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Abstract

Cartels and bidding rings are often facilitated by intermediaries, who recommend

prices/bids to firms and can impose penalties (such as reverting to competitive behavior

in future interactions) if these recommendations are not followed. Motivated by such

cases, we study correlated equilibria in first-price procurement auctions with complete

information, where bidders who disobey their recommendations are penalized. Cartel-

optimal profit is greater when more information about submitted bids is disclosed at

auction and when the maximum penalty is larger. When only the winner’s identity is

disclosed (or the winner’s identity and bid), cartels do not benefit from mediation. Our

main result characterizes the cartel-optimal equilibrium with two symmetric bidders

when both bids are disclosed. The optimal equilibrium involves extensive randomiza-

tion and displays tied bids and high winning bids with positive probability, even when

the maximum penalty is very small. The stationary mediation schemes we consider

are always more profitable for the cartel than bid rotation.
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1 Introduction

Cartels and bidding rings are often facilitated by intermediaries, which exert control over the

information available to cartel participants. For example, Harrington (2006) and Marshall

and Marx (2012) document that numerous industrial cartels uncovered by the European

Commission were supported by industry groups, consultancies, or accounting firms that

intentionally limited participants’information concerning each other’s operations in various

ways.1 In an auction context, Asker (2010) studies a bidding ring of stamp dealers, who

relied on an intermediary (a New York taxi driver) to privately collate bids in an internal,

“knockout”auction, before bidding on behalf of the winning bidder in a target auction. A

particularly striking case comes from Kawai, Nakabayashi, and Ortner (2022), who study

a long-running bidding ring among construction firms in the town of Kumatori, Japan.

Collusion in this ring was facilitated by a trade association– the Kumatori Contractors

Cooperative– which privately recommended bids in procurement auctions to the various

ring members. The ring members then submitted their own bids, which were later publicly

disclosed following the auction.2 In this setting, while the trade association could not directly

control the firms’bids, the auction environment provided some scope for the association to

punish firms who did not bid according to their recommendations, in addition to limiting the

firms’information about each other’s recommended bids. For instance, if a bidder placed a

bid below the one the association recommended to her, the association could announce that

a deviation occurred, and could recommend that the bidders revert to competitive bidding

in future auctions.

In mediated auctions of this form, the intermediary (or mediator) is more powerful than

a mere correlating device (Aumann, 1974) because she has some scope to punish bidders who

disobey their recommendations. However, because these punishments are bounded– e.g., by

the difference in a bidder’s continuation value under collusive and competitive bidding– the

mediator cannot fully control the bidders’bids. In the terminology introduced by Marshall

1One well-known intermediary in this context was the Swiss consulting firm AC Treuhand (see, e.g.,
Marshall and Marx, 2012, pp. 138—140).

2First-price sealed-bid auctions where all bids are disclosed following the auction are standard in procure-
ment settings (e.g., Marshall and Marx, 2012, pp. 200—202). A classic empirical study of bid-rigging in such
auctions is Porter and Zona (1993).
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and Marx (2007), the mediator is thus stronger than a bid coordination mechanism that can

only correlate bids, but is weaker than a bid submission mechanism that can directly submit

ring members’bids or prevent some members from bidding. The object of this paper is to

analyze optimal collusion with such a mediator.3

We study correlated equilibria in a symmetric first-price procurement auction with com-

plete information, where a mediator privately recommends a bid to each bidder and can

penalize bidders who deviate from their recommendations. (The complete information as-

sumption is for tractability; as we will see, optimal mediated collusion can be quite com-

plicated even with complete information.) A leading interpretation is that the bidders are

playing a stationary collusive equilibrium in a repeated auction environment, where, follow-

ing a deviation, the mediator can direct the bidders to revert to competitive bidding in future

auctions. With this interpretation, this size of the penalty equals the difference between a

bidder’s continuation payoff under collusive and competitive bidding. Other interpretations

are also possible: for example, Marshall and Marx (2012, p. 138) document several industrial

cartels that required firms to post bonds to a common fund, where the bonds were forfeited

if the firms deviated from the collusive agreement, while Clark and Houde (2013, p. 118)

study a large gasoline cartel whose leaders relied on harassment, threats, and intimidation

(in addition to price wars) to enforce compliance.

In this setting, we characterize the cartel-optimal equilibrium as a function of the size

of the penalty and the type of bid information that is disclosed following the auction. We

consider three different specifications of the bid disclosure policy: winner’s identity disclosed,

where only the identity of the winning bidder is disclosed; winner’s bid disclosed, where the

identity and the bid of the winning bidder are disclosed; and all bids disclosed, where the

full vector of bids is disclosed.4 In the first two cases, the cartel-optimal equilibrium is

3In practice, the line between bid coordination and submission can be blurry. For example, while the
bidding ring studied by Asker (2010) superficially resembles a bid submission mechanism, the intermediary
had no means of preventing dealers from directly bidding in the target auction as well as the knockout, so
economically this setting is more like bid coordination.

4While disclosing all bids is the standard practice in public procurement auctions in the United States,
auctions where only the winner’s identity and/or bid are disclosed are also well-studied and often arise
in practice (e.g., Skrzypacz and Hopenhayn, 2004; Bergemann and Hörner, 2018), and are also natural
benchmarks for comparing the benefits and drawbacks of disclosing additional bid information. The three
disclosure policies we consider are the same ones studied by Bergemann and Hörner (2018), who give examples
of important auctions run under each policy.
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relatively straightforward to characterize: the optimal equilibrium involves a deterministic

winning bid, and in fact can be implemented by the cartel even without the mediator’s

assistance. In the third case– which is the core of our analysis– the optimal equilibrium is

more complex. Here, firms mix over a continuum of bids in a correlated manner, and the

winning bid is stochastic. Mediation is essential: the cartel obtains strictly higher profits

when firms privately communicate with a mediator, as compared to the case where firms can

only communicate in public, or cannot communicate at all. Our model is thus one where

explicit (mediated) collusion is more profitable than tacit collusion. The intuition is that,

when the optimal bidding strategy involves randomization, a mediator must be present to

know what bids were recommended, in order to know whether the observed bids match the

recommendations, and hence whether punishment is warranted. (This intuition also explains

why mediation does not improve payoffs when losing bids are not disclosed. In that case,

deviations can only be punished when they change the identity of the winner or the winning

bid; but these events are already observable without a mediator.)

Our analysis of the disclosed-bids case (with mediation) proceeds as follows. We first

derive simple bounds on cartel profit as a function of the penalty size and the number of

bidders. These bounds are tight for a large cartel, i.e., in the limit where the number of

bidders is large. We then turn to small cartels. Our main result (Proposition 6) fully char-

acterizes the cartel-optimal equilibrium with two bidders, in the case where the constraint

that a bidder is not tempted to deviate from her recommended bid to a higher bid is slack.

Such upward incentive constraints are always slack when the penalty is not too small, as

well as when the mediator has the ability to deter upward deviations by placing a shill bid

just above the recommended winning bid.5 When upward constraints are slack, we show

that the optimal equilibrium is characterized by a double-continuum of binding downward

incentive constraints. Normalizing the firms’costs to 0 and the available surplus (i.e., the

reserve price or consumer valuation) to 1, and denoting the penalty size by x and the opti-

mal cartel profit level by π∗, we show that the optimal bid distribution is atomless and is

supported on a connected subset of the set [2x, 1]2, so that π∗ ∈ (2x, 1). Even though the

5Similar upward deviation-deterring bids also arise in Marshall and Marx (2007) and Bernheim and
Madsen (2017).
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bid distribution is atomless, the bidders place the same bid with positive probability: i.e.,

there is a positive probability of a random tied bid. When a bidder is recommended a bid

p above π∗, she expects to win the auction with positive probability, and she is indifferent

between following the recommendation and placing any bid in an interval [χ (p) , p) (and

facing the punishment, x), where χ (p) ∈ [2x, π∗] is the lowest bid that the other bidder is

ever recommended when one bidder is recommended bid p. When a bidder is recommended

a bid below π∗, she expects to win the auction for sure, and she strictly prefers to follow

the recommendation. Thus, each firm sometimes places a bid that it is certain will win the

auction, but– in contrast to a bid rotation scheme, where the cartel agrees on a winner in

advance (McAfee and McMillan, 1992; Kawai et al., 2022)– a firm never places a bid that it

is certain will lose. Methodologically, we cast the problem of finding the cartel-optimal equi-

librium as an infinite-dimensional linear program, which we are able to solve analytically

by solving a pair of ordinary differential equations that characterize the boundary of the

support of the optimal bid distribution as well as the optimal multipliers on the downward

incentive constraints.

When the penalty size x is small and the mediator cannot place shill bids, upward in-

centive constraints also bind, and the optimal equilibrium is more complicated. In this case,

we mostly rely on numerical solutions. However, a notable analytic result that can be ob-

tained in a discretized version of the model is that, no matter how small x is, the support

of the optimal bid distribution contains the bid pair (1, 1). Thus, the optimal equilibrium

involves high prices with positive probability, even when the maximum penalty is very small.

To see why this is a striking result, recall that the Nash equilibrium bid pair (0, 0) is the

unique correlated equilibrium in the first-price auction with complete information (Jann and

Schottmuller 2015; Feldman, Lucier, and Nisan, 2016), and by upper hemi-continuity all

equilibrium bid distributions in our model converge to this degenerate distribution as x→ 0.

Thus, while the optimal bid distribution converges to a point mass on (0, 0) as x → 0, for

any x > 0 there is a positive probability that the winning bid is arbitrarily close to 1. This

result has the empirical implication that observing high prices in a single auction does not

allow an observer to conclude that a cartel has substantial enforcement power, or that prices

will remain high in future auctions.
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The static auction game with mediator-imposed penalties that we focus on captures sta-

tionary, symmetric equilibria of a repeated auction game. Analyzing optimal, non-stationary,

repeated-game equilibria is beyond the scope of this paper. However, we do show that our

optimal stationary equilibrium always yield higher cartel profit than non-stationary bid-

rotation equilibria (in our main setting where all bids are disclosed at auction). Thus,

optimal stationary mediation outperforms this canonical class of non-stationary strategies.

The paper is organized as follows. Following a brief discussion of related literature,

Section 2 describes our model of mediated collusion. Section 3 establishes the benchmark

profit that can be obtained by a cartel without mediation. Section 4 analyzes optimal

mediated collusion when losing bids are not disclosed (where it turns out that the cartel

does not benefit from mediation, so the optimal profit level is the same as in Section 3). The

heart of the paper is Section 5, which analyzes optimal mediated collusion when all bids are

disclosed. Finally, in contrast to our static main analysis, Section 6 explicitly considers a

repeated-game setting, and shows that optimal stationary equilibria outperform bid rotation.

Section 7 concludes. Omitted proofs may be found in the print or online appendix.

1.1 Related Literature

We contribute to the literature on mediation and correlated equilibrium in moral hazard

problems and repeated games, as well as to the literature on correlated and communication

equilibrium in auctions. In the former literature, Rahman and Obara (2010) and Rah-

man (2012) derive general results on incentive compatibility in mediated partnerships. Sev-

eral papers study how cartels can benefit from creating uncertainty about their members’

current-period prices. These include Sugaya and Wolitzky (2017, 2018a), who show how

cartel members can benefit from less precise monitoring of their competitors’past prices,

since past prices can be informative of current prices6; Bernheim and Madsen (2017), who

show how mixed equilibria outperform pure ones in repeated auctions with asymmetric costs;

and Kawai, Nakabayashi, and Ortner (2022), who characterize optimal mediated bid rotation

6Sugaya and Wolitzky (2018b) derive conditions under which optimal correlated equilibria in repeated
games coincide with optimal Nash equilibria (see also Neyman, 1997; Ui, 2008). These conditions are not
satisfied by the first-price auction game; otherwise, the cartel could not benefit from mediation in our model.
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equilibria, where the mediator randomizes the recommended winning bid.7 However, none of

these papers attempts to characterize optimal correlated equilibria. We also mention Awaya

and Krishna (2016), who exhibit a class of repeated Bertrand games where explicit commu-

nication increases cartel-optimal profits. In their model, this occurs because communication

facilitates improved monitoring. Instead, in our model, (mediated) communication increases

profits by creating uncertainty about competitors’current-period bids, which reduces a firm’s

gain from deviating.

A few papers study communication equilibria in one-shot first-price auctions (among

other auction formats). With complete information, Jann and Schottmuller (2015) and

Feldman, Lucier, and Nisan (2016) show that the Nash equilibrium is the only correlated

equilibrium in the first-price auction. With independent private values, Marshall and Marx

(2007) show that a cartel cannot obtain the first-best surplus in any communication equi-

librium; moreover, Lopomo, Marx, and Sun (2011) show that with two symmetric bidders,

two types, and discrete bids, no communication equilibrium outperforms Nash. With gen-

eral information structures, Bergemann, Brooks, and Morris (2017) characterize the best

equilibrium for the bidders that can arise over all information structures; while Bergemann,

Brooks, and Morris (2021) analyze a related model where firms are assumed to know their

own values. The classic papers of Graham and Marshall (1987), Mailath and Zemsky (1991),

and McAfee and McMillan (1992) are less related, as they assume that the ring controls its

members’bids (i.e., they consider bid submission mechanisms). Such enforcement power

arises endogenously in repeated auctions with patient players (e.g., Athey and Bagwell, 2001;

Athey, Bagwell, and Sanchirico, 2004; Aoyagi 2003, 2007; Skrzypacz and Hopenhayn, 2004;

Blume and Heidhues, 2006; Hörner and Jamison, 2007; Harrington and Skrzypacz, 2011).

In contrast, we focus on the case where players are impatient, so the maximum penalty size

imposes a binding constraint.

More speculatively, mediated collusion can be related to recent interest in algorithmic

collusion (e.g., Harrington, 2018; Schwalbe, 2018; Calvano et al., 2020; Klein, 2021). Even if

firms do not explicitly communicate through a mediator, in principle the same outcome could

be obtained if firms use a common pricing algorithm or online price recommendation tool

7The authors document that the Kumatori Contractors Cooperative relied on bid rotation equilibria.
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that mimics the mediator’s stochastic recommendations. Such an algorithm could support

firm profits that are even higher than those attainable under tacit collusion, or under explicit

collusion with only public communication. While we suspect that current pricing algorithms

do not randomize in this way, the relationship between algorithms and mediation seems like

an interesting issue for future study.8

2 Preliminaries

2.1 Model

Consider n ≥ 2 firms (bidders) competing in a first-price procurement auction, with a reserve

price normalized to 1. We assume that the firms have the same, commonly known production

cost, which we normalize to 0. Firms simultaneously place bids p = (pi)
n
i=1, where without

loss pi ∈ [0, 1] for each firm i. If a unique firm i places the lowest bid pi, this firm wins the

auction and receives a payment of pi, while the other firms receive payment 0. In case of a

tie, the winner is chosen uniformly at random.9

The firms are assisted by a mediator, who has two roles. Before the auction, the mediator

privately recommends a bid to each firm. After the auction, the mediator may impose a

penalty of size x ∈ (0, 1) on each firm.10 A firm’s payoff is its payment in the auction, less

the penalty if it is applied. In sum, the mediator cannot directly control the firms’bids,

but it can impose a (limited) penalty on firms who deviate from their recommended bids,

for example by triggering reversion to competitive bidding in future auctions (in a dynamic

elaboration of the model, which we spell out in Section 2.3).

The usefulness of penalties for supporting collusion depends on the bid information that

is disclosed at auction. We will consider three disclosure regimes: winner’s identity disclosed,

where only the identity of the winning bidder is disclosed; winner’s bid disclosed, where the

8For an example of a price-recommendation website that is suspected of facilitating collusion, see “Com-
pany That Makes Rent-Setting Software for Apartments Accused of Collusion, Lawsuit Says”(ProPublica,
2022).

9With symmetric firms, uniform tie-breaking is a harmless simplifying assumption.
10Since the penalty will never be imposed on-path in an optimal equilibrium, our analysis is the same if

the mediator has the option of penalizing only a subset of firms– e.g., by expelling them from the cartel– or
is restricted to penalizing all firms simultaneously– e.g., by dissolving the cartel.
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identity and the bid of the winning bidder are disclosed; and all bids disclosed, where the

full vector of bids is disclosed. In each case, a strategy profile consists of a joint distribution

of recommended bids (a probability distribution on [0, 1]n), a bidding strategy for each firm

i (a mapping from recommended bids pi ∈ [0, 1] to probability distributions over actual

bids p′i ∈ [0, 1]), and a punishment strategy for the mediator (a mapping from vectors of

recommended bids and the disclosed bid information to a probability of penalizing one or

more bidders). The mediator is assumed to be able to commit to its strategy. Thus, a

strategy profile is a (Bayes Nash) equilibrium if each firm’s strategy maximizes its expected

payoff, given the strategies of the other firms and the mediator.11 We are interested in

the optimal equilibrium from the firms’perspective: that is, the equilibrium that maximizes

cartel profit, which is defined as the sum of the firms’expected payoffs, or equivalently the

expected winning bid (taking for granted that the penalty is not imposed on path). As we

will see, optimal cartel profit is increasing and concave in the penalty size x.

We briefly comment on two of our assumptions.

First, the mediator has commitment power. As we will see, the bid distribution that

maximizes expected cartel profit can involve a stochastic winning bid. An intermediary

who receives a share of cartel profit is thus tempted to recommend higher winning bids

more frequently, upsetting the optimal equilibrium. We instead interpret the mediator as

an outsider that is paid a flat fee, independent of the recommended bids or any deviations

by the firms.12 Alternatively, the mediator can represent an automated system, such as a

website or software package that recommends prices.

Second, the firms compete in an auction, even though their costs are identical and are

commonly known among the firms. Obviously, if a procurer who likewise knew the firms’

costs designed a mechanism to minimize the procurement price, she would simply fix the

(reserve) price at cost. There are several reasons why this observation does not render our

analysis irrelevant. First, it is likely that in many procurement settings the bidders know

11With all bids disclosed, this solution concept is the same as (interim) ε-correlated equilibrium in the game
without the mediator, with ε = x. Thus, our main technical contribution can be described as characterizing
the optimal ε-correlated equilibrium of the symmetric first-price auction with complete information (or,
equivalently, of symmetric Bertrand competition).
12For example, the intermediary in the bidding ring studied by Asker (2010) was paid $30 per hour, plus

an additional $50 per auction from each participant.
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considerably more about each others’costs than the auctioneer does. This seems especially

likely when the bidders are colluding and can communicate through a trusted intermediary,

as in our model. In these settings, fixing the price at cost is infeasible for the auctioneer.

Second, even if the auctioneer does have a good sense of the firms’ costs, she may have

limited discretion over the reserve price or weak incentives to set it optimally, so that, as

in our model, the reserve price ends up above cost.13 Third, our main reason for focusing

on the complete-information case is tractability: while mediated collusion with incomplete

information is clearly an important topic, a thorough treatment of this problem will likely

require building on aspects of our simpler complete-information analysis.

2.2 Canonical Equilibria

Two preliminary observations will simplify the search for optimal equilibria. First, for any

equilibrium, there exists an equilibrium with the same joint distribution of bids where, on

path, the bidders always follow their recommendations and the penalty is never imposed.

This follows by a revelation principle-like argument. Second, any level of cartel profit that is

attainable in any equilibrium can be attained in a symmetric equilibrium, where the cdf of

recommended bids F (p) satisfies F (p1, . . . , pn) = F
(
pφ(1), . . . , pφ(n)

)
for every permutation

φ on {1, . . . , n}. This follows because, given any asymmetric equilibrium where bidders fol-

low their recommendations, the strategy profile that results from randomly permuting the

bidders’recommendations (and similarly permuting the bidders’identities in the mediator’s

punishment strategy) is symmetric (by construction), is an equilibrium (as each bidder’s

incentive constraint is an average of those in the original equilibrium), and has the same

expected winning bid as in the original equilibrium. Given these observations, we henceforth

restrict attention to symmetric equilibria where, on path, bidders follow their recommenda-

tions and the penalty is never imposed. We call such an equilibrium canonical.

13Casual evidence suggests that reserve prices in public procurement auctions are not always chosen opti-
mally to minimize bidders’rents. For instance, in Japanese public procurement, reserve prices are typically
determined based on the engineer’s cost estimate (Hatsumi and Ishii, 2022), and, in some municipalities, are
rarely binding (Chassang and Ortner, 2019). Similarly, procurement auctions run by Michigan’s Department
of Transportation (MDOT) do not have a formal reserve price, but MDOT has the right to reject all bids if
the lowest one is higher than 110% of the engineer’s cost estimate (Somaini, 2020).
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2.3 Repeated Game Interpretation

A leading interpretation of the model is that the penalty x represents a firm’s lost contin-

uation payoff from switching from collusive to competitive play in a stationary, symmetric

repeated-game equilibrium. To spell this out, consider any canonical equilibrium of our one-

shot game with a penalty size of x. Let πi (x) denote a firm’s expected payoff. (Recall that

this is the same for each firm i.) If the firms repeatedly participate in identical auctions

with a common discount factor δ, it is a (stationary, symmetric) equilibrium of the repeated

game for the firms to play the symmetric equilibrium of the one-shot game in every period,

where the penalty size x satisfies the fixed-point equation

x =
δ

1− δπi (x) , (1)

and the prescribed equilibrium play is enforced by the threat of reversion to the static

Nash equilibrium p = 0 following any deviation. Conversely, in any stationary, symmetric

repeated-game equilibrium, play in every period corresponds to a canonical equilibrium of

our one shot game, with a value of x that satisfies equation (1).

In some versions of our model, it will turn out that optimal cartel profits are linear in

the penalty size x, and hence πi (x) is linear in x. In this case, the highest value of πi (x)

that satisfies equation (1) is given by a corner solution, πi (x) ∈ {0, 1/n} (depending on

the values of δ and the coeffi cient on x in the formula for πi (x)), so the model becomes

trivial. However, enriching the interpretation of the penalty recovers an interior solution

to (1). For example, if the penalty consists of some exogenous component y in addition to

the lost continuation payoff (e.g., bonds posted by the firms, the threat of harassment or

intimidation), then equation (1) becomes x = y + (δ/ (1− δ)) πi (x), which has an interior

solution whenever δ is suffi ciently small. Another possibility is that the reserve price or

production cost may be stochastic. In this case, the variable πi (x) in equation (1) should

be interpreted as the expected profit prior to the realization of the stochastic variable. With

this interpretation, πi (x) can be concave in x even if optimal cartel profit is linear in x in

our baseline model. This again yields an interior solution for (1).14

14Kawai, Nakabayashi, and Ortner (2022) work out a model along these lines.
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While our main analysis is static and takes the penalty size x as a primitive, we explicitly

consider the repeated game in Section 6, where we compare optimal stationary, symmetric

equilibria (which correspond to the static equilibria in our main analysis) with non-stationary

bid-rotation strategies, where each firm is supposed to win the auction every n periods.

3 Unmediated Collusion

We first establish the benchmark profit that the firms can obtain without the assistance of

a mediator. We assume that the firms can agree in advance on a punishment scheme as a

function of the information that is disclosed at auction (the winner’s identity, the winner’s

identity and bid, or all bids), with a maximum penalty of x. This benchmark lets us isolate

the value for the cartel of employing a mediator who makes private bid recommendations.

Proposition 1 Without a mediator, the following hold:

1. With winner’s identity disclosed, optimal cartel profit equals x. Moreover, the winning

bid cannot exceed x with positive probability in any equilibrium.

2. With winner’s bid disclosed, optimal cartel profit equals min
{

n
n−1

x, 1
}
. Moreover, the

winning bid cannot exceed min
{

n
n−1

x, 1
}
with positive probability in any equilibrium.

3. With all bids disclosed, optimal cartel profit is at least min
{

n
n−1

x, 1
}
and at most

min {2x, 1}. Moreover, optimal cartel profit equals min
{

n
n−1

x, 1
}
if n = 2 or if atten-

tion is restricted to equilibria where all firms make positive expected profits.

The intuition for part 1 is that, since a deviation is detected only if it succeeds in switch-

ing the deviating firm from losing the auction to winning it, the maximum winning bid

(which equals the gain from a successful deviation) cannot exceed the available punishment.

Disclosing the winning bid lets the cartel support somewhat higher bids, because now a firm

that deviates to a winning bid is punished even if it would also have won by following its

recommendation. However, disclosing the losing bids does not further increase optimal cartel

profit, at least for equilibria where all firms make positive expected profits.15

15In the online appendix, we give an example where n = 3 but only two firms make serious bids and cartel
profit is above 3

2x.
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Proof. 1. An equilibrium yielding cartel profit x is as follows: Bidder 1 bids x, and every

other bidder draws their bid from the uniform distribution on [x, x+ ε], where ε is any

constant satisfying ε̄ ∈ (0,min {(n− 1)x, 1− x}). The bidders are all punished iff bidder 1

loses the auction.

To see that this is an equilibrium, note that if bidder 1 bids p ∈ [x, x+ ε], she wins with

probability
(
x+ε−p

ε

)n−1
. Since x = argmaxp∈[x,x+ε]

(
x+ε−p

ε

)n−1
p and bidding any p 6= x only

increases the probability of punishment, bidder 1’s optimal bid is x. Meanwhile, any other

bidder has an equilibrium payoff 0, against a payoff of at most x− x = 0 from deviating to

a winning bid and getting punished.

That the winning bid cannot exceed x with positive probability (and hence optimal cartel

profit cannot exceed x) is implied by Proposition 2.1.

2. An equilibrium yielding cartel profit n
n−1

x is as follows: Everyone bids n
n−1

x. The

bidders are all punished iff the winning bid differs from n
n−1

x.

This is an equilibrium because a bidder’s equilibrium expected payoff is 1
n−1

x (by uniform

tie-breaking), against a payoff of at most n
n−1

x− x = 1
n−1

x from deviating to a different bid

and getting punished.

That the winning bid cannot exceed min
{

n
n−1

x, 1
}
with positive probability (and hence

optimal cartel profit cannot exceed min
{

n
n−1

x, 1
}
) is implied by Proposition 2.2.

3. The lower bound follows because the equilibrium in the winner’s bid observed case

remains an equilibrium when all bids are observed. The proof of the upper bound (as well

as the proof that the lower bound is tight when n = 2 or all firms make positive profits) is

deferred to the appendix.

It may be surprising that, without mediation, the cartel does not strictly benefit from

the disclosure of the losing bids. Indeed, this finding contrasts with the classic intuition of

Stigler, who argued that, “The system of sealed bids, publicly opened with full identification

of each bidder’s price and specifications, is the ideal instrument for the detection of price-

cutting,”(Stigler, 1964, p. 48). Proposition 1 qualifies this intuition by noting that, without

mediation, disclosing all bids is no more favorable to collusion than is disclosing only the
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winner’s bid and identity.16 However, we will see that mediated cartels obtain strictly higher

profits when all bids are disclosed, so Stigler’s intuition is vindicated for mediated cartels.

4 Mediated Collusion with Unobserved Losing Bids

This section characterizes optimal mediated collusion when losing bids are not disclosed at

auction. We will see that in this case optimal cartel profit is the same as in Proposition 1.

Thus, the cartel does not benefit from mediation when losing bids are not disclosed.

To establish this result, it turns out to be suffi cient to consider a limited class of deviations

for the bidders: uniform downward deviations, where, for some cutoffbid p∗ ∈ [0, 1], a bidder

follows her recommendation pi whenever pi ≤ p∗, while she deviates by bidding p∗ whenever

pi > p∗.17

Proposition 2 With a mediator, the following hold:

1. With winner’s identity disclosed, optimal cartel profit equals x. Moreover, the winning

bid cannot exceed x with positive probability in any equilibrium.

2. With winner’s bid disclosed, optimal cartel profit equals min
{

n
n−1

x, 1
}
. Moreover, the

winning bid cannot exceed min
{

n
n−1

x, 1
}
with positive probability in any equilibrium.

Proof. 1. Since Proposition 1.1 shows that the cartel can obtain profit x even without

mediation, it suffi ces to show that the winning bid cannot exceed x with mediation. To

see this, fix any canonical equilibrium with bid profile cdf F (p), and let W (p) denote

the corresponding cdf of the winning bid, p = min {p1, . . . , pn}. Since the equilibrium is

symmetric, each bidder’s equilibrium expected payoff equals

∫ 1

0

p

n
dW (p) .

16This result relies on the assumption that the bidders’ costs are common knowledge, so that optimal
unmediated collusion involves a fixed winning bid. However, we conjecture that the same result would also
hold with incomplete information if the bidders held a knockout auction before the target auction, as in this
case the prescribed winning bid in the target auction would again be commonly known by the bidders.
17Jann and Schottmuller (2015) and Feldman, Lucier, and Nisan (2016) show that the Nash equilibrium

of the symmetric, complete-information, first-price auction is also the unique correlated equilibrium. This
result is similar to the x = 0 case of Proposition 2.1, and likewise is proved by considering uniform deviations.
Uniform deviations also suffi ce to characterize optimal equilibria in some other auction games, such as the
one considered by Bergemann, Brooks, and Morris (2017).
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In contrast, for any p∗ ∈ [0, 1] such that W (p) is continuous at p∗, a uniform downward

deviation with cutoff p∗ ∈ [0, 1] gives an expected payoff of

∫ p∗

0

p

n
dW (p) + (1−W (p∗))

(
p∗ − n− 1

n
x

)
. (2)

Indeed, if the lowest recommended bid is p < p∗, with probability 1
n
the firm wins with bid

p, and with probability n−1
n
the firm loses but is not punished (as even if it deviated, the

deviation is not detected). If instead all recommended bids are strictly above p∗, then the

firm wins with bid p∗, and the firm is punished with probability n−1
n
(since with probability

1
n
the firm would have won even absent its deviation, so its deviation is not detected).18

Since this deviation must be unprofitable in equilibrium, we have

∫ p∗

0

p

n
dW (p) + (1−W (p∗))

(
p∗ − n− 1

n
x

)
≤

∫ 1

0

p

n
dW (p) ⇐⇒∫ 1

p∗

(
p∗ − n− 1

n
x− p

n

)
dW (p) ≤ 0.

Now, let p̄ = max supp (W ) denote the highest winning bid. Since the above inequality

must hold for p∗ = p̄−ε for any ε > 0 such thatW (p) is continuous at p∗, taking a sequence

ε ↓ 0 gives

p̄− n− 1

n
x− p̄

n
≤ 0 ⇐⇒ p̄ ≤ x,

as desired.

2. Since Proposition 1.2 shows that the cartel can obtain profit min
{

n
n−1

x, 1
}
even

without mediation, it suffi ces to show that the winning bid cannot exceed min
{

n
n−1

x, 1
}

with mediation. The proof of this fact follows the same line as in the winner’s identity

disclosed case. The difference is that a uniform downward deviation with cutoff p∗ ∈ [0, 1]

(where W (p) is continuous at p∗) now gives an expected payoff of only

∫ p∗

0

p

n
dW (p) + (1−W (p∗)) (p∗ − x) , (3)

18The event that the lowest recommended price equals p∗ occurs with probability 0 because W (p) is
continuous at p∗, and thus does not affect (2).
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where the difference from (2) is that, now, if all recommended bids are strictly above p∗, the

deviator is punished with probability 1 (rather than with probability n−1
n
as in the winner’s

identity observed case). We thus have

∫ p∗

0

p

n
dW (p) + (1−W (p∗)) (p∗ − x) ≤

∫ 1

0

p

n
dW (p) ∀p∗ s.t. W (p) is continuous at p∗.

Taking a sequence p∗ ↑ p̄ gives

p̄− x− p̄

n
≤ 0 ⇐⇒ p̄ ≤ n

n− 1
x.

5 Mediated Collusion with All Bids Disclosed

Our main analysis concerns mediated collusion when all bids are disclosed at auction. We

first derive simple upper and lower bounds on optimal cartel profit, where the upper bound

comes from considering uniform downward deviations as in the previous section, and the

lower bound comes from considering equilibria where at most one firm at a time bids below

a pre-specified target (a class of strategies we call “almost-uniform bids”). Unlike in the

previous section, the profit bound implied by uniform downward deviations is not generally

tight; however, the bound is tight for a large cartel (where n→∞). We then turn to optimal

equilibria for a small cartel, focusing on the case of two firms for tractability. Here we fully

characterize the optimal equilibrium when upward incentive constraints are slack: this is our

main result. As we show, upward incentive constraints are slack if x ≥ 1/3. Alternatively, if

the mediator herself (or a proxy) can enter the auction and place a shill bid just above the

lowest recommended bid, then upward deviations are always unprofitable. Such shill bids

always lose in equilibrium, so entering such a bid may be costless for the mediator in many

auction settings. Finally, we consider the case where both downward and upward constraints

bind (again with n = 2): i.e., the case where x < 1/3 and the mediator cannot place shill

bids. Here we prove that, no matter how small x is, the support of the distribution of winning

bids contains the reserve price of 1. We also further characterize the optimal equilibrium
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numerically, showing that the support of the bid distribution takes a relatively simple form.

We end with a figure comparing cartel profit across the various settings and equilibria we

consider, for two firms and any value for x.

5.1 Profit Bounds and Large Cartels

The upper bound on cartel profit that results from considering uniform downward deviations

is as follows.

Proposition 3 With all bids disclosed, cartel profit cannot exceed

n

n− 1

(
x+ ((n− 1)x)

n−1
n (n− 1− x)

1
n

)
− nx.

For example, when n = 2, cartel profit cannot exceed 2
√
x− x2.

The proof shows that in the optimal bid distribution that deters all uniform downward

deviations, with probability 1 at least n− 1 firms bid 1: that is, at most one firm at a time

bids below 1. The intuition is that increasing all losing bids to 1 increases the marginal

distribution of each bidder’s bid– and hence increases the probability that she is punished

following any uniform downward deviation– without affecting the distribution of the winning

bid (and hence without affecting a bidder’s equilibrium payoff or her probability of winning

the auction following a uniform downward deviation). However, this bid distribution does

not deter non-uniform downward deviations, where a bidder deviates to a bid p < 1 when

she is recommended a bid of 1, but does not deviate when she is recommended a bid in

between p and 1. For this reason, the resulting upper bound on cartel profit is slack.

We obtain a lower bound on optimal cartel profit by considering equilibria of a similar

form, where there exists a bid p̄ ∈ [0, 1] such that, with probability 1, at least n − 1 firms

bid p̄, and the remaining firm’s bid does not exceed p̄. We say that such an equilibrium has

almost-uniform bids. This lower bound suffi ces to establish that the cartel strictly benefits

from mediation when all bids are disclosed, whenever unmediated cartel profit is below the

first-best level of 1.
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Proposition 4 With all bids disclosed, the optimal equilibrium among those with almost-

uniform bids gives cartel profit equal to

min

{
(n− 1)x

n− 1− x

(
1− n

n− 1
log

(
nx

n− 1

))
,
(2n− 1)x

2n− 2

(
1− n

n− 1
log

(
n

2n− 1

))
, 1

}
.

In particular, this profit level strictly exceeds n
n−1

x whenever n
n−1

x < 1, so the cartel strictly

benefits from mediation whenever unmediated cartel profit is below 1.

In addition, if the mediator can deter upward deviations by placing a shill bid, the optimal

equilibrium with almost-uniform bids gives cartel profit equal tomin
{

(n−1)x
n−1−x

(
1− n

n−1
log
(
nx
n−1

))
, 1
}
.

Intuitively, the best equilibrium with almost-uniform bids is characterized by the maxi-

mum bid p̄, together with the condition that a firm that is recommended bid p̄ is indifferent

between bidding p̄ and any bid p in between p̄ and n
n−1

x, which is the lowest bid in the support

of the equilibrium bid distribution. If only downward incentive constraints bind, the optimal

maximum bid p̄ equals 1, and cartel profit equals min
{

(n−1)x
n−1−x

(
1− n

n−1
log
((

nx
n−1

)))
, 1
}
.19

This case arises when x ≥ n−1
2n−1

, as well as when the mediator can deter upward deviations

by placing a shill bid. If instead x < n−1
2n−1

(and shill bids are infeasible), then the maximum

bid cannot equal 1, because a bidder who is recommended the minimum bid of n
n−1

x would

prefer to deviate upward to a bid just below 1. In this case, the maximum bid is set to

satisfy this upward incentive constraint– so that n
n−1

x = p̄ − x, or p̄ = 2n−1
n−1

x– and cartel

profit equals (2n−1)x
2n−2

(
1− n

n−1
log
(

n
2n−1

))
. Note that 2n−1

2n−2

(
1− n

n−1
log
(

n
2n−1

))
> n

n−1
, so in

either case profits are greater than n
n−1

x, the optimal cartel profit without mediation.

Combining Propositions 3 and 4 lets us characterize optimal profit for a large cartel,

where n → ∞. This exercise requires taking a stance on how x varies with n. We assume

that x is non-increasing in n, so that either x approaches a positive lower bound x > 0

as n → ∞ (e.g., the penalty is harassment by other cartel members, which is similarly

unpleasant in small and large cartels), or x→ 0 as n→∞ (e.g., the penalty is reversion to

competitive play, hence each firm loses their 1/n share of cartel profits).

19Note that this is lower than the bound from Proposition 3, because here the corresponding bid distrib-
ution deters all downward deviations, not just uniform ones.
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Proposition 5 Suppose that the penalty size with n firms is given by a non-increasing func-

tion x (n) satisfying limn→∞ x (n) = x ≥ 0. Let π∗ (n) denote optimal cartel profit with n

firms and penalty size x (n). Then limn→∞ π
∗ (n) = x (1− log x), with convention 0 log 0 = 0.

Proof. Note that limn→∞
n
n−1

(
x+ ((n− 1)x)

n−1
n (n− 1− x)

1
n

)
−nx = x (1− log x). Hence,

by Proposition 3, lim supn→∞ π
∗ (n) ≤ x (1− log x). Next, note that

limn→∞
(n−1)x
n−1−x

(
1− n

n−1
log
(
nx
n−1

))
= x (1− log x). Hence, by Proposition 4, if x ≥ 1

2
(so the

first term in the bound in Proposition 4 is the minimizer when n is large), then lim infn→∞ π
∗ (n) ≥

x (1− log x). In the appendix, we show that if x < 1
2
then again lim infn→∞ π

∗ (n) ≥

x (1− log x). Thus, the lim inf and lim sup must both equal x (1− log x).

There is a simple intuition for the limit profit of x (1− log x). This is the profit that results

when one firm is pre-selected to win the auction and is recommended to bid 1 with probability

x and otherwise to bid between x and 1 according to the unit-elastic cdf F (p) = 1 − x/p,

while the other firms place losing bids. Under this scheme, losing bidders cannot profitably

deviate, because bidding just below 1 wins with probability x but results in punishment,

and (by construction) bidding anywhere between x and 1 gives the same expected payoff.

So this scheme is an equilibrium whenever upward incentive constraints hold. Moreover, the

corresponding winning bid distribution is the limit as n → ∞ of both the distribution in

the proof of Proposition 3 and that in the proof of Proposition 4. For fixed n, both of these

distributions put more weight on higher bids, because a bidder that is recommended to bid

1 wins with positive probability, and so is less tempted to deviate as compared to the case

where she always lose. However, as n → ∞, a bidder that is recommended to bid 1 wins

with probability approaching 0, so both distributions converge to the one just described.20

An interesting implication of Proposition 5 is that if the reserve price r is taken as a

free parameter (rather than being normalized to 1), cartel profit in the n→∞ limit equals

x (1− log (x/r)), which diverges as r →∞ whenever x > 0. The intuition is that when the

winning bid is randomized over a wide range, a small penalty is enough to deter deviations

by losing bidders.

20The distribution in the proof of Proposition 3 is not an equilibrium for any finite n, because a bidder
that is recommended to bid 1 has a profitable non-uniform downward deviation. However, as the probability
that each bidder is recommended to bid 1 converges to 1, the expected payoff difference between uniform and
non-uniform deviations vanishes, so this distribution is an ε-equilibrium, for ε converging to 0 as n→∞.
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While the bounds in Propositions 3 and 4 coincide only in the limit, they are already

quite close together when n = 2 and x ≥ 1/3 (so upward incentive constraints are slack). In

this case, the upper bound exceeds the lower bound by less than 5%.

5.2 Optimal Equilibrium with Downward Incentive Constraints

We now assume that n = 2 and (to rule out the case where first-best profit is attainable) x ≤

1/2. We characterize the optimal equilibrium, when only downward incentive constraints are

considered. We will see that the resulting strategy profile is a genuine equilibrium– and hence

the optimal one– if x ≥ 1/3, or if shill bids are feasible.

5.2.1 The Optimal Equilibrium

To understand the structure of the optimal equilibrium, first recall the optimal equilibrium

with almost-uniform bids, ignoring upward incentive constraints. In this equilibrium, the

higher of the two bids is always equal to 1, and the lower bid is distributed on the interval

[2x, 1], so that a firm that is recommended a bid of 1 is indifferent among all bids in this

interval. Observe that one way to improve cartel profit relative to this equilibrium is to rec-

ommend the bid profile p1 = p2 = p with small probability, for any price p < 1 that is greater

than the cartel profit in the original equilibrium. This follows because the resulting bid distri-

bution yields higher expected profit by construction, and it remains an equilibrium because

a firm that is recommended a bid of p expects to win the auction with high probability. The

same logic implies that to obtain the optimal cartel profit π∗, the bid profile p1 = p2 = p

should be recommended with positive weight for every price p in the interval [π∗, 1]: i.e., the

optimal equilibrium features a random tied bid. Moreover, to increase the weight that can

be placed on tied bids, for each bid p ≥ π∗ there should exist a bid χ (p) ∈ [2x, π∗] such that

a firm that is recommended a bid of p is indifferent among all bids in the interval [χ (p) , p].

To support this indifference condition, the bid χ (p) is also the lowest bid in the support of

the conditional distribution Fj (pj|pi = p); that is, for p ≥ π∗, the function χ (p) describes

the lower boundary of the support of the optimal joint bid distribution.21 For p ≥ π∗, the

21The function χ : [π∗, 1]→ [2x, π∗] is the inverse of the function ω referenced in Proposition 6.
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conditional distribution Fj (pj|pi = p) is thus supported on the interval [χ (p) , 1]; it turns

out to have a positive density for all pj 6= pi, with an atom at pj = pi. Finally, given the

function χ (p), the double-continuum of binding downward incentive constraints (from each

p ≥ π∗ to each p′ ∈ [χ (p) , p)), together with symmetry, determines the optimal distribution

with this support.22

Specifically, let π̂ denote the unique solution for π in the interval [2x, 1] to the equation

2x log 2x+ (π − x) log
π (π − x)

x
= 0. (4)

We show that π̂ is the optimal cartel profit when only downward incentive constraints are

considered, and we characterize the corresponding joint distribution of bids F (p1, p2). For-

mally, we establish the following result.

Proposition 6 With all bids disclosed, n = 2, and x ≤ 1/2, the optimal equilibrium when

only downward incentive constraints are considered gives cartel profit π̂. The optimal joint

distribution of bids F (p1, p2) is atomless and is supported on a connected subset of [2x, 1]2.

The distribution of the winning bid pL = min {p1, p2} and the losing bid pH = max {p1, p2}

have the following properties:

1. The winning bid distribution has support [2x, 1] and is atomless with a divergent density

at 1.

2. When the winning bid pL is below π̂, the losing bid pH is supported on an interval[
ω
(
pL
)
, 1
]
, where ω (p) is a decreasing function satisfying ω (2x) = 1 and ω (π̂) = π̂.

In particular, the bid gap pH − pL is always positive.

3. When the winning bid pL is above π̂, the losing bid pH is supported on the interval[
pL, 1

]
. Moreover, the conditional distribution of pH has an atom at pH = pL, so the

bid gap pH − pL equals zero (i.e., the bids are tied) with positive probability.
22As this discussion indicates, while the optimal distribution maximizes the expected winning bid (by

definition), it does not maximize the winning bid distribution in terms of first-order stochastic dominance.
For example, the distribution given by Pr (max {p1, p2} = 1) = 1 and the same conditional distribution
Fj (pj |pi = 1) as in the optimal distribution (which is also the same conditional distribution as in the proof
of Proposition 4) gives a higher probability that min {p1, p2} = 1.
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In addition, F (p1, p2) also satisfies all upward incentive constraints– and hence is the

optimal equilibrium– if either x ≥ 1/3 or the mediator can place a shill bid.

Figure 1 is a heat map for the optimal joint bid distribution F (p1, p2) when x = .35 and

recommended bids are restricted to multiples of .01.23 The qualitative features described

above are readily apparent. The marginal Fi (pi) is supported on the interval [2x, 1]; the

conditional Fj (pj|pi) is supported on an interval that includes 1 and that is wider when pi

is higher; and more probability mass is assigned to bid pairs (p1, p2) where either p1 = p2

or max {p1, p2} = 1 than to other pairs. (When recommended bids are continuous, this

corresponds to the conditional Fj (pj|pi) having an atom at pj = pi, and to the marginal

density fi (pi) diverging to infinity as pi → 1.) Optimal cartel profit π̂ is equal to the

smallest price p such that (p, p) ∈ suppF (p1, p2), which is approximately .93. (This can be

seen by counting down seven grid points along the diagonal, starting from (1, 1).) Winning

bids below π̂ are isolated (i.e., the bid gap is bounded away from zero), while winning bids

above π̂ are tied with positive probability.

5.2.2 Empirical Implications of the Optimal Equilibrium

We now highlight some features of the optimal bid distribution and explain how they relate

to screens for collusive bidding that have been proposed in the literature.

First, winning bids below π̂ are isolated. The optimal equilibrium thus displays the

“missing bids”pattern documented by Chassang et al. (2022). As Chassang et al. (2022)

show, this bid pattern is inconsistent with competitive bidding and thus indicates collusion.

Second, winning bids above π̂ are tied with positive probability. The optimal equilibrium

may thus fail collusive screens that flag auctions with clustered bids.24 Moreover, the feature

that the tied bid is random is a marker of mediated collusion, as this feature is inconsistent

with independent randomization by the bidders. Looking across auctions, the exactly parallel

bid movements that result from random tied bids are a familiar collusive marker: e.g.,

23The distribution is a true equilibrium: i.e., deviations to all bids in [0, 1] are unprofitable. For heat maps
for some other values for x, see the online appendix.
24One such a screen is the coeffi cient of variation proposed by Imhof et al. (2018), which flags auctions

where the variance of bids is low. Imhof et al. (2018) document a successful application of this screen by
the Swiss Competition Authority.
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Figure 1: The optimal bid distribution when x = .35. The figure is generated by restricting
recommended bids to multiples of .01. The color scheme is as follows: gray cells have 0
mass; green cells have small positive mass; yellow cells have mass .01; red cells have mass at
least .1; and colors in between green and yellow, (resp., yellow and red), interpolate between
between mass 0 and .01 (resp., .01 and .1). The only red cell in the figure is at p1 = p2 = 1;
this single bid pair is recomended with probability approximately .42. The second-heaviest
cell is p1 = p2 = .99, which is recommended with probability approximately .03.
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Harrington (2008) writes that, “there is a common wisdom that parallel price movements

are a collusive marker.”However, Harrington continues, “Though there is a fair amount of

documentation of identical bids at auction. . . in very few cases has collusion been found.

More broadly, evidence that parallel pricing is a feature of collusion is ambiguous.”Given

our theory, it would be interesting to study if this ambiguity is linked to the presence or

absence of mediation, i.e., if mediated cartels exhibit more parallel price movements.

Putting these features together, the prediction that low winning bids are isolated while

high winning bids are clustered and move in parallel seems quite distinctive to our theory.

Third, while random tied bids are a marker of mediated collusion, the overall correlation

between the two bidders’bids in the optimal equilibrium is close to zero: we have calculated

that for every value of x ∈ (0, 1), the absolute value of the correlation between the bids is less

than .01. This lack of correlation contrasts some other collusive models, such as bid rotation,

where this correlation is strongly negative, or bid clustering to deter upward deviations as

in Marshall and Marx (2007), where it is strongly positive.

Fourth, whether the optimal equilibrium passes or fails price-variance screens for collu-

sion, which flag price sequences that are unusually stable over time (Abrantes-Metz et al.,

2006), depends on the penalty size. For auctions with large penalties (or, equivalently, low

reserve prices), the winning bid is always close to 1, so the time-series variance of the win-

ning bid is close to zero. In contrast, for auctions with small penalties (i.e., large reserve

prices), the winning bid displays considerable variability as a result of randomization by the

mediator, so the time-series variance of the winning bid is large. For example, it follows

easily from Proposition 6 that the support of the optimal bid distribution expands when

the penalty x shrinks, so that “less enforcement power” for the cartel is associated with a

wider range of possible bids. This implies that price-variance screens for collusion may fail

to detect mediated cartels with weak enforcement power.25

25A related effect arises in Bernheim and Madsen (2017), where effi cient unmediated collusion involves
mixed strategies, which reduce a competitor’s gain from deviating. Unmediated cartels employing such
strategies may also evade price-variance screens.
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5.2.3 Outline of the Derivation of Proposition 6

To prove Proposition 6, we set up the problem of finding the optimal equilibrium with only

downward incentive constraints as an infinite-dimensional linear program, and solve it using

duality. We first construct the function χ (p) as the solution to an ordinary differential

equation (equation (13)). Next, we define the marginal distribution of a firm’s bid, Fi (pi),

as the solution to an integral equation involving the function χ (p) (equation (14)). The

characterization of the optimal joint distribution F (p1, p2) is then completed by specifying

the conditional distributions Fj (pj|pi = p) so that the downward incentive constraint from

any p ≥ π̂ to any p′ ∈ [χ (p) , p) binds (equation (15)), and using symmetry. Finally, we

prove that this joint distribution is indeed optimal by constructing multipliers λ (p′|p) on

the downward incentive constraints, which are feasible for the dual linear program and yield

the same value in the dual program as F (p1, p2) does in the primal program. (Here, λ (p′|p)

denotes the multiplier on the constraint that it is unprofitable for a firm that is recommended

a bid of p to deviate to a bid of p′.) By weak duality, the existence of such multipliers implies

that F (p1, p2) is optimal in the primal program, which completes the proof.

In sum, the proof proceeds by first guessing equations that the value π̂, the function

χ (p), and the joint distribution F (p1, p2) should satisfy; then constructing π̂, χ (p), and

F (p1, p2) that satisfy these equations; and then constructing multipliers λ (p′|p) that certify

the optimality of F (p1, p2). We should also explain the origin of the “guessed” equations

for π̂, χ (p), F (p1, p2), and λ (p′|p). We start with the properties that χ (π̂) = π̂, χ (1) =

2x, downward incentives constraints from any p ≥ π̂ to any p′ ∈ [χ (p) , p) bind, and the

multipliers λ (p′|p) take the form

λ (p′|p) =

 κ (p′) if p ≥ π̂ and χ (p) ≤ p′ < p,

0 otherwise,

for some function κ (p′). (In particular, λ (p′|p) = λ (p′|p̂) for all p, p̂ ≥ π̂ such that p′ ∈

[χ (p) , p) ∩ [χ (p̂) , p̂). This property must hold in order for (p, p′), (p, p′ + ε), (p̂, p′), and

(p̂, p′ + ε) to all satisfy the dual constraint with equality, which in turn is necessary for

these points to all lie in the support of the optimal bid distribution.) For any candidate
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optimal profit level π, the equation χ (π) = π, together with the above properties for χ (p)

and λ (p|p̂), “inductively”determines differential equations in p for χ (p) and λ (p|p̂) (where

p̂ > p is an arbitrary price satisfying p ∈ [χ (p̂) , p̂)), starting from p = π and ending at p = 1.

The optimal profit level π̂ is then determined as the value for π such that initializing these

equations at χ (π) = π yields the required terminal condition χ (1) = 2x, and the optimal

functions χ (p) and λ (p|p̂) are given by the corresponding solutions. Next, given the optimal

function χ (p), the joint distribution F (p1, p2) is obtained in three steps. First, the binding

downward incentive constraint from p ≥ π̂ to p′ ∈ [χ(p), p) implies that, for all p ≥ π̂,

Fj(p
′|p) = 1 − χ (p) /p′ for all p′ ∈ [χ(p), p), and Fj(p|p) = 1 − (χ (p)− 2x) /p. This pins

down the conditional distributions Fj (p′|p) for p ≥ π̂ and p′ ≤ p. Second, by symmetry, we

have fj(p′|p)fi(p) = fj(p|p′)fi(p′) for all p and p′ ≤ p, where fi(p) is the marginal density and

fj(p
′|p) is the conditional density. This symmetry condition pins down Fj(p′|p) for p′ > p.

Third, the marginal distribution Fi(p) is determined by the equation

(1− Fj(p|p))fi(p) =

∫ 1

p

fj(p|p′)fi(p′)dp′ ∀p ∈ suppFi,

which again holds by symmetry. Together, the marginal distribution Fi(pi) and the condi-

tional distributions Fj(pj|pi) determine the joint distribution F (p1, p2).

Extending Proposition 6 to n ≥ 3 firms seems challenging. For any n, downward incentive

constraints depend only on the joint distribution of a bidder’s own recommended bid and

the minimum (winning) recommended bid. When n = 2, the optimal (own bid, winning

bid) distribution that satisfies downward incentive constraints is always implementable by a

symmetric bid distribution. In contrast, when n ≥ 3, we have verified numerically that the

optimal such (own bid, winning bid) distribution is not always implementable by a symmetric

distribution. Thus, when n ≥ 3 global constraints on the set of implementable (own bid,

winning bid) distributions bind. These constraints seem diffi cult to handle analytically.

5.3 Upward Incentive Constraints and Profit Comparisons

We finally consider optimal equilibria when n = 2 and both upward and downward incentive

constraints bind. As we have seen, this case arises when x < 1/3 and shill bids are infeasible.
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For example, this case may apply to auctions with a fixed set of offi cially registered bidders.

We first show that, for any penalty size x > 0, it is optimal to occasionally recommend a

winning bid of 1. Thus, an arbitrarily small amount of cartel “enforcement power”implies a

positive probability that the winning bid is as high as the reserve price. To avoid continuity

issues, we establish this result in a discretized version of the model, where recommended bids

are restricted to lie on the grid N =
{

0, 1
N
, 2
N
, . . . , 1

}2
. We continue to let firms contemplate

deviations to arbitrary (continuous) prices, so the cartel’s problem in the discretized model

is strictly more constrained than that in the continuous model.

Proposition 7 In the discretized model with any grid size 1/N < x, every optimal bid

distribution puts positive probability on the bid profile p1 = p2 = 1.

The intuition for Proposition 7 is as follows. First, an optimal equilibrium exists in

the discretized model, by a standard compactness argument. Second, in every optimal

equilibrium the firms are simultaneously recommended the maximum price in the support,

p̄, with positive probability. This follows because it is suboptimal to recommend a bid

that is surely losing. Third, if p̄ < 1 then the bid distribution can be modified so that

the probability mass on the bid recommendation pair (p̄, p̄) is split among the pairs (p̄, p̄),(
p̄, p̄+ 1

N

)
,
(
p̄+ 1

N
, p̄
)
, and

(
p̄+ 1

N
, p̄+ 1

N

)
, in a way that increases profit and preserves

incentive compatibility.

We next illustrate numerically how the optimal bid distribution depends on x.26 Figures

2—5 displays heat maps for the optimal bid distribution for four values of x: .1, .2, .3, and

.32.27 When x = .32, the shape of the optimal distribution is similar to that when x > 1/3

(cf. Figure 1), except that the support of the conditional Fj (pj|pi) is now larger for the

smallest values of pi in the support of the marginal Fi (pi) than it is for slightly larger values

of pi. Intuitively, upward incentive constraints now bind for the smallest recommended bids,

and recommending a wider range of opposing bids relaxes these constraints.

26An earlier version of this paper outlined how the optimal bid distribution with binding upward incentive
constraints can be characterized as the solution to a system of differential equations. Since the characteri-
zation in this case is quite complicated, we omit it here.
27These figures are all given for the case where shill bids are infeasible, so upward incentive constraints

bind. Analogous figures with only downward incentive constraints– which illustrate the bid distribution
derived in Proposition 6– are included in the online appendix.
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Figure 2: The optimal bid distribution when x = .1. The color scheme in Figures 2—5 is
the same as in Figure 1. When x = .1, the bid pair p1 = p2 = 1 is recommended only with
probability approximately .02.

Figure 3: The optimal bid distribution when x = .2. Bid pair p1 = p2 = 1 is recommended
with probability .11.
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Figure 4: The optimal bid distribution when x = .3. Bid pair p1 = p2 = 1 is recommended
with probability .29.

Figure 5: The optimal bid distribution when x = .32. Bid pair p1 = p2 = 1 is recommended
with probability .34. Note that the support of the bid distribution is now connected.

28



When x ∈ {.1, .2, .3}, the optimal bid distribution again has a similar shape, except that

now (p, p) ∈ suppF (p1, p2) for an interval of bids p including 2x. Intuitively, occasionally

recommending a tied bid at p is another way to deter upward deviations from p, and when

x is small this can be the most effi cient way to deter such deviations. As the figures show,

if x is above a threshold (approximately equal to .31), F (p1, p2) is supported on a single

connected subset of R2, which includes the point (1, 1); while if x is below this threshold,

F (p1, p2) is supported on the union of two connected subsets of R2, of which one includes

(1, 1) and the other consists exclusively of tied bid pairs. Note also that as x shrinks, the

distribution F (p1, p2) converges (in distribution) toward a point mass on p1 = p2 = 0, but

the set suppF (p1, p2) ∪ {(p1, p2) : p1 = p2} only expands, consistent with Proposition 7.

Figure 6 compares cartel profit across the different settings we have considered, for two

firms and any value for x. The top (orange) curve is the upper bound 2
√
x− x2 derived in

Proposition 3. The next (green) curve is the solution to equation (4), which by Proposition

6 is optimal cartel profit with only downward incentive constraints. The next two curves

are optimal profit with all incentives constraints (the dark blue curve, which coincides with

the green curve for x ≥ 1/3 and is computed numerically for x < 1/3) and the optimal

equilibrium with almost-uniform bids with only downward incentive constraints (the yellow

curve, which is below the dark blue curve for x above approximately .2 and is always below

the green curve). The next (grey) curve is the optimal equilibrium with almost-uniform

bids with all incentive constraints, derived in Proposition 4 (which coincides with the yellow

curve for x ≥ 1/3). The last (light blue) curve is the line 2x, which equals optimal cartel

profit without mediation by Proposition 1. The value of mediation for the cartel is thus the

gap between the light blue curve and the dark blue curve (if shill bids are infeasible) or the

green curve (if shill bids are feasible).

6 Non-Stationary Strategies: Comparison to Bid-Rotation

So far, we have analyzed optimal mediated collusion in a one-shot auction game augmented

with a penalty of exogenous size x. As explained in Section 2.3, this analysis captures

collusion in a stationary, symmetric equilibrium of a repeated auction game. However,
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Figure 6: Cartel profit with two bidders.

optimal repeated-game equilibria are typically non-stationary. Characterizing optimal, non-

stationary, mediated, repeated-game equilibria is a daunting problem that is beyond the

scope of this paper. However, it is interesting to compare stationary, symmetric equilibria

with a particularly simple and realistic class of non-stationary strategies, namely bid rotation

equilibria, where each firm i ∈ {1, . . . , n} is supposed to win the auction with probability

1 in every period t = imodn, but the mediator can randomize the recommended winning

bid to deter deviations by the designated losing bidders. Bid rotation equilibria are stud-

ied by Kawai, Nakabayashi, and Ortner (2022), who show that the Kumatori Contractors

Cooperative relied on equilibria of this form. As compared to stationary equilibria, bid

rotation equilibria have the advantage of promising an extra future reward for firms that

are supposed to lose in the current period; however, they have the disadvantage that each

firm knows whether it is supposed to win or lose in any period. Somewhat surprisingly, it

turns out that when all bids are disclosed the latter effect always dominates: optimal sta-
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tionary equilibria give higher cartel profit than optimal bid rotation equilibria.28 Moreover,

to establish this result, it suffi ces to consider the stationary, almost-uniform bids equilibria

introduced in Section 5.1, rather than (more complex) optimal stationary equilibria. For

simplicity, we state this result for the case with only downward incentive constraints.

Proposition 8 In the repeated game model of Section 2.3 with all bids disclosed, for any

number of bidders n and any discount factor δ, optimal cartel profit in a stationary, sym-

metric equilibrium with almost-uniform bids is greater than cartel profit in any bid rotation

equilibrium.

Proof. By equation (1) and Proposition 4, optimal cartel profit in a stationary, symmetric

equilibrium with almost-uniform bids equals 1 if δ ≥ 1
2
, and otherwise is given by the greatest

solution (π, x) to the system of equations

π =
(n− 1)x

n− 1− x

(
1− n

n− 1
log

(
nx

n− 1

))
,

x =
δ

1− δ
π

n
.

Meanwhile, optimal cartel profit in a bid rotation equilibrium is given by the greatest

solution (π, x) to the system of equations

π = min {x (1− log x) , 1} ,

x =
δn−1

1− δnπ.

Here, the first equation holds because, for a given penalty x ≤ 1 for a losing bidder, the

highest winning-bid distribution that deters a deviation by this bidder is

F (p) =

 1− x
p
if p ∈ [x, 1) ,

1 if p = 1.

28When losing bids are not disclosed, πi (x) is linear in x in both the optimal stationary, symmetric
equilibrium and the optimal bid rotation equilibrium. Hence, for each equilibrium there is a cutoff discount
factor δ∗ such that first-best profit is attainable if δ ≥ δ∗ and only zero profit is attainable if δ < δ∗. It can
be shown that the cutoff discount factor for the optimal stationary equilibrium is lower than that for the
optimal bid rotation equilibrium under winner’s bid disclosed with any n, as well as under winner’s identity
disclosed with n ≥ 3.
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The second equation holds because the losing bidder whose turn to win the auction is the

farthest away (i.e., in n− 1 periods) has an equilibrium continuation payoff of δn−1

1−δnπ.

We show in the online appendix that, for any δ < 1
2
, the solution π to the first system

is greater than the solution to the second. When n ≥ 3, this follows because δ
(1−δ)n ≥

δn−1

1−δn

(for any δ < 1
2
), so the optimal stationary equilibrium with almost-uniform bids gives both a

higher profit π for any given penalty size x, and a higher penalty size x for any given profit π.

When n = 2, δ
(1−δ)n <

δn−1

1−δn , but a simple calculation shows that the stationary equilibrium

still gives higher profit.

We also note that, when n = 2, optimal stationary equilibrium profit under mediation

is always weakly greater– and sometimes strictly greater– than equilibrium profit in any,

potentially non-stationary, unmediated equilibrium. This follows because optimal stationary

equilibrium profit equals 1 for all δ ≥ 1/2 and is strictly positive for some δ < 1/2, while

unmediated cartel profit equals 0 for all δ < 1/2.29 When n > 2, the same comparison holds

if we restrict attention to pure equilibria in the unmediated game. This follows because

optimal stationary equilibrium profit equals 1 for all δ ≥ (n− 1) /n and is strictly positive

for some δ < (n− 1) /n, while unmediated cartel profit in any pure equilibrium equals 0

for all δ < (n− 1) /n.30 Thus, if n = 2 or if firms play pure strategies in the absence of

mediation, our conclusion that the cartel benefits from mediation when all bids are disclosed

does not rely on restricting attention to stationary equilibria.

7 Conclusion

This paper has introduced and analyzed the problem of how colluding firms maximize profit

when they are assisted by an intermediary that privately recommend bids and can punish

firms that disobey their recommendations. We focus on a static design problem, which

captures the optimal stationary, symmetric equilibrium in a repeated auction game. We find

that mediation and the disclosure of losing bids at auction are complements for the cartel:

29We omit the proof that unmediated cartel profit equals 0 when n = 2 and δ < 1/2, which is fairly
straightforward.
30The proof that unmediated cartel profit in any pure equilibrium equals 0 whenever δ < (n− 1) /n is

straightforward. Restricting to pure strategies in the repeated game plays a similar role as restricting to
equilibria where all firms make positive expected profits in Proposition 1.3.
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the cartel benefits from the disclosure of losing bids only when it is assisted by a mediator,

and the cartel benefits from employing a mediator only when losing bids are disclosed.

Among other results, we are able to fully characterize the cartel-optimal bid distribution

with two symmetric firms, when bids are disclosed and upward incentive constraints are

slack. When upward incentive constraints bind– which occurs when the maximum penalty

is small and the auction environment precludes shill bidding– the optimal bid distribution

can be found numerically. No matter how small the maximum penalty, the winning bid

is close to the reserve price with positive probability. Moreover, the stationary mediation

schemes we consider are always more profitable for the cartel than bid rotation.

Our characterization of the cartel-optimal equilibrium with disclosed bids relies on the

strong assumption that there are two firms with identical and commonly-known production

costs. It may be possible to relax these assumptions in future work, although the analytic

characterization of the optimal equilibrium is likely quite complicated. Another direction for

future theoretical work is introducing additional frictions in the auction environment, which

could rationalize why governments often choose auction formats that disclose so much bid

information, despite the risk of facilitating collusion. For example, if the government is con-

cerned about corruption on the part of the auctioneer (e.g., Compte, Lambert-Mogiliansky,

and Verdier, 2005), disclosing bids may be optimal, both for the usual reason that this can

allow the government to monitor the auctioneer for corruption, and also because it allows

the cartel mediator to monitor cartel members for collusion with the auctioneer. While the

latter effect can increase cartel profit by facilitating collusion among bidders, this could still

be cheaper for society than allowing collusion between bidders and a corrupt auctioneer,

which cedes rents to the auctioneer in addition to the bidders.

Our results also suggest several directions for empirical work. First, since we find that

mediation and the disclosure of losing bids at auction are complements for the cartel, it would

be interesting to see if cartels are more likely to employ mediators in settings where losing

bids are disclosed.31 Second, as discussed in Section 5.2, it would be interesting to investigate

31The empirical variation required to test this hypothesis may exist, as some firms participate in many
different cartels, of which some are mediated and some are unmediated. For examples, see, e.g., Kovacic,
Marshall, and Meurer (2018). In practice, some cartel mediators also facilitate collusion by publicizing bids,
for example by auditing cartel members’books. A mediator that can publicize bids is valuable for the cartel
under all of the bid disclosure regimes we consider.
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the implications of our results for screens for collusive bidding. For example, do mediated

cartels exhibit more unexplained parallel price movements, as the theory predicts? Finally,

it would also be interesting to analyze whether collusion that is coordinated through pricing

algorithms or other automated systems resembles the bidding patterns we have characterized.
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A Appendix: Omitted Proofs

A.1 Proof of Proposition 1.3

For the upper bound, fix an equilibrium bid profile cdf F , and let S ⊆ {1, . . . , n} denote

the set of firms that make positive expected profits. We consider separately the cases where

|S| = 1 and where |S| ≥ 2, and show that in each case cartel profit is at most min {2x, 1}.

If |S| = 1, note that the winning firm i ∈ S must bid at or below x with positive

probability, as otherwise another firm could obtain a positive profit by bidding just above

x and facing punishment. Since the winning firm must be indifferent among all bids in the

support of its equilibrium strategy, its profit– and hence cartel profit– is at most x, which

is less than min {2x, 1}.

Now suppose that |S| ≥ 2. For each firm i ∈ S, let πi > 0 be the firm’s expected

payoff, and let p̄i = max supp (Fi) be the firm’s highest equilibrium bid. (Here Fi denotes

the marginal of F on pi.) Since πi > 0 for each i ∈ S, there exists p̄ such that p̄i = p̄

for all i ∈ S, as otherwise there exists a firm i ∈ S for which bidding pi = p̄i is optimal

and yet this bid never wins. Let αi = Pr (pj = p̄ ∀j ∈ S : j 6= i). We have αi
|S| p̄ ≥ αip̄ − x

(as firm i weakly prefers bidding p̄ to bidding just below p̄) and αi
|S| p̄ ≥ πi (as bidding p̄

gives firm i its equilibrium payoff of πi, possibly following some punishment). By the first

inequality, αip̄ ≤ |S|
|S|−1

x. Hence, by the second inequality, πi ≤ 1
|S|−1

x. Therefore, cartel

profit π satisfies π =
∑

i∈S πi ≤ min
{
|S|
|S|−1

x, 1
}
. Finally, since min

{
|S|
|S|−1

x, 1
}
is decreasing

in |S|, and |S| ≥ 2 by hypothesis, we have π ≤ min {2x, 1}.

If n = 2, then the lower and upper bounds coincide. Moreover, if all firms make positive

profits, then |S| = n, and hence π ≤ min
{

n
n−1

x, 1
}
, so again the lower and upper bounds

coincide.

A.2 Proof of Proposition 3

Fix a canonical equilibrium with bid profile cdf F (p) and winning bid cdf W (p). A uniform

downward deviation with cutoff p∗ ∈ [0, 1] (where W (p) is continuous at p∗) now gives an
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expected payoff of

∫ p∗

0

p

n
dW (p) + (1−W (p∗))p∗ − (1− Fi(p∗))x, (5)

where the difference from (2) and (3) is that now the firm is punished with probability

1− Fi (p∗). Since this deviation must be unprofitable in equilibrium, we have

∫ p∗

0

p

n
dW (p) + (1−W (p∗))p∗ − (1− Fi(p∗))x ≤

∫ 1

0

p

n
dW (p) ⇐⇒

1− 1

p∗

(∫ 1

p∗

p

n
dW (p) + (1− Fi(p∗))x

)
≤ W (p∗) . (6)

Note next that for all p, W (p) = Pr (∃i : pi ≤ p) ≤ nFi (p), by union bound and symme-

try, so Fi(p) ≥ 1
n
W (p). Using this in (6), we get that for all p∗ where W (·) is continuous,

1− 1

p∗

(∫ 1

p∗

p

n
dW (p) + (1− 1

n
W (p∗))x

)
≤ W (p∗) ⇐⇒

np∗ − 1− nx+

∫ 1

p∗
W (p)dp ≤ W (p∗) (np∗ − p∗ − x), (7)

where the second line follows since, by integration by parts,
∫ 1

p∗ pdW (p) = 1 −W (p∗)p∗ −∫ 1

p∗W (p)dp. Moreover, note that since (7) holds for all p∗ where W is continuous, it must

also hold for all p∗ ∈ (x/(n− 1), 1] where W is discontinuous.32

Now define an operator Φ, mapping cdf’s on [0, 1] to cdf’s on [0, 1], as

Φ(W )(p) =


0 if p ≤ x

n−1
,

max
{

0,min
{

1
np−p−x

(
np− 1− nx+

∫ 1

p
W (p̃)dp̃

)
, 1
}}

if p ∈ ( x
n−1

, 1),

1 if p = 1.

By (7), for any winning bid distribution W ,

W (p) ≥ Φ(W )(p) ∀p ∈ [0, 1]. (8)

32Suppose W is discontinuous at p̂ ∈ (x/(n − 1), 1], so that W (p̂−) < W (p̂). Since (7) holds for all
continuity points p∗ < p̂, taking the limit p∗ ↑ p̂ on both sides of (7), we get np̂ − 1 − nx +

∫ 1
p̂
W (p)dp ≤

W (p̂−)(p̂(n− 1)− x) < W (p̂)(p̂(n− 1)− x), where the last inequality uses p̂ > x/(n− 1).
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In particular, profits under Φ(W ) are weakly larger than under W . Note also that the

operator Φ is monotone: i.e., W ≥FOSD Ŵ =⇒ Φ(W ) ≥FOSD Φ(Ŵ ).

Consider the problem of finding the winning bid distribution W that maximizes cartel

profit, subject to (8). Since any equilibrium winning bid distribution satisfies (8), the solution

to this problem gives an upper bound for optimal cartel profit, π∗. We now show that the

solution to this problem is a cdf W ∗ that satisfies W ∗ = Φ(W ∗), and that cartel profit under

W ∗ equals n
n−1

(
x+ ((n− 1)x)

n−1
n (n− 1− x)

1
n

)
− nx.

Fix any winning bid distribution W satisfying W ≥FOSD Φ(W ), and consider the se-

quence of cdfs (W k) with W 0 = W and W k+1 = Φ(W k) for all k ≥ 0. Note that, since

Φ is monotone, W k+1 ≥FOSD W k for all k. We now show that sequence (W k) converges

in distribution to a cdf W ∗, independent of the initial W . Hence, W ∗ solves our relaxed

problem.

Since (W k) is a decreasing sequence, we have that for all p ∈ (x/(n−1), 1) and all k ≥ 1,

W k+2(p) = max

{
0,min

{
1

np− p− x
(
np− 1− nx+ Ak+1(p)

)
, 1

}}
≥ W k+1(p) = max

{
0,min

{
1

np− p− x
(
np− 1− nx+ Ak(p)

)
, 1

}}

where, for each k, Ak(p) =
∫ 1

p
W k(p̃)dp̃. Since Ak(p) is decreasing in k and bounded (because(

W k
)
is decreasing), it converges to some A∗. Hence, for all p ∈ (x/(n− 1), 1),

lim
k→∞

W k(p) = W ∗(p) = max

{
0,min

{
1

np− p− x (np− 1− nx+ A∗(p)) , 1

}}
.

Moreover, it is clear that limk→∞W
k(p) = W ∗(p) = 0 for p ≤ x/(n − 1), and that

limk→∞W
k(1) = W ∗(1) = 1. Note next that, by dominated convergence, and since

(
W k
)

convergences pointwise to W ∗,

A∗ = lim
k→∞

Ak(p) = lim
k→∞

∫ 1

p

W k(p̃)dp̃ =

∫ 1

p

W ∗(p̃)dp̃.

Hence, W ∗ = Φ(W ∗).
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The unique solution to the equation W ∗ = Φ(W ∗) is

W ∗(p) =


0 if p < p,

1− (n−1)x(n−1−x)
1

n−1

(np−p−x)
n

n−1
if p ∈ [p, 1),

1 if p = 1,

where p = 1
n−1

(
x+ ((n− 1)x)

n−1
n (n− 1− x)

1
n

)
is the lowest point in the support of W ∗.

This follows because, for any p such that W (p) ∈ (0, 1), W is differentiable with derivative

satisfyingW ′ (p) = n (1−W (p)) / (np− p− x), and limp→1W (p) = (n− 1− nx) / (n− 1− x),

and solving this differential equation yields the desired equation. We thus have

W ∗(p) = 0 = Φ(W ∗)(p) =
1

p(n− 1)− x

(
np− 1− nx+

∫ 1

p

W ∗(p)dp

)
⇐⇒∫ 1

p

pdW ∗ (p) = n
(
p− x

)
=

n

n− 1

(
x+ ((n− 1)x)

n−1
n (n− 1− x)

1
n

)
− nx,

where the second line uses
∫ 1

p
W ∗(p)dp = 1−

∫ 1

p
pdW ∗ (p) . Thus, n

n−1

(
x+ ((n− 1)x)

n−1
n (n− 1− x)

1
n

)
−

nx is the solution to the relaxed problem, and hence is an upper bound for π∗.

A.3 Proof of Proposition 4

Fix an equilibrium with almost-uniform bids. Let α = Pr (pj = p̄ ∀j 6= i|pi = p̄), the proba-

bility that a bidder who is recommended bid p̄ has the lowest bid, and let β = Pr (pi = p̄ ∀i).

Note that Bayes’rule gives β = (n−1)α
n−α , because

α = Pr (pj = p̄ ∀j 6= i|pi = p̄) =
Pr (pj = p̄ ∀j)

Pr (pi = p̄)
=

β

β + n−1
n

(1− β)
,

where Pr (pi = p̄) = β + n−1
n

(1− β) by symmetry and the assumption that at most one

bidder bids below p̄.

Let F̄ denote the cdf of the random variable minj 6=i pj conditional on the event pi = p̄.

Since a firm that is recommended bid p̄ wins the auction with equilibrium probability α/n,
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the incentive constraint for this firm is

αp̄

n
≥
(
1− F̄ (p)

)
p− x for all p < p̄. (9)

For fixed values of x and p̄, the greatest distribution F̄ (in the FOSD sense) that satisfies

this constraint is given by α = n
n−1

x
p̄
and

F̄ (p) =


0 if p < n

n−1
x,

1− n
n−1

x
p
if p ∈

[
n
n−1

x, p̄
)
,

1 if p ≥ p̄.

Therefore, in an optimal equilibrium with an almost-uniform bid of p̄, the conditional dis-

tribution of minj 6=i pj is given by this distribution F̄ .

Now note that

E
[
min
j 6=i

pj|min
j 6=i

pj < p̄

]
=

1

1− α

∫ p̄

0

pdF̄ (p) =
1

1− α

∫ p̄

n
n−1x

n

n− 1

x

p
dp =

n

n− 1

x

1− α

(
− log

(
n

n− 1

x

p̄

))
.

Therefore, cartel profit in an optimal equilibrium with an almost-uniform bid of p̄ equals

π = βp̄+(1− β)
n

n− 1

x

1− α

(
− log

(
n

n− 1

x

p̄

))
=

(n− 1)xp̄

(n− 1) p̄− x

(
1− n

n− 1
log

(
n

n− 1

x

p̄

))
.

(10)

Note that (10) is increasing in p̄ whenever p̄ ≥ n
n−1

x. Therefore, the optimal equilib-

rium with almost-uniform bids is given by maximizing p̄, subject to the remaining incentive

constraints. The remaining constraints are those for a firm that is recommended p < p̄.

In an equilibrium with with almost-uniform bids, such a firm knows that its opponent bids

p̄, so the most tempting deviation is to bid just below p̄. In turn, this deviation is most

tempting for a firm with the lowest possible recommendation, n
n−1

x. Hence, the remain-

ing binding incentive constraint is n
n−1

x ≥ p̄ − x, or equivalently p̄ ≤ 2n−1
n−1

x. Therefore,

if x ≥ n−1
2n−1

, the optimal equilibrium is given by p̄ = 1, and cartel profit is given by

min
{

(n−1)x
n−1−x

(
1− n

n−1
log
(
nx
n−1

))
, 1
}
. If instead x < n−1

2n−1
, then the optimal equilibrium is

given by p̄ = 2n−1
n−1

x, and cartel profit is given by 2n−1
2n−2

x
(
1− n

n−1
log n

2n−1

)
.

39



A.4 Proof of Proposition 5

It remains to show that lim infn→∞ π
∗ (n) ≥ x (1− log x), with convention 0 log 0 = 0. This is

obvious if x = 0, so suppose that x > 0. We show that for any ε > 0, if n is suffi ciently large

then optimal cartel profit with n firms and penalty size x is at least (x− ε) (1− log (x− ε)).

Since optimal cartel profit is non-decreasing in x and x (n) is non-increasing in n, this

completes the proof.

Fix ε > 0, and take any n such that (1− ε+ ε (1− x))n−1 − x < 0. We construct an

equilibrium where bidder 1 always wins as follows:

Bidder 1’s recommendation p1 is drawn with cdf F (p1) = 1− x−ε
p1
.

For each bidder i 6= 1, bidder i’s recommendation is drawn as follows, independently

across bidders i 6= 1: With probability 1 − ε, pi is drawn uniformly from [1, 2]. With

probability ε, a uniform [0, 1] random variable qi is drawn, and then pi is determined as

follows: If qi > p1, then pi = qi; otherwise, pi is drawn uniformly from [1, 2].

This distribution gives cartel profit (x− ε) (1− log (x− ε)). It thus remains to check

that it is an equilibrium.

Player 1 does not have incentive to deviate downward, since she always wins. To see that

she also does not have incentive to deviate upward, note that if she deviates to q > p1, her

net payoff gain is Pr (mini 6=1 pi ≥ q) q − x − p1. This gain is non-positive if q < p1 + x. If

q ≥ p1 + x, it is no more than

Pr

(
min
i 6=1

pi ≥ p1 + x

)
−x−p1 ≤ (1− ε+ ε (1− x))n−1−x−p1 ≤ (1− ε+ ε (1− x))n−1−x < 0.

(The first inequality holds since, for each i 6= 1, pi ≥ p1 +x only if (i) with probability 1− ε,

pi is drawn uniformly from [1, 2], or (ii) with probability ε, qi is drawn uniformly from [0, 1]

and qi is not included in [p1, p1 + x].)

Player i 6= 1 does not have incentive to deviate upward since she always loses. To see that

she also does not have incentive to deviate downward, suppose she is recommended pi ≥ 1.

Then, for each q ≤ 1,

Pr (p1 ≥ q|pi) =
(1− ε) Pr (p1 ≥ q) + εPr (p1 ≥ q) Pr (qi ≤ p1|p1 ≥ q)

1− ε+ εPr (qi ≤ p1)
≤ Pr (p1 ≥ q)

1− ε ,
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and hence the net payoff gain from bidding q is no more than

Pr (p1 ≥ q)

1− ε q − x =
x− ε

(1− ε) q q − x = −ε (1− x)

1− ε < 0,

where the first equality uses Pr (p1 ≥ q) = 1− F (q) = x−ε
q
.

Next, suppose she is recommended pi < 1. Then, since qi = pi for sure in this case, for

each q ≤ 1, (i) if q ≤ pi then Pr (p1 ≥ q|pi) = 0, and (ii) otherwise,

Pr (p1 ≥ q|pi) =
Pr (pi ≥ p1 ≥ q)

Pr (pi ≥ p1)
=

x−ε
q
− x−ε

pi

1− x−ε
pi

.

Hence, the net payoff gain from bidding q is no more than

x−ε
q
− x−ε

pi

1− x−ε
pi

q − x =
1− q

pi

1− x−ε
pi

(x− ε)− x.

Since pi ≥ x−ε (the lowest possible value of p1), this in turn is no more than
1−x−ε

pi

1−x−ε
pi

(x− ε)−

x ≤ −ε, as desired.

A.5 Proof of Proposition 6

Primal Linear Program Let F denote the set of all symmetric cdfs on [0, 1]2. The primal

program P that characterizes the optimal equilibrium (considering only downward incentive

constraints) is

sup
F∈F

Π(F ) (11)

s.t. IC(p, p′;F ) ≥ 0 ∀p ∈ supp (Fi) , p
′ < p,

where Π(F ) :=
∫
p,q≤p (2q − p1p=q) dF (p, q) is cartel profit when firms follow their recom-

mendations, Fi is the marginal of F over pi and, for all p > p′ and F ∈ F ,

IC(p, p′;F ) := p

(
1− 1

2

(
F−j (p|pi = p) + Fj (p|pi = p)

))
− p′ (1− Fj (p′|pi = p)) + x,
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where Fj (p|pi) denotes conditional probability under F , and F−j (p|pi) := limpj↑p Fj (pj|pi).33

To understand the constraint, note that a firm that follows a recommendation to bid p wins

the auction with probability 1− 1
2

(
F−j (p|pi = p) + Fj (p|pi = p)

)
(by uniform tie-breaking),

while if the firm bids p′ < p it wins with probability 1 − 1
2

(
F−j (p′|pi = p) + Fj (p′|pi = p)

)
and is penalized.34 However, since it is better to deviate to a bid just below any mass point

of the conditional distribution Fj (pj|pi), it is equivalent to impose the apparently tighter

constraint where the latter probability is replaced by 1− Fj (p′|pi = p).

The program characterizing the optimal equilibrium with both downward and upward

constraints differs from P only in that IC(p, p′;F ) ≥ 0 is also imposed for all p′ > p. We

will see that when x ≥ 1/3 the solution to P also satisfies these extra constraints.

Optimal Bid Distribution We define a joint distribution of bids F (p1, p2), which we will

later verify is optimal. Recall that π̂ is defined as the unique solution to equation (4) in the

interval [2x, 1]. (This is well-defined because the LHS of (4) is strictly increasing in π over

this range, and takes a negative value at π = 2x and a positive value at π = 1.)

Given the definition of π̂, the function χ (p) is defined in the following lemma.

Lemma 1 There exists a unique function χ : [π̂, 1]→ [0, 1] such that, for each p ∈ [π̂, 1],

2x log (χ (p)) + (π̂ − x) log (x+ π̂ − χ (p))

x+ π̂
= log p+

2x log (π̂) + (π̂ − x) log (x)

x+ π̂
− log (π̂) .

(12)

The function χ (p) is strictly decreasing and satisfies χ(π̂) = π̂ and χ (1) = 2x. Moreover,

at each p ∈ [π̂, 1), χ (p) is differentiable, and its derivative χ′ (p) satisfies

pχ′ (p)

χ (p)
=
χ (p)− (x+ π̂)

χ(p)− 2x
. (13)

Proof. The proofs of all lemmas used in the proof of Proposition 6 are deferred to the online

appendix.

33Formally, we require that there is a version of the conditional probability Fj (p′|p) that satisfies the
constraint for all p, or equivalently that the constraint holds for almost all p for every version of the conditional
probability.
34Penalizing any firm that deviates from its recommendation is without loss, as this only relaxes incentive

constraints.
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Given the definitions of π̂ and χ (p), the marginal distribution Fi (p) is defined in the

following lemma.

Lemma 2 There exists a unique function Fi : [0, 1]→ [0, 1] such that Fi(2x) = 0, Fi (1) = 1,

and Fi (p) is differentiable at each p ∈ [0, 1), with derivative fi (p) satisfying

fi (p) =


0 if p ∈ [0, 2x),

1
p2

∫ 1

χ−1(p)
χ(p′)fi (p

′) dp′ if p ∈ [2x, π̂),

1
(χ(p)−2x)p

∫ 1

p′>p χ(p′)fi (p
′) dp′ if p ∈ [π̂, 1],

∀p ∈ [0, 1). (14)

Given the definitions of π̂, χ (p), and Fi (p), the conditional distribution Fj (p′|p) is defined

as follows: for all p, p′ ∈ [2x, 1],

Fj(p
′|p) =



0 if p ≥ π̂, p′ < χ(p) or p < π̂, p′ < χ−1 (p) ,

1− χ(p)
p′ if p ≥ π̂, p′ ∈ [χ(p), p),

1− χ(p)−2x
p

if p ≥ π̂, p′ = p,

1− χ(p)−2x
p

+ 1
fi(p)

∫ p′
p

χ(p̂)
p2
fi(p̂)dp̂ if p ≥ π̂, p′ > p,

1
fi(p)

∫ p′
χ−1(p)

χ(p̂)
p2
fi(p̂)dp̂ if p < π̂, p′ > χ−1 (p) .

(15)

Note that, for all p ∈ [2x, 1], Fj(p′|p) is indeed a cdf. To see this, consider first p ∈ [π̂, 1].

By (14) and (15), Fj(p′|p) is increasing and right-continuous in p′ for p′ ∈ [χ(p), 1], with

Fj(χ(p)|p) = 0 and Fj(1|p) = 1. Similarly, for p ∈ [2x, π̂), by (14) and (15) Fj(p′|p) is

increasing and continuous in p′ for p′ ∈ [χ−1(p), 1], with Fj(χ−1(p)|p) = 0 and Fj(1|p) = 1.

Finally, let F (p1, p2) ∈ F be the (unique) joint cdf with marginal distribution F1(p1)

given by (14), and conditional distributions F2(p2|p1) given by (15). Note that

supp (F ) =
{

(pi, pj) ∈ [0, 1]2 : pi ∈ [2x, π̂) , pj ∈
[
χ−1 (p) , 1

]
or pi ∈ [π̂, 1] , pj ∈ [χ (p) , 1]

}
.

We verify that F is feasible for P. We first show that F is symmetric.

Lemma 3 F (p, p′) = F (p′, p) for all p, p′ ∈ [0, 1].
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We now verify that IC(p, p′;F ) ≥ 0 for all p ≥ 2x, p′ < p. This shows that F is feasible

for P: i.e., F satisfies all downward incentive constraints. Moreover, if x ≥ 1/3 then in

addition IC(p, p′;F ) ≥ 0 for all p ≥ 2x, p′ > p, so F is an equilibrium bid distribution.

Lemma 4 IC(p, p′;F ) ≥ 0 for all p ≥ 2x, p′ < p, with equality for all p ≥ π̂, p′ ∈ [χ(p), p).

Moreover, if x ≥ 1/3 then in addition IC(p, p′;F ) ≥ 0 for all p ≥ 2x, p′ > p.

Dual Linear Program Let B [0, 1] denote the set of Borel subsets of [0, 1], and let M

denote the set of all bounded, measurable functions Λ : [0, 1] × B [0, 1] → R+ such that,

for every p ∈ [0, 1], the induced mapping P 7→ Λ (p, P ) (henceforth written as Λ (P |p)) is a

(finite) measure on B [0, 1]. Consider the dual linear program D, given by

inf
Λ∈M, µ∈R+

µ (16)

s.t. G (p, q; Λ, µ) ≥ 0 ∀p, q ≤ p,

where, for all p > q, Λ, and µ ≥ 0,

G (p, p; Λ, µ) :=

∫
p′≤p

(
−p

2
− x+ p′

)
dΛ (p′|p) + µ− p and

G (p, q; Λ, µ) :=

∫
p′≤p

(−x+ p′1p′≤q) dΛ (p′|p) +

∫
p′≤q

(−q − x+ p′) dΛ(p′|q) + 2 (µ− q) .

The interpretation of the dual program is that µ is cartel profit (which also equals the

shadow value of probability mass on an optimal bid pair), dΛ (p′|p) is the value of relaxing

the incentive constraint that it is unprofitable for a bidder who is recommended a bid of

p to deviate to a bid of p′, and G (p, q; Λ, µ) is the cost of increasing the probability of

recommending the bid pair (p, q), with q < p, where this cost is given by the effect of such

an increase on the downward incentive constraints for each p′ < p (the first integral in

the formula for G (p, q; Λ, µ)), plus the effect on the downward incentive constraints for each

p′ < q (the second integral in the formula for G (p, q; Λ, µ)), plus twice the difference between

equilibrium cartel profit (equal to µ) and profit at the bid pair (p, q) (equal to q).

Lemma 5 Let F be feasible for P, and let (Λ, µ) be feasible for D. We have:
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(i) Weak duality: Π(F ) ≤ µ.

(ii) Complementary slackness: If F and Λ satisfy (1) IC(p, p′;F ) = 0 for all p, p′ < p

with p ∈ supp (Fi) and p′ ∈ supp (Λ (·|p)), and (2) G (p, q; Λ, µ) = 0 for all p, q ∈

supp (F ) with q ≤ p, then Π(F ) = µ, F is optimal for P, and (Λ, µ) is optimal for D.

Optimal Dual Variables Given Lemma 5, we prove Proposition 6 by finding a function

Λ such that (Λ, π̂) is feasible for D, and F and (Λ, π̂) satisfy the complementary slackness

conditions in Lemma 5(ii).

For each p ∈ [0, 1], let Λ (·|p) be the unique Borel measure on B ([0, 1]) such that

Λ([p′, p′′] |p) =

∫ p′′

p′
λ(q|p)dq ∀p′, p′′ ∈ [0, 1] , p′ < p′′,

where for each p, p′ ∈ [0, 1],

λ(p′|p) =


2(χ(p′)−x)(−χ′(p′))

xχ(p′) if p ≥ π̂, p′ ∈ [π̂, p)),

2
p′ if p ≥ π̂, p′ ∈ [χ (p) , π̂) ,

0 otherwise.

(17)

We verify that (Λ, π̂) is feasible for D.

Lemma 6 Λ ∈ M, and G(p, q; Λ, π̂) ≥ 0 for all p ≥ q, with equality if p ≥ π̂ and q ∈

[χ(p), p].

Complementary Slackness Finally, we verify that F and (Λ, π̂) satisfy the conditions

in Lemma 5(ii). For each p ∈ supp (Fi) = [2x, 1], we have supp (Λ (·|p)) = ∅ if p < π̂, and

supp (Λ (·|p)) = [χ(p), p] if p ≥ π̂. By Lemma 4, we have IC(p, p′;F ) = 0 for all p ∈ supp (Fi)

and p′ ∈ supp (Λ (·|p)). By Lemma 6, G(p, q; Λ, π̂) = 0 for all (p, q) ∈ supp (F ) with p ≥ q.

Hence, by Lemma 5(ii), Π(F ) = µ, F is optimal for P, and (Λ, µ) is optimal for D.
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Mediated Collusion: Online Appendix

Proof of Lemma 1

To see that χ(p) is well defined, note that the LHS of (12) is strictly concave in χ over the
range (0, π̂ + x), and attains its maximum at χ = 2x. Moreover, for χ = π̂, the LHS of (12)
is no more than the RHS for all p ∈ [π̂, 1]. Hence, as long as

2x log (2x) + (π̂ − x) log (π̂ − x)

x+ π̂
≥ log p+

2x log (π̂) + (π̂ − x) log (x)

x+ π̂
− log (π̂) ∀p ∈ [π̂, 1] ,

(18)
equation (12) admits a unique solution χ ∈ [2x, π̂+x]. Since the LHS of (18) is independent
of p and the RHS is increasing in p, it suffi ces that (18) holds for p = 1. In turn, this holds
by the definition of π̂. Finally, that χ (p) is decreasing and differentiable, with derivative
satisfying (13) on [π̂, 1), follows from the implicit function theorem.

Proof of Lemma 2

For all p ∈ [π̂, 1], define α(p) = (χ(p)− 2x)p. Consider the differential equation

h′(p)α(p) + α′(p)h(p) = −χ(p)h(p), with h(π̂) = 1. (19)

The solution to (19) is h(p) = exp
(
−
∫ p
π̂
γ(p′)dp′

)
, with γ(p) = (χ(p) + α′(p))/α(p).

We now construct density function fi(p). For p ∈ [π̂, 1), fi(p) = K × h(p) for some
constant K > 0 to be determined shortly. For p ∈ [2x, π),

fi(p) =
1

p2

∫ 1

χ−1(p)

χ(p′)Kh(p′)dp′ =
1

p2

∫ 1

χ−1(p)

χ(p′)fi(p
′)dp′.

(Note that h(p) is defined over [χ−1(p), 1) for all p ∈ [2x, π), since χ−1(p) ∈ [π̂, 1) for all p in
this range). Finally, for p < 2x, fi(p) = 0.
We now show that fi(p) satisfies (14). By construction, fi(p) satisfies (14) for all p < π̂.

Next, note that fi(p) solves (19) for p ∈ [π̂, 1), with fi(π̂) = K. Hence, for all p ∈ [π̂, 1),∫ 1

p

(f ′i(p
′)α(p′) + α′(p)fi(p

′))dp′ = −α(p)fi(p) = −
∫ 1

p

χ(p′)fi(p
′)dp′

⇐⇒ fi(p) =
1

(χ(p)− 2x)p

∫ 1

p

χ(p′)fi(p
′)dp′,

where the first line uses α(1) = 0. We now pin down constant K > 0. Since Fi(·) should
satisfy

∫ 1

2x
fi(p)dp = Fi(1)− Fi(2x) = 1, we have that K is the solution to:

1 = K

[∫ π̂

2x

1

p2

∫ 1

χ−1(p)

χ(p′)h(p′)dp′dp+

∫ 1

π̂

1

(χ(p)− 2x)p

∫ 1

p

χ(p′)h(p′)dp′dp

]
.
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Proof of Lemma 3

Without loss, let p < p′. We consider two cases: p ∈ [2x, π̂) and p ∈ [π̂, 1].
Suppose that p ∈ [2x, π̂). We have

F (p, p′) =

∫
p̂≤p

Fj (p′|p̂) fi (p̂) dp̂ =

∫ p

χ(p′)

∫ p′

χ−1(p̂)

χ (p̃)

p̂2
fi (p̃) dp̃dp̂

=

∫ p′

χ−1(p)

∫ p

χ(p̃)

χ (p̃)

p̂2
dp̂fi (p̃) dp̃ =

∫ p′

χ−1(p)

(
1− χ (p̃)

p

)
fi (p̃) dp̃

=

∫
p̃≤p′

Fj (p|p̃) fi (p̃) dp̃ = F (p′, p) ,

where the second equality follows from (15) and the fact that F (p′|p̂) = 0 for all p̂ < χ (p′);
the third equality follows from reversing the order of integration; and the fifth equality again
follows from (15).
Now suppose that p ∈ [π̂, 1]. We have

F (p, p′) =

∫
p̂≤p

Fj (p′|p̂) fi (p̂) dp̂

=

∫
p̂≤p

Fj (p|p̂) fi (p̂) dp̂+

∫
p̂≤p

(Fj (p′|p̂)− Fj (p|p̂)) fi (p̂) dp̂

= F (p, p) +

∫
p̂≤p

(Fj (p′|p̂)− Fj (p|p̂)) fi (p̂) dp̂. (20)

Similarly, we have

F (p′, p) =

∫
p̂≤p′

Fj (p|p̂) fi (p̂) dp̂

=

∫
p̂≤p

Fj (p|p̂) fi (p̂) dp̂+

∫ p′

p

Fj (p|p̂) fi (p̂) dp̂

= F (p, p) +

∫ p′

p

Fj (p|p̂) fi (p̂) dp̂

= F (p, p) +

∫ p′

p

(
1− χ (p̂)

p

)
fi (p̂) dp̂, (21)

where the last equality uses (15). Since Fj (p′|p̂) = 0 for all p̂ < χ (p′) and Fj (p|p̂) = 0 for
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all p̂ < χ (p), and again using (15), we have∫
p̂≤p

(Fj (p′|p̂)− Fj (p|p̂)) fi (p̂) dp̂ =

∫ χ(p)

χ(p′)

Fj (p′|p̂) fi (p̂) dp̂+

∫ p

χ(p)

(Fj (p′|p̂)− Fj (p|p̂)) fi (p̂) dp̂

=

∫ χ(p)

χ(p′)

∫ p′

χ−1(p̂)

χ (p̃)

p̂2
fi (p̃) dp̃dp̂+

∫ p

χ(p)

∫ p′

p

χ (p̃)

p̂2
fi (p̃) dp̃dp̂

=

∫ p′

p

∫ χ(p)

χ(p̃)

χ (p̃)

p̂2
dp̂fi (p̃) dp̃+

∫ p′

p

∫ p

χ(p)

χ (p̃)

p̂2
dp̂fi (p̃) dp̃

=

∫ p′

p

(
1− χ (p̃)

p

)
fi (p̃) dp̃.

Together with (20) and (21), we have F (p, p′) = F (p′, p).

Proof of Lemma 4

The lemma follows from checking the various cases in (15). In particular, if p ≥ π̂ and
p′ ∈ [χ(p), p), then Fj (p|p) = 1− χ(p)−2x

p
and Fj (p′|p) = 1− χ(p)

p′ , and hence

IC(p, p′;F ) = p

(
1− 1

2

(
F−j (p|pi = p) + Fj (p|pi = p)

))
− p′ (1− Fj (p′|pi = p)) + x

= p

(
χ (p)− x

p

)
− p′

(
χ (p)

p′

)
+ x = 0.

If p ≥ π̂ and p′ < χ(p), then Fj (p′|p) = 0, and hence

IC(p, p′;F ) = p

(
χ (p)− x

p

)
− p′ + x = χ (p)− p′ > 0.

Finally, if p < π̂ and p′ < p, then Fj (p|p) = Fj (p′|p) = 0, and hence IC(p, p′;F ) = x > 0.
Now suppose that x ≥ 1/3. If p ∈ [2x, π̂) and p′ > p, then

IC(p, p′;F ) = p− p′(1− Fj(p′|p)) + x ≥ 3x− 1 ≥ 0,

where the first inequality uses p ≥ 2x and p′ ≤ 1, and the second uses x ≥ 1/3. If p ≥ π̂ and
p′ > p, then

IC(p, p′;F ) = p
χ(p)− x

p
− p′

(
χ(p)− 2x

p
− 1

fi(p)

∫ p′

p

χ(p̂)

p2
fi(p̂)dp̂

)
+ x

= χ(p)
p− p′
p

+ 2x
p′

p
+

p′

fi(p)

∫ p′

p

χ(p̂)

p2
fi(p̂)dp̂

≥ π̂
π̂ − 1

π̂
+ 2x+

p′

fi(p)

∫ p′

p

χ(p̂)

p2
fi(p̂)dp̂ > 0,
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where the weak inequality uses p ≥ π̂, p′ ∈ (p, 1], and χ(p) ≤ π̂, and the strict inequality
follows as π̂ > 2x and hence π̂ − 1 + 2x > 4x− 1 > 0 (since x ≥ 1/3).

Proof of Lemma 5

For each p, q ∈ [0, 1]2 and p′ < p, define

φ(p, q, p′) = p− p′ + x− p

2
(1q≤p + 1q<p) + p′1q<p′ .

Intuitively, φ (p, q, p′) is the payoff loss incurred by a bidder who deviates from p to p′ when
the opponent bids q. Note that

IC(p, p′;F ) =

∫
q

φ(p, q, p′)dFj(q|p) ∀p > p′,

G (p, p; Λ, µ) = −
∫
p′≤p

φ(p, p, p′)dΛ (p′|p) + µ− p ∀p, and

G (p, q; Λ, µ) = −
∫
p′≤p

φ(p, q, p′)dΛ (p′|p)−
∫
p′≤q

φ(q, p, p′)dΛ (p′|q) + 2(µ− q) ∀p > q.

Now let F be feasible for P, and let (Λ, µ) be feasible for D. Note that

0 ≤
∫
p,q≤p

G (p, q; Λ, µ) dF (p, q)

= −
∫
p,q≤p

(∫
p′≤p

φ(p, q, p′)dΛ (p′|p) + 1q<p

∫
p′≤q

φ(q, p, p′)dΛ (p′|q)
)
dF (p, q)

+

∫
p,q≤p

(2 (µ− q)− 1q=p(µ− p)) dF (p, q)

= −
∫
p,q≤p

(∫
p′≤p

φ(p, q, p′)dΛ (p′|p) + 1q<p

∫
p′≤q

φ(q, p, p′)dΛ (p′|q)
)
dF (p, q) + µ− Π(F ),

(22)

where the last equality uses
∫
p,q≤p(2−1q=p)dF (p, q) = 1 (by symmetry of F ) and

∫
p,q≤p(2q−

1q=pp)dF (p, q) = Π (F ).
Since F is symmetric,∫
p,q≤p

1q<p

∫
p′≤q

φ(q, p, p′)dΛ (p′|q) dF (p, q) =

∫
p,q<p

∫
p′≤q

φ(q, p, p′)dΛ (p′|q) dF (p, q)

=

∫
p,q>p

∫
p′≤p

φ(p, q, p′)dΛ (p′|p) dF (p, q).
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Using this in (22), we get

0 ≤ −
∫
p,q

∫
p′≤p

φ(p, q, p′)dΛ (p′|p) dF (p, q) + µ− Π(F )

= −
∫
p

∫
q

∫
p′≤p

φ(p, q, p′)dΛ (p′|p) dF (q|p)dFi(p) + µ− Π(F )

= −
∫
p

∫
p′≤p

∫
q

φ(p, q, p′)dF (q|p)dΛ (p′|p) dFi(p) + µ− Π(F )

= −
∫
p

∫
p′≤p

IC(p, p′;F )dΛ (p′|p) dFi(p) + µ− Π(F )

≤ µ− Π(F ), (23)

where the first two equalities follow from Fubini’s theorem, which applies as φ, Λ, and F are
bounded and measurable. This establishes part (i).
Suppose next that F and (Λ, µ) satisfy the conditions in part (ii). Then, the inequalities

in (22) and (23) hold with equality, and so Π(F ) = µ. By part (i), it follows that F is
optimal for P, and (Λ, µ) is optimal for D.

Proof of Lemma 6

To show that Λ ∈ M, it suffi ces to show that Λ is bounded and measurable: given this,
Λ (·|p) is a Borel measure on B ([0, 1]) by construction. Boundedness follows because, for
each p ∈ [0, 1], we have

Λ([0, 1] |p) ≤
∫ π̂

χ(p)

2

q
dq +

∫ p

π̂

2 (χ (q)− x) (−χ′ (q))
xχ(q)

dq

≤
∫ π̂

χ(p)

2

q
dq +

∫ p

π̂

2(−χ′(q))
x

dq

≤ 2(log(π̂)− log(2x)) +
2

x
(π̂ − 2x),

where the first inequality is by definition of λ, the second follows since χ (q) ≥ x, and the
third follows since χ (p) ≥ 2x and χ (π̂) − χ (p) ≤ π̂ − 2x. Measurability follows because
Λ([p′, p′′] |p) is continuous on [0, 1]3 in the weak topology, which suffi ces for continuity on
[0, 1]× B ([0, 1]).
For the proof that G satisfies the desired properties, we ease notation by writing G as a

function of p, q only, suppressing the arguments Λ, π̂. We use the following equations, which
follow immediately from the definitions of G and Λ.

1. For p ≥ π̂,

G (p, p) =

∫ p

χ(p)

(
−p

2
− x+ p′

)
λ (p′|p) dp′ + π̂ − p. (24)
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2. For p ≥ q ≥ π̂,

G (p, q) =

∫ p

χ(p)

(
−x+ p′1{p′≤q}

)
λ (p′|p) dp′+

∫ q

χ(q)

(−q − x+ q′)λ (q′|q) dq′+ 2 (π̂ − q) .

(25)

3. For p ≥ π̂ ≥ q ≥ χ (p),

G (p, q) =

∫ p

χ(p)

(
−x+ p′1{p′≤q}

)
λ (p′|p) dp′ + 2 (π̂ − q) . (26)

4. For p ≥ π̂ ≥ χ (p) ≥ q,
G (p, q) = 2 (π̂ − q) . (27)

5. For p ≥ π̂ and q ∈ [π̂, p),

λ (q|p) =
(χ (q)− x) (−χ′ (q))λ (χ (q) |p)

x
. (28)

We prove the lemma through a series of claims.

Claim 1. For any sequence (pn, qn) → (π̂, π̂) such that pn ≥ π̂ ≥ qn for all n, we have
limn→∞G (pn, qn) = 0.
Proof. This follows from two observations. First, G (π̂, π̂) = 0, by (24) and χ(π̂) = π̂.

Second, for any π ∈ [0, 1] and any sequence (pn, qn) → (π, π) such that pn ≥ π ≥ qn and
pn 6= qn for all n, we have limn→∞G (pn, qn) = 2G (π, π).

Claim 2. G (p, q) = 0 for all p, q such that 1 > p ≥ π̂ ≥ q ≥ χ (p).
Proof. By Claim 1, it suffi ces to show that ∂G(p, q)/∂p = ∂G(p, q)/∂q = 0 whenever

p > q and 1 > p ≥ π̂ ≥ q ≥ χ (p). By (26),

∂G(p, q)

∂p
= −xλ (p|p) + (χ (p)− x) (−χ′ (p))λ (χ (p) |p) , and

∂G(p, q)

∂q
= qλ (q|p)− 2.

By (17) and (28), both of these derivatives equal 0.

Claim 3. G (p, q) = 0 for all p, q such that 1 > p ≥ q ≥ π̂.
Proof. Suppose first that p > q. By Claim 1, it suffi ces to show that ∂G(p, q)/∂p =

∂G(p, q)/∂q = 0 whenever 1 > p > q ≥ π̂. By (25),

∂G(p, q)

∂p
= −xλ (p|p) + (χ (p)− x) (−χ′ (p))λ (χ (p) |p) , and

∂G(p, q)

∂q
= qλ (q|p)−

∫ q

χ(q)

λ (q′|q) dq′ − xλ (q|q) + (χ (q)− x+ q) (−χ′ (q))λ (χ (q) |q)− 2.

By (17) and (28), ∂G(p, q)/∂p = 0. To show that ∂G(p, q)/∂q = 0, note that G (q, χ (q)) = 0
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by Claim 2, so (26) gives

G (q, χ (q)) =

∫ q

χ(q)

(
−x+ q′1{q′≤χ(q)}

)
λ (q′|q) dq′ + 2 (π̂ − q) = 0 ⇐⇒∫ q

χ(q)

λ (q′|q) dq′ = 2
π̂ − χ (q)

x
. (29)

Note also that
−xλ (q|q) + (χ (q)− x) (−χ′ (q))λ (χ (q) |q) = 0, (30)

since ∂G(q, q′)/∂q = 0 for all q > q′ ≥ χ (q) by Claim 1. In total, we have

∂G(p, q)

∂q
= qλ (q|p)−

∫ q

χ(q)

λ (q′|q) dq′ − xλ (q|q) + (χ (q)− q − x) (−χ′ (q))λ (χ (q) |q)− 2

= qλ (q|p)− 2
π̂ − χ (q)

x
− xλ (q|q) + (χ (q)− q − x) (−χ′ (q))λ (χ (q) |q)− 2

= −2
π̂ − χ (q)

x
+ q (λ (q|p) + χ′ (q)λ (χ (q) |q))− 2

= −2
π̂ − χ (q)

x
+ q

(
2 (χ (q)− x) (−χ′ (q))

xχ (q)
+ χ′ (q)

2

χ (q)

)
− 2

= 2

(
− π̂ − χ (q)

x
− χ (q)− 2x

x
q
χ′ (q)

χ (q)
− 1

)
= 2

(
− π̂ − χ (q)

x
− χ (q)− 2x

x

χ(q)− (π̂ + x)

χ(q)− 2x
− 1

)
= 0,

where the second line is by (29), the third line is by (30), the fourth line uses λ(q|p) =
2(χ(q)−x)(−χ′(q))

xχ(q)
and λ (χ (q) |q) = 2

χ(q)
(by (17)), the fifth line collects terms, and the sixth

line is by (13). Finally, the claim also holds when p = q, as limq↑pG (p, q) = 2G(p, p) for all
p.

Claim 4. G (p, q) > 0 if either p ∈ (π̂, 1), q < χ (p) or p < π̂, q ≤ p.
Proof. If p ∈ (π̂, 1) and q < χ (p), then ∂G (p, q) /∂q = −2 < 0 by (27). Since

G (p, χ (p)) = 0 by Claim 2, this implies that G (p, q) > 0.
If p < π̂ and q ≤ p, then dΛ (p′|p) = dΛ (q′|q) = 0 for all p′ < p, q′ < q. Hence,

G (p, q) = 2 (π̂ − q) > 0.

Claims 1—4 establish the desired conclusion when p < 1. The p = 1 case follows by
continuity, since χ (p) and G (p, q) are continuous in p for all q < 1.

Proof of Proposition 7

For any positive integer N > 1/x, let FN denote the set of all symmetric cdfs on N ={
0, 1

N
, 2
N
, . . . , 1

}2
. Let PN denote the primal program with FN in place of F . Note that

in PN firms can still contemplate deviations to arbitrary prices, so PN is a strictly more
constrained program than P. Let πN and π denote the values of PN and P, respectively. Let
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FIC ⊂ F and FNIC ⊂ FN denote the set of symmetric cdfs that satisfy incentive compatibility
in P and PN . Note that FNIC = FN ∩FIC . We show that there exists a solution to PN , and
that in every such solution the highest winning bid equals 1 with positive probability.
Let f be an optimal pmf in PN . Without loss, assume that f is symmetric. Such an f

exists as FNIC is compact and profits are continuous in f . Let p̄ denote the highest bid in the
support of the marginal of f . Suppose toward a contradiction that p̄ < 1. Let β = f (p̄, p̄)
and γp = f (p̄, p) for p ∈ [0, p̄). Let γ =

∑
p<p̄ γp and γ̃p =

∑
p≤p′<p̄ γp′ (and let γ̃ p̄ = 0).

Lemma 7 β > 0.

Proof. Suppose that β = 0. Then p̄ is never a winning bid. Let p∗ < p̄ denote the highest
bid that ever wins. Consider the bid distribution that everywhere replaces all bids above p∗

with bids of p∗. Clearly, this variation leaves profit unchanged. We argue that it remains an
equilibrium.
First, conditional on each recommended bid, the distribution of the opponent’s bid has

shifted down. This makes any upward deviation weakly less profitable. So upward IC still
holds.
Next, if one’s recommended bid is below p∗, the payoff from following the recommen-

dation as well as from any downward deviation are unchanged. So downward IC holds for
recommendations below p∗.
It remains to establish downward IC for a recommended bid of p∗. Let Pr denote proba-

bility under the original distribution, and P̂r denote probability under the new distribution.
We must show that, for all p < p∗,

1

2
P̂r (pi = pj = p∗) p∗ ≥ P̂r (pi = p∗ ∧ pj ≥ p) p− P̂r (pi = p∗)x. (31)

First, note that

1

2
P̂r (pi = pj = p∗)

=
1

2
(Pr (pi = pj = p∗) + Pr (pi = p∗ ∧ pj > p∗) + Pr (pi > p∗ ∧ pj = p∗))

=
1

2
(Pr (pi = pj = p∗) + 2 Pr (pi = p∗ ∧ pj > p∗))

=
1

2
Pr (pi = pj = p∗) + Pr (pi = p∗ ∧ pj > p∗) , (32)

where the second equality uses symmetry. Second, note that

P̂r (pi = p∗ ∧ pj ≥ p) = Pr (pi = p∗ ∧ pj ≥ p) + Pr (pi > p∗ ∧ pj ≥ p) and (33)

P̂r (pi = p∗) = Pr (pi = p∗) + Pr (pi > p∗) . (34)

Third, by ICp∗,p, we have(
1

2
Pr (pi = pj = p∗) + Pr (pi = p∗ ∧ pj > p∗)

)
p∗ ≥ Pr (pi = p∗ ∧ pj ≥ p) p− Pr (pi = p∗)x,
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and by ICp′,p for all p′ > p∗, we have

0 ≥ Pr (pi > p∗ ∧ pj ≥ p) p− Pr (pi > p∗)x.

Adding these inequalities, we have(
1

2
Pr (pi = pj = p∗) + Pr (pi = p∗ ∧ pj > p∗)

)
p∗

≥ (Pr (pi = p∗ ∧ pj ≥ p) + Pr (pi > p∗ ∧ pj ≥ p)) p− (Pr (pi = p∗) + Pr (pi > p∗))x.(35)

Finally, (32), (33), (34), and (35) imply (31).
We now construct another distribution f̂ , which we will show is an equilibrium bid distri-

bution that yields strictly higher profit than f . This will establish the desired contradiction,
completing the proof. First, note that 2 (β + γ)x ≥ βp̄, by ICp̄,p̄. Let η = 1/N < x, and fix

ρ ∈
(

0,min
{

p̄
p̄+η

, p̄+η
p̄+2η

})
. Define

f̂ (p, q) =



f (p, q) if max {p, q} < p̄ or max{p, q} > p̄+ η
(1− ρ) f (p, q) if min {p, q} < p̄ = max {p, q}
ρf (min {p, q} , p̄) if min {p, q} < p̄,max {p, q} = p̄+ η(

1− p̄+2η
p̄+η

ρ
)
β if p = q = p̄

ηρ
p̄+η

β if min {p, q} = p̄,max {p, q} = p̄+ η
p̄ρ
p̄+η

β if p = q = p̄+ η

.

Since β > 0, industry profit under f̂ exceeds that under f . Thus, it remains to verify
incentive compatibility. Define

ÎCp,p′ =

(∑
p̃>p

f̂ (p̃, p) +
1

2
f̂ (p, p)

)
p−

(∑
p̃≥p′

f̂ (p̃, p)

)
p′ +

∑
p̃

f̂ (p̃, p)x and

ICp,p′ =

(∑
p̃>p

f (p̃, p) +
1

2
f (p, p)

)
p−

(∑
p̃≥p′

f (p̃, p)

)
p′ +

∑
p̃

f (p̃, p)x ≥ 0.

Lemma 8 Downward IC from p̄+ η is satisfied: ÎC p̄+η,p ≥ 0 for all p ≤ p̄+ η.

Proof. First,

ÎC p̄+η,p̄+η =
1

2

p̄ρ

p̄+ η
β (p̄+ η)− p̄ρ

p̄+ η
β (p̄+ η) +

(
p̄ρ

p̄+ η
β +

ηρ

p̄+ η
β + ργ

)
x

= ρ

(
−1

2
βp̄+ (β + γ)x

)
≥ 0,

where the inequality holds because 2 (β + γ)x ≥ βp̄.
Second, for p ∈ (p̄, p̄+ η), it is clear that ÎC p̄+η,p ≥ ÎC p̄+η,p̄+η, and hence ÎC p̄+η,p ≥ 0.
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Third, for p ≤ p̄, we have

ÎC p̄+η,p =
1

2

p̄ρ

p̄+ η
β (p̄+ η)−

(
p̄ρ

p̄+ η
β +

ηρ

p̄+ η
β + ργ̃p

)
p

+

(
p̄ρ

p̄+ η
β +

ηρ

p̄+ η
β + ργ

)
x

= ρ

(
1

2
βp̄−

(
β + γ̃p

)
p+ (γ + β)x

)
≥ 0,

where the inequality holds by ICp̄,p.

Lemma 9 Downward IC from p̄ is satisfied: ÎC p̄,p ≥ 0 for p ≤ p̄.

Proof. By definition,

ÎC p̄,p =

(
1

2
β − 1

2

ρp̄β

p̄+ η
− ρ

p̄+ η
βη +

ρ

p̄+ η
βη

)
p̄

−
(
β − ρp̄β

p̄+ η
− 2

ρ

p̄+ η
βη +

ρ

p̄+ η
βη + (1− ρ) γ̃p

)
p

+

(
(1− ρ) γ + β − ρp̄β

p̄+ η
− 2

ρ

p̄+ η
βη +

ρ

p̄+ η
βη

)
x

= (1− ρ)

(
1

2
βp̄−

(
β + γ̃p

)
p+ (γ + β)x

)
+ρ

((
1

2
β − 1

2

1

p̄+ η
βp̄

)
p̄−

(
β − βp̄

p̄+ η
− 1

p̄+ η
βη

)
p+

(
β − βp̄

p̄+ η
− 1

p̄+ η
βη

)
x

)
.

Since the first line is non-negative by ICp̄,p, the proof is completed by noting that(
1

2
β − 1

2

1

p̄+ η
βp̄

)
p̄−

(
β − βp̄

p̄+ η
− 1

p̄+ η
βη

)
p+

(
β − βp̄

p̄+ η
− 1

p̄+ η
βη

)
x

≥ 1

2
β

p̄η

p̄+ η
> 0.

Lemma 10 Upward IC from p ≤ p̄ to p′ ≥ p̄ is satisfied: ÎCp,p′ ≥ 0 for p < p̄ and p′ ≥ p̄.

Proof. For p = p̄, this holds because η ≤ x. So suppose that p < p̄. Since (1− ρ) γp+ργp =

γp, f̂ (p) = f (p) for all p < p̄. Moreover, given recommendation p, the conditional probability
that the opponent’s recommendation is no less than p̄ is

(1− ρ) γp + ργp

f̂ (p)
=

γp
f (p)

,

and hence ÎCp,p̄ follows from ICp,p̄.
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For p′ ∈ (p̄, p̄+ η), it is clear that ÎCp,p′ ≥ ÎCp,p̄+η. Thus, it remains to show that
ÎCp,p̄+η ≥ 0. Given recommendation p, the conditional probability that the opponent’s
recommendation is no less than p̄+ η is

ργp

f̂ (p)
= ρ

γp
f (p)

.

Thus, ÎCp,p̄+η ≥ 0 is implied by ICp,p̄ ≥ 0 if

(p̄+ η) ρ
γp
f (p)

≤ p̄
γp
f (p)

,

which follows from ρ ≤ p̄
p̄+η
.

Lemma 11 IC from p < p̄ to p′ < p̄ is satisfied: ÎCp,p′ ≥ 0 for all p < p̄, p′ < p̄.

Proof. This follows from f̂ (p) = f (p) and
∑

p̃≥p′ f̂ (p, p̃) =
∑

p̃≥p′ f (p, p̃) for all p′ < p̄.
Together, Lemmas 8—11 imply that all incentive constraints are satisfied. This completes

the proof.

Proof of Proposition 8

First, suppose that n ≥ 3. Note that π as a function of x is larger under (optimal) almost-
uniform bids than under bid rotation, because the static bid distribution under bid rotation
is almost-uniform (as at most one firm bids below 1). It thus suffi ces to show that x as a
function of π is also larger under almost-uniform bids: that is, that

δ

(1− δ)n ≥ δn−1

1− δn , or equivalently

1 + δ + . . .+ δn−3 + δn−1 ≥ (n− 1) δn−2.

This holds whenever n ≥ 3, because

1 + δ + . . .+ δn−3 + δn−1 ≥ (n− 3) δn−2 + δn−3 + δn−1 ≥ (n− 1) δn−2,

where the last line holds because δ2 + 1 ≥ 2δ for all δ ∈ [0, 1].
Now suppose that n = 2. Substituting for π in the system for (π, x) under bid rotation,

we see that profit under bid rotation equals

1− δ2

δ
exp

(
−1− δ − δ2

δ

)
=

1− δ
δ

exp

(
−1− δ

δ

)
exp (δ log (1 + δ)) . (36)
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Substituting for x in the system for (π, x) under almost-uniform bids, we have

2 (1− δ)
δ

=
1− 2 log (2x)

1− x , or equivalently

x =
1

2
exp

(
−1− δ

δ

)
exp

(
1

2

)
exp

(
1− δ
δ

x

)
.

Hence, we have

π =
2 (1− δ)

δ
x

=
1− δ
δ

exp

(
−1− δ

δ

)
exp

(
1

2

)
exp

(
1− δ
δ

x

)
. (37)

Since x > 0, we see that (37) is greater than (36) whenever

1

2
≥ δ log (1 + δ) .

This inequality holds for all δ < 1
2
, which completes the proof.

Asymmetric Equilibrium without Mediation

Let n = 3 and x < 1
4
. Firms 1 and 2 mix independently, with

pi =


x with prob 2

7
3
2
x with prob 2

7

4x with prob 3
7

Firm 3 stays out (or, equivalently, bids above 4x). There are no on-path punishments. Any
off-path bid is punished by x.
The winning bid distribution is given by

min {p1, p2} =


x with prob 24

49
3
2
x with prob 16

49

4x with prob 9
49

Hence, industry profit equals 24
49

(x)+ 16
49

(
3
2
x
)

+ 9
49

(4x) = 12
7
x. This is greater than 3

2
x, which

by Proposition 1, is the maximum cartel profit when all firms win with positive probability.
We check that this is an equilibrium. For firm 3, bidding just below x gives x − x = 0,

bidding just below 3
2
x gives 25

49

(
3
2
x
)
−x < 0, and bidding just below 4x gives 9

49
(4x)−x < 0,

so it is optimal for firm 3 to stay out. For firm 1 or 2, bidding at x, 3
2
x, or 4x all give an
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expected payoff of 6
7
x, because

6

7︸︷︷︸
prob win if pi=x

(x) =
4

7︸︷︷︸
prob win if pi= 3

2
x

(
3

2
x

)
=

3

14︸︷︷︸
prob win if pi=4x

(4x) .

Finally, for firm 1 or 2, any off-path bid gives a strictly lower payoff, because bidding just
below x gives x − x = 0, bidding just below 3

2
x gives 5

7

(
3
2
x
)
− x = 1

14
x, and bidding just

below 4x gives 3
7

(4x)− x = 5
7
x.

Optimal Bid Distributions with Only Downward Incen-
tive Constraints

Figure 7: The optimal bid distribution when x = .1, with only downward incentive con-
straints. The color scheme in Figures 7—9 is the same as in Figure 1. Bid pair p1 = p2 = 1
is recommended with probability .06.
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Figure 8: The optimal bid distribution when x = .2, with only downward incentive con-
straints. Bid pair p1 = p2 = 1 is recommended with probability .16.

Figure 9: The optimal bid distribution when x = .3, with only downward incentive con-
straints. Bid pair p1 = p2 = 1 is recommended with probability .31.
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