αk)− xτ(q)) + L(xτ(q), αk)]|x0 = x]

⇒ −Lq(x, q) = P (x, q)− x = E[e−rτ(q)(P (xτ(q), αk)− xτ(q))|x0 = x]. (C.4)

Lastly, the rate at which the monopolist sells to consumers with valuation vk when xs /∈
S(qs), xs ≤ zk is determined by the indifference condition of vk-consumers, as in the proof of

Theorem 1:

dqs
ds

=
−r (vk − P (xs, qs))− µxsPx (xs, qs)− 1

2
σ2x2

sPxx (xs, qs)

Pq (xs, qs)
.

I end this appendix by showing that, for all q ∈ [αk+1, αk) and all x0 > zk, the solution

to (C.2) is to sell to all consumers with valuation vk the first time costs reach zk. Recall

that, for any q ∈ [0, 1], the stopping time τ(q) = inf{t : xt ∈ S(q)} solves (C.2), where

S(q) = {x : L(x, q) = g(x, q)}. For any q ∈ [0, 1], let z(q) := sup{x ∈ S(q)}. Since L(x, q)

and g(x, q) are continuous, z(q) ∈ S(q). The following result shows that z(q) = zk for all

q ∈ [αk+1, αk).

Lemma OA9 For all integers k ∈ {2, ..., , n} and all q ∈ [αk+1, αk), z(q) = zk.

Before proceeding to its proof, note that Lemma OA9 implies that the monopolist sells

to the different types of consumers at the efficient time when x0 > zn: for any integer

k ∈ {1, ..., n}, the monopolist sells to all consumers with valuation vk the first time costs

reach zk at price P (zk, αk). Moreover, for k ∈ {2, ..., , n} and for all x ≥ zk−1, P (zk, αk) =

vk − E[e−rτk−1(vk − P (xτk−1
, αk−1))|x0 = zk]. The following corollary summarizes this.

Corollary C3 When x0 > zn, the monopolist sells to the different types of consumers at the

efficient time.

Proof of Lemma OA9. To prove the lemma, I use the following claim:
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Claim 1 Fix k ∈ {2, ..., n} and q ∈ [αk+1, αk). Then, if x ∈ S(q) and x ≤ zk−1, it must be

that x ∈ S(αk).

Claim 1 (whose proof can be found below) implies that, if x ≤ zm < zk−1 for some m < k− 1

and x ∈ S(q) for q ∈ [αk+1, αk), then x ∈ S(αk̃) for all integers k̃ ∈ {m+ 1, ..., k}.30

I now prove the lemma. The proof is by induction. Note first that, by Lemma B2, the

result is true for k = 2. Suppose next that the result is true for all k̃ = 2, .., k − 1. I now

show that this implies that the result is also true for k. Fix q ∈ [αk+1, αk). Note that for all

x > zk−1,

P (x, αk) = vk − E[e−rτk−1(vk − P (xτk−1
, αk−1))|x0 = x], (C.5)

where the equality follows since, by the induction hypothesis, when the state is (x, αk) with

x > zk−1 the monopolist waits until time τk−1 and at this point sells to all vk−1-consumers

at price P (xτk−1
, αk−1). Suppose first that z(q) > zk. This implies that

L(z(q), q) =(αk − q)(P (z(q), αk)− z(q)) + L(z(q), αk)

=(αk − q)(vk − z(q))− (αk − q)E[e−rτk−1(vk − P (xτk−1
, αk−1))|x0 = z(q)] + L(z(q), αk)

<(αk − q)E[e−rτk(vk − xτk)|x0 = z(q)]

− (αk − q)E[e−rτk−1(vk − P (xτk−1
, αk−1))|x0 = z(q)] + L(z(q), αk)

=E[e−rτk(αk − q)(P (xτk , αk)− xτk)|x0 = z(q)] + L(z(q), αk) (C.6)

where the strict inequality follows from Lemma 1 and the last equality follows since, for all

x > zk−1 and all stopping times τ < τk−1,

E[e−rτ (P (xτ , αk)− xτ )|x0 = x]

=E[e−rτ (vk − xτ − E[e−r(τk−1−τ)(vk − P (xτk−1
, αk−1))|xτ ])|x0 = x]

=E[e−rτ (vk − xτ )|x0 = x]− E[e−rτk−1(vk − P (xτk−1
, αk−1)|x0 = x]. (C.7)

Note next that, by the induction hypothesis, L(x, αk) = E[e−rτk−1g(xτk−1
, αk)|x0 = x] for all

x > zk−1. Therefore, by the Law of Iterated Expectations, for all x > zk−1 and all stopping

30Proof: the statement follows directly from Claim 1 for k̃ = k. Suppose next that the statement is true
for k̃ = m′ + 1, ..., k, with m′ ≥ m + 1. Since x ≤ zm ≤ zm′−1 and x ∈ S(αm′+1), Claim 1 implies that
x ∈ S(αm′).
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times τ < τk−1,

E[e−rτL(xτ , αk)|x0 = x] = E[e−rτE[e−r(τk−1−τ)g(xτk−1
, αk)|xτ ]|x0 = x]

= E[e−rτk−1g(xτk−1
, αk)|x0 = x] = L(x, αk). (C.8)

Combining this with the inequality in (C.6), it follows that

L(z(q), q) < E[e−rτk [(αk − q)(P (xτk , αk)− xτk) + L(xτk , αk)]|x0 = z(q)],

a contradiction. Hence, it must be that z(q) ≤ zk.

Suppose next that z(q) ∈ [zk−1, zk). This implies that, whenever x0 > z(q), τ(q) = inf{t :

xt ∈ S(q)} = inf{t : xt = z(q)}. Therefore,

L(zk, q) =E[e−rτ(q)[((αk − q)(P (xτ(q), αk)− xτ(q)) + L(xτ(q), αk))]|x0 = zk]

=E[e−rτ(q)(αk − q)(vk − xτ(q))|x0 = zk]

− (αk − q)E[e−rτk−1(vk − P (xτk−1
, αk−1)))|x0 = zk] + L(zk, αk)

<(αk − q)((vk − zk)− E[e−rτk−1(vk − P (xτk−1
, αk−1))|x0 = zk]) + L(zk, αk)

=(αk − q)(P (zk, αk)− zk) + L(zk, αk) = g(zk, q),

where the second equality uses (C.7) and (C.8) and the strict inequality follows from Lemma

1. This cannot be, since L(zk, q) = supτ E[e−rτg(xτ , q)|x0 = zk]. Hence, z(q) /∈ [zk−1, zk).

Finally, I show that z(q) /∈ [0, zk−1]. Letting z0 := 0, suppose that z(q) ∈ (zm−1, zm]

for some m ≤ k − 1 (for the case of m = 1, suppose z(q) ∈ [0, z1] = [z0, z1]). Note that

by Claim 1 and the paragraph that follows the claim, it follows that z(q) ∈ S(αk̃) for all

integers k̃ ∈ {m + 1, ..., k}. Since z(q) ∈ S(αk), at state (z(q), αk) the monopolist sells to

all consumers with valuation vk−1 immediately at price P (z(q), αk−1), and so P (z(q), αk) =

P (z(q), αk−1). If k − 1 ≥ m + 1, then z(q) ∈ S(αk−1). Therefore, at state (z(q), αk−1) the

monopolist sells to all consumers with valuation vk−2 immediately at price P (z(q), αk−2),

and so P (z(q), αk) = P (z(q), αk−1) = P (z(q), αk−2). Continuing in this way, it follows that

P (z(q), αk) = P (z(q), αm).

Since z(q) ∈ S(αk), it follows that L(z(q), αk) = (αk−1 − αk)(P (z(q), αk−1) − z(q)) +
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L(z(q), αk−1). Therefore,

L(z(q), q) = (αk − q)(P (z(q), αk)− z(q)) + L(z(q), αk)

= (αk − q)(P (z(q), αk)− z(q)) + (αk−1 − αk)(P (z(q), αk−1)− z(q)) + L(z(q), αk−1)

= (αk−1 − q)(P (z(q), αk−1)− z(q)) + L(z(q), αk−1),

where the last equality follows since P (z(q), αk) = P (z(q), αk−1) = P (z(q), αm). If k − 1 ≥
m+1, then L(z(q), αk−1) = (αk−2−αk−1)(P (z(q), αk−2)−z(q))+L(z(q), αk−2). Moreover, in

this case P (z(q), αk−1) = P (z(q), αk−2), and so L(z(q), q) = (αk−2−q)(P (z(q), αk−2)−z(q))+

L(z(q), αk−2). Continuing in this way, it follows that L(z(q), q) = (αm − q)(P (z(q), αm) −
z(q)) + L(z(q), αm).

Fix x > z(q), and note that τ(q) = inf{t : xt = S(q)} = inf{t : xt = z(q)} whenever

x0 = x. Therefore, by the arguments in the previous paragraph, for all x > z(q),

L(x, q) = E[e−rτ(q)[((αm − q)(P (xτ(q), αm)− xτ(q)) + L(xτ(q), αm))]|x0 = x].

Note further that, by the induction hypothesis, for all x > zm,

P (x, αm) = vm − E[e−rτm−1(vm − P (xτm−1 , αm−1))|x0 = x], and

L(x, αm) = E[e−rτm−1g(xτm−1 , αm)|x0 = x].

Applying the Law of Iterated Expectations, for all x > z(q) ≥ zm−1,

E[e−rτ(q)[(αm − q)(P (xτ(q), αm)− xτ(q)) + L(xτ(q), αm)]|x0 = x]

=E[e−rτ(q)(αm − q)(vm − xτ(q))|x0 = x]

− E[e−rτm−1(αm − q)(vm − P (xτm−1 , αm−1))|x0 = x] + L(x, αm).

Therefore,

L(zm, q) =E[e−rτ(q)[((αm − q)(P (xτ(q), αm)− xτ(q)) + L(xτ(q), αm))]|x0 = zm]

=E[e−rτ(q)(αm − q)(vm − xτ(q))|x0 = zm]

− E[e−rτm−1(αm − q)(vm − P (xτm−1 , αm−1))|x0 = zm] + L(zm, αm)

<(αm − q)(vm − zm)− (αm − q)E[e−rτm−1(vm − P (xτm−1 , αm−1))|x0 = zm] + L(zm, αm)

=(αm − q)(P (zm, αm)− zm) + L(zm, αm),
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where the strict inequality follows from Lemma 1. But this is a contradiction, since L(zm, q) ≥
(αm − q)(P (zm, αm) − zm) + L(zm, αm).31 Hence, z(q) /∈ (zm−1, zm]. Combining all these

arguments, it follows that z(q) = zk.

Proof of Claim 1. Fix x ≤ zk−1 with x /∈ S(αk). Then, in equilibrium, at state (x, αk) the

monopolist sells to consumers with valuation vk−1 gradually over time. By equation (C.4),

P (x, αk)− x = −Lq(x, αk) = E[e−rτ(αk)(P (xτ(αk), αk−1)− xτ(αk))|x0 = x].

Therefore, for all q ∈ [αk+1, αk) and all x ≤ zk−1, x /∈ S(αk),

g(x, q) = (αk − q)(P (x, αk)− x) + L(x, αk)

= E[e−rτ(αk)[(αk − q)(P (xτ(αk), αk−1)− xτ(αk)) + L(xτ(αk), αk)]|x0 = x]

≤ sup
τ
E[e−rτg(xτ , q)|x0 = x].

Hence, stopping when xt = x is dominated by waiting and stopping at time τ(αk), and

therefore x /∈ S(q).

C.2 The discrete-time game

This section studies the discrete-time version of the model in the paper. The main goal is to

show that in any subgame perfect equilibrium of this game, the strategies of the buyers must

satisfy condition (iii) in Definition 1 in the main text. For conciseness, I focus on the case

in which there are two types of buyers, as in Section 5. I stress however that these results

generalize to settings with any (finite) number of types.

As in the main text, a monopolist faces a continuum of consumers indexed by i ∈ [0, 1].

For each i ∈ [0, 1], let f(i) denote the valuation of consumer i. There are two types of buyers:

high types with valuation v2, and low types with valuation v1 ∈ (0, v2). Let α ∈ (0, 1) be

the fraction of high types in the market, so f(i) = v2 for all i ∈ [0, α] and f(i) = v1 for all

i ∈ (α, 1].

31Indeed, note that for all q ∈ [αk+1, αk),

L(x, q) ≥ (αk − q)(P (x, αk)− x) + L(x, αk)

≥ (αk − q)(P (x, αk)− x) + (αk−1 − αk)(P (x, αk−1)− x) + L(x, αk−1)

≥ (αk−1 − q)(P (x, αk−1)− x) + L(x, αk−1),

where the last inequality follows since P (x, αk) ≥ P (x, αk−1). Repeating this argument inductively, it follows
that L(x, q) ≥ (αm − q)(P (x, αm)− x) + L(x, αm) for all m ≤ k − 1.
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Time is discrete. Let T (∆) = 0,∆, 2∆, ... be the set of times at which players take actions,

with ∆ measuring the time period. At each time t ∈ T (∆) the monopolist announces a price

p ∈ R+. All consumers who have not purchased already simultaneously choose whether to

buy at this price or wait. All players have perfect recall of the history of the game. Moreover,

all players in the game are expected utility maximizers, and have a common discount factor

δ = e−r∆. The monopolist’s marginal cost of production evolves as (1), with µ < r and

σ > 0. The seller’s cost is publicly observable. Note that costs evolve continuously over time,

but the monopolist can only announce a price and make sales at times t ∈ T (∆). Therefore,

as ∆→ 0, costs become more persistent across periods.

A strategy for the monopolist specifies at each time t ∈ T (∆) a price to charge as a

function of the history. A strategy for a consumer specifies at each time the set of prices she

will accept as a function of the history (provided she has not previously made a purchase).

I focus on the subgame perfect equilibria (SPE) of this game.32 33

Lemma OA10 In any SPE and after any history, all buyers accept a price equal to v1,

regardless of the current level of costs.

Proof. Fix a SPE and let p(x) be the supremum of prices accepted by all consumers after

any history such that current costs are x. Let p := infx∈R+ p(x). Note first that p ≤ v1,

since buyers with valuation v1 never accept a price larger than their valuation. Suppose by

contradiction that the Lemma is not true, so p < v1. Note that the monopolist would never

charge a price lower than p. Consider the offer p = (1 − δ)v1 + δp > p. Note that every

buyer would accept a price of p− ε for any ε > 0, since the price in the future will never be

lower than p. Moreover, p − ε > p for ε small enough. This implies that there exists a cost

level x such that p− ε > p(x), which contradicts the fact that p(x) is the supremum of prices

accepted by all consumers after any history such that current costs are x. Thus, p = v1.

An immediate Corollary of Lemma OA10 is that, in any SPE, consumers with valuation

v1 accept a price equal to v1; that is, condition (4) in the main text holds in any SPE. The

next result shows that condition (5) also holds in any SPE of the game.

Consider the optimal stopping problem supτ∈T (∆) E[e−rτ (v1 − xτ )|x0 = x], where T (∆)

is the set of stopping times taking values on T (∆). The solution to this problem is to

stop the first time costs fall below some level z∆
1 . For all s ∈ T (∆), let τ∆

1 (s) = inf{t ∈
32As usual in durable goods monopoly games, I restrict attention to SPE in which actions are constant

on histories in which prices are the same and the sets of agents accepting at each point in time differ by sets
of measure zero; see Gul et al. (1985) for a discussion of this assumption.

33Existence of SPE can be shown by generalizing arguments in Gul et al. (1985).
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T (∆), t > s : xt ≤ z∆
1 }. Let τ∆

1 = τ∆
1 (0). Note that, in any SPE, if all remaining high type

consumers buy at time s ∈ T (∆) and leave the market, the monopolist will then wait until

time τ∆
1 (s) and charge a price of v1 (which all low type buyers accept). For all x > 0, let

P∆(x) = v2 − E[e−rτ
∆
1 (v2 − v1)|x0 = x].

Lemma OA11 In any SPE and after any history, all buyers with valuation v2 accept a price

equal to P∆(x) if the current cost level is x.

Proof. Fix a SPE and let p2(x) be the supremum of the prices that all buyers i ∈ [0, α]

accept after any history if current costs are x. I first show that p2(x) ≤ P∆(x). To see this,

note that by definition of p2(x), all buyers i ∈ [0, α] that remain in the market will buy if

the seller charges a price p2(x). By our discussion above, the monopolist will then sell to all

low types at a price v1 the first time costs fall below z∆
1 . The utility that a high type buyer

gets by not purchasing at price p2(x) and waiting until the monopolist serves low types is

E[e−rτ
∆
1 (v2 − v1)|x0 = x]. Therefore, for all buyers to be willing to purchase at price p2(x),

it must be that v2 − p2(x) ≥ E[e−rτ
∆
1 (v2 − v1)|x0 = x], or p2(x) ≤ P∆(x).

I now complete the proof by showing that p2(x) ≥ P∆(x). To see this, let p(x) = p2(x)

if x > z∆
1 and p(x) = v1 if x ≤ z∆

1 . Note that the monopolist will never charge a price lower

than p(x) if current costs are x. Moreover, all high type consumers will accept this price. As

a first step to prove the inequality, I show that p2(x) ≥ v2 − E[e−r∆(v2 − p(xt+∆))|xt = x].

To see this, suppose by contradiction that this is not true. Then, some high type consumers

would reject a price of pε(x) = v2−E[e−r∆(v2− p(xt+∆))|xt = x]− ε for ε small enough (i.e.,

pε(x) > p2(x) for ε small enough). Note that the lowest possible price that the seller would

charge next period is p(xt+∆), and that this price would be accepted by all high types. This

implies that the continuation utility of high types from rejecting today’s price is bounded

above by E[e−r∆(v2−p(xt+∆))|xt = x]. But this in turn implies that all high type consumers

should accept a price of v2 − E[e−r∆(v2 − p(xt+∆))|xt = x] − ε > p2(x), a contradiction to

the fact that p2(x) is the supremum over all prices that all high types accept when costs are

equal to x. Hence, p2(x) ≥ v2 − E[e−r∆(v2 − p(xt+∆))|xt = x].

Recall that τ∆
1 = τ∆

1 (0) = inf{t ∈ T (∆), t > 0 : xt ≤ z∆
1 }. For all t ∈ T (∆), let

F∆(t, x) = Prob(τ∆
1 = t|x0 = x), and note that F∆(0, x) = 0. It then follows that

p2(x) ≥ v2 − E[e−r∆(v2 − p(x∆))|x0 = x]

= v2 − e−r∆F∆(∆, x)(v2 − v1)

−(1− F∆(∆, x))E[e−r∆(v2 − p2(x∆))|x0 = x, τ∆
1 > ∆], (C.9)
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where the equality follows since p(x) = v1 for all x ≤ z∆
1 and p(x) = p2(x) for all x > z∆

1 .

Using the fact that p2(x) ≥ v2 − E[e−r∆(v2 − p(x∆))|x0 = x] repeatedly in equation (C.9),

it follows that p2(x) ≥ v2 −
∑∞

k=1 e
−rk∆(v2 − v1)F∆(k∆, x) = v2 − E[e−τ

∆
1 (v2 − v1)|x0 = x],

where the last equality follows since F∆(t, x) = Prob(τ∆
1 = t|x0 = x) and since F∆(0, x) = 0.

Lemma OA11 shows that condition (5) holds in any SPE of this discrete-time game with

two types of buyers: all buyers i ∈ [0, α] accept a price that leaves them indifferent between

buying at that price or waiting and buying at the time low type consumers buy; in particular,

consumer α accepts such a price.

Lemmas OA10 and OA11 together establish that condition (iii) in Definition 1 holds

in any SPE of this discrete-time game with two types of consumers. If there were three

types of consumers, with valuations v3 > v2 > v1, then the monopolist would only serve

v2-consumers when costs are below some cutoff z∆
2 . Letting P∆

2 (x) denote the price at which

the monopolist first sells to consumers with valuation v2 (when costs are x), arguments

identical to those in Lemma OA11 can be used to show that, in any SPE, all consumers

with valuation v3 accept a price equal to P∆
3 (x) = v3 − E[e−rτ

∆
2 (v3 − P∆

2 (xτ∆
2

))|x0 = x],

where τ∆
2 = inf{t ∈ T (∆), t > 0 : xt ≤ z∆

2 }. Hence, condition (5) also holds in any SPE of

this discrete-time game with three types of buyers. Repeating this argument, one can show

that condition (5) holds in any SPE of this game with any finite number of consumer types.

Moreover, the arguments in Lemma OA10 don’t rely on there being only two types of buyers,

so condition (4) would also hold in any SPE of this game with any number of consumer types.

C.3 Full commitment

In this appendix, I solve for the full commitment strategy of the monopolist when there are

two types of buyers in the market. In the full commitment problem, the monopolist chooses

a path of prices {pt} at time t = 0.34 Given a path of prices {pt}, consumer i makes her

purchase at the earliest stopping time that solves supτ E[e−rτ (f(i) − pτ )]. Hence, with two

types of buyers, there will be (at most) two times of sale: the (random) time τ̂1 at which

low types buy, and the (random) time τ̂2 at which high types buy. Moreover, high types will

buy weakly earlier than low types, so τ̂2 ≤ τ̂1 with probability 1. Note that, by choosing the

path of prices, the monopolist effectively chooses the times τ̂1 and τ̂2 at which the different

consumers buy.

34{pt} must be an Ft-progressively measurable process.
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Note next that it is optimal for the monopolist to charge a price of v1 to low type buyers.

Given this, the highest price that the monopolist can charge high type buyers is given by

p(xt) = v2 −E[e−r(τ̂1−t)(v2 − v1)|xt]. Therefore, the optimal strategy of the monopolist boils

down to optimally choosing the times τ̂1 and τ̂2 at which the different consumers buy. That

is, the monopolist’s full commitment profits ΠFC(x) are given by

ΠFC(x) = sup
τ̂1,τ̂2

αE
[
e−rτ̂2 (p(xτ̂2)− xτ̂2) |x0 = x

]
+ (1− α)E

[
e−rτ̂1 (v1 − xτ̂1) |x0 = x

]
= sup

τ̂1,τ̂2

αE
[
e−rτ̂2 (v2 − xτ̂2) |x0 = x

]
+ (1− α)E

[
e−rτ̂1

(
v1 − αv2

1− α
− xτ̂1

)
|x0 = x

]
,

where the equality follows from using p(xτ̂2) = v2 − E[e−r(τ̂1−τ̂2)(v2 − v1)|xτ̂2 ]. Note the

solution to the problem above involves choosing τ̂2 to maximize the first term, and choosing

τ̂1 separately to maximize the second term. Moreover, by Lemma 1, τ̂2 = τ2 = inf{t : xt ≤
z2}. Finally, note that the second term is always negative if v1 ≤ αv2, so in this case the

optimal strategy for the monopolist is to set τ̂1 = ∞; that is, to never sell to low types.

In this case, ΠFC(x) = supτ αE [e−rτ (v2 − xτ ) |x0 = x]. Otherwise, if v1 > αv2, one can

use arguments similar to those in the proof of Lemma 1 to show that it is optimal to set

τ̂1 = inf{t : xt ≤ −λN
1−λN

v1−αv2

1−α }.
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