
We have to estimate the set of parameters  = (0 0)0 where  is 1 × 1 and  is

2 × 1The code exploits the fact that the model can be written as

 = ()− ()

where  and  (an scalar and a 1 × 2 vector respectively) are “composite” variables

which depend on the set of parameters  The vector of parameters  enters the equation

linearly and “concentrating out” amounts to replacing them by its optimal expression given



To find the optimal expression notice that GMM minimizes
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where  is the ×  matrix of instruments for firm ,  is  × 1 and  is the current

weighting matrix FOCs of the problem can be written as"P
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where the transponse matrix of derivatives is (1+2)× This is hence a system of (1+2)
equations. Using () = ()−() and noticing that
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second block of 2 equations gives
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The estimator of the asymptotic variance of the whole model can be written (b) =
( b0 b)−1 b0(P
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when  is chosen optimally. Both variances depend of the estimator b =P
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, we compute this estimator as
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