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Abstract

The production function is an engineering relationship, but re-
cent estimators use firm’s optimal choices that depend on market
power. Researchers often become puzzled: the estimator dynamic
panel (DP), which is robust to market power because it does not
use any FOC, often produces unsatisfactory outcomes; the estimators
known as OP/LP, which are deemed inconsistent in the presence of
market power, typically improve. We prove that the coincidence of
DP and OP/LP, except by sampling error, is a necessary condition
for consistency, and show how the improvements relate to the pro-
duction function specification. We derive a novel estimator, robust to
arbitrary forms of market power, based on a version of OP/LP that
proxies for MC. Using this estimator, we propose a test for market
power and a test for the specification, the latter based on the smaller
set of assumptions used by DP.
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1 Introduction

What is the relationship between market power and the estimation of the
production function? The production function is an engineering relationship
that describes how technology relates inputs and output. So, there is no di-
rect relationship. But many recent proposals for the estimation of production
functions include the auxiliary use of equations based on the optimization
by the firm of some objective that involves the production function. The
equations are usually the derivatives of profit with respect to the variable in-
puts (FOCs). And these FOCs are different when the firm has some market
power.

These estimators, born with the work by Olley and Pakes (1996), yearned
for validity under any competitive situation. However, most of them have
been in practice only justified for situations of perfect competition or almost
(Levinsohn and Petrin, 2003; Gandhi, Navarro, and Rivers, 2020, or the way
to implement Olley and Pakes, 1996, and Levinsohn and Petrin, 2003, pro-
posed by Ackerberg, Caves, and Frazer, 2015, henceforth ACF). The urgency
of having readily available methods to estimate production functions has of-
ten implied the neglect of the conditions for applicability of these estimators
under imperfect competition.

Take the frequently encountered case of product differentiation. A mar-
ket with product differentiation shows some market power that arises from
the ability and incentives of companies to produce products with different
characteristics. ! Suppose that the empirical researcher accounts for the het-
erogeneity of characteristics and possibilities of production by means of an
additive unobservable in the equation to be estimated. The estimators that
use the FOC should still face the implementation in the FOC of the likely
heterogeneity of marginal revenues as a consequence of market power.

In the current literature, there are two approaches to the estimation of
the production function. They diverge in how they solve the problem of
controlling for unobservable productivity.?

I This situation generates by itself an uncomfortable context for the user of the produc-
tion function, because products and possibilities of production are distinct across firms.
The production function, as a concept of economic theory, was developed as describing a
situation in which the characteristics of the unique product are given and the available
techniques define the set of production possibilities.

2How to treat unobserved productivity has been the dominant worry of researchers
since Marschak and Andrews (1944) pointed at the statistical problems created by the



We will call the two approaches “dynamic panel,” henceforth DP, and the
OP/LP approach. DP was mainly developed by Arellano and Bond (1991)
and Blundell and Bond (2000). The OP/LP approach is called this way
because it originated in the articles of Olley and Pakes (1996) and Levinsohn
and Petrin (2003).

In the DP approach, unobservable productivity is differentiated out after
assuming that follows a first order linear Markovian or AR(1) process. The
OP/LP approach also assumes that the unobservable follows a Markovian
first order process, and models it indistinctly as a nonlinear or linear process.
The unobservable is replaced by the inverse of a function representing some
optimal observable choice (usually the demand for a variable input) that
contains it.3

A big advantage of DP is hence that one does not need to use any aux-
iliary relationship implying behavior. OP/LP assumes instead that some
behavioral equation holds. This is often said to free the need for linearity of
the Markov process in GMM estimation, but relaxing the linearity is made
possible by the complementary assumption that the used FOCs hold with no
errors. *

A well known empirical paradox, that lies in the center of this paper,
is that DP often produces disappointing results while OP/LP, with more
assumptions to be met, often produces more reasonable estimates (e.g. in
the elasticity of capital and the elasticity of scale). We first explore the
theoretical difference between the two estimators and derive what can be
learned from their divergence. °

We show that both the DP and OP/LP estimators are consistent when

endogeneity of the inputs.

3Both methods can be augmented with the specification of fixed effects, but estimation
becomes quite demanding from the data.

4There are other estimation methods available that can deal with the nonlinearity of
a latent variable without using any FOC. Arellano, Blundell, and Bonhomme (2017), for
example, show the nonparametric identification of a nonlinear latent process for consumer
earnings, and estimate it with quantile techniques; Aguirre, Tapia, and Villacorta (2024)
is a first application to production functions.

5Modern production function estimation is not the first time that the FOCs have been
given a role. Flexible specification of the production function and its dual cost function,
started by Diewert (1971) and continued by Christensen, Jorgenson, and Lau (1973), and
Caves, Christensen, and Tretheway (1981), raised a role for system estimation of the main
equation and share equations; See, for example, Berndt and Wood (1975) and Mc Elroy
(1987).



there is perfect competition, but OP/LP is not robust when there is mar-
ket power. The consistency of a non-robust estimator depends on the de-
tailed assumptions about how the game that firms play in the market is, and
their market share consequences. Many symmetry and unwanted restrictions
should be set beforehand to ensure the consistency of the OP/LP estimator
under market power.

Then, we derive an OP/LP estimator that is consistent under any form
of market power. To make OP/LP robust it is enough to proxy marginal
cost MC by means of AVC and the short-run elasticity to scale, and specify
the process of productivity as linear.® We will call it the linear cost-share
estimator. Under this specification, it happens that both DP and OP/LP
are consistent and should deliver estimates that under market power only
differ due to sampling error.

What is the usefulness of this new estimator? This is a relevant question
because DP is already consistent. There are at least two uses. First, the
new estimator provides a simple way to test the presence of market power,
comparing it with the traditional way to compute the OP/LP estimators.
An alternative test should be based on testing the FOCs directly, which is
possible but not straightforward.

Second, and probably even more important, the estimator naturally pro-
vides a test for the specification of the production function and the FOCs,
comparing the outcome with the results of DP. The test simply formalizes
the idea that both estimators should coincide if there are no problems in the
specification of the production function and the FOCs.

Additionally, we clarify how the presence of other unobservables in the
FOCs affects the OP/LP estimators, and show how the ACF method of
applying OP/LP can soften the effects by projecting the unobservables on
observable variables. We also argue that ACF can be a useful procedure
applied with the linear cost-share OP/LP estimator.

Two main specification problems, which create this type of unobservables,
are the presence of non-neutral productivity and input market power. We
integrate these cases in the development of the model and discuss the effects
of any other.

Empirical research has recently stressed that productivity is likely to be
biased. And there have been contributions on how to apply DP and OP/LP
when productivity is non-neutral and affects in particular an input. For

6This was first noticed in Doraszelski and Jaumandreu (2019).



example, Doraszelski and Jaumandreu (2018) show how to replace biased
productivity from a ratio of FOCs, and Demirer (2025) generalizes the tech-
nique. The dominant interest in this field is labor-augmenting productivity,
henceforth LAP, presumably very related to the dominant form of current
technological progress. In what follows, we systematically take into account
the possibility of LAP.

Input market power can be as relevant as product market power, and it
affects the first order conditions in a similar way. We also show summarily
but systematically how to treat input market power when it is present, and
we discuss the way to detect this mispecification if it is binding.

To illustrate the relevance of the problems, the realism of the circum-
stances, and the working of the procedures we present, we estimate the pro-
duction function for the sample of US manufacturing Compustat firms used
in Jaumandreu and Mullens (2024). It is a sample with more than 5,000
firms and 60,000 observations that is likely to exhibit the more diverse de-
grees of market power. On the one hand, the test for market power gives
the unequivocal answer that market power is present. On the other hand,
the estimation by DP and OP/LP diverges when naively applied to a Cobb-
Douglas specification, and passes the specification test when applied to its
enlargement into a translog with LAP that shows elasticity of substitution
less than one and falling labor shares. Applied to this new specification,
neither DP nor feasible OP/LP is better. The second test therefore detects
that there is something wrong in the specification of the production function
and that its flexibilization including LAP solves the problem. We think that
this constitutes a reasonable place to start exploration for refinements.

The remainder of the paper is organized as follows. Section 2 comments
on the relationship of the paper with the literature. Sections 3 and 4 explain
the consistency of DP and OP/LP under perfect competition, put them in
a common framework, and derive the new estimator. Section 5 explains the
properties of the estimators under market power. Section 6 deals with the
failure of the FOCs and section 7 with OP/LP implementation, interpreting
ACF. Section 8 develops the test for market power, and section 9 the spec-
ification test. Section 10 develops the example with Compustat firms, and
section 11 concludes. The five appendices deal with identification, marginal
revenue modeling, conduct specification, statistical specification tests, and
comment on some additional regressions, respectively.



2 Relation to the literature

The literature on the new estimators for the production function has always
been very aware of the need to deal with market power. Olley and Pakes
(1996) consider that the firms in the market are playing a dynamic oligopoly
game and justify the simplification of the vector of state variables by means
of symmetry that includes common input prices. Griliches and Mairesse
(1998), writing contemporaneously on the “interesting new approach” of OP,
worry if this treatment of the state variables may be ignoring some relevant
dimensions as the expectations on the cost of investment. Levinsohn and
Petrin (2003) define their setting as a competitive environment, where firms
take as given output and input prices, and warn that the model can be
generalized to imperfect competition but then it will depend on the specifics
of competition.

Ackerberg, Caves, and Frazer (2015), discussing when revenues can re-
place physical quantities (common output prices), introduce an explicit dis-
cussion about the difficulties to invert the demand for an input when the
demand for output and/or the supply for an input are downward and up-
ward curves (i.e., there is market power). They warn that, in this situation,
even assuming identical curves may be not enough. Gandhi, Navarro, and
Rivers (2020) make clear that their model for nonparametric estimation of
the production function is developed assuming perfect competition in the
output and intermediate markets.”

More recently, a few discussions have dealt in one way or another with the
ability of the OP/LP framework to address situations with market power.
Bond, Hashemi, Kaplan and Traina (2021) stress how the absence of reli-
able information on firm-level output prices makes difficult the estimation
of structural elasticities and hence market power and point at the robust-
ness of the DP approach. Doraszelski and Jaumandreu (2021) develop the
biases that affect an OP/LP procedure given the likely presence of corre-
lated unobservable demand heterogeneity. Ackerberg and De Loecker (2024)
is a discussion of how to expand the OP/LP estimators to include “suffi-
cient statistics” to account for imperfect competition under behavioral and
symmetry assumptions.

In the first place, this paper makes a contribution to these discussions. It

"Only online Appendix O6 shows how the model can be applied specifying a parametric
CES demand for output, together with the assumption of monopolistic competition, the
version that, in fact, many researchers prefer given their needs.



deals with how to construct estimators that are robust to market power, in
the sense that they do not depend on the specification of the details of the
game the firms play. We provide a useful new estimator and we develop a
guide to conduct the specification more than a rule that applies to all sizes
and shapes.

A long list of papers has recently stressed that the presence of Hicks neu-
tral productivity should be complemented with the presence of biased pro-
ductivity, particularly in the form of LAP. See Doraszelski and Jaumandreu
(2018, 2019), Raval (2019, 2023), Zhang (2019), Demirer (2025), Jauman-
dreu and Mullens (2024), Kusaka, Okazaki, Onishi, and Wakamori (2024),
and Zhao, Malikov and Kumbhakar (2024).%

We add to this literature by uncovering that the mispecification revealed
by our estimators, when applied to a sample of Compustat firms, is redressed
when we consider an specification that allows shares in cost and elasticities
to change from firm to firm and over time.

A recent literature has tried to assess market power in the input markets
simultaneously with market power in the product market. See, for example,
the papers by Dobbelaere and Mairesse (2013, 2018), Yeh, Macaluso, Her-
shbein (2022), Rubens (2023), and Azzam, Jaumandreu, and Lopez (2025).
The estimators OP/LP are not robust to the presence of unspecified input
market power. We show how the tools that we have developed can be ap-
plied to the detection of input market power that affects the estimation of
the production function and, summarily, how they can be used for consistent
estimation under this presence.

In the empirical exercise, we carry out otherwise a pioneering modeling
of firm-level different dimensions of productivity in US manufacturing. It
confirms the biased technological change that Raval (2019) found with Census
of Manufacturing data on plants, and Demirer (2025) with Compustat firms.
It provides a rich characterization on the firm dynamics of labor-augmenting
productivity (see Jaumandreu and Mullens, 2024), with a flexible production
function and subject to the rigor of the specification tests.

8 A recent literature is exploring the nonparametric estimation of a unique productivity
term, freely interacted with the inputs. See Ackerberg, Hahn, and Pan (2023) and Pan
(2024).



3 DP and OP/LP under perfect competition

Let us first clarify the properties and relationship between the two estimators
in perfect competition. The assumption of perfect competition implies that
the price of the output is common for all firms and equals the marginal cost.
Firms differ in size, though, because they differ in their marginal cost curves.
The usual time and information assumptions are as follows. Firms choose
variable inputs labor [ and materials m at time ¢, when productivity becomes
their knowledge, but capital k needs time to build and is given as chosen one
period before.”

Assume a population of firms (we drop the firm and time subscripts).
Write the production function in logs as

¢=f(x)+w+te, (1)

where f(x) = In F(x), x = {k,l,m} is the capital, labor and materials logs,
w is Hicks-neutral productivity, and ¢ is an observation error, not autocorre-
lated and uncorrelated with all variables known at ¢. Sometimes we will use
the notation ¢* = f(x) 4+ w for the output without error.

Everything we are going to say is compatible with the presence of LAP.
To see this it is enough to suppose that the labor input is {* = [ + w; and
LAP wy is controlled for observables.!”

A first order Markov process establishes

w=g(wa)+¢, (2)

where ¢(-) is an unknown function and £ a mean-independent error.

DP
DP assumes that productivity follows the linear Markov process w =
pw_1 + &. The implication is that we can “pseudo-differentiate” equation (1)
(subtract the lagged equation multiplied by p) and unobservable productivity
drops
q=pg-1+ f(x) = pf(x_1) +§+¢e—pe_i. (3)

9Some researchers treat labor also as predetermined, but this situation is in general
less demanding and we will not deal with it in detail.

0For example, Doraszelski and Jaumandreu (2018) show that the expression m — | =
cons — o(pyr — w) + (1 — o)wr, exact in the CES case and a linear approximation for
any production function separable in capital, can be used to solve for wy,. Demirer (2025)
generalizes this equation. Zhao, Malikov, and Kumbhakar (2024) show that an equation
of this type is possible without separability for the translog specification.

8



From the point of view of estimation, the inputs of the x vector that are
set at t, when the shock of the Markov process is known, are correlated with
¢ and should be instrumented. Take as variable the inputs [ and m. If the
production function f(-) only requires the estimation of three parameters
(additional to the constant), we need four instruments because we have to
estimate the extra parameter p (which introduces nonlinearity in the model).
The model is exactly identified using k, k_1,{_; and m_; as instruments.!!

It can be assumed that lagged input and output prices are non-correlated
with &. Then, using them as instruments gets overidentifying restrictions.
Cost and firm-demand shifters can be used as additional instruments.

OP/LP
The FOCs of variable inputs are used to replace unobservable productiv-
ity.12
oF (x
PO cxp) = i, 0

where P is the price of the output, X = L, M and Wx = W, Py;. Unobserved
productivity w can be obtained by inverting one of these FOC or using a
combination of both. A combination of the first order conditions drops one
variable input including both input prices in addition to the price of the
output. This is the unconditional demand for the input that remains X =
X(K, P,W, Py,w). With perfect competition, we expect P to be common
between firms, so the only variation of P is over time and can be subsumed
in a system of time dummies. But the prices of the inputs are not necessarily
the same and must be explicitly included except when equality across firms
is assumed.

The model can be extended to the case of input market power by assuming
that the input price in the FOC is W§ = W (147), where the markdown 7 is
either an additional parameter to estimate or is controlled for observables.!?

A more complete discussion on identification is carried out in Appendix A, after pre-
senting OP/LP.

12T evinsohn and Petrin (2003) inverted an input demand function, which they simplified
assuming common prices; Olley and Pakes (1996) used a nonparametric approximation to
the inversion of investment, with price expectations and other state variables common
across firms; Many practitioners have tended to suppress prices in all circumstances and,
sometimes, add other variables under the argument of controlling for heterogeneity. Our
definition and discussion can be seen as taking literally the first proposal.

13Rubens (2022); Croft, Luo, Mogstad and Setzler (2025); and Rubens, Wu and Xu



Let us use, for the moment and without loss of generality, only one FOCs
(sometimes this has been called using the demand for a variable input con-

ditional on the other; Ackerberg, Caves and Frazer, 2015)%
OF(x)
—wy—p—1 .
w=wx —p—In—5

The assumption that w follows a first order Markov process allows us to
write the production function replacing w_; by its expression according to
the inverse of the conditional input demand

OF(x_1)

e )+E+e. (5)

q=f(x)+ g(wX,—l —p_1—1In

The unknown function g(-) is typically specified by polynomials and the
model can be easily estimated in one step using nonlinear GMM.1?

Note that the derivatives of F'(x) will include at most the same parame-
ters as F'(x),s0 f(x) and 81;;—’:1) are linked by equality restrictions, even if we
are dealing with a flexible specification.’® We face exactly the same problem
of endogeneity as before: the variable inputs [ and m are correlated with
&. If we have to estimate four parameters, the variables k, k_1,l_1, and m_4
are enough for identification. Prices and shifters can be used as before as
additional instruments. As g(-) is usually made up of polynomials, it seems
natural to expand the set of instruments with the powers of the instruments.

(2025 a,b) use the production function augmented with a labor supply. Azzam, Jauman-
dreu, and Lopez (2025) treat 7 alternatively as a parameter and a function of observables,
and argue that the production function together with the FOCS can identify input market
power.

MLater we will use the demand for the input conditional on output, which can be
obtained using the ratio of FOCs to replace one variable input in the production function
by the relationship with the other.

15A recent paper showing in practice the advantages of one step GMM estimation is
Trunschke and Judd (2024).

16Not recognizing this may produce unproductive discussions on identification. It is cus-
tomary to apply nonparametric estimation with a polynomial specification. See Appendix
A for a discussion on identification.

10



4 A common framework and a novel estima-
tor

DP and OP/LP estimators are presented differently (pseudodifferentiation,
replacement of the unobservable by the inverse of an input demand) for
pedagogical reasons, but they can be seen under a more common perspective.
It happens that both estimators assume a first order Markov process for
productivity, and then propose to replace past productivity by an expression
in terms of observables.

We will see that this common perspective clarifies many properties and
relationships. In discussing the estimators, we will assume for the moment
that the specification of the production function f(x) is correct and that the
FOCs are met. We relax the assumption on the FOCs in section 6 and the
assumption on f(x) in section 9.'7

We can say that both estimators start by assuming that the production
function can be written as

¢=f(x) +glwa)+E+e, (6)

because of the productivity process. Then DP proposes to replace w_; by

q-1 — f(x-1) —e_1, and OP/LP by wx 1 —p-1 —In %"_‘;). DP uses the

lagged production function, OP/LP the lagged FOC. Accordingly, in what
follows we will use the following definitions

DEFINITION 1 The dynamic panel estimator is the application of IV to
the equation

q=f(x)+9(qg1— f(x21) —e1) +E+¢, (7)

with g(-) specified as linear.

DEFINITION 2 The OP/LP estimator is the application of IV to the
equation

OF (x_1)

jﬁzrﬁ+f+& (8)

q=f(x)+g(wx 1 —p-1—1In

I"Note also that we are implicitly assuming that the researcher has the data needed
for estimating the production function, which includes the right price indices to deflate
revenue and get indices of quantity. The discussion that follows does not add any data
need. In particular, the OP/LP estimators can be implemented with no price of output.

11



with g(+) specified by means of polynomials. We will call linear OP/LP the
estimator that only uses a first degree polynomial for g(-).

Revenue-share OP /LP

The expression used by OP/LP can be written in different ways. For
example, we will find it useful to employ the revenue-share form, based on
the share of expenses in input X in the observed revenue S& = WPLQX.

LEMMA 1 The OP/LP estimator can be written in the revenue-share
form

Sk
¢=f(x)+gg1— f(x1) +In—==) + £ +e, (9)
Bx.—1
where fBx = %x)ag)(;c ) is the output elasticity of the input X .18
Proof

Add and subtract z, and subtract and add ¢ and f(x) = In F'(x), to the
expression for w in (8) in current time, then do some reordering. That is,
w=wx—p—In 85)(?) =wy+r—p—q+q—f(x)—(r—InF(x)+In 85)(?)) =

q—f(x)—i—lng—f. ¢

The revenue-share form of the OP/LP estimator makes clear that the
OP/LP estimator uses more information than the dynamic panel estimator,
and this additional information is included in the term In %. Multiplying
the first order condition (4) by PLQ*, using QQ = exp(e), and taking logs, the
first order condition can also be written as In Sy = In S¥ + ¢, and hence the
additional term controls for € in terms of the differences between the share of
X in revenue and the specification of the production elasticity of the input.*

However, when the model is applied to the data, if the first order condition
is not met, the term In % will contain more than € and the estimates will

B
usually become inconsistent because of a problem of omitted variable (the

18]t is important to note that we write Sx for notational simplicity, but it should be clear
that, in general, it is a function Sx(-) of the inputs (and labor-augmenting productivity).

9The FOC under perfect competition, in the reordered form In S = In fx — € is used
by Gandhi, Navarro, and Rivers (2020) as the first step of their estimator. Notice that
(9) suggests a unique-step form for the estimator. Also suggests that to control for ¢, the
ACF first stage is not needed.

12



discussion of this continues in section 6, where we allow for the failure of the
FOCs).

Comparing (7) and (9) it turns out that, while the dynamic panel estima-
tor leaves the € error to become part of the error of the equation, the linear
OP/LP estimator controls for € by means of the difference between the rev-
enue share and the elasticity. This is saying that, under perfect competition,
the fulfillment of the first order condition implies that the dynamic panel and
the linear OP/LP estimator should only diverge by sampling error.?°

If g(+) is nonlinear, OP/LP produces a different estimate that comes ex-
clusively from adding nonlinear terms to approximate g(-). DP can be seen as
a first order approximation to the productivity process dealt with by OP /LP.
As productivity is in practice quite persistent, it should not be expected that
this creates a dramatic divergence. Our empirical exercise confirms this (see
section 10).

Cost-share OP/LP
We can develop another form of the OP/LP estimator that, instead of
using the price, proxies for marginal cost?!

LEMMA 2 The OP/LP estimator can be written in the cost-share form

V—1SX,—1
Bx -1

where v = 1, + Bar is the short-run elasticity of scale.?? The cost-share
estimator is only consistent under linearity of g(-).

q=f(x)+g(qg1 — f(x_1)+In —e 1)+ &+e, (10)

Proof

Since under competition p = mc, by (8) we have w = wx —mc—In ag)(? )
wX—l—x—(vc—(q—s)—lny)—f(x)—(m—lnF(x)+lnag—§;‘))—5 =
q— f(x)+1n ”[if — €.

In the second equality, we use that 4YS = v, 2 and that ¢ = ¢* +¢, which

allow us to proxy marginal cost by average variable cost. The price we have

20Notice, however, that if (7) and (9) are estimated with the same sample, (9) will
produce more efficient estimates because reduces the variance of the error.

21This was suggested by Doraszelski and Jaumandreu (2019), page 19.

22We again write for simplicity v, but the short-run elasticity of scale is also in general
a function v(-) = BL(-) + Bam(+). Note, however, that, under homotheticity, v(-) becomes
a function of @* alone.

23 Adding the FOCs of the variable inputs multiplied by QL we have MCv = AV C.

13



to pay for this is the introduction of the error €. This error determines that
g(+) must be linear for consistency. ¢

The cost-share form of OP/LP encompasses the information added to the
v-15x,-1 24
e

dynamic panel estimator in the term In =

We can establish an important

PROPOSITION 1 Under perfect competition, the dynamic panel esti-
mator and both OP/LP estimators, the linear revenue-share and the linear
cost-share OP/LP, should only diverge by sampling error.

Proof

Comparison of (7), (9) and (10) shows that the three estimators can at
most diverge due to sampling error. (9) replaces the error —¢_; in (7) by
a term in oservables whose value is —e_;, and hence will simply be more
efficient. (10) adds a term that is zero if the FOC is strictly true. In this
case, the estimators would show the same numerical value with the same
sample and would only be affected by sampling otherwise. ¢

What makes dynamic panel and linear cost-share estimators particular is
that they continue to be consistent in imperfect competition.

5 Market power

When there is market power, under the assumption of short-term profit max-
imization, the relevant variable in the FOCs is marginal revenue M R instead
of P

OF (x)

0X

The problem is that M R is, in general, unobservable. At first sight, it seems
like we have no alternative than choosing the DP estimation, which does not
need this relationship. Let us take a closer look at what the new variable
implies.

MR exp(w) = W.

R
24Notice that we can also pass from one estimator to the other with the chain % =

ve Wx X
o AYC exp(—e)Sx _ uSx (—5)

v
Bx - Bx = Bx &P

14



There are N firms in a market. We now use firm subindices for the sake
of clarity. If firms have market power, the solution of the system of the
two variable input FOCs is going to produce for each firm the condition of
equilibrium X; = X (K;, MR;,W;, Pyj,w;),? and this is what an OP/LP
procedure must now invert to get w.

Of course, it is possible to obtain expressions in terms of observables by
simplifying the cases of behavior and with specific assumptions on symmetry
of the firms and their behavior. For example, it is very popular to assume
that competition is monopolistic and the elasticity of demand constant and
equal for all firms. Under these assumptions M R; = P;(1 — %), where 7
represents the (absolute value) of the demand elasticity.

A discussion of possible behavior restrictions and assumptions of sym-
metry across oligopoly models is carried out in Ackerberg and De Loecker
(2024). They are able to show significant reductions in the information re-
quirements for some cases but, for example, they confirm that there cannot
be unobserved characteristics if products are differentiated, as Doraszelski
and Jaumandreu (2021) pointed out in relation to the correlated unobserved
demand heterogeneity. More in general, tractability needs to assume either
common quantities-prices or its aggregability, common input prices, discard
unobserved correlated demand heterogeneity, and drop asymmetric behavior
(see Appendix B and Appendix C).

The central question is whether it is possible to estimate the production
function without taking a position on how competition is. Estimate without
having to assume things like whether competition is in prices or quantities,
firms either take the rivals actions as given or collude, collusion is either with
all or with part of the rivals, some firms have a particular type of advantage
or not, and so on. The answer is yes, it is possible.

To see why notice that, in equilibrium, a short-run profit maximizing firm
equates marginal revenue and marginal cost, so

M R(P, 0, conduct) = MC(K;, Wy, Py, QF, wj).

On the left hand side, the expression depends on the particular specification
of conduct. The right hand side, on the contrary, picks up a specific single
value under quite general conditions.?® It singles out a unique marginal cost

25 Alternatively, it could be considered the demand conditional in output, which has the
symmetric problem of unobservability of the relevant output; see later.
26These conditions are basically convexity assumptions on the technology of the firm.
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MC(-) for each set of values of the arguments (we have specified possibly
varying input prices for the sake of generality).?” If we have MC, we have
what has been called a “sufficient statistic,” a variable that contains all the
relevant information of the conduct and demand conditions.

An estimator that is robust with respect to market power is an estimator
that is consistent regardless of the details of the game that firms play in the
market. DP is robust to market power, but not OP/LP. DP is robust to
market power because it does not use any FOC which changes when market
power replaces competition. OP/LP is not robust because the usual speci-
fication, based on the FOCs under market power, needs to model marginal
revenue M R. For modeling MR in a tractable way, some particular games
and strong symmetry conditions must be assumed.

However, we have shown that there is a feasible OP/LP that is always
possible. It consists of proxying MC by AVC and the short-run elasticity of
scale, taking into account that this replacement leaves in the expression the
error of the production function and the Markov process must be assumed to
be linear. This estimator, which we have called the linear cost-share OP/LP
estimator, is robust to market power.

To summarize the properties under market power of the estimators con-
cerned, we can formulate the following

PROPOSITION 2 Under market power, when the specification of f(z)
is correct, the dynamic panel estimator and the linear cost-share OP/LP
estimator when the FOCs hold, are consistent, and their estimates must
only differ by sampling error. Instead, the revenue-share OP/LP with the
FOC holding, even linear, is generally inconsistent.

Proof

That DP is always consistent under market power follows directly from
the fact that the estimator does not need to assume anything about the
variable input FOCs.

That the linear cost-share OP /LP estimator is consistent follows from the
FOCs under market power with short-run profit maximization. Since under
profit maximization M R = MC', we have

OF (x)
0X

2"We can even accommodate labor market power and LAP by considering the price
W* = (14 7)W/exp(wy,) with the unobservables 7 and wy, replaced.

MC

exp(w) = Wy,
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that are also the conditions for cost minimization of variable cost. Hence, we
can use the inversion
F(z)

aF(I)—w — e+ —Hnu—lna——a
ax X q ax O

where in the second equality we use the property mc = ve — ¢* —Inv. As in
lemma 2, we can rewrite this expression lagged as

w=wx —mc—In

V—1SX,—1

Bx,-1

= 0. It follows that the dynamic panel estimator

wo1=¢-1— f(z_1)+In —€-1,

v_1Sx,_1
Bx,-1
and the linear cost-share estimator should only differ by sampling error.

The revenue-share estimator uses P_; instead of M (C_;, and therefore we

where in theory In

have persistent unobservable —(p_; — mc_;) = —Inu_; that cannot be con-
trolled. The variable inputs, chosen at ¢ according to u, are likely to be corre-
lated with it through the lags of Inu. ¢

6 Failure of the FOCs

The OP/LP estimators are inconsistent if the FOCs they use do not hold. We
are particularly interested in the behavior of the linear cost-share estimator
because we want to use it as an estimator robust to market power, but we
also briefly include the consequences for the revenue-share estimator.

First order conditions may not hold as in proposition 2 by multiple rea-
sons. The most commonly discussed by researchers are: adjustment costs
(see e.g. Bond and Van Reenen, 2007), market power in the input market
(see e.g. Manning, 2011), firm optimization errors (see e.g. Marschak and
Andrews, 1944), misallocation of inputs (see e.g. Hsieh and Klenow, 2009).

We can add the case of biased technological change (e.g. LAP). However,
it is important to take into account that this motive also changes the structure
of the production function (we need [* instead of [).

All of the above circumstances may be represented in the FOCs by the
presence of an unobservable. Assume, without loss of generality, that the
first order conditions affecting the variable inputs are

OF (x)
0X

MC exp(w) = (1 + ux)Wy, (11)
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where ux is an FOC and input-specific unobservable,?

When we have these unobservables, the relationship between marginal
cost and average variable cost becomes more complex, as we show in the
following

LEMMA 3 The relationship between marginal cost and average variable
cost is

Ve QAVVO’ O

where AVC = % is the average variable cost, recall that v = (1, + By is
the short-run scale elasticity, and 6 = 1+ )", Sxux, is a weighted sum of
unobservables with weights equal to the cost-shares Sy = XX

2x Wx X7
Proof
Adding the FOCs of the variable inputs multiplied by c)g( we have
MC — —_exp(w) = =X =(1+ Syuyx)=X 2
or
MCv =0AVC,

so marginal cost can be written in terms of the average variable cost AV C', the
short-term elasticity of scale v, and 6. ¢

The presence of unobservables in the FOCs modifies the OP/LP estima-
tors of sections 4 and 5. The revenue-share estimator is as follows

(]. + UX,—I)S§7_1
Bx,—1

And, using the lemma, we can develop the form that takes the linear cost-
share OP/LP estimator. Notice that, since we are proxying MC by AVC,
the estimator is affected by the unobservables in all the FOCs. The form is
as follows.

q=f(x)+g(q-1 — f(x-1) +1In ) +E&+e,

~10x,-1Sx,—
g = F(x) +ggo1 — f(x_1) +In X
Bx.—1
OF (x™)

28The FOC corresponding to the LAP is usually written as P 51— exp(wr +w) = Wy,

which can also be written as P%

—ea)+&+e,  (12)

exp(w) ~ (1 — wp)Wx, where x* = {k,l*, m}.
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where 0x = (1 4+ ux)/6. If all FOCs for variable inputs hold with no unob-
servables, 0x = 1.

Of course, the researcher can model total or partially 0y if she knows of
the presence of some unobservable (e.g. LAP or monopsony power). How-
ever, what happens when the equation is specified using the term In l’;—xx,
that is, ignoring the unobservable 6x?

Multiplying FOC (11) by ﬁ we can write %85)(?) exp(w) = (1 +

U X)%%. It follows that Sy = vfx.S,. This implies that the expression

In l’f}g—XX (without fx) it will take the value —Infx if fx # 1, and zero if there
are no unobservables.

This implies that the linear cost-share OP/LP estimator is inconsistent
if there are unaddressed unobservables in the FOCs. The researcher must be

aware, and this has consequences in the tests that we are going to develop.

7 Implementing OP/LP

Expressions (9) or (10) are more or less simple to implement according to the
specification chosen for the production function. For example, with a Cobb-
Douglas production function, they amount to estimation of the production
function by pseudo-differences, as the dynamic panel method suggests, in-
cluding the terms pln Sﬁ?’_l and pln Sx 1, respectively (see the example of
section 8).

However, as mentioned before, this is not the way that OP/LP is usually
carried out by researchers. Often, an implicit input demand, assuming a com-
mon output price P and common input prices, has been assumed represented
by means of the inverted relationship (varying over time) w = h(K, X). Sub-
stituting then a flexible lagged h(:) for w_; in the Markov process is an
effective way to estimate. See, for example, Wooldridge (2009).

On the negative side, this form may incorrectly omit the output and
input prices. However, in general, it has delivered better results for the
elasticities than DP. This form grants in fact more flexibility than what is
implied by the used production function, and might be picking up problems
of specification and improving because of this (e.g. softening the lack of
variation of elasticities).

Ackerberg, Caves, and Frazer (2015), henceforth ACF, proposed a form to
implement OP /LP, related somehow to the above practice, which has become
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prevalent. We will use the insights gained with our common framework to
provide an interpretation of the ACF OP/LP estimator .

An interpretation of the ACF procedure

The idea of ACF is to regress first output nonparametrically on all inputs
and variables relevant to explain the demand for the input used to substitute
for unobserved productivity. The goal is to identify separately €. Let z be
the set of variables on which the output is projected (which we discuss later
specifically) with x C z. The first stage of ACF computes

6 = Eg|z) = E(f(x)|2) + E(w|z) = f(x)+E(w|z).

This means that, in the second stage, what ACF carries inside ¢(-) can be
written as

01— f(xo1) = qo1 — f(xo1) + [B(woi|z_1) —woi] — e,

Again, as in (12), the difference with respect to the dynamic panel is a term
that is only relevant if it contains a bias (the value is not zero). In this
case, the potential bias can be thought of as the difference in the projec-
tion of lagged productivity on the vector z_; from the true value of lagged
productivity.

Since E(w_1|z_1) —w_1 = E(q—1 — f(x_1) +1In % —e_1|z_y) —

woy = E(lnvy +InSx_1 —Infx_1 +Inbx _1]z_;), everything depends on
how the latest expectation is. With input quantities and input prices we can
reasonably predict the cost share and the elasticities, but we do not have
the unobservable. Consequently, the bias will tend to be zero if x = 1 and
—FE(Infx|z) otherwise. Recall that in the parametric case, the presence of
the unobservables imposed on a bias of —Infy. ACF is likely to smooth out
this bias by projecting it on z, since Var(—Infx|z) < Var(—Infx).

From this point of view, ACF estimation using quantities and prices of
the variable inputs is a nonparametric approximation to the inclusion of the
term in the cost-share. Under a correct specification of f(x), with a linear
Markov process, it should also only diverge from DP due to sampling error.
In addition, if there is bias induced by unobservables in the FOCs, the ACF
estimate is likely to mitigate this bias by reducing its variance.

The ACF procedure can hence be a legitimate way to apply the linear
cost-share estimators (we show this in practice in the empirical exercise).
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However, if there is market power, it is not correct to include the output
price in the first stage of ACF. This corresponds to the demand for the
input under perfect competition and is incompatible with consistency in the
presence of market power. In the first stage of ACF, instead of P, it should
be included S,, the share of the input in cost.

8 A test for market power

Since applying procedures of estimation that are robust to market power
limits the available choices, it is worthy to have a method that allows testing
the presence of market power. It turns out that we have developed in section
4 the estimator that can serve to easily construct a test for market power.

The linear cost-share OP/LP estimator is based on approximating MC
by AV C and scale elasticity. It is consistent when the firm has market power
because it is based on formulas for cost minimization. It is an estimator fully
robust to market power in the product market.?’

On the other hand, a revenue-share OP/LP is not consistent in the pres-
ence of market power, even in a linear version, because it is based on the
price of the firms, which under market power diverges from marginal cost.

We can test the null of no market power, in which both estimators are
consistent, against the alternative of market power, under which the revenue-
share estimator is not consistent, while the linear cost-share estimator re-
mains consistent.

In practice, both estimators differ only in the alternative use of the cost
or revenue shares of the input and the need to specify the short-run elasticity
of scale in the first. Furthermore, if v is a constant, the difference collapses
to only using a different regressor, making it very easy to perform the test
with pseudo-differences. Of course, the test can also be applied using an
ACF procedure in two steps (see our exercise in section 10)

EXAMPLE Assuming that the production function is Cobb-Douglas, we

29 And that can be robustified to market power in input markets (and LAP, of course)
by means of the model specification. This, if relevant, will avoid from the beginning
inconsistencies that we discuss in section 9.
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can run the two regressions

q = Bo+pg-1+ Br(k—pk_1)+ Br(l — pl_1) + Bau(m — pm_)
+pInSx 1 +e,

q = By+pg1+ Br(k—pk_1) + Br(l — pl_1) + Bu(m — pm_y)
+pIn S + ¢,

where e = £ +¢e — pe_1, € = { + ¢, and we compare the estimates for Sk, 81,
and [y, say. ¢

A Hausman (1978) specification test, or a Durbin-Wu-Hausman test, can
be seen as a test of the equality between the parameter estimates under
two methods of estimation that are consistent under the null. Following
Wooldridge (2010), we set a quadratic form of the differences in the param-
eters (Bcg — ERS) using the inverse of a robust estimate of Avar[\/ﬁ (Ecg —
BRS)] = Ves+ Vrs — (C 4+ C"). See Appendix D on the computation of these
matrices. Under the null, we have

(Bos — Brs) Avar[V'N (Bes — Brs) ™ (Bes — Brs) ~ x*(p),

where p degrees of freedom are the number of parameters tested.

A drawback of the test is that we have assumed that the production
function is well specified and that the FOCs hold. If this is not the case,
the two estimators are inconsistent under the null and under the alternative,
although for reasons that are different from market power. Although the
test can still be informative under these circumstances, it seems convenient
to repeat it again after addressing the specification of the production function

and the holding of the FOCs.

9 A specification test

Now we are in a position to transform the linear cost-share estimator into
a tool of specification under market power. DP and the linear cost-share
OP/LP must coincide under market power, and hence any divergence is
informing us of other problems.

To convert the linear cost-share estimator into a specification tool, we
need, however, to consider carefully the reasons by which DP and the linear
cost-share OP/LP may diverge. We have already seen that a reason is the
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presence of unobservables in the FOCs (and we have studied how they affect
estimation). However, until now we have assumed that f(x) is well specified,
with the consequence that under market power and without unobservables
in the FOCs, DP and OP/LP must only diverge due to sampling error. Now
we also want to include possible errors in the specification of f(x). The
production function itself can be not well specified, and this affects both the
production function and the FOC.

To take the most relevant example of misspecified production function,
think of the case of biased technological progress, LAP say. Now the relevant
labor is I* = [ +wy, the production function is f(k,*,m) and the labor FOC
is MC algg*) exp(wr, + w) = W. The consistency of the DP estimator fails
due to the specification of the production function and the consistency of the
OP/LP estimator due to both the specification of the production function
and the presence of the unobservable in the labor FOC. Under LAP, DP and
OP/LP diverge, and both are inconsistent.

Adopting this broader perspective, the situation under market power can
be summarized as follows. On the one hand, both estimators can be incon-
sistent because the production function is not well specified. On the other
hand, if the production function is well specified and the FOC contains no
unobservables additional to MC, DP and the linear cost-share OP/LP must
only diverge due to sampling error. Hence, a specification test based on the
equality of the coefficients of two estimators, this time DP and OP/LP, is
available. Under the null both estimators are consistent, and under the alter-
native either both estimators are inconsistent or only the OP/LP estimator
(because only the FOCs fail) is inconsistent.

When there is market power,?? starting the estimation of the production
function with this test is an easy and convenient way to work on the spec-
ification. If DP and OP/LP coincide and the test is passed, the researcher
has statistical evidence that a necessary condition for consistency is met.
Of course, this does not automatically ensure consistency, and hence the
specification can be worked on and improved.

However, if the test is not passed (DP and OP/LP diverge) we are sure
that one of two things is happening: either the production function spec-
ification is wrong or there are unobservables in the FOCs. It is crucial to
know this to address the efforts to detect the origin of the problem (produc-

30The researcher may have reached this conclusion applying the test for market power
developed in the previous section.
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tion function specification or FOC unobservables). The problem will not be
solved until the test is passed.

Again, the test can be performed by means of pseudo-differences of the
implied equations or by means of two stage ACF regressions. The next
example does the simplest thing, but in the empirical exercise we do both.

EXAMPLE Assuming that the production function is Cobb-Douglas, we
can run the DP and linear cost-share OP/LP regressions

= Bo+pq_1+ Br(k— pk_1) + Bl — pl_1) + Bu(m — pm_1) +e,
= B+ pq1+ Br(k — pk_1) + Br(l — pl_1) + Br(m — pm_y)
+plnSx 1+ €,

where both e and €’ have the form £ 4+ & — pe_;, and compare the estimates
for Bk, Br, and (). ¢

The test can be constructed again by setting a quadratic form of the
differences in the parameters (Gpp — Bop/Lp) and using the inverse of a

robust estimate of Avar[\/ﬁ(fj\DP — B\OP/LP)] = Vpp + Vop/p — (C + C")
(see Appendix C). In the null, we have

(BDP - BOP/LP)/AUGT[\/N(BDP - B\OP/LP)]_I(B\DP - BOP/LP) ~ Xz(P)7

where p degrees of freedom are the number of parameters tested.

10 Estimating the production function with
US firms

In this section, we show with an example how the DP and OP/LP esti-
mators start diverging under standard estimation, and how this divergence
reflects at the same time the presence of market power and more general
problems of specification. The application of our two tests guides the work
of re-specification of the production function, and the two estimators end by
coinciding. This coincidence implies that the necessary condition for consis-
tency is met, and we leave the task where it can be continued for refinements.

We estimate the production function for the sample of Compustat US
manufacturing firms (1960-2018) used in Jaumandreu and Mullens (2024).
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It is a sample of firms belonging to many different manufacturing markets
and times, so we expect that they possess various degrees of market power.
In estimating the production function of these firms, it is then important to
be robust to the exercise of market power.

At first, the DP estimation and a standard ACF implementation of the
OP/LP estimator applied to a Cobb-Douglas specification diverge in the
estimate of the elasticity of capital and in the assessment of the returns to
scale. As is often the case, for the dismay of researchers, DP produces a
negative elasticity for capital, and a short-run elasticity of scale well above
unity. However, the ACF implementation of OP /LP shows a nicely estimated
(small) elasticity of capital and a more moderate short-run elasticity of scale
(although not smaller than one as well). As odd as it may sound, this is not
a sample-specific phenomenon but a quite typical finding.

A usual interpretation for the DP behavior is that the differentiation of
the data exacerbates errors in the measurement of a capital that otherwise is
quite persistent over time. However, a little experimentation shows that this
explanation is not convincing. For example, the OLS of the Cobb-Douglas
in the first differences gives positive coefficients for all inputs (see Appendix
E). However, if DP is inconsistent, we have shown that OP/LP cannot be
consistent. The result of the estimation raises hence a puzzle: DP cannot
be right, but the ACF estimation of OP, which must be equally inconsistent
and probably accumulating the inconsistency due to market power, is adding
something that improves the estimation.

In what follows, we start by confirming that we are effectively in the pres-
ence of market power. Applying the test, we are not able to discard market
power, and hence we should stick to the version of the OP/LP estimator that
is robust to market power. However, the result of the estimator itself is not
satisfactory as we already expected given the performance of DP. Then, we
look for reasons related to the production function specification that must be
inducing the inconsistency of both estimators. A simple inspection of the la-
bor shares shows that the elasticity of labor must have been falling over time
and should be deeply varying across firms, while the Cobb-Douglas specifica-
tion fails to pick up this characteristic. When labor-augmenting productivity
is allowed into the specification, enlarging the Cobb-Douglas to a translog
that admits shares and elasticities that are varying, the DP estimator and
the OP/LP version robust to market power fully coincide. Our specification
test sanctions that.

The conclusion is that the divergence of the estimators was simultane-
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ously detecting the presence of market power and the misspecification of the
production function and that the redress of the misspecification allows ro-
bust estimators to provide the same answer. We have needed to address both
things because both were in the data. The test for market power has lim-
ited the estimators for which the comparisons are valid, and the comparisons
carried out with robust estimators confirm that the necessary condition for
consistency was not met but can be met. This can be a good starting point
for the researcher trying to further improve the specification while keeping
the equality of the two estimators (after testing again, now presumably with
consistency, that market power cannot be discarded).

Exercise details

In what follows, we explain in detail how the above exercise is done.

Table 1 reports the result of the two basic estimators. Column (1) of the
table reports the results of applying the DP estimator to a Cobb-Douglas
specification. The estimator proceeds as follows. Under the assumption
that Hicks-neutral productivity wy follows a AR(1) with parameter p and
innovation &, it can be written that

gt = Be + Brkjr + Brljy + Bumyy
+ plgji—1 — Brkji—1 — Brlj—1 — Bumji—1] + & + €50 — pejier, (13)

where f; includes one year that is taken as a base (constant). We esti-
mate this equation by nonlinear GMM using as instruments the constant
and time dummies, the input variables kj;, kji_1,l;—1,mj—1 and the (real)
input prices wj;—1 —pjt—1 and pasji—1 —pjr—1. This is a fully standard choice of
instruments.3! As we have to estimate (in addition to the constant and time
dummies) the four parameters fx, 81, Sar and p, the instruments provide two
overidentifying restrictions.

The result is not nice: the elasticity of capital turns out to be negative,
the elasticity of labor very large, and the short-run elasticity of scale v, the
sum of B+ By, above 1.1. Economic theory tells us that it is not realistic that
when changing in the short-run the variable factors we encounter increasing
returns to scale (although, unfortunately, this is a quite usual result that is
reported without further comments).

31Even if there is market power, and output price differs from marginal cost, lagged
price can be assumed naturally uncorrelated with the next period ¢ and observational
error € of the production function. Hence is a legitimate instrument. The price of output
scales the input prices.
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Column (2) reports the results of computing the OP /LP estimator applied
to the Cobb-Douglas specification, implemented by means of a standard ACF
method. In a first stage, we regress ¢;; non parametrically on a constant, time
dummies, and using a complete polynomial of order 3 on the five variables
Kjty Lit, mje, wie — pjr and parje — pje.®? From the result of this first step we
compute the estimate ¢(kji—1, ljt—1, Mji—1, Wjt—1 — Pjt—1, Pamjt—1 — Pjt—1) that
we use in forming the second step equation

gt = Be + Brkjr + Brljs + Baumyy
+ pldji—1 — Brkji—1 — Brlji—1 — Bumji—1] + e + €t (14)

As we try to emphasize with the writing, equations (13) and (14) are very
close. They only differ, in addition to the error component —pe;;_;, in that
the nonparametric estimate ajt_l has replaced gj¢—;1.

If we have thought of the demand for materials to construct the proxy
for w, the application of the analysis of section 4 tells us that

¢jt—1 - /BKkjt—l - /BLljt—l - ﬁMmjt—1 =
qjt—1 — ﬁKkjt—l - 5Lljt—1 - BMmjt—l
v J\}}[j,—l

+ E(hl B—wajtfl; ljtfb M1, Wit—1 — Pjt—1, PMjt—1 — pjtfl)-
Hence, we interpret the method as if we add in the brackets of the DP esti-
mator the expression corresponding to the nonparametric prediction of the
share S§f | (note that 8y, and v are here irrelevant constants). Everything
is like in the second stage we were using

gt = By + Bk + Brlje + Bumi
+ plgji—1 — Brkji—1 — Brlji—1 — Bumji—1 + In Sﬁfﬁ + &t + €51,

where In :9\]1-%71 represents the empirical expectation. In the second step of
the implementation of ACF we use instruments kj;, kji—1,ljt—1,mj—1 and
gg_l, which implies an overidentifying restriction. The use of qg_l brings as
an instrument the (lagged) result of the first stage estimation (including the
lagged price).

32Notice that this implies the use of the output price dividing the input prices, which is
consistent with the input demand under perfect competition .
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The results reported in column (2) show the outcome. Revenue share
OP/LP helps to rectify two things with respect to the DP results. The
capital elasticity becomes significantly positive and the short-term elasticity
of the scale decreases.

It is apparent that DP and OP/LP give different answers to the estima-
tion of the production function. This can be attributed to two facts. The first
is that we are using an OP/LP estimator that is inconsistent under market
power. In the first stage, we use the price of the product (in a specification to
replace the unobservable productivity that corresponds to the arguments of
the demand for materials) and this use is only correct under perfect compe-
tition. Market power implies that price should be replaced by marginal cost.
The second is that the simultaneous obvious inconsistency of DP suggests
that there is a shortcoming in the specification of the production function
that should also affect the production function and the FOC used in OP /LP.

Testing (ex-ante) for market power

The first thing to answer is if we can really disregard the presence of
market power. To do this, we performed the market power test, with the
results reported in Table 2. In columns (1) and (2) we compute the test
using the two parametric 3 versions of OP/LP, that is, adding, respectively,
to specification (13) the log of the cost-share of materials and of the revenue-
share of materials. The test sharply says that this is not equivalent, rejecting
the absence of market power.

However, notice that the regressions for the implementation of the test
are already pointing to the researcher that the involved problems are not
only market power. Even the simple addition of the log of the cost-share of
materials (column (1)) provokes a change in the estimated coefficients that
can only be interpreted as revealing the presence of an unobservable strongly
correlated with the variable inputs. In fact, we can already guess that this
unobservable is LAP by noting that it is positively correlated to materials
and negatively to labor.

Columns (3) and (4) report the alternative result of applying the test with
the ACF version of OP/LP. The ACF OP/LP estimator when there is perfect
competition has already been presented in Table 1, and hence column (4) of
Table 2 simply reproduces column (2) of Table 1 for the sake of convenience.

33We call them parametric because they use the inverted FOC as it is, as opposed to
the projection that ACF does on z.
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Column (3) estimates the version of ACF OP/LP that must be consistent in
the presence of market power. A direct substitution of w into the production
function leaves the expression

I/Sth

B

what suggests to regress ¢;; non parametrically in the first stage on a con-
stant, time dummies, and using a complete polynomial of order 3 on the four
variables kji, lji, mj:, and In Syzj. In the second step of the ACF implemen-

gt = f(xje) + I f(zj:) +1n + Ejts

tation we use the instruments kji, kji—1, Ljz—1, mji—1, ngS_l and In Syrj¢—1, that
implies two overidentifying restrictions. The result of the test is again the
rejection of the absence of market power. The value of the test can only be
taken as x? with 3 degrees of freedom with probability 1%

Testing for the specification of the production function

Given these results, it seems clear that there is market power, but we also
have evidence that market power is not the only problem. The DP estimates
do not look consistent and the linear cost-share OP/LP estimator applied to
the Cobb-Douglas production function does not produce nice results either.
We hence move to change the production function specification. Using the
linear cost-share estimator, we again compare the value of the coefficients
obtained under DP and OP/LP. The results are reported in Table 3.

Now we estimate a multiproductivity production function. We use the
simplest production function that admits LAP, a translog separable in capital
and homogeneous of degree v in labor and materials (we follow Doraszelski
and Jaumandreu, 2019).3% Because it is homogeneous in labor and materials
can be written in terms of the log-ratios materials to labor, and these log-
ratios exhibit unobserved labor-productivity,

2
q]'t = 050+aKkjt+ijt_aL(mjt_ljt_Wth)_QQ(mjt_ljt_ijt> +(JJHjt+€jt.

Using the ratio of first order conditions for labor and materials, we derive
an expression to be substituted for these ratios, m; — l;; — wr;y = —<= +

«
|4 *

=57 with 575 = Spj — W, and where wy, is a guess for the mean of

34Gee for more detail Jaumandreu and Mullens (2024). The specification can be conis-
dered a particular case of Demirer (2025).
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labor-augmenting productivity.>®> Hence, the production function becomes a
function of observables in which, to control for Hicks-neutral productivity, we
can easily apply both the DP estimation procedure and the OP/LP method.
Let us see how we compute each estimator and perform the test.

DP
The DP estimator is obtained by applying nonlinear GMM to the equation

11/

gjt = Yo + B + OéKth +vmj —

+ plgje—1 — axkj—1 — vmji + Sth 1)+ &t + €t — peji-t,

where the expression is written in a similar format to the previous estimators
for the sake of comparability. To estimate this more nonlinear equation
we enlarge the instruments with the squares of the inputs, and we add the
lagged share of labor cost in variable cost (that it is an important part of the
translog): kjt, ka'ta ljtflyljztflamjtfly m?t,pwjtfl — Djt—1, PMji—1 — Pji—1,and
Sp,—1. This gives nine instruments and we hence have five overidentifying
restrictions.

Parameric OP/LP
We construct the parametric OP/LP version by adding the term In %

th
inside the brackets of (15). It is easy to check that in practice it amoun‘fgfzcto
S’Jfﬁw We use the instruments kj;, kji—1, Lji—1, Mji—1, Wjt—1 — Pji—1,
DPmjt—1 — Djt—1, 911 and ve_y, which imply four overidentifying restrictions.
We replace the inputs squared by lagged capital, and add the lagged log
of variable costs to help the instrumentation of Sy (using Syj:—1 would

introduce perfect collinearity).

adding In

Nonparametric ACF OP/LP

To estimate the nonparametric ACF version of the OP/LP estimator, we
first again regress as before g;; non parametrically on the variables kj;, [, mj,
and In Syyj,. This first step gives the estimate gg(k;jt_l, Lit—1,mji—1, 10 Shrje—1)
that we use in forming the second step equation. In the second step, we
use the instruments kj;, k%, kje—1, L1, 131, mye—1, m3,_y, ¢—1 and Spje1, so
that we have five overidentifying restrictions.

35We use Wy, = m — [. This specification only estimates directly parameter v, and the
elasticities 8y, and By are determined by the implications 8, = vSy, and By = v(1—S).
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Test

The results for the new DP and the parametric and nonparametric OP /LP
are reported in columns (1), (2) and (3) of Table 3, respectively. They
clearly show that now DP and OP /LP give basically the same estimate of the
production function (notice that the nonparametric estimation is, however,
less efficient and makes the comparison less demanding).

To statistically check that the estimates can be considered the same, we
apply specification tests. We construct a quadratic form of the elasticity
of capital and the elasticity of scale, using as weight the inverse of a robust
estimator of the asymptotic variance of the difference between the coefficients
(Bpp — Borrp), see Appendix D. The tests, reported for the parametric and
nonparametric OP/LP at the bottom of columns (2) and (3) respectively,
do not reject that the quadratic form is distributed as y? with 2 degrees
of freedom and hence tell us that the differences now can be interpreted as
coming from sampling error.

Notice that both the elasticity of capital and the short-run elasticity of
scale are sensible. The capital elasticity is greater than with the Cobb-
Douglas specification, and the scale elasticity estimate is in the range 0.70 —
0.85, which clearly improves the unrealistic constant returns to scale for the
estimation of variable inputs in column (2) of Table 1. No estimator produces
a clear better estimate than the other when correctly specified. From now
on, the researcher can focus on improving other aspects of the estimation,
such as explicitly accounting for the input market power, introducing the
effect of the adjustment cost of variable inputs, or experiment with the way
to deflate output and materials .

Testing (ex-post) for market power

We finally want to confirm that it has been relevant to use the linear
cost-share OP/LP estimator that, in effect, we cannot reject the presence
of market power, now with estimators that meet the necessary condition
for consistency. To check this, we compare the OP/LP estimator that is
consistent under market power (linear cost-share) with the estimator that
is based on assuming perfect competition (revenue-share), both in the para-
metric version and the nonparametric ACF version, by means of the market
power test. To construct a parametric OP/LP based on perfect competition,
it is enough to add to (15) ve—r+ In sj?%’ that implements revenue-share.
To construct a nonparametric estimator based on perfect competition, we go
back to the use of the price of the product in the first stage of ACF. Both
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constructed estimators are reported in columns (1) and (2) of Table 4 respec-
tively. Then we compare column (1) of Table 4 with the estimator of column
(1) of Table 2 and column (2) of Table 4 with column (3) of Table 2. The
resulting 2 with 2 degrees of freedom show a strong rejection of the null of
perfect competition.

11 Concluding Remarks

The production function is not affected by market power, but estimators
that employ an auxiliary FOC encompassing a derivative of the production
function are sensitive to the form of the FOC under market power. DP is an
estimator robust to market power because it does not use any FOCs, while
the OP/LP approach cannot be generally robust to market power because
marginal revenue, present in the FOCs, depends on the details of the game
the firms play. However, marginal cost, which equals marginal revenue and
summarizes all relevant effects of the firm’s strategy and its demand, can be
replaced by average variable cost (corrected by the elasticity of scale) plus
the uncorrelated error of the production function. Under the linearity of the
productivity process, the error does not affect the estimation. This gives an
OP/LP estimator that is feasible under market power, which we have called
the linear cost-share OP/LP.

The linear cost share OP /LP can be written adding, to the equation used
by DP, the (log) difference between the observed variable cost share and the
normalized elasticity of the input whose demand is inverted. It can also be
implemented nonparametrically as in ACF. In theory, with this addition, we
should have exactly the same estimate because if the production function is
right, the theoretical value of the expression is zero. If the estimators diverge,
either the production function specification is wrong or there is a problem in
the FOCs specification. This gives us a test for the specification.

The researcher who wants to estimate the production function under mar-
ket power may first test if market power is relevant. If market power is rel-
evant, it is convenient to start by estimating both the DP and the feasible
OP/LP estimators, and testing the equality between them. The equality
still does not ensure that both estimators are consistent, but they meet a
necessary condition for consistency. Further work of specification with the
two models may warrant consistent estimation under market power.

We have shown how this works with an example of estimation of the
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production function for a sample of US manufacturing firms. The naive
Cobb-Douglas specification of the production function produces, with the
DP estimator, a negative elasticity for capital and a too large short-run
elasticity of scale. OP/LP is better because there is flexibility, no consistency.
Recognizing LAP in addition to Hicks-neutral productivity and allowing it
into the specification induces a matching of DP and the robust to market
power linear cost-share OP /LP. The specification test is passed.

We have shown that the use of the FOCs together with the production
function can be taken advantage of for testing the presence of market power
and for improving the specification of the production function itself. Our
empirical results suggest that market power can be frequent, that is easy to
detect, and its impact in estimation nonnegligible with non robust estimators.
The results also suggest the need for more flexible production functions than
is normally assumed. The good relative behavior of OP/LP seems more
linked to its implicit flexibility than a generality that can only be reached in
its robust version.
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Appendix A: Identification

Assume the timing and information conditions of the text. The FOC to
be used by an OP/LP procedure becomes w = d — In ag)(;c) = h(d,x;6,),
where d = In %, and 6; represent the parameters of the derivative. The

model to be estimated can be written as

q= f(x;¢0,0) + g(h(d_1,x_1;01);62) + & + ¢,

where # are the parameters of the production function in addition to the
constant ¢y, and ¢; C 6. If we are in a strictly nonparametric setting, the
vectors 6,0, and 0y are infinite-dimensional. If we want to approximate the
nonparametric relationship by a flexible form, we are going to use a limited
number of parameters. If the procedure for estimation is nonlinear GMM,
identification basically depends on having the same or more valid moments
than parameters to estimate.

For example, to start with something simple, if the production function
is Cobb-Douglas with inputs k, ! and m, vector 6 has dimension 3, vector 6,
the same dimension 3 (if we use the demand for m, say), and we may decide
to be linear using for g(-) an AR(1) parameter p. This gives 4 parameters to
estimate in addition to the constant. With instruments k, k_1,[_; and m_;
(in addition to the constant), we are exactly identified.

Notice first that this form of estimation avoids any problem of “functional
dependence”. Combine the FOCs and write the unconditional demands m =
m(dy,dp, k,w) and | = I(dp, dp, k,w). Inverting these demands we have
w = hy(dy,dp, k,m) and w = hp(dy,dy, k,1). Suppose that we enlarge
the number of parameters of hy,(-) carrying out flexible (“nonparametric”)
estimation to control for w as proposed by Levinsohn and Petrin (2003) using
q = f(x)+hnr(dps,dp, k,m)+e. Ackerberg, Caves and Frazer (2015, p. 2422-
23) argue that [ — E(l|dar, dr, k,m) is not different from zero because [ is an
exact function of only (das, dp, k, m) and hence Robinson (1988) procedure of
nonparametric control breaks down. This argument does not affect the above
procedure because if one uses ¢ = f(x)+plha (dar—1,dr,—1, k-1, m_1)]+& +e,
there is no functional dependence and the nonparametric control works fine.

Of course, this works as long as we do not have perfect collinearity be-
tween the quantities of the two variable inputs. Bond and Soderbom (2005)
argued that if prices are common to all firms at a given point of time, and
inputs are perfectly flexible, all variable “inputs are perfectly collinear with
the productivity shocks observed by firms” (page 1). That is, it would not
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be identification for the elasticities of a simple Cobb-Douglas cross section,
although adjustment costs can partially alter this. However, the first order
conditions allow us to identify the elasticities of the variable inputs from the
“share equation,” as Doraszelski and Jaumandreu (2013) show in footnote
14.

Gandhi, Navarro, and Rivers (2020), looking for the limits to identifica-
tion, give a theorem that can be read setting an optimistic minimum: with a
unique perfectly flexible input, identification of all elasticities requires time
series variation of the ratio of the price of the input to the output price, dy,
say. In fact, this variation seems only needed when there are two variable
inputs and there are no constant returns to scale (see Trunschke and Judd,
2024, for a Monte Carlo).

These results can be extended for flexible specifications. Assume now that
we want to make an approximation of f(x) based on a complete polynomial
of order 3 (the most used approximation) and x has n inputs. The number of
parameters in (co, 6) is 14+2n+ @ +n?+ w. If n = 3 this gives us
20 parameters (the first is the constant). If we decide to estimate g(-) also by
means of three powers, we have to estimate a total of 23 parameters. Using
the constant and vector (k,l_1,m_1) we can form the 20 moments. Adding
the new moments that we can form using k_; and interacting with [_; and
m_1, we have 10 more. We therefore have 7 overidentifying restrictions. As
long as we do not have perfect collinearity between the quantities of two
variable inputs, identification is warranted.

Appendix B: Modeling marginal revenue

What is in M R;? Let us assume for economy of notation that competition,
both in quantities and prices, happens with product differentiation.?® Under
product differentiation firm j demand is @} = D;(P, ), where P is the
vector of N prices and J is a vector of unobserved correlated heterogeneity of
demand (observable heterogeneity z can always be easily included). Assume
that the demand system can be inverted, P; = Dj_l(Q*, 9), where Q* is the
vector of N quantities. Revenue is P;Q. If the firm competes in quantities,

LOD; !

MR; = P; + ij%*' +T(P;, Q3, conduct) and if the firm competes in prices,

36The discussion can be easily extended to the case of homogeneous product. We take
as reference the market power models in Vives (1999).
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we can write the implicit M R; = P; + (Q} + T'(P;, Q;, conduct)) (f;_%) 1 :
In both cases T'(+) represents a function.

There are two problems implied by these expressions. The first is that
they depend in an unspecified way on the market behavior of firms. In the
absence of a specific conduct, we have no function of observed variables but
only a correspondence. Different M R(+) values can be associated with exactly
the same P; or ()}, depending on the behavior in the market.

The second problem is the presence of )7 and ¢ in the expressions, and

-1
the derivatives % and g—%. The variables )7 and ¢ are non observable
(we observe the actual output ;). Maybe we can use Q; = D;(P,d) and
have M R(P, 0, conduct), but notice that, in general, P and § are vectors,
the second the vector of N unobserved variables. We can also try using
Q; = R;(Q*;) or P; = R;(P_;), where R;(-) are the corresponding best
response functions. But these reaction functions also include unobservables
and are behavior specific.
A compact way to think of the models that are possible is as follows. Start
with the output-conditional demand for the variable input X; = X (K;, W}, Py ;, @) w;),
that can be written with common input prices X; = )?(Kj, Q7, w;). Use the
(sales) market share of the firm S; divided by P; to express the production
of the firm as a function of the aggregate sales of the market 4, Q = %A. If
S; is only a function of (K, w;), the demand for the input can be expressed
as a time varying function X; = X (K, P, w;).
This is close to what the standard application of OP /LP assumes to be the
arguments of the input demand to be inverted, except for the output price.
However, note that we have reached the expression assuming that firms can-
not be unequal because of input price differences, suppressing unobserved
correlated demand heterogeneity and/or asymmetric behavior. That is, re-
moving efficiency factors other than w before starting the investigation. In
general, we want to avoid this.
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Appendix C: Conduct specification

Let us see with an example how MR; changes with conduct, in this
case represented by the type of competition and the unobservable exogenous
parameter \. Let us suppose for simplicity 2 firms (the industry can have,
for example, N/2 of each type). We remove the asterisk from the quantities
Q; for the sake of the economy of notation. We also abstract from the
heterogeneity of demand. Firms 1 and 2 have demands

Ql = Pl_nP;a
Q2 = P2_77P177

and costs C1(Q1) and Cy(Qs). Inverse demands are

Po= Qi@
P2 - Q;W Qli’yv

where n* = 772272 and v* =

where )\ is an exogenous conduct parameter. If firms compete in prices

8(7‘-1' + )\7Tj> Qz Qz Q Q
I S A VA— P vt C A J J1
o, Qi—nbp +nCp +Ah 5 vjp]
= Rl - )+ (B - ) =0,
and if they compete in quantities
(9(7@- + )\71']') R / P;
AT Py Qi — €= My Qs =
Qi Qi Qi
Using symmetry, it is easy to see that M R; = P;(1— ’7(1+’\%)) = C; under
price competition and MR; = P;( =(1+ A7) = C under quantity
competition. If A = 1, both marginal revenues ComClde in P , the unique
total collusive solution. If A\ = 0, Cournot with P;(1 — e ( )2)) is less

competitive than Bertrand, giving P;(1 — —) fo< A<, the quantity
competition is less competitive than the price competition.
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Appendix D: Specification tests

A Hausman (1978) specification test, or a Durbin-Wu-Hausman test, can
be seen as a test of the equality between the parameter estimates under two
methods of estimation that are consistent under the null. The alternative
is in our case that one method is inconsistent (market power test) or that
either one method or the two are inconsistent (general specification test).
Following Wooldridge (2010), we set a quadratic form of the differences in the
parameters (Ba—f5) using the inverse of a robust estimate of Avar[v/N(B4—
Be)l=Va+ Vs —(C+C),

Let i,l = A, B. To estimate V;, we use

= (é;ANi@i)_lééANiﬁiANi@i(é\;ANiai)_la
withG) = N1y 22, “”

To estimate C , We use

C AN = *IZ Z!. Zw,andQ = Z ﬂ,]/\’ ij-

= (@;ANi@i)ilééANiﬁilANl@l(agANl@l)il7

where Qil = N1 Zj EZ]E;JZZJ Therefore, Avar (ﬁA — BB) = (XA/A + \A/B —
(C +C")/N.

Under the null, we have
(Ba = B) Avar[V'N(Ba — )] (Ba = Bs) ~ X (p),
where p degrees of freedom are the number of parameters tested.

Appendix E: Additional regressions

Table AD reports a few complementary estimates. Column (1) reports the
result of carrying out an OLS estimation of the Cobb-Douglas specification
in the first differences. Although the capital coefficient is small, it is positive
and statistically significant.

Column (2) reports the results of the estimation of a nonlinear nonpara-
metric ACF OP/LP. Recall that this is a theoretically inconsistent estimator
under market power. The coefficients modeling the nonlinear productivity
process are not separately significant, and the coefficient on capital and the
short-run scale elasticity (1.022) are similar to the values obtained with the
CD specification.
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Table 1: Standard DP and OP/LP estimation

US manufacturing production function estimation,
firm-level sample, Compustat, 1960-2018.

Cobb-Douglas with neutral producticity

Parameter Dp¢ (ACF) OP/LP®
(1) (2)
p 1.022 1.018
(0.002) (0.004)
B -0.023 0.061
(0.010) (0.020)
Br 0.486 0.486
(0.020) (0.050)
B 0.622 0.532
(0.014) (0.024)
Overidentifying restrictions 2 1
Function value 8.043 0.701
No. of firms 5621 5621
No. of observations 65006 65006

@ Instruments are (in addition of constant and time dummies): k,k_1,l_1,m_1,

W-1—P-1,PM,—1 — P-1-

b First stage: Constant, time dummies, and nonparametric ¢(k, [, m,w —
p,pm — p). Second stage instruments are (in addition of constant and time
dummies): k7k,1,l,17m,1,?¢;71.



Table 2: (Ex-ante) testing for market power

US manufacturing production function estimation,
firm-level sample, Compustat, 1960-2018.

Cobb-Douglas with neutral producticity

Parametric OP/LP ACF OP/LP
Parameter Cost-share® Revenue-share® Cost-share® Revenue-share?
Q) @ ) @
P 1.054 0.964 0.977 1.018
(0.008) (0.002) (0.030) (0.056)
Bx 0.180 -0.679 0.097 0.061
(0.025) (0.137) (0.101) (0.020)
Br -1.176 -0.424 0.521 0.486
(0.091) (0.334) (0.283) (0.050)
B 2.057 4.337 0.323 0.532
(0.079) (0.173) (0.075) (0.024)
Market power test
X2 (df) 363.581(3) 11.387(3)
p — value 0.000 0.010
Overidentifying restrictions 3 3 2 1
Function value 223.199 776.678 12.392 0.701
No. of firms 5621 5621 5621 5621
No. of observations 65006 65006 65006 65006

@ Instruments are (in addition of constant and time dummies): k, k_1,l_1,m_1,

W_1 —P_1,PM,—1 — P—1,1050,—1 .

b Instruments are (in addition of constant and time dummies): k,k_1,1_1,m_1,

W_1 —P_1,PM,—1 —P-1,VC_1 —T_1 +1InSn, 1.

¢ First stage: Constant, time dummies, and nonparametric ¢(k, 1, m,In Sys).

Second stage instruments are (in addition of constant and time dummies): k, k_1,l_1,m_1,¢_1,1In Spr 1.
4 First stage: Constant, time dummies, and nonparametric ¢(k, 1, m,w — p, pyr — p).

Second stage instruments are (in addition of constant and time dummies): &, k_1,1_1,m_1,¢_;.



Table 3: Testing the specification

US manufacturing production function estimation,
firm-level sample, Compustat, 1960-2018.

Translog multiproductivity

Parameter DP®  Cost-share OP/LP® Cost-share ACF OP/LP¢
(1) 2) (3)
p 1.012 1.012 0.966
(0.002) (0.004) (0.040)
Br 0.166 0157 0.103
(0.041) (0.023) (0.112)
Br + Bum 0.700 0.681 0.845
(0.071) (0.062) (0.319)
o 0.089 0.038 0.260
(0.016) (0.006) (0.193)
o 0.578 0.753 0.367
Specification test
2 (df) 2.031(2) 0.558(2)
p — value 0.362 0.757
Overidentifying restrictions 5 4 5
Function value 44.663 113.647 5.783
No. of firms 5621 5621 5621
No. of observations 65006 65006 65006

@ Instruments are (in addition of constant and time dummies): k,l_1,m_1,k%12,,m?,
W_1 — P—1,PM,~1 — P—1,5L,—1-

b Instruments are (in addition of constant and time dummies): k,k_1,1_1,m_1,

W-1 —P-1,PM,—1 — P—-1, SL,—17 vC_1.

¢ First stage: Constant, time dummies, and nonparametric ¢(k, 1, m,In Sys).

Second stage instruments are (in addition of constant and time dummies): k,k_1,1_1,m_1,

2 72 2 7
k 7l—1am—1a¢—1aSL,—1-



Table 4: (Ex-post) testing for market power

US manufacturing production function estimation,
firm-level sample, Compustat, 1960-2018.

Translog multiproductivity

Parametric OP/LP  ACF OP/LP

Parameter Revenue-share® Revenue-share?
0 @
p 0.969 0.981
(0.002) (0.001)
Bk -1.114 -0.876
(0.107) (0.090)
Br, + B 4.634 3.626
(0.293) (0.241)
« 0.862 10.349
(0.093) (7.194)
o 0.486 0.061
Specification test
2 (df) 234.659(2) 57.851(2)
p — value 0.000 0.000
Overidentifying restrictions 4 6
Function value 1892.609 963.820
No. of firms 5621 5621
No. of observations 65006 65006

@ Instruments are (in addition of constant and time dummies): k,k_1,l_1,m_q,
W1 —Pp-1,PM,~1 — P-1,5L,-1,7—1 — VC_1.

¢ First stage: Constant, time dummies, and nonparametric

d(k,l,m,w— p,pyp — p). Second stage instruments are

(in addition of constant and time dummies): k,k_1,1_1,m_1,k%,12,,m?,

¢_1,S0,-1,7—1 —vC_1.



Table AD: Complementary estimates

US manufacturing production function estimation,
firm-level sample, Compustat, 1960-2018.

Cobb-Douglas Translog multiproductivity

OLS in Nonlinear
Parameter differences nonparametric OP/LP*®
M )
p 0.779
(0.238)
Do 0.070
(0.075)
P -0.006
(0.007)
Br 0.027 0.057
(0.009) (0.029)
B 0.339 0.506
(0.003) (0.079)
B 0.555 0.516
(0.002) (0.036)
Overidentifying restrictions 1
Function value 0.629
No. of firms 5621 5621
No. of observations 65006 65006

@ First stage: Constant, time dummies, and nonparametric ¢(k, I, m,w — p, pypr — p).
Second stage instruments are (in addition of constant and time dummies):

~ ~2  ~3
ka k—lv l—lvm—la ¢—1a ¢—17 (b—l'



