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Abstract

The production function is an input/output technical relationship,

not affected by market power. However, recent estimators make aux-

iliary use of optimal choices of the firm that depend on market power.

In this context, marginal cost encompasses all relevant information on

the firm’s strategic actions and heterogeneity of demand. For being

robust, it is enough to specify the estimator in terms of the average

variable cost and the ratio AVC/MC or short-run elasticity of scale.

This also reveals that the estimators known as "dynamic panel" and

"OP/LP" are closely related. We derive two specification tests.
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1 Introduction

What is the relationship between production function estimation and market

power? The production function is a technical relationship, that describes

how technology relates inputs and output. So there is no direct relationship.

But many recent proposals for the estimation of production functions include

the auxiliary use of equations based on the optimization of some objective

that involves the production function. Mainly the FOCs corresponding to

profit maximization. And these FOCs are different when the firm has some

market power.

Many production function estimators have been developed for situations

of perfect competition or almost (Levinsohn and Petrin, 2003; Gandhi, Navarro

and Rivers, 2020, or the way to implement these estimators proposed by

Ackerberg, Caves and Frazer, 2015; see later on the case of the starting work

by Olley and Pakes, 1996). The urgency to have readily available methods to

estimate production functions has often implied the neglect of the conditions

for applicability of these estimators under imperfect competition.

One particular case is product differentiation. A market with product

differentiation is a market with some market power that emerges from the

ability and incentives of the firms to produce products with different char-

acteristics. This situation generates by itself an uncomfortable context for

the user of the production function. The production function, as a concept

of economic theory, was developed as describing a situation in which the

characteristics of the unique product are given and the available techniques

define the set of production possibilities. Products and possibilities are now

distinct across firms.

How to introduce the heterogeneity of characteristics and possibilities that

emerge with differentiated products? Suppose that the empirical researcher

contents herself with the allowance for heterogeneity in the production func-

tion that gives the inclusion of an additive random deviation in the equation

to be estimated. The market power still implies that some estimators cannot

be applied ignoring the consequences in the FOCs.

To study what to do when there is market power it is convenient to start

with the usual practices. In the current literature there are two approaches

to the estimation of the production function. They diverge in how they

solve the problem of controlling for unobservable productivity. How to treat

unobserved productivity has been the dominant worry of researchers since

Marschak and Andrews (1944) pointed at the statistical problems created by
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the endogeneity of the inputs.

We will call the two approaches "dynamic panel," henceforth DP, devel-

oped in Arellano and Bond (1991) and Blundell and Bond (2000), and the

OP/LP approach, called in this way because it was originated in the articles

of Olley and Pakes (1996) and Levinsohn and Petrin (2003). In the first ap-

proach, unobservable productivity is differentiated out after assuming that

follows a first order linear Markovian or (1) process. The second approach

also assumes that the unobservable follows a Markovian first order process,

but this process needs not to be restricted to be linear. The unobservable is

replaced by the inverse of a function representing some optimal observable

choice that contains it. A big advantage of DP is hence that doesn’t need to

use any auxiliary relationship implying behavior. OP/LP frees the linearity

form of the Markov process, at the price of assuming that some behavioral

equation holds.

However, a well known empirical paradox is that DP often produces dis-

appointing results while OP/LP, with more conditions to be met, often pro-

duces more reasonable estimates (e.g. in the elasticity of capital). In this

paper we explore the theoretical difference between the two estimators and

derive what can be learned from their divergence.

The conclusion is that both the DP and OP/LP estimators are consistent

when there is perfect competition, but OP/LP is not robust when there is

market power. The consistency of a non-robust estimator depends on the

detailed assumptions about how the game that firms play in the market

is, and their market share consequences. A lot of symmetry and unwanted

restrictions should be set beforehand to ensure consistency.

We then derive an OP/LP estimator that is consistent under any form of

market power. To be robust it is enough to replace MR/MC by AVC and the

short-run elasticity to scale, and specify the process of productivity as linear.

Under this specification, it happens that both DP and OP/LP are consistent

and should deliver estimates that only differ due to sampling error.

This suggests an specification test: the coefficients of both models should

be equal under the null of consistency of both estimators, while they will

differ under the alternative of either both estimators, or only OP/LP, being

inconsistent. The first variant of the alternative can happen because the

production function is wrongly specified, the second because what is wrong

is the specification of the FOC on which OP/LP bases the demand for an

input.

The researcher may want to confirm the presence of market power, and
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this can be done in the same context carrying out an additional specifica-

tion test. OP/LP can be specified using the price of the firms or using the

"proxied" marginal cost. Under the null of no market power both estima-

tors should only differ due to sampling error, under the alternative of market

power only the OP/LP based on proxying MC is consistent.

To illustrate the relevance of the problem, the realism of the circum-

stances, and the working of the procedures that we employ, we estimate the

production function for the sample of US manufacturing Compustat firms

used in Jaumandreu and Mullens (2024). It is a sample with more that 5,000

firms and 60,000 observations that are likely to exhibit the more diverse de-

grees of market power. The estimation by DP and OP/LP diverges when

naively applied to a Cobb-Douglas specification, and passes the specification

test when applied to its enlargement into a translog with labor-augmenting

productivity that shows elasticity of substitution less than one and falling

labor shares. Applied to this new specification, neither DP nor the feasible

OP/LP are better. We think that this constitutes a reasonable place where

to start the exploration for refinements.

Current approaches have treated intensively how to deal with Hicks-

neutral productivity, that affects all inputs in the same way. However, em-

pirical research has recently stressed that productivity is likely to be biased.

And there have been contributions on how to apply DP and OP/LP when

productivity is non-neutral and affects in particular an specific input. For

example, Doraszelski and Jaumandreu (2018, 2019), show how to replace

biased productivity from a ratio of FOCs. The dominant interest in this

field is labor-augmenting productivity, presumably very related to the dom-

inant form of current technological progress. In what follows, we systemati-

cally take into account the possibility of labor-augmenting productivity. The

previous paragraph already shows that, in practice, it solves a problem of

specification of the production function.

Input market power can be as relevant as product market power, and it

affects the first order conditions as well as product market power. We also

show summarily but systematically how to treat input market power when

it is present, and we discuss the way to detect this mispecification if it is

binding.

The rest of the paper is organized as follows. Section 2 comments on the

relation of the paper to the literature. Sections 3 and 4 explain the consis-

tency of DP and OP/LP under perfect competition and how the specification

can be tested using these two models. Section 5 studies the consequences of
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facing market power for an OP/LP type of estimator. Section 6 develops

the way to replace MC so that the estimator is robust to market power.

Section 7 develops the example with the sample of Compustat firms, and

section 8 concludes. Four appendices deal with identification, conduct spec-

ification, statistical specification tests, and additional regressions and test,

respectively.

2 Relation to the literature

The literature on the new estimators for the production function, sometimes

called structural, has always been very conscious of the need to deal with

market power. Olley and Pakes (1996) consider that the firms in the mar-

ket are playing a dynamic oligopoly game and justify the simplification of

the vector of state variables by means of symmetry that includes common

input prices. Griliches and Mairesse (1996), writing contemporaneously on

the "interesting new approach" of OP, worry if this treatment of the state

variables may be ignoring some relevant dimensions as the expectations on

the cost of investment. Levinsohn and Petrin (2003) define their setting as a

competitive environment, where firms take as given output and input prices,

and warn that the model can be generalized to imperfect competition but

then it will depend on the specifics of competition.

Ackerberg, Caves and Frazer (2015), discussing when revenues can re-

place physical quantities (e.g. common output prices), introduces an explicit

discussion about the difficulties to invert the demand for an input when the

demand for output and/or the supply for an input are downward and upward

curves respectively (i.e. there is market power). They warn that, in this sit-

uation, even assuming identical curves may be not enough. Gandhi, Navarro

and Rivers (2020) make clear that their model for non parametric estima-

tion of the production function is developed assuming perfect competition

in the output and intermediate markets. However, they show in Appendix

O6 how the model can be applied specifying a parametric CES demand for

output, together with the assumption of monopolistic competition, a model

that many researchers prefer.

More recently, a few discussions have dealt in one way or another with

the ability of the OP/LP framework to address the situations with market

power. Bond, Hashemi, Kaplan and Traina (2021) stress how the absence of

reliable information on firm-level output prices makes difficult the estimation
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of structural elasticities and hence market power, and stress the robustness

of the DP approach. Doraszelski and Jaumandreu (2021) develops the bi-

ases that affect an OP/LP procedure given the likely presence of correlated

unobservable demand heterogeneity. Ackerberg and De Loecker (2024) is a

discussion on how to expand the OP/LP estimators to include "sufficient

statistics" to account for imperfect competition under behavioral and sym-

metry assumptions.

This paper makes, in the first place, a contribution to these discussions.

It deals about how to construct estimators that are robust to market power,

in the sense that they do not depend on the specification of the details of

the game the firms play. This possibility builds on proxying MC as the

variable that accounts for the result of the firm-level strategic interactions and

heterogeneity of demand, and makes the need for other variables redundant.

We show that OP/LP is nonrobust to market power, but also that there is

a feasible (linear) OP/LP that can avoid this difficulty. This estimator uses

more information than DP, and the divergence with DP can be used as a

test of specification. Also it is possible to use the different versions of the

feasible OP/LP as a test for the presence for market power. The result of

our discussion is then rather a way to conduct the specification more than a

particular estimator that fits all sizes and shapes.

When the estimation of the production function goes wrong, the re-

searcher can have a feeling on what the problem is by looking to the re-

sults of the optimal choices of the firms. For example, the input cost shares.

However, testing the production function specification cannot be done if the

estimation is not dealing properly with market power, the same that trying

to assess market power with a production function that is wrongly speci-

fied it is likely to be uninformative. There is no simple way to separate the

problems.

A long list of papers have recently stressed that the presence of Hicks neu-

tral productivity should be complemented with the presence of biased produc-

tivity, particularly in the form of labor-augmenting productivity. See mainly

Doraszelski and Jaumandreu (2018), Raval (2019, 2023), Zhang (2019), Demirer

(2022), Jaumandreu andMullens (2024), Kusaka, Okazaki, Onishi andWakamori

(2024).1 We add to this literature by uncovering that the mispecification re-

1A recent literature is exploring the nonparametric estimation of a unique productivity

term, freely interacted with the inputs. See Ackerberg, Hahn and Pan (2023) and Pan

(2024).
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vealed by our estimators and procedure to specify, when applied to sample

of Compustat firms, is redressed when we consider an specification that al-

lows shares in cost and elasticities to change from firm to firm and over

time. We could not have formally assessed that this was the specification

problem without estimators robust to market power, and we had never got

the coincidence of the estimators without the change in the specification of

productivity in the production function. Our addition is a pioneering mod-

eling of firm-level different dimensions of productivity in US manufacturing,

that confirms the biased technological change that Raval (2019) found with

Census of Manufacturing data on plants. It provides a rich chacterization on

the firm dynamics of labor-augmenting productivity (see Jaumandreu and

Mullens, 2024), with a flexible production function and subject to the rigor

of the specification tests.

A recent literature has stressed that market power in the input markets

can be as relevant as market power in the product market. See, for example,

the papers by Dobbelaere and Mairesse (2013, 2018), Yeh, Macaluso, Her-

shbein (2022), Azzam, Jaumandreu and Lopez (2022) and Rubens (2023).

The estimator OP/LP is not robust to the presence of input market power.

Given the initial character of this paper, we only focus marginally on this

topic. However, we show how the tools that we have developed can be ap-

plied to the detection of input market power affecting the estimation of the

production function and, summarily, how they can be used for consistent

estimation under this presence.

3 DP and OP/LP under perfect competition

Let us first clarify the relationships between the two estimators under perfect

competition. The assumption of perfect competition implies that the price

of the output is common for all firms and equals marginal cost. Firms differ

in size because differ in their marginal cost curves, though. The usual time

and information assumptions are as follows. Firms choose the variable inputs

 and  at , when unobserved productivity becomes their knowledge, but

capital needs time to build and is given as chosen one period before.

Notice that everything that we are going to say is compatible with the

presence of labor-augmenting productivity. To see this it is enough to suppose

that the labor input is ∗ =  +  and that labor-augmenting productivity

 has been controlled for observables.
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Assume a population of firms (we drop firm and time subscripts). Write

the production function in logs as

 = () +  +  (1)

where () = ln ()  = { } is the logs of capital, labor and mate-
rials,  is Hicks-neutral productivity, and  is an error of observation, not

autocorrelated and uncorrelated with all variables known at . Sometimes

we will use the notation ∗ = () +  for the output without error.

A first order Markov process establishes

 = (−1) +  (2)

DP assumes that productivity follows the linear Markov process  = −1+
The implication is that we can "pseudo-differentiate" equation (1) (subtract

the lagged equation multiplied by ) and unobservable productivity drops

 = −1 + ()− (−1) +  + − −1 (3)

From the point of view of estimation, the inputs of  vector that are set

at  when the shock of the Markov process is known, are correlated with 

and should be instrumented. These are the variable inputs  and  If the

production function (·) only requires the estimation of three parameters
(additional to the constant), we need four instruments because we have to

estimate the extra parameter  (that introduces nonlinearity in the model)

The model is exactly identified using , −1 −1 and −1 as instruments
It can be assumed that lagged input and output prices, −1 −1 and

−1 are non-correlated with  Then, using them as instruments gets overi-

dentifying restrictions. Cost and firm-demand shifters can be used as addi-

tional instruments.

OP/LP is based on the first order conditions for the variable inputs.

These have the form.


 ()


exp() = 

where  is the price of the output,  =  and =  Unobserved

productivity  can be obtained by inverting one of these FOC or using the

combination of both. A combination of the first order conditions drops one

variable input including both input prices in addition to the price of the

output (this is the unconditional input demand). With perfect competition
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we expect  to be common across firms, so the only variation of  is over

time and can be subsumed in a system of time dummies. But the price (s)

of the input (s) is (are) not necessarily the same and they must be explicitly

included except when equality across firms is assumed.

The model can be extended to the case of input market power by assuming

that the relevant input price is  ∗
 =(1 + ) where the markdown  is

either an additional parameter to estimate or is controlled for observables.2

Let us use without loss of generality only one FOC (sometimes this has

been called to use the demand for a variable input conditional on the other)3

 =  − − ln  ()




The assumption that  follows a general first order Markov process allows us

to write the production function replacing −1 by its expression according
to the inverse of the conditional input demand

 = () + (−1 − −1 − ln  (−1)
−1

) +  +  (4)

The unknown function (·) is typically specified by means of polynomials
and the model easily estimated in one step by nonlinear GMM. Note that the

derivatives of  () will include at most the same parameters as  (), so ()

and
 (−1)
−1

are linked by equality restrictions, even if we are dealing with a

flexible specification.4 See Appendix A for a discussion on identification. We

face exactly the same problem of endogeneity as before: the variable inputs 

and are correlated with  If we have to estimate four parameters, variables

 −1 −1 and −1 are enough for identification. As (·) is usually made
of polynomials, it seems natural to enlarge the instrument set with powers

of the instruments. Prices and shifters can be used as before as additional

instruments.

2See, for example, the treatment of  as parameter in Azzam, Jaumandreu and Lopez

(2022).
3Later we will use the demand for the input conditional on output, that can be obtained

using the ratio of FOCs to replace one variable input in the production function by the

relationship with the other.
4Not recognizing this may produce unproductive discussions on identification. It is

customary to apply nonparametric estimation with a polynomial specification.
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4 DP and OP/LP in a common framework

Both DP and OP/LP estimators are presented differently for pedagogical

reasons (pseudodifferentiation, replacement by the inverse of an input de-

mand), but they can be seen under a more common perspective. It happens

that both estimators assume a first order Markov process for productivity,

and then propose to replace past productivity by an expression in terms of

observables. We can say that both estimators start by assuming that the

production function can be written as

 = () + (−1) +  +  (5)

because of the process of productivity. Then DP proposes to replace −1 by
−1 − (−1) − −1 and OP/LP by −1 − −1 − ln  (−1)

−1
 DP uses the

lagged production function, OP/LP the lagged FOC.

However, call  to the production elasticity of input  and  its share

in variable costs We use  for notational simplicity, but it should be clear

that in general it is a function (·) of the inputs and labor-augmenting
productivity and so is the short-run elasticity of scale (·) = (·) + (·).5
It is easy to see that the OP/LP expression can be equivalently written as

−1 − (−1) + ln
−1−1
−1

− −16 Both estimators are hence nested in the
expression

 = () + (−1 − (−1) + ln
−1−1
−1

− −1) +  +  (6)

From this equation, DP can be obtained by assuming a linear (·) of pa-
rameter  and dropping the term that includes lagged   The term in −1
doesn’t create any problem because −1 it is a zero mean error that goes to
the composite error of the equation.

Notice that general OP/LP can circumvent the problem of the unobserv-

able −1 inside (·) by using an expression of the FOC that doesn’t contain
it. But, if (·) is linear, it can equivalently be applied using (6) The reason
by which the expression inside (·) in equation (6) can be written without

5However we know that, under homotheticity, (·) becomes a function of ∗ alone.
6Since  =  and  = − ln , −1 − −1 − ln  (−1)

−1
=

ln −1+−1+ln−1−−1−∗−1+−1−(−1)+(−1)−ln−1−ln  (−1)
−1

−−1 =
ln−1 + ln−1 + −1 − (−1)− ln−1 − −1
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error, as in equation (4), is because  =  Market power will definitely

break this possibility. You may have noticed that (6) is based on replacing

 by  and hence the error  is the price that we should pay (see section

5).

When applied with data, the OP/LP estimator is employing more infor-

mation than the observables used by DP. To be completely precise, it adds

the information conveyed in the expression ln 


lagged If, for example,

only  depends on data, it simply adds the observed labor share in variable

cost minus the (estimation-irrelevant) constant specification that has been

given to .

Notice that in this context there are at least three practical ways to

carry out OP/LP. The first is applying equation (4) giving the correspond-

ing parametric form to the derivative ln
 (−1)
−1

 The second is adopting the

parametric specification corresponding to equation (6). The third is the pop-

ular form proposed by ACF. Assume that (ln 

|) 6= 0 The first stage

of ACF, trying to control for  computes

b = (() +  + ln



|) = (|) +(ln




|)

This means that, in the second stage, what we carry inside the (·) is

b−1 − (−1) = −1 − (−1)− [−1 −(−1|−1)] +(ln
−1−1
−1

|−1)

= −1 − (−1) +(ln
−1−1
−1

|−1)− −1

Notice that we have lagged  in the expression. Everything is like instead of

specifying the parametric form in the term of the share of (6) we are using

the projection of the share and elasticities on −1 Later, we will call this the
nonparametric (ACF) OP/LP estimator.

Equation (6) is full of implications. Lets suppose that () is well speci-

fied, noticing that this implies that  is also the true elasticity. First, if (·)
is linear, the DP and OP/LP estimators should produce in theory exactly the

same estimates. The reason is that they are numerically equivalent except

for the inclusion of a term that, under the correctness of the specification,

should be equal to zero. That is ln
−1

−1−1
= 0

Second, if (·) is nonlinear, the different estimate produced by OP/LP
comes exclusively from adding nonlinear terms to approximate (·) If ()
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is well specified, DP can be seen as a first order approximation to the pro-

ductivity process dealt with by OP/LP. As productivity is in practice quite

persistent, it would be surprising that this creates a dramatic divergence.

This implies that any major divergence between the DP and OP/LP esti-

mators is likely to come from the difference between the specification of the

normalized elasticity


and the observed share in cost  

In summary, under competition both DP and OP/LP estimators are con-

sistent and, if the production function specification is right, they should differ

only in the effect of thr OP/LP nonlinear modeling of the productivity pro-

cess. However, if the OP/LP estimator is specified using a linear Markov

process, they should only diverge due to sampling error. This is regardless

of how the OP/LP estimator is computed: parametrically, writing in one or

another way the used FOC or FOCs, or nonparametrically, with an ACF first

stage that regresses output on all inputs and variables relevant to explain the

demand for the input used to substitute for unobserved productivity.

However, OP/LP uses more information than DP. If DP and the linear

OP/LP diverge, either the production function is wrongly specified or the

first order condition is not met. A leading case for the first situation is the

presence of labor-augmenting productivity (or other forms of biased technical

change), but there are reasons by which the share can be varying differently

that specified that do not directly affect the production function (adjustment

cost in the inputs, input market power...). In the first case both estimators

will be inconsistent, in the second only the OP/LP estimator is inconsistent.

All this gives a nice way to proceed in the analysis of the specification.

Firts, a test of specification comparing the results of estimating (4) and (6)

under linear Markov is a test of the relevance of market power, since the

estimation should only differ due to sampling error under the null of perfect

competition and significantly differ when  6= Notice that, in general, a

nice way to perform the test will be to add an estimate of − ln inside the
parenthesis of (6), where  is the price-marginal cost ratio 


7

Second, a test of specification of (6) under linear Markov including or not

the term in ln
−1−1
−1

(or its projection) is a test of the null of consistency

of DP and OP/LP against the inconsistecy of either both or OP/LP.

All the above assumes perfect competition in the product market, it is

time to switch to the presence of market power.

7Note that we can base an approximation on 


= 
 

= 
 

exp(−)
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5 Estimating under market power

When there is market power, under the assumption of short-run profit max-

imization, the relevant variable in the FOCs is  instead of 


 ()


exp() = 

The problem is that  is, in general, unobservable. At first sight it seems

like we have no more alternative than choosing DP estimation, that doesn’t

need this relationship. Let us take a closer look at what the new variable

implies.

Let us now use firm subindices for clarity. There are  firms in a mar-

ket. Under competition, LP proposed to use the unconditional demand for

a variable input that we can get from solving the system of FOCs of the

firm , that is  = (   ) Assuming a common output price

 and with common input prices, it can be written as the (time varying)

 = ( ) relationship If the firms have market power the solution of

the system of first order conditions is going to produce the condition of equi-

librium  = ( ) possibly also including varying input prices.

What is in? Let us assume for economy of notation that competition,

both in quantities and prices, happens with product differentiation.8 Under

product differentiation firm  demand is ∗ = ( ), where  is the

vector of  prices and  is a vector of unobserved correlated heterogeneity of

demand (observable heterogeneity  can always be easily included). Assume

that the demand system can be inverted,  = −1
 (

∗ ) where ∗ is the
vector of quantities Revenue is 

∗
  If the firm competes in quantities,

 = +∗
−1
∗

+ ( 
∗
  ) and, if the firm competes in prices,

we can write the implicit  =  + (
∗
 +  ( 

∗
  ))

³




´−1


In both cases  (·) represents a function.
There are two problems implied by these expressions. The first is that

they depend in an unspecified way on the market behavior of firms. In

the absence of an specific market conduct, we do not have a function of

observed variables but only a correspondence. Different (·) values can
be associated to exactly the same  or 

∗
 , depending on behavior in the

market. See Appendix B for a simple example.

8The discussion can be easily extended to the case of homogeneous product. We take

as reference the models in Vives (1999).
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The second problem is the presence of the expressions on ∗   and the

derivatives
−1
∗

and



. ∗ and  are non observable. Maybe we can use

∗ = ( ) and have ( , ) but notice that in general 

and  are vectors, the second the vector of  unobserved variables. We

can try also using ∗ = (
∗
−) or  = (−) where (·) are the

corresponding best response functions. But these reaction functions also

include unobservables and are behavior specific.

Of course simplifying the cases of behavior, and with specific assump-

tions on symmetry of firms, it is possible to obtain expressions in terms of

observables. For example, it is very popular to assume that competition is

monopolistic and the elasticity of demand constant and equal for all firms.

Under these assumptions = (1− 1

) where  represents the (absolute

value) of the elasticity of demand. A discussion of possible behavior restric-

tions and assumptions of symmetry across oligopoly models is carried out in

Ackerberg and De Loecker (2024). They are able to reduce significantly the

information requirements but, for example, they confirm that there cannot

be unobserved characteristics if products are differentiated, as Doraszelski

and Jaumandreu (2021) pointed out in relation to the correlated unobserved

demand heterogeneity.

A compact way to think of the possible models is the following. Start with

the output-conditional demand for the variable input = e(   ∗  )

that with common input prices can be written  = e( 
∗
  ) Use the

(sales) market share of the firm  divided by  to express the production

of the firm as a function of the market aggregate sales, ∗ =


 If  is

only a function of ( ), the demand for the input can be expressed in the

market as a time varying function  = (  ) Notice that this im-

plies to assume that firms cannot be unequal because input price differences,

unobserved correlated demand heterogeneity, and/or asymmetric behavior.

It is like discarding other factors of efficiency other than  before starting

the investigation. In general we want to avoid this.

The central question is whether it is possible to estimate the production

function without taking a stance on how is competition. Estimate without

having to assume things like whether competition is in prices or quantities,

firms either take the rivals actions as given or collude, some firms have a

particular type of advantages or not, collusion is either with all or with part

of the rivals,...and so on. The answer is yes, it is possible.
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To see why notice that, in equilibrium, a short-run profit maximizing firm

equates marginal revenue and marginal cost, so

(  ) =(  
∗
  )

On the left hand side, the expression depends on the particular specification

of conduct. The right hand side, on the contrary, picks up a specific single

value under quite general conditions.9 It singles out a unique marginal cost

(·) for each set of values of the arguments (we have specified possibly
varying input prices for the sake of generality). We can even accommodate

labor-augmenting productivity by considering the price  ∗ =  exp()

with the unobservable replaced. We can also accommodate input market

power. If we have we have what has been called a "sufficient statistic," a

variable that contains all the relevant information of the conduct and demand

conditions.

6 Replacing MC by AVC

The FOCs for cost minimization of variable cost can be written10


 ()


exp() = 

Adding them up, each one multiplied by the amount of the input, we get an

expression that links marginal cost and average variable cost


P





exp() =

P


+ ln  = − ∗

The link is the short-run elasticity of scale  =  ln


+  ln

, that was al-

ready present in the specification as a dimension of the production function.

This means that one can treat marginal cost as known up to the output at

which average variable cost has to be measured (∗) minus the (log of) the
specification of .

9These conditions are basically convexity assumptions on the technology of the firm.
10The expression can also be interpreted as the FOC for profit maximization with 

replaced by 
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To estimate by an OP/LP procedure we can use the inversion

 =  −− ln  ()


=  − +  + ln  − ln  ()


− 

Not surprisingly, we can rewrite this expression as −1−(−1)+ln −1−1
−1

−
−1 exactly as in (6). In perfect competition it was the price that measured
marginal cost, now under market power we have directly specified marginal

cost.

The conclusion is that, if we want to estimate using the OP/LP method,

we need to replace marginal cost by the observables variable cost and output,

and specify the short-run elasticity of scale. This collapses to an expression

that simply adds the term ln
−1−1
−1

to the DP specification. The expression

ln
−1−1
−1

can be more or less complex depending on the specification of the

production function and hence the elasticities  and . We may like an

ACF implementation of the estimator, that avoids to write the expression by

using its nonparametric projection.

The problem is that now we cannot get rid of the unobservable  inside the

function (·) This means that consistent estimation is in general impossible
or very involved. However, there is a simple solution readily available: adopt

a linear (·), with what we have an OP/LP that is "feasible" under market
power.

However, it is worthy to estimate OP/LP with this specification under

market power when we can use DP? The answer is clearly yes. The estima-

tor can significantly diverge from the DP estimator, and in general to give

more plausible results. The reason is that OP/LP encompasses in the estima-

tion the divergence between the data and the specification of the production

function picked up through the FOC. When this mismatch is important, the

difference between the estimators DP and OP/LP is detecting mispecifica-

tion. Hence, the estimation of OP/LP is a tool for specification.

If the researcher obtains DP and feasible OP/LP estimates that basically

coincide, she can proceed with the confidence that the production function

and the first order conditions are met. If the researcher gets a significant

divergence between the two estimators, it can be either that the specification

of the production function is wrong or that the FOCs are not met. As men-

tioned before, a leading case of the first problem is the presence of biased

technological change (that changes the production function itself and deter-

mines a variation of the used FOC). Frequent cases of the second problem
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are the presence of adjustment costs, and the presence of market power in

some input market or markets. These latest mispecifications affect only the

FOC.

A reasonable agreement between the feasible OP/LP and DP is a neces-

sary condition for the consistency of both estimators. The researcher should

be able to get coincidence of the estimators, to test it, and to interpret how it

has been reached. In particular looking at how the cost share has been mod-

elled. Even then, still some work may be needed to improve the estimation,

because the estimators are equal but not necessarily consistent.11

In summary, DP is robust to market power but OP/LP is not. A robust

estimator is an estimator that is consistent whatever are the details of the

game that firms play in the market. For OP/LP being consistent, some par-

ticular games and strong symmetry conditions must be assumed. However,

there is a feasible OP/LP that always is possible. It consists of replacing MC

by AVC and the short-run elasticity of scale, taking into account that this

replacement leaves unavoidably the error of the production function and the

Markov process must be assumed to be linear.

The feasible OP/LP can be specified either by extending DP with the

term ln
−1−1
−1

or, in the ACF manner, including all variables relevant to

the demand for the input (e.g. input prices) in a first nonparametric step.

Under market power, if the production function is well specified, DP and

the feasible OP/LP must only diverge due to sampling error. Hence, an

specification test based on the equality of the coefficients is again available.

Under the null both estimators are consistent, under the alternative either

both estimators or OP/LP (because the FOCs fail) are inconsistent. When

there is market power, starting the estimation of the production function

with this test is an easy and convenient way to work on the specification.

One may want also to check if the presence of market power can be rejected

using the specification test explained in section 4.

11It could be the case, for example, that the error in an input deflator is making in-

consistent the estimation, although the first order condition is not detecting any specific

problem in the share of the input, inducing both estimators to give a similar outcome.

Further improvement of the estimates can be reached by trying different deflators until an

equal and better specification of both models is reached.
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7 The equality of DP and feasible OP/LP as

a test for the specification

In this section we show with an example how the DP and OP/LP estimators

can start diverging, and come close when the specification fits better the

data. We estimate the production function for the sample of Compustat US

manufacturing firms (1960-2018) used in Jaumandreu and Mullens (2024).

It is a sample of firms belonging to many different markets and times, so we

should expect that they possess various degrees of market power. It is then

important to be robust to the exercise of market power.

The DP estimation and the ACF implementation of (feasible) OP/LP

with a Cobb-Douglas specification diverge in the capital elasticity estimate

and in the assessment of the returns to scale. As it is often the case, for

dismay of researchers, DP produces a negative elasticity for capital, and a

short-run elasticity of scale well above unity. However, the ACF implemen-

tation of OP/LP shows up a nicely estimated elasticity of capital and a more

moderated short-run elasticity of scale (although non smaller than one as

well). As odd as it may sound, this is not a sample-specific phenomenon but

a quite typical finding.

A usual interpretation for the DP behavior is that the differentiation of

the data exacerbates errors in measurement of an otherwise quite persistent

capital. However, a little experimentation shows that the result is very sen-

sitive to the specification. For example, OLS of the Cobb-Douglas in first

differences gives positive coefficients (see Appendix D). If DP is inconsistent

because the production function specification, sections 2 and 3 have shown

that OP/LP cannot be consistent. Recall that we are using the feasible

version to ensure robustness in the presence of market power, and feasible

OP/LP basically adds to the DP specification a term that should be zero.

Hence we need to consider that some reason, related to specification, must

be determining the inconsistency of both estimators. A simple inspection of

the labor shares shows that the elasticity of labor must have been falling over

time and the Cobb-Douglas specification fails in picking up this character-

istic. When labor-augmenting productivity is allowed into the specification,

by enlarging the Cobb-Douglas to a translog with elasticity of substitution

less than unit that admits falling labor shares, both estimators coincide.

The conclusion is that the divergence of the estimators was detecting the

mispecification of the production function, and that the redressement of this
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mispecification allows the estimators to provide the same answer. Notice

that feasible OP/LP has been useful to fix the consistency of DP and hence

to assess the consistency of both estimators in a new specification. This

can be a good starting point for the researcher try to further improve the

specification keeping the equality of the two estimators.

In what follows, we explain in detail how the above exercise is done.

Column (1) of the Table reports the results of applying the DP estimator

to the Cobb-Douglas specification. The estimator proceeds as follows. Un-

der the assumption that Hicks-neutral productivity  follows an (1) of

parameter  and innovation , it can be written that

 =  +  +  +  (7)

+[−1 − −1 − −1 − −1] +  +  − −1

We estimate this equation by nonlinear GMM using as instruments the (con-

stant and) time dummies, the input variables  −1 −1−1 and the
(real) input prices −1 − −1 and −1 − −1 This is a fully standard
choice of instruments. As we have to estimate (in addition to the constant

and time dummies) the four parameters     and  the instruments

provide two overidentifying restrictions.

The result is not nice: the elasticity of capital turns out to be negative,

the elasticity of labor very large and the short-run elasticity of scale, the sum

of  +   above 11 Economic theory tells us that it is not realistic that

when changing in the short-run the variable factors we encounter increasing

returns to scale (although unfortunately this is a quite usual result that is

reported without further comments).

Column (2) reports the results of computing the feasible OP/LP, imple-

mented by means of the ACFmethod, applied to the Cobb-Douglas. In a first

stage, we regress  non parametrically (using a complete polynomial of or-

der 3) on the five variables   − and − From the result
of this first step we compute the estimate b(−1 −1−1 −1 − −1
−1 − −1) that we use in forming the second step equation

 =  +  +  +  (8)

+[b−1 − −1 − −1 − −1] +  + 

As we try to emphasize with our notation, equations (7) and (8) are very

close. They only differ, in addition to the component of the error −−1
in that the nonparametric estimate b−1 has replaced −1
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If we have decided to use the demand for materials to construct the proxy

for , the application of the analysis of section 4 tells us thatb−1 − −1 − −1 − −1 =

−1 − −1 − −1 − −1

+(ln
−1


|−1 −1−1 −1 − −1 −1 − −1)− −1

Hence, everything is like we were adding into the bracket of the DP estimator

the expression corresponding to the nonparametric prediction of the share

−1 In the second step of the ACF implementation we use the instruments
 −1 −1−1 and b−1 what implies one overidentifying restriction.
The results reported in column (2) show the outcome. The addition

(the nonparametric prediction of the share) helps to redress two things with

respect to the DP results. The elasticity of capital becomes positive, and the

short-run elasticity of scale falls.

We obviate in the table the parametric OP/LP estimator, the estimator

that simply introduces the share ln in the regression (you can check it in

Appendix D). The reason is that the estimation is always likely to diverge

less when we include the nonparametric prediction of the share. At this

stage, what we are interested is wether DP and OP/LP should be taking

as producing the same estimate. So it is enough to employ the popular

nonparametric OP/LP estimator since it already shows the difference.

It is apparent that DP and OP/LP are giving different answers to the

estimation of the production function. The researcher may be puzzled why

two theoretically consistent estimators give very different results. The expla-

nation that we develop next is that both estimates are in fact inconsistent

because there is a shortcoming in the specification of the production function.

Columns (3) and (4) change the basic specification of the production

function. Now we estimate a multiproductivity production function. We use

the simplest production function that admits labor-augmenting productivity,

a translog separable in capital and homogeneous of degree  in labor and

materials (we follow Doraszelski and Jaumandreu, 2018).12 Because it is

homogeneous in labor and materials it depends on the log-ratios materials

to labor, but these log-ratios exhibit unobserved labor-productivity,

 = 0++−(−−)−1
2
(−−)

2++

12See for more detail Jaumandreu and Mullens (2024).
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Using the ratio of first order conditions for labor and materials, we derive

an expression to be substituted for these ratios,  −  −  = −

+



∗ with ∗ =  − 


 and where  is a guess for the mean of

labor-augmenting productivity.13 Hence, the production function becomes a

function of observables in which, to control for Hicks-neutral productivity, we

can apply easily both the DP estimation procedure and the OP/LP method.

The DP estimator is obtained by applying nonlinear GMM to the equation

 = 0 +  +  +  − 1
2

2


∗2 (9)

+[−1 − −1 − −1 +
1

2

2


∗2−1] +  +  − −1

where the expression is written in a similar format to the previous estimators

for the sake of comparability. To estimate this more nonlinear equation we en-

large the instruments with the squares of the inputs and input prices, and we

add the lagged share of labor cost in variable cost:  
2
 −1 

2
−1−1

2
−1 −1 − −1 (−1 − −1)2 −1 − −1 (−1 − −1)2 and

−1 This gives eleven instruments and we hence have seven overidentifying
restrictions.

To estimate the nonparametric ACF version of the OP/LP estimator we

first again regress  non parametrically on the variables   −
and  −  From the result of this first step we compute the estimateb(−1 −1−1 −1 − −1 −1 − −1) that we use it in form-
ing the second step equation. In the second step we use the instruments

 −1−1 b−1 and −1 so that we have one overidentifying restric-
tion.

The results for the new DP and OP/LP, reported in columns (3) and (4)

respectively, clearly indicate that now they give basically the same estimate

of the production function.

To check statistically that this is the case we apply an specification test.

We construct a quadratic form of the elasticity of capital and the elasticity

of scale, using as weight the inverse of a robust estimator of the asymptotic

variance of the difference between the coefficients ( −  ) see Ap-

pendix C. The test doesn’t reject that the quadratic form is distributed as

a 2 with 2 degrees of freedom, and hence that the differences now can be

interpreted as coming from sampling error.

13We use  =  −  This specification only estimates directly parameter  and the

elasticities  and  are determined by the implications  =  and  = (1−)
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We want to confirm that it has been relevant to use the feasible OP/LP

estimator, that in effect we cannot reject the presence of market power. To

check this we compare the two parametric versions of the feasible OP/LP

by means of an specification test. On the one hand, the estimator that

proxies MC as in equation (6). On the other the estimator that uses prices,

as in equation (4), presuming that is equal to MC. It can be shown that,

in the case of the translog specification, this simply amounts to include in

the first estimator the ratio price/average variable cost of the firms. The

resulting 2(2) shows a strong rejection of the null of perfect competition

(see Appendix D).

Appendix D also shows the result of computing the nonlinear version

of OP/LP with the translog multiproductivity. Although the coefficients of

capital and short-run elasticity of scale are not crazy (are quite similar to

the estimation with the Cobb-Douglas), they are clearly different from our

common result applying DP and OP/LP to the translog multiproductivity

specification.

Notice that in columns (3) and (4) both the elasticity of capital and the

short-run elasticity of scale are sensible. The elasticity of capital is greater

than with the Cobb-Douglas specification, and the estimate of the elasticity

of scale is in the range 079 − 083 what clearly improves the unrealistic
constant returns to scale for the variable inputs estimation of column (2).

No estimator produces a clear better estimation than the other when rightly

specified. From here on, the researcher can focus on improving other aspects

of the estimation, as accounting for input market power, introduce the effect

of adjustment cost of the variable inputs, or experiment with the way to

deflate output and materials.

8 Concluding Remarks

The production function is not affected by market power, but the estimators

that employ an auxiliary FOC that includes a derivative of the production

function are sensitive to the form of the FOC under market power. DP is an

estimator robust to market power because doesn’t use any FOC. However,

the OP/LP approach cannot be generally robust to market power because

marginal cost, that summarizes all relevant effects of the strategy of the

firm and its demand, can at most be replaced by average variable cost plus

the uncorrelated error that characterizes the production function. Linearity
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of the productivity process, however, doesn’t allow the error to affect the

estimation. This gives an OP/LP that is feasible under market power.

A feasible OP/LP adds the (log) difference between the observed share

and the normalized elasticity of the input whose demand is inverted to the

equation used by DP. In theory, with this addition we should have exactly

the same estimate because, if the production function is right, the theoretical

value of the expression is zero. If the estimators diverge, either the production

function specification is wrong or there is a problem in the specification of

the FOC. This gives us a test for the specification.

The researcher who wants to estimate the production function under mar-

ket power may first test if market power is relevant by using the expressions

of the feasible OP/LP either using output prices or proxying for marginal

cost. If market power is relevant, it is convenient to start by estimating both

the DP and the feasible OP/LP estimators, and testing the equality between

them. This still doesn’t ensure that both estimators are consistent, although

we know that they are meeting the necessary condition for consistency (of

being equal). Further work of specification with the two models can warrant

consistent estimation under market power.

We have shown how this works with an example of estimation of the pro-

duction function for a sample of US manufacturing firms. The naive Cobb-

Douglas specification of the production function produces a negative elastic-

ity for capital and a too large short-run elasticity of scale with the DP esti-

mator. Recognizing labor-augmenting productivity in addition Hicks-neutral

productivity, and allowing it into the specification, induces a matching of DP

and the feasible OP/LP under market power that passes the specification

test.

We have some extensions in mind. It would be nice to explore less restric-

tive production functions in the context of robustness to market power. A

first objective would be estimating the translog allowing for the variation of

the short-run elasticity of scale. A complementary possibility would be relax-

ing the separability of capital, something that has been shown parametrically

possible under the translog specification by Zhao, Malikov and Kumbhakar

(2024). Another, more ambitious extension, would be the estimation of a

fully nonparametric production function with a flexible specification of the

input-biased productivities. We leave these extensions for the continuing

research.
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Appendix A: Identification

Assume the timing and information conditions of the text, and suppose

(worst case) that the price of the variable inputs and the price of the output

are constant. The FOC to be used by an OP/LP procedure becomes −1 =
1 − ln  (−1)

−1
= (−1; 1 1) where 1 and 1 represent the constant and

the parameters of the derivative. The model to be estimated can be written

as

 = (; 0 ) + ((−1; 1 1); 2) +  + 

where  are the parameters of the production function and 1 ⊂  If we are

in a strictly nonparametric setting,  1 and 2 are infinite-dimensional. If

we want to approximate the nonparametric relationship by a flexible form,

the ideal procedure for estimation is nonlinear GMM ( and  are correlated

with ) and identification basically depends on the relationship between pa-

rameters and moments.

Assume that we want to make an approximation to () based on a

complete polynomial of order 3 (the most used approximation) and  has 

inputs. The number of parameters in (0 ) is 1+2+
(−1)
2
+2+

(−1)(−2)
6



If  = 3 this gives us 20 parameters (the first is the constant). If we decide

to estimate (·) also by means of three powers, we have to estimate a total
of 23 parameters. Using the constant and the vector ( −1−1) we can
form 20 moments. Adding the new moments that we can form using −1
and interacting it with −1 and −1 we have 10 more. We hence have 7
overidentifying restrictions.

As long as we do not have perfect collinearity between the quantities of

two inputs we should be fine identifying the production function.

Appendix B: Conduct specification

Let us suppose for simplicity 2 firms (the industry can have, for example,

2 of each type). We drop the asterisk from the quantities ∗ for economy
of notation. We also abstract from heterogeneity of demand. Firms 1 and 2

have demands

1 = 
−
1 


2 

2 = 
−
2 


1 
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and costs 1(1) and 2(2) Inverse demands are

1 = 
−∗
1 

−∗
2 

2 = 
−∗
2 

−∗
1 

where ∗ = 

2−2 and ∗ = 

2−2  Firm  maximizes

 +  =  − () + ( − ())

where  is an exogenous conduct parameter. If firms compete in prices

( + )


=  − 





+ 
0






+ [





− 
0






] =

=  − ( − 
0
) + ( − 

0
)




= 0

and if they compote in quantities

( + )



=  − ∗





− 
0
 − ∗





= 0

Using symmetry, is easy to see that  = (1− 1
(1−


)
) = 

0
 under

price competition and  = (1 − 

2−2 (1 + 


)) = 

0
 under quantity

competition. If  = 1 both marginal revenues coincide in 
1

−  the unique
total collusive solution. If  = 0 Cournot with (1 − 1

(1−( 

)2)
) is less

competitive than Bertrand, which gives (1 − 1

) If 0    1, quantity

competition is less competitive than price competition.

The point is how changes with conduct, in this case represented by

the unobservable exogenous parameter 

Appendix C: Specification tests

A Hausman (1978) specification test, or a Durbin-Wu-Hausman test, can

be seen as a test of the equality between the parameter estimates under

two methods of estimation that are consistent under the null. The alter-

native is in our case that either one method or the two are inconsistent.

Following Wooldridge (2010), we set a quadratic form of the differences in

the parameters (b − b ) using the inverse of a robust estimate of
[

√
(b − b )] =  +  − ( +  0)
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Let   =  To estimate  we useb = ( b0


b)
−1 b0


bΩ

b( b0


b)
−1

with b0
 = −1P



(
0
b)


  = −1P
 

0
 and bΩ = −1P

 
0
bb0

To estimate b we useb = ( b0


b)
−1 b0


bΩ

b( b0


b)
−1

where bΩ = −1P
 

0
bb0 Hence d (b − b ) = (b +b − ( b + b 0))

Under the null, we have

(b − b )0[√(b − b )]−1(b − b ) ∼ 2()

where the  degrees of freedom are the number of parameters being tested.

Appendix D: Additional regressions and test

Table AD reports a few complementary estimates and test. Column (1)

reports the result of carrying out an OLS estimation of the Cobb-Douglas

specification in first differences. Although the coefficient on capital is small,

it is positive and statistically significant.

Column (2) shows the result of computing the parametric OP/LP speci-

fication with a Cobb-Douglas production function. Although the coefficient

on capital tends to raise, the log of  (materials share in variable cost)

minus an (implicit) constant is determining residuals highly negatively cor-

related with labor and positively with materials. This is in fact a sign of the

presence of the non accounted labor-augmenting productivity.

In column (3) it can be appreciated how much the regression changes

with the translog multiproductivity specification estimated by a parametric

OP/LP based on proxying MC, and in column (4) how much the result is

perturbed by the introduction of the price (implemented by the addition

of the log of the price/average variable cost ratio). The null hypothesis of

perfect competition is strongly rejected.

Column (5) reports the results of the estimation of a nonlinear nonpara-

metric OP/LP. Recall that this is a theoretically inconsistent estimator. Al-

though the coefficients modeling the nonlinear productivity process are sen-

sible, the coeffient on capital and the short-run elasticity of scale (1041)

ressemble the values obtained with the CD specification. The elasticity of

substitution is also very low.
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Table: The equality of DP and OP/LP estimators as a test for the specification

US manufacturing production function estimation,

firm-level sample, Compustat, 1960-2018.

Cobb-Douglas with neutral producticity Translog multiproductivity

Nonparametric Nonparametric

Parameter DP (ACF) OP/LP DP (ACF) OP/LP

(1) (2) (3) (4)

 1.022 1.018 1.019 1.014

(0.002) (0.004) (0.002) (0.005)

 -0.023 0.061 0.144 0.166

(0.010) (0.020) (0.041) (0.076)

 0.486 0.486 0.226 0.239

(0.020) (0.050) (0.064) (0.109)

 0.622 0.532 0.561 0.594

(0.014) (0.024) (0.064) (0.109)

 0.111 0.153

(0.016) (0.037)

 0.553 0.489

Specification test

2() 5.356 (2)

−  0.069

Overidentifying restrictions 2 1 7 1

Function value 8.043 0.701 59.669 4.476

No. of firms 5621 5621 5621 5621

No. of observations 65006 65006 65006 65006



Table AD: Complementary estimates and test

US manufacturing production function estimation,

firm-level sample, Compustat, 1960-2018.

Cobb-Douglas Translog multiproductivity

OLS in Parametric Test of maket power Nonlinear

Parameter differences OP/LP Marginal cost Price nonparametric OP/LP

(1) (2) (3) (4) (5)

 0.986 1.035 0.958 0.545

(0.004) (0.004) (0.004) (0.201)

2 0.245

(0.090)

3 -0.032

(0.012)

 0.027 0.104 0.170 -0.421 0.052

(0.009) (0.068) (0.044) (0.112) (0.113)

 0.339 -1.569 0.238 0.732 0.299

(0.003) (0.182) (0.055) (0.255) (0.156)

 0.555 2.916 0.593 1.825 0.742

(0.002) (0.102) (0.055) (0.255) (0.156)

 0.056 0.337 0.243

(0.006) (0.054) (0.066)

 0.431

Specification test

2() 66.566

−  0.000

Overidentifying restrictions 2 7 7 1

Function value 99.349 130.980 971.789 0.180

No. of firms 5621 5621 5621 5621

No. of observations 65006 65006 65006 65006


