6* LINEAR OPTIMAL CONTROL
THEORY FOR DISCRETE-TIME
SYSTEMS

6.3 INTRODUCTION

In the first five chapters of this book, we treated in considerable detail linear
control theory for continuous-time systems. In this chapter we give a con-
densed review of the same theory for discrete-time systems. Since the theory
of linear discrete-time systems very closely parallels the theory of linear con-
tinuous-time systems, many of the results are similar. For this reason the
comments in the text are brief, except in those cases where the results for
discrete-time systems deviate markedly from the continuons-time situation.
For the same reason many proofs are omitted.
Discrete-time systems can be classified into two types:

1. Inherently discrete-time systems, such as digital computers, digital
filters, monetary systems, and inventory systems. In such systems it makes
sense to consider the system at discrete instants of time only, and what
happens in between is irrelevant.

2. Discrete-time systems that result from considering continuons-time systems
at discrete instants of time only. This may be done for reasons of convenience
(e.g., when analyzing a continuous-time system on a digital computer), or
may arise Daturaily when the continnous-time system is interconnected with
inherently discrete-time systems (such as digital controllers or digital process
control computers).

Discrete-time linear optimal control theory is of great interest because of
its application in computer control.

6.2 THEORY OF LINEAR DISCRETE-TIME
SYSTEMS

6.2.1 Introduction

In this section the theory of linear discrete-time systems is briefly reviewed.
The section is organized along the lines of Chapter 1. Many of the resnlts
stated in this section are more extensively discussed by Freeman (1965).

442
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6.2.2 State Description of Linear Discrete-Time Systems

It sometimes happens that when dealing with a physical system it is relevant
not to observe the system behavior at all instanis of time ¢ but only at a
sequence of instants f;, i = 0, 1, 2, - - . Often in such cases it is possible to
characterize the system behavior by quantities defined at those instants only.
For such systems the natural equivalent of the state differential equation is the
state difference equation

I(l + 1) =f[$(’)s ”(l)s I]: 6-1

where =(/) is the state and «(f) the input at time ;. Similarly, we assume that
the output at time ¢, is given by the output equation

y(i) = gla(i), u(®), il. 62
Linear discrete-time systems are described by state difference equations of
the form (i + 1) = A()e() + BEOu(), 63

where A(7) and B(7) are matrices of appropriate dimensions. The correspond-
ing output equation is
y(i) = C{=() + D). 6-4

If the matrices 4, B, C, and D are independent of i, the system is time-
invariant.

Example 6.1. Savings bank dccount _

Let the scalar quantity () be the balance of a savin gs bank account at the
beginning of the #-th month, and let & be the monthly interest rate. Also,
let the scaiar quantity u(#) be the total of deposits and withdrawals during the
n-th month. Assuming that the interest is computed monthly on the basis of
the balance at the beginning of the month, the sequence x(n},n = 0,1,2,- -,
satisfies the linear difference equation o

i+ 1) = (1 4+ odz(m) + u(n), n=0,1,2,---,
2(0) = wx,, 6-5

where =, is the initial balance., These equations describe a linear time-in-
variant discrete-time system.

6.2.3 Interconnections of Discrete-Time and Continuous-Time Systems

Systems that consist of an interconnection of a discrete-time system and a
continuous-time system are frequently encountered. An example of particular
interest occurs when a digital computer is used to control a continuous-time
plant. Whenever such interconnections exist, there must be some type of
interface system that takes care of the communication between the discrete-
time and continuous-time systems. We consider two particularly simple types
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Fig. 6.1. Continuous-to-discrete-time conversion.

of interface systems, namely, continitous-to-discrete-time (C-to-13) converters
and discrete-to-continuous-time (D-to-C) converters.

A C-to-D converter, also called a sampler (see Fig. 6.1), is a device with a
continuous-time function f(r}), f > ¢, as input, and the sequence of real
numbers f*(i), i=0,1,2,---, at times ¢, i=0,1,2,---, as output,
where the following relation holds:

f+(i)=f(ti)1 i=0: 1:23“'- 6-6

The sequence of time instants £;, i=0,1,2,- -, with , < HL, < < - -+,
is given. In the present section we use the superscript 4 to distinguish
sequences [rom the corresponding continuous-time functions.

A D-to-C converter is a device that accepts a sequence of numbers (i),
i=0,1,2,---, at given instants ¢,,/=0,1,2, -+ ,withf, <1, <y <+,
and produces a continuous-time function f(¢), ¢ > 1,, according to a well-
defined prescription. We consider only a very simple type of D-to-C con-
verter known as a zero-order hold. Other converters are described in the
literature (see, e.g., Saucedo and Schiring, 1968). A zero-order hold (see
Fig. 6.2) is described by the relation ' '

f(t)=f+(i), ti£t<t1’+11 i=03 112:.'.- 6-7
FHi) zero-order 53]
hald
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Fig. 6.2. Discrete-to-continuous-time conversion.
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Figure 6.3 illustrates a typical example of an interconnection of discrete-
time and continuous-time systems. In order to analyze such a system, it is
often convenient to represent the continuous-time system together with the
D-to-C converter and the C-to-D converter by an equivalent discrete-time
system. To see how this equivalent discrete-time system can be found in a
specific case, suppose that the D-to-C converter is a zero-order hold and
that the C-to-D converter is a sampler. We furthermore assume that the
continuous-time system of Fig. 6.3 is a linear system with state differential
equation

(1) = A(O=(t) + B(Hu(t), 6-8
and output equation
y(t) = C()x(t) + D()u(r). 6-9

Since we use a zero-order hold,
u(t) = u(t,), L < g, i=0,1,2,+-. 6-10

Then from 1-61 we can write for the state of the system at time 7,

1

(i) = Py, 1) + [fti+1®(tf+1, 7)B(7) d'r:| u(t,), 6-11
{3 -

where ©(t, 1,) is the transition matrix of the system 6-8. This is a linear state
difference equation of the type 6-3. In deriving the corresponding output
equation, we allow the possibility that the instants at which the output is
sampled do not coincide with the instants at which the input is adjusted.
Thus we consider the output associated with the i-th sampling interval, which
is given by
y(1D, 6-12
where
t <1 < by 6-13

fori=0,1,2,---. Then we write

V(6 = CEO(G 20 + [ ) f Dt} B e 1) + DE(E). 614

Now replacing a:(t) by z*(#), u(;) by ut(i), and y(t{) by 3 J+(I), we write the
system equations in the form

(i 4 1) = A D+ (i) + By(Dut(),
yr () = Gt (@) + Dyt (@, i=0,1,2,---, 615
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where
A:I(i) = (D(tf-i-ls t;‘):

. fig1
By(i) =f O(#;,4, TIB(r) dr,

ty
C.li) = CUDD(LL 1), 6-16

t
Dy(i) = C(r;.)f;/ﬁ(r;, DB(r) dr 4+ D(t).

We note that the discrete-time system defined by 6-15 has a direct link even
if the continuous-time system does not have one because D, () can be different
from zero even when D(¢) is zero. The direct link is absent, however, if
D(t) =0 and the instants #/ coincide with the instants ¢, that is, #; = 1,
i=0,1,2,---

In the special case in which the sampling instants are equally spaced:

i — =4, 6-17
and

B—t1=A, 6-18

while the system 6-8, 6-2 is time-invariant, the discrete-time system 6-15 is
also time-invariant, and '

A
A, = e, B, = (f et d-r) B,
. 6-19
&’ ’
C,=Ce™, D;= CU et dT)B + D,
0

We call A the sampling period and 1[/A the sampling rate.

Once we have obtained the discrete-time equations that represent the
continuous-time system together with the converlers, we are in a position
to study the interconnection of the system with other discrete-time systems.

Example 6.2. Digital positioning system
Consider the continuous-time positioning system of Example 2.4 (Section
2.3) which is described by the state differential equation

01 0
() = (O B ):5(1‘) + ( )‘u(r). 6-20

Suppose that this system is part of a control system that is commanded by a
digital computer (Fig. 6.4). The zero-order hold produces a piecewise constant
input u(r) that chanpes value at equidistant instants of time separated by
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digital wH(i) zero-order kit) positioning it} ' sampler m
computer haold system
Fig. 6.4. A digital positioning system,
intervals of length A. The transition matrix of the system 6-20 is
1
-n — e-—a(l.‘—fu)
D1, 1) = [ ] 6-21
. 0 e—a{i—ful

From this it is easily found that the discrete-time description of the positioning
system is given by

(i 4+ 1) = Axt(i) + but (i), 6-22
where
’ 1
=1 — —aA
A=t 4= 6-23
0 gmad
and
E(A _.]_‘ + l e—ﬂA)
b=1|*% © o 6-24

(1 — e
o

Note that we have replaced ={#;) by +(i) and u(z,) by u*().
With the numerical values

o =468,
« = 0,787 rad/(V s%), 6-25
A=0.1s,

we obtain for the state difference equation

6-26

1 0.08015 0.003396
i+ 1) = o (i (i

0 0.6313 0.06308

Let us suppose that the output variable #(t) of the continuous-time system,
where

is sampled at the instants ¢, i = 0, 1,2, - - - . Then the output equation for
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the discrete-time system clearly is
(i) = (1, 0)*(d), 6-28

where we have replaced #(z;} with #+(f).

Example 6.3. Stirred tank

Consider the stirred tank of Example 1.2 (Section 1.2.3) and suppose that
it forms part of a process commanded by a process control computer. As a
result, the valve settings change at discrete instants only and remain constant
in between. It is assumed that these instants are separated by time intervals
of constant length A. The continuous-time system is described by the state
differential equation

— 0] 1 1
#Ht) = - 1 =(t) + u(t). 6-29

0 = Cl—Cﬂ CE—CU

6 Vo Va

=)

It is easily found that the discrete-time description is

i 4 1) = A=) + Bu™(D),

e—A!tﬁﬂ) 0
A= .
0 e—A!G

where

26(1 — e—ANEHJ) ')6(1 — e—A/(EU))
B = M(l — e—A.n'G) B(C" - ) (1 ...A,'g) ) 6-30
Va Vo
With the numerical data of Example 1.2, we find
0,9512 0
A= ,
0 0.9048 631
» 4877 4877 )
~ \—1.1895 3.569/°
where we have chosen
A=35s. 6-32

Example 6.4. Stirred tank with time delay
As an example of a system with a time delay, we again consider the stirred
tank but with a slightly different arrangement, as indicated in Fig. 6.5. Here
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feed Fy feed Fj
concentrotion ¢y concentration cgp

transport deloy
T

volume V

QC 1 concentrotion c

outgoing flow F
concentrotion ¢

Fip. 6.5. Stirred tank with modified configuration.

the feeds are mixed before they flow into the tank. This would not make any
difference in the dynamic bebavior of the system if it were not for a transport
delay T that occurs in the common section of the pipe. Rewriting the mass

balances and repeating the linearization, we find that the system equations
now are :

&) = = 20 50 + D) + sl
K 6-33

1 — Cg Co — Cp

H0=—%MO+ ikt — ) +

0 a

nuﬂ(t - T):

where the symbols have the same meanings as in Example 1.2 (Section
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1.2.3). In vector form we write

0 . 11 0 0
(1) = (1) + u(f) + u(t — 7).
0 1 00 G =C fa_ %

o ¥, ¥,

21

6-34

Note that changes in the feeds have an immediate effect on the volume but a
delayed effect on the concentration.

We now suppose that the tank is part of a computer controlled process so
that the valve settings change only at fixed instants separated by intervals of
length A. For convenience we assume that the delay time  is an exact multiple
kA of the sampling period A. This means that the state difference equation of
the resulting discrete-time system is of the form

at(i + 1) = Adwt(i) + Byt (i) + BaH({i — k). 6-35

It can be found that with the numerical data of Example 1.2 and a sampling
period

A=3s, 6-36
A is as given by 6-31, while

4.877 4.877 0 0
-Bl = H BQ = . 6"'37
0 0 —1.1895 3.569 '

It is not difficult to bring the difference equation 6-35 into standard state
difference equation form. We illustrate this for the case & = 1. This means
that the effect of changes in the valve settings are delayed by one sampling
interval. To evaluate the effect of valve setting changes, we must therefore

remember the settings of one interval ago. Thus we define an augmented
state vector

E1(D)
+ +
Z'(i) = () . 6-38
p (i = 1)
s (i — 1)

By using this definition it is easily found that in terms of the augmented state
the system is described by the state difference equation

2'(i + 1) = d'2'(5) + B'ut(i), 6-39
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where
0.9512 1] 0 0
" 0 0.9048 —1.1895 3.56%9
- 0 0 0 o I
0 0 0 0
6-40
4,877 4.877
0 0
B =
1 0
0 1

We point out that the matrix 4’ has two characteristic values equal to zero.
Discrete-time systems obtained by operating finite-dimensional time-invariant
linear differential systems with a piecewise constant input never have zero
characteristic values, since for such systems 4, = exp (4A), which is always
a nonsingular matrix.

6.2,4 Solution of State Diflerence Equations

For the solution of state difference equations, we have the following theorem,
completely analogous to Theorems 1.1 and 1.3 (Section 1.3).

Theorem 6.1. Consider the state difference equation
2(i 4 1) = A(Da(i) + Bu(D). 6-d1
The solution of this equation can be expressed as
=1
w(i} = O, ig)a(ly) + 3 ©U, 7 + DB(Hu(f),  i>i+1, 642
I=ip
where Oi, fy), | > Iy, is the matrix
A — D)AG — 2) - -+ A(y) forizih+1,
O, ig) = ’ ’ 643
I for i= iu-
. The transition martrix ©(, ig) is the solution of the difference equation
‘D(i + 1, fn) = A(f)(I)(f, T'u): i 2 iy,
Dy, i) = 1.
If A(i} does not depend upon i,
DO, iy) = A7, 6-45

6-44
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Suppose that the system has an output
y(i) = C(=(). 6-46

If the initial state is zero, that is, =(j;) = 0, we can write with the aid of
6-42:

W) =3 KG, 0, i 6-47
Here =
COOG,j+ DBG),  j<i—1,
K(,J) = J P 6-48
0, _] =,

will be termed the puise response matrix of the system. Note that for time-
invariant systems K depends upon 7/ — j only. If the system has a direct link,
that is, the output is given by

y(i) = C()x(i) + D{Du(i), 6-49
the output can be represented in the form
y) =S KOG, 1> i 6-50
where . o
CHPU, j+ DBy Forj<i—1,
D) forj =i

K, )= 6-51

Also in the case of time-invariant discrete-time linear systems, diagonaliza-
tion of the matrix A is sometimes useful. We summarize the facts.

Theorem 6.2. Consider the time-invariant state difference equation
z(i + 1) = A=(D). 6-52

Suppose that the matrix 4 has n distinct characteristic valies Ay, Ay, * -+, 2,
with corresponding characteristic vectors ey, eq, + -+, €,. Define the n x n
matrices

T: (els es; e 3811)3

6-53
A = dlﬂg (;"1; j‘-ﬂ: T, ;{n)'

Then the transition matrix of the state difference equation 6-41 can be written
as

DB, i) = A~ = TAT1, 6-54
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Suppose that the inverse matrix T-1 is represented as
S

S
1 . 6-55

I

S

where f1, fo. * * . fu are row vectors. Then the solution of the difference equa-
tion 6-52 can be expressed as

n

w(i) = X A e, f,zq, 6-56

i=1
where x; = z(i,). !
Expression 6-56 shows that the behavior of the system can be described as a
composition of expanding (for |[4,] > 1), sustained (for |4;| = 1), or con-
tracting (for |{A,} < 1) motions along the characteristic vectors e1, €4, - - -, &,
of the matrix 4.

6.2.5 Stability

In Section 1.4 we defined the following forms of stability for continuous-time
systems: stability in the sense of Lyapunov; asymptotic stability; asymptotic
stability in the large; and exponential stability. All the definitions for the
continuous-time case carry over to the discrete-time case if the continuous
time variable ¢ is replaced with the discrete time variable /. Time-invariant
discrete-time linear systems can be tested for stability according to the follow-
ing results.

Theorem 6.3. The time-invariant linear discrete-time system
z(i + 1) = Az 6-57

is stable in the sense of Lyapunov if and only if

(a) all the characteristic values of A have moduli not greater than 1, and

(b) to .any characteristic value with modulus equal to 1 and multiplicity m
there correspond exactly m characteristic vectars of the matrix A.

The proof of this theorem when 4 has no multiple characteristic values is
easily seen by inspecting 6-56.

Theorem 6.4, The time-invariant linear discrete-time system
z(f + 1) = A=) 6-58

is asymptotically stable if and only if all of the characteristic values of A have
moduli strictly less than 1.
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Theorem 6.5, The time-invariant linear discrete-time system |
' (i + 1) = Az{i), 6-59
is exponentially stable if and only if it is asymptotically stable.

We see that the role that the left-half complex plane plays in the analysis
of continuous-time systems is taken by the inside of the umit circle for
discrete-time systems.- Similarly, the right-half plane is replaced with the
outside of the unit circle and the imaginary axis by the unit circle jtself.

Completely analogously to continuous-time systems, we define the stable
subspace of a linear discrete-time system as follows.

Definition 6.1. Consider the n-dimensional time-invariant Iinear discrete-time
sypsient . .
28 (i + 1) = Az(). 6-60

Suppose that A has n distinct characteristic values. Then we define the stable
subspace of this system as the real linear subspace spanned by those characteristic
vectors of A that correspond to characteristic values with moduli strictly less
than 1. Similarly, the unstable subspace of the system is the real subspace
spanned by those characteristic vectors of A that correspond to characteristic
. values with moduli equal to or greater than 1.

For systems where the characteristic values of 4 are not all distinct, we have:
Definition 6.2. Consider the n-dimensional time-invariant linear discrete-time

systetn (i + 1) = Az(). 6-61

Let A7, be the mul] space of (A — A D)™, where A; is a characteristic value of
A and my the multiplicity of this characteristic value in the characteristic poly-
nomial of A. Then we define the siable subspace of the system as the real
subspace of the direct sum of those null spaces A", that correspond to
characteristic values of A with moduli strictly less than 1. Similarly, the unstable
subspace is the real subspace of the direct sum of those mull spaces A", that
correspond fo characteristic values of A with moduli greater than or equal to 1.

Example 6.5. Digital positioning system

It is easily found that the characteristic values of the digital positioning
system of Example 6.2 (Section 6.2.3) are 1 and exp (-—aA). As a result, the
system is stable in the sense of Lyapunov but not asymptotically stable.

6.2.6 Transform Analysis of Linear Discrete-Time Systems

The natural equivalent of the Laplace transform for continuous-time vari-
ables is the z-transform for discrete-time sequences. We define the z-transform
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V(2) of a sequence of vectors v(f), i=0,1,2,- -, as follows

2 )

V(=) = 5 ="(i), 6-62

i=0
where z is a complex variable. This transform is defined for those values of

z for which the sum converges.
To understand the application of the z-transform to the analysis of linear

time-invariant discrete-time systems, consider the state dilference equation
x(i + 1) = Ax(i) + Bu(i). 6-63

Multiplication of both sides of 6-63 by z~* and summation over i =0, 1,
2, yields

zX(2) — 2a(0) = AX(z) + BU(z), 6-64
where X(z} is the z-transform of (i), i = 0,1, 2, - - -, and U(z) that of u(7),
i=0,1,2,---. Sclution for X(2) gives

X(2) = (2 — A)BU(D) + (2] — A)12z(0). 6-65

In the evalvation of (s — 4)~, Leverrier’s algoritbm (Theorem 1.18,
Section 1.5.1) may be useful. Suppase that an output y{f) is given by

y(f) = Cx({i) + Du(i). 6-66
Transformation of this expression and substitution of 6-65 yields for z(0) = 0
Y(z) = H{(z)U(z), 6-67

where Y(2) is the z-transform of (i), i =0,1,2,---,and
HZ)=CEI— Ay'B+ D 6-68

is the z~transfer matrix of the system.
For the inverse transformation of z-transforms, there exist several methods

for which we refer the reader to the literature {see, e.g., Saucedo and Schiring,
1968).

It is easily proved that the z-transform transfer matrix H(z) is the z-frans-
form of the pulse response matrix of the system. More precisely, let the pulse
transfer matrix of time-invariant system be given by K(i — j) (with a slight
inconsistency in the notation). Then

HE) = 3 K(). 6-69

i=0

We note that H(z) is generally of the form

P 670

HE&) = el — )
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where P{z) is a polynomial matrix in z. The poles of the transfer matrix
H{(z) are clearly the characteristic values of the matrix 4, unless a factor of the
form = — 4, cancels in all entries of H(z), where 4, is a characteristic value
of A.

Just as in Section 1.5.3, if H(z) is a square malrix, we have

det [#H(z)] = Y2 6-71
$=)’
where ¢ (z) is the characteristic polynomial ¢(z) = det (zI — 4) and p(z) is a
polynomial in z. We call the roots of p(2) the zeroes of the system.
The frequency response of discrete-time systems can conveniently be in-
vestigated with the aid of the z-transfer matrix. Suppose that we have a com-
plex-valued input of the form

u(i) = u,e’", i=012---, 6-72

where j = V' —1. We refer to the quantity 0 as the normalized angular fre-
quency. Let us first attempt to find a particular solution to the state difference
equation 6-63 of the form

x, (i) = %, e, i=01,2,---. 6-73
It is easily found that this particular solution is given by

z,(i} = (eI — Ay 'Bu, " i=0,12---. 6-74

The general solution of the hamageneaus difference equation is
(i) = A'a, 6-75

where a is an arbitrary constant vector. The general solution of the inhomeo-
geneous state difference equation is therefore

w(i) = A'a + (T — A)"'Bu ™, i=0,1,2,---. 6-76

If the system is asymptotically stable, the first term vanishes as 7 —-o;
then the second term corresponds to the stead)-state response of the state to
the mput 6-72, The correspondmg steady-state response of the output 6-66
is given by
y() = C("T — A Bu,e™™ + Du,e™
= H(eMu, e, 6-77

where H(z) is the transfer matrix of the system.

We see that the response of the system to inputs of the type 6-72 is deter-
mined by the behavior of the z-transfer matrix for values of z on the unit circle.
The steady-state response to real “‘sinusoidal inputs,’ that is, inputs of the
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form

u(i) = & cos (i) + £ sin (i), i=0,1,2,-+-, 6-78

can be ascertained from the moduli and arguments of the entries of H{e™).
The steady-state response of an asymptotically stable discrete-time system
with z-transfer matrix H(2) (o a constant input '

u(i) = u,,, i=0,1,2,---, 6-79

is given by
lim 4(i) = H(Nu,,- 6-80

In the special case in which the discrete-time system is actually an equiva-
lent description of a continuous-time system with zero-order hold and
sampler, we let

0 = wh, 6-81

where A is the sampling period. The harmonic input

lf(i) = eiﬂ,'um = eimAiH"U i=40,1, 2’ e, 6-82
is now the discrete-time version of the continuous-time harmonic function

Jorf

'™y t >0, 6-83

from which 6-82 is obtained by sampling at equidistant instants with sampling
rate 1/A.

For sufficiently small values of the angular frequency w, the frequency
response H(e'*) of the discrete-time version of the system approximates the
frequency response matrix of the continuous-time system. It is noted that
H(e'™#) is periodic in  with period 2m/A. This is caused by the phenomenon
of aliasing; because of the sampling procedure, high-frequency signals are
indistinguishable from low-frequency signals.

m?

Example 6.6. Digital positioning system
Consider the digital posmomng system’ of Example 6.2 (Section 6.2.3) and
suppose that the position is chosen as the output:

y(iy = (1, O)z(i). 6-84
It is easily found that the z-transfer function is given by
0.003396z - 0.002312
(z — 1)z — 0.6313)

Fipure 6.6 shows a plot of the modulus and the arpument of H{e’®%),
where A = 0.1 5. In the same figure the corresponding plots are given of the
frequency response function of the original continucus-time system, which

6-85

H{z) =
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Fig. 6.6. The frequency response funcitions ol the continuous-time and the discrete-time
positioning systems.

is piven by 0,787

jo(jo + 4.6)°
We observe that for low frequencies (up to about 15 rad/s) the continuous-
time and the discrete-time frequency response function have about the same
modulus but that the discrete-time version has a larger phase shift. The plot
also illustrates the aliasing phenomenon.

6-86

6.2.7 Controllability

In Section 1.6 we defined controllability for continuous-time systems, This
definition carries over to the discrete-time case if the discrete-time variable i
is substituted for the continuous-time variable ¢. For the controllability of
time-invariant linear discrete-time systems, we have the following result
which is surprisingly similar to the continuous-time equivalent.

Theorem 6.6. The n-dimensional linear time-invariant discrete-time system
with state difference equation

=i + 1) = Az{i) + Bu() 6-87



460 Discrete-Time System;s

is completely controllable if and anly if the calumn vectors of the controllability
matrix

P=(B,AB, A®B, -, A" 1R) 6-88
span the n-dimensional space.

For a proof we refer the reader to, for example, Kalman, Falb, and Arbib
(1969). At this point, the following comment is in order. Frequently, com-
plete controllability is defined as the property that any initial state can be
reduced to the zero state in a finite number of steps (or in a finite length of
time in the continuous-time case). According to this definition, the system
with the state difference equation
z(i+1)=0 6-89

is completely controllable, although obviously it is not controllable in any
intuitive sense. This is why we have chosen to define controllability by the
requirement that the system can be brought from the zero state to any non-
zero state in a finite time. In the continuous-time case it makes little differ-
ence which definition is used, but in the discrete-time it does. The reason is
that in the latter case the transition matrix ©(/, i), as given by 6-43, can be
singular, caused by the fact that one or more of the matrices A(j) can be
singular (see, e.g., the system of Example 6.4, Section 6.2.3).

The complete controllability of time-varying linear discrete-time systems
can be tested as follows.

Theorem 6.7. The linear discrete-time sysiem

z(i 4 1) = A(D=(i) + B{Du(i) 6-90
is completely controllable if and only if for every i, there exists an iy > i + 1
such that the symmetric nonnegative-definite matrix

Wiig, i) = 3 ®lis, 1 + DBOBTWO (i, § + 1) 691

i=7y

is nonsingular. Here ©(i, 1,) is the transition matrix of the system.
Uniform controllability is defined as follows.

Definition 6.3. The time-varying system 6-90 ix uniformly completely
controllable if there exist an integer k > 1 and positive constants wg, oy, By,
and ({, such that

(a) W(iy,ip+ k) >0  forall iy 6-92
(B) ool K Wiy, ig + 1) <oyl for all iy; 6-93
(©) Bl < OT(in + Kk, i)W (g, iy + KD + k, i) < fuf

SJor all i,. 6-94



6.2 Linear Discrete-Time Systems 461

Here Wiy, iy) is the matrix 6-91, and O, iy} is the transition matrix of the
system.,

It is noted that this definition is slightly different from the corresponding
continuous-time definition. This is caused by the fact that in the discrete-
time case we have avoided defining the transition matrix O, {) for i < 4,
This would invoive the inverses of the matrices A(j), which do not necessarily
exist.

For time-invariant systems we have:
Theorem 6.8. The time-invariant linear discrete-time system
(i + 1) = A=z(i) + Bu(i) 6-95
is uniformly completely controllable if and only if it is completely controllable.

For time-invariant systems it is useful to define the concept of controllable
subspace.

Definition 6.4. The contvollable subspace of the linear time-invariant discrete-
tinie system (i 4 1) = Az() + Bu(i) 696

is the linear subspace consisting of the states that can be reached from the zero
state within a finite number of steps,

The following characterization of the conircllable subspace is quite con-
venient.

Theorem 6.9. The controllable subspace of the n-dimensional time-invariant
linear discrete-time system

(i + 1) = Az(i) + Bu(i) 6-97

is the linear subspace spanned by the column vectors of the controilability
matrix P.

Discrete-time systems, too, can be decomposed into a controllable and an
uncontrollable part.

Theorem 6.10. Consider the n-dimensional linear time-invariant discrete-

time system
z(i + 1) = Ax(i) + Bu(i). 6-98

Farm a nonsingular transformation matrix T = (T3, To), where the columns
of T, form a basis for the controllable subspace of the system, and the column
vectors of Ty together with those of Ty span the whole n-dimensional space.
Define the transformed state variable

@' (i) = T(i). 6-99
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Then the transformed state variable satisfies the state difference equation

I

Al Al Bj '
i+ 1) = z'() + u(i), 6-100
0 Ay 0

where the pair {Ai,, Bi} is completely controllable.

Here the terminology “the pair {4, B} is completely controliable™ is short-
hand for *the system =(i 4 1) = Az(§) 4+ Bul(i) is completely controllable.”

Also stabilizability can be defined for discrete-time systems.

Definition 6.5. The linear time-invariant discrete-time system
(i + 1) = A=(i) + Bu(f) 6-101

is stabilizable if its unstable subspace is contained in its controllable subspace.

Stabilizability may be tested as follows.

Theorem 6.11. Suppose that the linear time-invariant discrete-time systen
z(i + 1) = A=() + Bul(i) 6-102

is transformed according to Theorem 6.10 into the form 6-100. Then the system
!

is stabilizable if and only if all the characteristic values of the matrix Ay, have
moduli strictly less than 1.

Analogously to the continuous-time case, we define the characteristic
values of the matrix Ay, as the controllable poles of the sytem, and the remain-
ing poles as the wicontroliable poles. Thus a system is stabilizable if and only if
all its uncontrollable poles are stable (where a stable pole is defined as a
characteristic value of the system with modulus strictly less than 1).

6.2.8 Reconstructibility

The definition of reconstructibility given in Section 1.7 can be applied to
discrete-time systems if the continuous time variable ¢ is replaced by the
discrete variable i. The reconstructibility of a time-invariant linear discrete-
time system can be tested as follows.

Theorem 6.12, The n-dimensional time-invariant linear discrete-time systent

(i + 1) = A=z(i) + Bu(i)},

y(i) = Ca), 6-103
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is completely reconstructible if and only if the row vectors of the reconstructi-
bility mairix
C

CA
CAz
0= : 6-104

CA n—-1
spat the whole n-dimensional space.

A proof of this theorem can be found in Meditch (1569). For general, time-
varying systems the following test applies.

Theorem 6.13. The linear discrete-time system
z(i + 1) = A(@D=()) + B(Du(),
y()) = C()=(i)

is completely reconstructible if and only if for every i, there exists an iy <
iy — 1 such that the symmetric nonnegative-definite matrix

6-105

i1
M(iy, i) = 2 DI(i, iy + DCTNHC(DHD(, ig + 1) 6-106
i=ig+1
is nonsingular. Here ©(i, iy) is the transition matrix of the system.
A proof of this theorem is given by Meditch (1569).
Uniform complete reconstructibility can be defined as follows.

Definition 6.6. The time-varying system 6-105 is uniformly completely
reconstructible if there exist an integer k > 1 and positive constants wg, oy,
By, and By such that

(@) M(i; — Ik, i) >0 for all iy; 6-107

(b) ol <K MYi, — k, i) <ol for all iy; 6-108

(©) Bl KOy, iy, — DMy — k, i)DT(iy, iy — &) < ]

Sor all i;. 6-109

Here M(iy, 1)) is the matrix 6-106 and O, iy} is the transition matrix of the
Systent.

We are forced to introduce the inverse of M{iy, ;) in order to avoid defining
(i, iy) for i less than /.

For time-invariant systems we have:
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Theorem 6.14. The time-invariant linear discrete-time system
(i + 1) = A=), y({@) = Cz(i) 6-110

is uniformly completely reconstructible if and only if it is completely recon-
structible.

For time-invariant systems we introduce the concept of unreconstructible
subspace.

Definition 6.7. The wunreconstructible subspace of the n-dimensional linear
time-inpariant discrete-time sysiem

2(i + 1) = A=z(f) + Bu(i),
y(i) = C=z(i)
is the linear subspace cansisting of the states %, for which
y(is Tg, 1, 0) =0, i i, 6-112
Here 6-112 denotes the response of the output variable ¥ of the system to the

initial state =(iy) = %, with u{i) =0, i > i;. The following theorem gives
more information about the unreconstructible subspace.

. 6-111

Theorem 6.15. The wnreconstructible subspace of the linear time-invariant
discrete-time systent (i + 1) = Az(i) + Bu(i),
y()) = Ca(i)

is the null space af the reconstructibility matrix Q.

6-113

Using the concept of an unreconstructible subspace, discrete-time linear
systems can also be decomposed into a reconstructible and an unrecon-
structible part.

Theorem 6.16. Consider the linear time-invariant discrete-time system

x(i + 1) = A=() + Bu(i),

6-114
() = Ca(i).
Form the naﬁsingular transformation matrix
Uy
U= , 6-115
Uy

where the raws af Uy form a basis for the subspace which is spanned by the
rows. of the reconstructibility matrix Q af the system. U, is so chosen that its
rows tagether with those of U, span the whole n-dimensianal space. Define
the transformed state variable

2'(f) = Uz(1). 6-116
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Then in terms of the Iransformed siate variable the sysiem can be represented
by the state difference equation

G+ 1) (,4;1 ) ) ‘W) + (B{)ll(i) 6-117
Tl = T . -
: Ay Ase By

y(i) = (C1, O)'(D),
where the pair {A1;, C1} is completely reconstructible.

Here the terminology “the pair {4, C} is completely reconstructible’ means
that the system x(i 4+ 1) = A=z(i}, (i} = C=(i) is completely reconstructible.
A detectable discrete-time system is defined as follows.

Definition 6.8. The linear time-invariant discrete-time system
z(i + 1) = A=(i) + Bul(i},
y() = Cx(i),

is detectable if its unreconstructible subspace is contained within its stable
subspace.

6-118

One way of testing for detectability is through the following result.
Theorem 6.17. Consider the linear time-invariant discrete-time system
cx(i + 1) = Az(i) + Bu(i),
y(i) = Cx(i).

Suppose that it is transformed according to Theorem 6.16 into the form 6-117.
Then the system is detectable if and only if all the characteristic values af the
matrix A hove moduli strictly less than one.

6-119

Analopously to the continuous-time case, we define the characteristic
values of the matrix 4y, as the reconstructible poles, and the characteristic
values of Aa. as the unreconstructible poles of the system. Then a system is
detectable if and only if all its unreconstructible poles are stable.

6.2.9 Duality

As in the continuous-time case, discrete-time regulator and filtering theory
turn out to be related through duality. It is convenient to introduce the follow-
ing definition.

Definition 6.9. Consider the linear discrete-time system

x(i + 1) = A@z() + Bu(),

6-1
y(i) = C@e(). 20
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In addition, consider the system
zH(i 4+ 1) = AT — D2*(i) + CFOF — Du(i),
(i) = BE(* — (i),

where i* is an arbiirary fixed integer. Then the system 6-121 is termed the dnal
of the system 6-120 with respect to i*.

6-121

Obviously, we have the following.

Theorem 6.18. The dual of the system 6-121 with respect to i* is the
original systent 6-120.

Controllability and reconstructibility of systems and their duals are related
as follows. .

Theorem 6.19. Consider the system 6-120 and its dual 6-121:

(a) The system 6-120 is completely controllable if and only if its dual is com-
pletely reconstructible.

(b) The system 6-120 is completely reconstructible if and only if its dual is
completely controllable.

(c) Assume that 6-120 is time-invariant. Then 6-120 is stabilizable if and only
if 6-121 is detectable.

(d) Asswme that 6-120 is time-invariant. Then 6-120 is detectable if and only
if 6-121 is stabifizable.

The proof of this theorem is analogous to that of Theorem 1.41 (Section
1.8).
6.2.10 Phase-Variable Canonical Yorms

Just as for continuous-time systems, phase-variable canonical forms can be
defined for discrete-time systems. For single-input systems we have the
following definition.

Definition 6.10. A single-input time-invariant linear discrete-time systemn is
in phase-vaviable canonical fovm if it is represented in the form

0 1 Qevovrvers 0 0
0 0 10 0 0

i+ D= [ e z(i) + AR /TN
O rrvernannnnnn 0 1 0
g —ty e — 1

y(i) = Cz(i). 6-122
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Here the o, i=10,1,-+,n — 1 are the coefficients of the characteristic
polynomial

> w2t 6-123

of the system, where o, = 1. Any completely controllable time-invariant
linear discrete-time system can be transformed into this form by the pre-
scription of Theorem !.43 (Section 1.9).

Similarly we introduce for single-output systems the following definition.

Definition 6.11. A single-output time-invariant linear discrefe-time system is
in dual phase-variable canonical form if it is represented as follows

000 -+ 0 —u

100 - 0 —g
z(i+ 1) = 01 0 -+ 0 —o x(i) 4+ Bu(i),
Qrvrervens 0 1 —o,
2=, 0,---,0, 1) 6-124

6.2.11 Discrete-Time Vector Stochastic Processes

In this section we give a very brief discussion of discrete-time vector sto-
chastic processes, which is a different name for infinite sequences of stochastic
vector variables of the form v(j), i=--+, —1, 0, 1, 2, - - -. Discrefe-time
vector stochastic processes can be characterized by specifying all joint
probability distributions

-P{v("l) S by, v(‘:ﬂ) S oy * "ty U(fm) S vm} 6'125

for all real v, va, * * * , v, fOr all integers iy, io, * * *, i, and all integers ne.
If
P{v(ll) <y, D(lﬂ) Lvg,mr, v(im) < vm} ’
= P{v(fl + k) S By, U(iﬂ + k) S Ug, " "%, U(im + k) S U,m} 6-126

for all real vy, vy, * * * , v,,, for all integers iy, iy, * * -, i, and for any integers
m and k the process is called stationary. If the joiut distributions 6-126 are all
multidimensional Gaussian distributions, the process is termed Gaussian.
We furthermore define:

Definition 6.12. Consider the discrete-time vector stochastic process v(i).
Then we call .
m(i) = E{w(i)} 6-127
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the mean of the process,

C(1, ) = E{o(Dv?(H} 6-128
the second-order joint moment matrix, and
R (i, jy = E{[v(1) — m(D]le(j) — m(N*} 6-129
the eovariance matrix of the process. Finally, '
0() = E{[s(i) — m(D][e()) — m(D]T} = R, 1) 6-130

is the vaviance natrix and C (i, 1} the second-order momemt matrix of the
process,

If the process v is stationary, its mean and variance matrix are independent
of 7, and its joint moment matrix C,(¢,f) and its covariance matrix &, ({7, f)
depend upon { — j only. A process that is not stationary, but that has the
property that its mean is constant, its second-order moment matrix is finite
for all 7 and its second-order joint moment matrix and covariance matrix
depend on i — j only, is called wide-sense stationary.

For wide-sense stationary discrete-time processes, we define the following.

Definition 6.13. The power spectral density matrix £ (0), —m < 0 < m, of a
wide-sense stationary discrete-time process v is defined as

L= SR, =z=¢% —m<L0<m, 6-131
=m0
if it exists, where R (i — k) is the covariance matrix of the process and where
j=+—L "
The name power spectral density matrix stems from its close connection with
the identically named quantity for continuous-time stochastic processes.
The foltowing fact sheds some light on this.

Theorem 6.20. Let v be a wide-sense stationary zero mean discrete-time
stochastic process with power speciral density mairix X, (6). Then

E{p(DeT(D} = k,(0) = ;]; _F %, (6) d6. 6-132

A nonrigorous proof is as follows. We write

1 5.(0) d = 1 ( $ R.0) E—J’ﬂi) 40
27 A7 oz \immm
= > Ry (—1—- f e‘“’"de)
fz=—m Z'JT -

= R,(0), 6-133



6.2 Linear Discrete-Time Systems 469

since

T ) 2w fori =10,
f e ) = [ 6-134
- ¢ otherwise.

Power spectral density matrices are especially useful when analyzing the
response of time-invariant linear discrete-time systems when a realization of a
discrete-time stochastic process serves as the input. We have the following
result.

Theorem 6.21. Consider an asymptotically siable time-invariont linear
discrete-time system with z-transfer matrix H(z). Let the input to the system
be a realization of a wide-sense stationary discrete-fime stachastic process u
with power spectral density matrix ., (8), which is applied from time — oo on.
Then the output y is a realization of a wide-sense stationary discrete-time
stochastic process with power spectral density matrix

2 (0) = H(eMZ (0 HT (e777), —n << 6-135
Example 6.7. Sequence of nutually uncorrelated variables
Suppose that the stochastic process o{f), i =+--,~1,0,1,2,---, con-

sists of a sequence of mutually uncorrelated, zero-mean, vector-valued sto-
chastic variables with constant variance matices (. Then the covariance
matrix of the process is given by
) fori=j/,
R{i—j= 6-136
0 for i #= j.

This is a wide-sense stationary process. Its power spectral density matrix is
.0 =0. " 6-137
This process is the discrete-time equivalent of white noise.

Example 6.8. Exponentially correlated noise
Consider the scalar wide-sense stationary, zero-mean discrete-time sto-
chastic process » with covariance function

Mﬁ D . 6-138
T

We refer to A as the sampling period and to T as the time constant of the

process. The power spectral density function of the process is easily found

to be

R(i— k)= o exp (—

0.2(] _ e-.f.'.AIT)
(ein _ e—A/T)(e—jB _ e—A.fT) 7

2,(0) = —-r<L0<m 6-139



470 Discrete-Time Systems

6.2.12 Linear Discrete-Time Systems Driven by White Noise

In the context of linear discrete-time systems, we often describe disturbances
and other stochastically varying phenomena as the outputs of linear discrete-
time systems of the form

z(i + 1) = A@Da(i) + BOWE),
¥} = C=().
Here =(i) is the state variable, (i) the output variable, and w({), i=---,

—-1,0,1,2,--+, a sequence of mutually-uncorrelated, zero-mean, vector-
valued stochastic vectors with variance matrix

6-140

E{w(DwT(i)} = V(i). 6-141
As we saw in Example 6.7, the process w shows resemblance to the white noise
process we considered in the continuous-time case, and we therefore refer to
the process w as discrete-time white noise. We call V(i) the variance matrix of
the process. When V(i) does not depend upon {, the discrete-time white noise
process is wide-sense stationary, When w(¢) has a Gaussian probability distri-
bution for each /, we refer to w as a Gaussian discrete-time white noise process,
Processes described by 6-140 may arise when continuous-lime processes
described as the outputs of continuous-time systems driven by white noise
are sampled. Let the continuous-time variable =(¢) be described by

(1) = A(O)=z(t) + B{t)w(t), 6-142

where w is white noise with intensity ¥(¢). Then if 1,, i =0,1,2,---, is-a
sequence of sampling instants, we can write from 1-61:

fie1
m(ti-l-l) = (D(Il-_!_l, t)x() -I-J; ’ @Q(t,1, DB(w(7) dr, " 6-143

where D(¢, t,) is the transition matrix of the differential sysiem 6-142. Now
using the integration rules of Theorem 1.51 (Section 1.11.1} it can be seen
that the quantities fas
J- O(t,.1, T)B(M)w(T) d, 6-144
iy
i=0,1,2,--, form a sequence of zero mean, mutually uncorrelated sto-
chastic variables with variance matrices

i1
f “D(ty,1, VBEW ()BT (1, 7) dr. 6-145
It is observed that 6-143 is in the form 6-140.

It is sometimes of interest to compute the variance matrix of the stochastic
process » described by 6-140. The following result is easily verified.
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Theorem 6.22. Ler the stochastic discrete-time process x be the solution of
the linear stachastic difference equation

n(i + 1) = A@)z() + BOw(), 6-146

where w(i), i=—1,0,1,2,---, is a sequence of mutually vncorrelated
zero-mean, vector-valued stochastic variables with variance matrices V{i).
Suppose that x(iy} = =g has mean my and variance mairix Q. Then the mean

af z(1) m(i) = E{=()}, 6-147
and the variance matrix af z(i), .
(i) = E{[=(i) — m(D][=(i) — m(DI"}, 6-148
can be given as prows. The mean is
m(i) = ©(i, iy)m,, i> iy, 6-149

wiere ©(I, iy) is the transition matrix of the difference equation 6-146, while
Q(i) is the solution of the matrix difference equation

Qi + 1) = ADOMAT() + BOVDOBT(E), i=inip+ 1,
O(ig} = Qy.

When the matrices 4, B, and ¥ are constant, the following can be stated
about the steady-state behavior of the stochastic process z.

6-150

Theorem 6.23. Let the discrete-time stochastic process x be the solution of
the stochastic difference equation

(i + 1) = Ax(i) + Bw(i),
w(iy) = %y, 6-151
where 4 and B are constant and where the uncorrelated sequence of zero-mean
stachastic variables w has a constant variance matrix V. Then if all the char-
acteristic values of A have moduli strictly less than I, and iy — — o0, the ca-
variance motrix of the process tends to an asymptotic value R (i,j) which
depends on i — j only. The corresponding asymptotic variance matrix Q is the
unique solution of the matrix equotion
0 = AQAT + BVBT. 6-152
In later sections we will be interested in quadratic expressions. The following
results are useful.

Theorem 6.24. Let the process = be the solution af
z(i + 1) = A=) + B(iw(i),

m(iﬂ) = Ty,

6-153
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where the w(i) are a sequence of mutuaily uncorrelated zero mean stochastic
variables with variance matrices V{i). Let R{i) be a given sequence of non-
negative-definite symmetric matrices. Then
iy , i1—1
E[z :cT(i)R(i):u(i)]= tr [}E.‘{_ﬂ:"_ﬂ:ﬂ"I YP(ig) + 3 B(OV(DBT(D)P(i + 1):[, 6-154
=g i=ip
where the nonnegative-definite symmetric matrices P(i) are the solution of the

matrix difference equation
P(i)=ATOP(I + DAD + R(), i=iL—Li—2"" ",

P(i;) = R(iy).
If A and R are constant, and all the characteristic valyes of A have moduli
strictly less than 1, P(i) approaches a constant value P as i, — oo, where P is
the unique solution of the mairix equation

P ATPA + R. 6-156
One method for obtaining the solutions to the linear matrix equations 6-152
and 6-156is repeated application of 6-150 or 6-155. Berger (1971) gives another
method, Power (1969) gives a transformation that brings equations of the
type 6-152 or 6-156 into the form

M X + XM,T = N,, 6-157
or vice versa, so that methods of solution available for one of these equations
can also be used for the other {see Section 1.11.3 for equations of the type

6-157). .
A special case occurs when all stochastic variables involved are Gaussian.

6-155

Theorem 6,25, Consider the stochastic discrete-tine process x described by
z(i + 1) = A{D={D) + BHw(),

z(iy) = Tp. 6-158

Then if the mutually uncorrelated stochastic varigbles w(i) are Gaussian and
the Initial state x, is Gaussian, = is a Gaussian process.

Example 6.9. Exponentially correlated noise
Consider the stochastic process described by the scalar difference equation

i+ 1) =al()+ o), &i)=1{&, fHh—>-—-0, 6139
where the w(i) form a sequence of scalar uncorrelated stochastic variables
with variance o,? and where |o] < 1. We consider & the output of a time-
invariant discrete-time system with z-transfer function

1

g2 — 0o

6-160
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and with the sequence w as input. Since the power spectral density function of
w is
Z(0) = 0.’ 6-161

we find for the spectral density matrix of ¢, according to 6-135,

a2

O

(e — o) —a)

Z(0)= 6-162
We observe that 6-162 and 6-139 have identical appearances; therefore,

6-159 penerates exponentially correlated noise. The steady-state variance
o, of the process ¢ follows from 6-152; in this case we have

o =o’n’ + o, 6-163
or
o t= 20 6-164
1o

Example 6.10. Stirred iank with disturbances

In Example 1.37 (Section 1.11.4), we considered a continnous-time model
of the stirred tank with disturbances included. The stochastic state differential
equation is given by

1
~ 0 0 0 1 1
0 _ 1 Fp Fy €10 — Cg Fgp — Cp
g W Vo | W
#f) = 1 z(f) + u(t)
0 0 —— 0 0 0
0
0 0 0 - 1 0 0
8,
00
0 0
+ w(t), 6-165
10
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where w is white noise with intensity

2a,° 0
B
v=| = .| 6-166
20,"
0 2o
Bn

Here the components of the state are, respectively, the incremental volume
of fluid, the incremental concentration in the tank, the incremental concen-
tration of the feed F,, and the incremental concentration of the feed Fj.
The variations in the concentrations of the feeds are represented as exponenti-
ally correlated noise processes with rms values o; and o, and time con-
stants #; and @,, respectively. :

When we assume that the system is controlled by a process computet so
that the valve settings change at instants separated by intervals A, the dis-
crete-time version of the system description can he found according to the
method described in the beginning of this section. Since this leads to some-
what involved expressions, we give only the outcome for the numerical
values of Example 1.37 supplemented with the following values:

o, = 0.1 kmeljm®,
oy = 0.2 kmol/m?,

f}, = 40 s, 6-167
fl, = 505,
A= 5s,

With this the stochastic state difference equation is

0.9512 0 0 0
0 0.9048 0.0669 0.02262
i+ 1) = z(i)
0 0 0.8825 0
0 0 0 0.9048
4,877 4.877
—1.1895 3.569
+ u(i) + w(i), 6-168
0 0
0 0

where w(f), { > iy, is a sequence of uncorrelated zero-mean stochastic vectors
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with variance matrix

0 0 0
0.00004886 0.00009375  0.000i
0.00009375  0.002212 0
0.0001 0 0.007252

6-169

o o o o

By repeated application of 6-150, it is possible to find the steady-state value
@ of the variance matrix of the state. Numerically, we obtain

0 0 0 0
0 0.00390 0.00339 0.00504
0 0.00339 0.0100 0
0 0.00504 0 0.0400

lwT}
1

6-170

This means that the rms value of the variations in the tank volume is zero
{this is. obvious, since the concentration variations do not affect the flows),
the rms value of the concentration in the tank is \/ 0.00390 = 0.0625 kmol/m?,
and the rms values of the concentrations of the incoming feeds are 0.1
kmol{m?® and 0.2 kmol/m?, respectively. The latter two values are of course
precisely oy and .

6.3 ANALYSIS OF LINEAR DISCRETE-TIMEL
CONTROL SYSTEMS

6.3.1 Introduction

In this section a brief review is given of the analysis of linear discrete-time
control systems. The section closely parallels Chapter 2.

6.3.2 Discrete-Time Linear Control Systems

In this section we briefly describe discrete-time control problems, introduce
the equations that will be used to characterize plant and controller, define the
notions of the mean square tracking error and mean square input, and state
the basic design objective. First, we introduce the plant, which is the system
to be controlled and which is represented as a linear discrete-time system
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characterized by the equations
z(i + 1) = A=) + B@u() + v,00),
z(iy)} = xy,
y(i) = C() + £,(Du()) + v,,(),
2(i) = D(x(i) + EoD)uli).

fori=id, iy +1, -

6-171

Here = is the stafe of the plant, =, the initial state, u the input variable, y the
observed variable, and = the controlled variable. Furthermore v, represents
the disturbance variable and v,, the observation noise. Finally, we associate
with the plant a reference variable r(i}, i = iy, iy + 1, - - - . It is noted that in
conirast to the continuous-time case we ailow both the observed variable
and the controlled variable to have a direct link from the plant input. The
reason is that direct links easily arise in discrete-time systems obtained by
sampling continuous-time systems where the sampling instants of the output
variables do not coincide with the instants at which the input variable changes
value (see Section 6.2.3). As in the continuous-time case, we consider sepa-
rately tracking problems, where the controlled variable z(i} is to follow a
time-varying reference variable r(i), and regulator problems, where the refer-
ence variable is constant or slowly varying. |
Analogously to the continuous-time case, we consider closed-loop and
open-loop controllers. The general closed-loop controller is taken as a linear
discrete-time system described by the state difference equation and the outpitt
equation
g+ 1) = LiqQ) + K,()r() — KDy,

(i) = FO)q(i) + H)r) — Hye).

We note that these equations imply that the controller is able to process the
input data r(f) and y(f) instanianeously while generating the plant input
u(?). If there actually are appreciable processing delays, such as may be the
case in computer control when high sampling rates are used, we assume that
these delays have been accounted for when setting up the plant equations
(see Section 6.2.3).

The general open-loop controller follows from 6-172 with K, and H,
identical to zero.

Closely following the continuous-time theory, we judge the performance
of a control system, open- or closed-loop, in terms of its mean square tracking
error and its mean square inpuf. The mean square tracking error is defined as

6-172

C,(D) = E{eT(DW(De(i}}, 6-173
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where
e(i) = z(i) — r(i). 6-174

W,(i) is a nonnegative-definite symmetric weighting matrix. Similarly, the
mean square input is defined as

C.(D) = E{uT(DW,(Du(i}, 6-175

where W, (7} is another nonnegative-definite weighting matrix. Our basic
objective in designing a control system is to reduce the mean square tracking
error as much as possible, while at the same time keeping the mean square
input down to a reasonable value.

As in the continuous-time case, a requirement of primary importance is
contained in the following design rule.

Design Objective 6.1. A control system should be asymptotically stable.

Discrete-time control systems, just as continuous-time control systems,
have the property that an unstable plant can be stabilized by closed-loop
control but never by open-loop control.

Example 6.11. Digital position control system with proportional feedback
As an example, we consider the digital positioning system of Example 6.2
(Section 6.2.3). This system is described by the state difference equation

I 0.08015 0.003396
w(i + 1) = (i) + (). 6-176
0 0.6313 0.06308

Here the first component &,(7) ol z(i} is the angular position, and the second
component & (f) the angular velocity. Furthermore, u(i} is the input voltage.
Suppose that this system is made into a position serve by using proportional
feedback as indicated in Fig. 6.7. Here the controlled variable [(i) is the
position, and the input voltage is determined by the relation

alh) = A — L0 6-177

In this expression r(f) is the reference variable and 4 a gain constant. We
assume that there are no processing delays, so that the sampling instant of the

LR uiiy | digital positioning L) =Ey(H)
A system

Fig. 6.7. A digital positioning system with proportional feedback.
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output variable coincides with the instant at which a new control interval is
initiated. Thus we have (=, 0)=(). 6-178

In Example 6.6 (Section 6.2.6), it was found that the open-loop z-transfer
function of the plant is given by
0.003396(z + 0.8575)
(z — 1)(z — 0.6313)
By using this it is easily found that the characteristic polynomial of the closed-
loop system is given by _ 7

(g — 1)(z — 0.6313) + 0.0033961(= + 0.8575). 6-180

In Fig. 6.8 the loci of the closed-loop roots are sketched. It is seen that when
Z changes from 100 to 150 V/rad the closed-loop poles leave the unit circle,

H(z) = 6-179

Fig. 6.8. The root loci of the digital
position contrel system. X, Open-loop
poles; O, open-loop zero.

hence the closed-loop system becomes unstable. Furthermore, it is to be
expected that, in the stable region, as A increases the system becormnes more and
more oscillatory since the closed-loop poles approach the unit circle more and
more closely. To avoid resonance effects, while maximizing 1, the value of 2
should be chosen somewhere between 10 and 50 V/rad.

6.3.3 The Steady-State and the Transient Analysis
of the Tracking Properties

In this section the response of a linear discrete-time control system to the
reference variable is studied. Both the steady-state response and the transient
response are considered. The following assumptions are made.
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1. Design Objective 6.1 is satisfied, that is, the contro! system is asymploli-

calfy stable.
2. The control system is time-invariant and the weighting matrices W, and

W, are constant.
3. The disturbance varioble v, and the observatien noise v, are identical

ta zero.
4. The reference variable can be represented as

r)=ry+ r (0, P=dyig+ 1, 6-181

where the constant part ry is a stochastic vector with second-order moment

matrix
E{ryry™} = Ry, 6-182

and the varviable part v is a wide-sense stationary zera-mean vector sfochastic
process with power spectral density matrix Z,(8).

Assuming zero initial conditions, we write for the z-transform Z(z) of the
controlled variable and the z-transform U(z) of the input

Z(:) = TERE),

-18
UG) = NERGE). 6-183

Here T(2) is the transmission of the system and N(z) the transfer matrix from
reference variable to input of the control system, while R(z) is the z-transform
of the reference variable. The control system can beeither closed- or open-
loop. Thus if E(z) is the z-transform of the tracking error (i) = =(i) — r(#),
we have

E(z) = [T(z) — I]R(z). 6-184

To derive expressions for the steady-state mean square tracking error and
input, we study the contributions of the constant part and the variable
part of the reference variable separately. The constant part of the reference
variable yields a steady-state response of the tracking error and the input as
follows:

lim e(i) = [T(1) — Iiry,

i—wm

lim u(f) = N(1)rg.

i~ oo

6-185

From Section 6.2.11 it follows that in steady-state conditions the response of
the tracking error to the variable part of the reference variable has the power
spectral density matrix

[T — IZ (O[T — IT. 6-186
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Consequently, the steady-state mean square tracking error can be expressed as
Com = lim C,(i)
i-rm

= E{r,"[T(1) — {]7W.IT(1) — I]ro}
Ftr [ql f “[T(e?) — IE(O[T(e") — %W, de}. 6-187
LT J—7
This expression can be rewritten as

Cow = 1t [[T(]) — ITWIT() = IR,

+ 3= [ - mrware - ). 61ss
T =i

Similarly, the steady-state mean square input can be expressed in the form
Cun = lim C,()
1=+t m

T

—tr [Nf‘(nm,N(l)RnJr i fMNT(e‘j")WuN(e”“)Er(B) de}. 6-189

Before further analyzing these expressions, we introduce the following
additional assumption,

5. The constant part ond the variable part of the reference variable have
uncorrelated components, that is, both Ry and T (0) are diagonal ond can be
written in the form

Ry = diﬂg (Ru,1= Ryt oo, -Ru,;,):
Er(f)) = dlag [Er.l(ﬂ)i zr.ﬁ(g)’ T Er,n(ﬂ)]a

where p is the dimension of the reference variable and the controlled variable.

6-190

With this assumption we write for 6-188:

Cam =§ RU.:‘{[T(I) - IIT H’u[T(l) - I]}ﬁ

+25 3 78, 0T — IFWITE — 1) d0, 6191
2T i=1d -7

where {M};; denotes the i-th diagonal entry of the matrix /. Following
Chapter 2, we now introduce the following notions.

Definition 6.14. Let p{i), i=---,—1,0,1,2,- -+, be a scalar wide-sense
stationary discrete-time stochastic process with power spectral density function
Z,(0). Then the normalized frequency band O of this process is defined as the
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sef af normalized frequencies 0, 0 < g < @, for which
5,9 > «. 6-192

Here o is so chosen that the frequency band contains a given fraction 1 — &,
where & is small with respect to 1, of half the power of the process, that is,

f S0 d0 = (1 -~ s)fﬂEl,(B) df. 6-193
0@ 0

As in Chapter 2, when the frequency band is an interval [8,, #;], we define
0, — 0, as the normalized bandwidrh of the process. When the frequency band
is an interval [0, 6,], we define 0, as the normalized cutoff frequency of the
PIocess. '

In the special case where the discrete-time process is derived from a con-
tinuous-time process by sampling, the (not normalized) bandwidth and cut-
off frequency follow from the corresponding normalized quantities by the
relation

w = 0JA, : 6-194

where A is the sampling period and w the (not normalized) angular frequency.
Before returning to our discussion of the steady-state mean square tracking
error we introduce another concept.

Definition 6.15. Let T(z) be the transmission of an asymptotically stable
time-invariant linear discrete-time control system. Then we define the norma-
lized frequency band of the i-th link of the control system as the set of normalized
Srequencies 0,0 < 0 < =, for which

(IT(e™) = I"W,[T(e™®) — N} < W, 40 6-195

Here £ is o given number which is small with respect to 1, W, is the welghting

matrix for the mean square tracking error, and W, ;; the i-th diagonal entry of
W :

a

Here as well we speak of the bandwidth and the cutaff frequency of the ith
link, if they exist. If the discrete-time system is derived from a con-
tinuous-time system by sampling, the (not normalized) bandwidth and cutofl
frequency can be obtained by the relation 6-194.

‘We can now phrase the following advice, which follows from a considera-
tion of 6-191.

Design Objective 6.2. Let T(2) be the p X p transmission of an asymptotically
stable time-invariant linear discrete-time control system, for which both the
constant and the variable part of the reference variable have uncorrelated
camponents, Then in order to obtain a small steady-state mean square tracking
error, the frequency band of each of the p links should contain the frequency
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band of the corresponding component of the reference variable. If the i-th
component of the reference variuble, i =1,2, -+, P, is likely to have a

nonzere constant part, {[T(1) — IIFW,[T(1) — I}y should be small, pref-
erably zero.

Let us now consider the steady-state mean square input as given by 6-189.
Under assumption 5 this expression can be rewritten as

Cam =>: Ry, ANT(DW,N(D}s

| |
+ ,i i f %, LO{NT(e "W, N}, do. 6-196
LT i=1dl=—7

Since C,,,, should not be made too large, we extract the following advice.

Design Objective 6.3. In order to obtain a small steady-state mean sqiare
input in an asymptotically stable time-invariant linear discrete-time control
system with a p-dimensional reference variable with uncorrelated components,

{NT(e YW, N(e™ ]y 6-197

should be made small aver the normalized Jrequency band of the i-th component
of the reference variable, for i =1,2,-- -, p.

3 =

As in Chapter 2, we do not impose restrictions on the first term of 6-196
because only the fluctuations of the input variable about its set point need be
considered.

We conclude this section with a discussion of the transient behavior of the
response of the control system to the reference variable. As in the continuous-
time case, we define the settling time of the mean square tracking error, the
mean square input, or any other quantity, as e time it takes this quantity
to reacl its steady-state value within a specified accuracy. This settling time
can be expressed as a number of intervals, or in seconds when the sampling
interval is known. Obviously, it is desirable that the mean square tracking
error of a control system settle down to its steady-state value as soon as

possible after start-up or after upsets. We thus have the following design
rule.

Design Objective 6.4. The settling time of the mean square tracking error
of a discrete-time control system should be as short as possible.

The transient behavior of the mean square tracking error, the mean square
input, and other quantities of interest can be computed in a manner similar
to the continuous-time approach. For the various stochastic processes that
influence the evolution of the control system, mathematical models are assumed
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in the form of discrete-time systems driven by discrete-time white noise.
The variance matrix of the state of the system that results by augmenting
the control system difference equation with these models can be computed
according to Theorem 6.22 (Section 6.2.12). This variance matrix yields all
the data required. The example at the end of this section iliustrates the pro-
cedure. Often, however, a satisfactory estimate of the settling time of a given
quantity can be obtained by evaluating the transient behavior of the response
of the control system to the constant part of the reference variable alone;
this then becomes a simple matter of computing step responses.

For time-invariant control systems, information about the settling time
can often be derived from the location of the closed-loop characteristic values
of the system. From Section 6.2.4 we know that all responses are linear com-
binations of functions of the form A, i = f,, 7, + 1, -+ -, where 4 is a char-
acteristic value. Since the time it takes |A|? to reach 1% of its initial value of I
is {assuming that 4] < 1)

2

o (L) 6-198
E10 1]

time intervals, an estimate of the 1 % settling time of an asymptotically stable
linear time-invariant discrete-time control system is

[ 2
,a * i 6-199
llOEln (IA l)

!

time intervals, where 4,, / = 1, 2, - - -, 1, are the characteristic values of the
control system. As with continuous-time systems, this formula may give
misleading results inasmuch as some of the characteristic values may not
appear in the response of certain variables. ‘

‘We conclude this section by pointing out that when a discrete-time control
system is used to describe a sampled continuous-time system the settling
time as obtained from the discrete-time description may give a completely
erroneous impression of the settling time for the continuous-time system.
This is because it occasionally happens that a sampled system exhibits quite
satisfactory behavior at the sampling instants, while befween the sampling
instants large overshoots appear that do not seitle down for a long time. We
shall meet examples of such situations in later sections.

Example 6.12. Digital pesition control system with proportional feedback

We illustrate the results of this section for a single-input single-output
system only, for which we take the digital position control system of Example
6.11. Here the steady-state tracking properties can be analyzed by considering
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the scalar transmission T'(z), which is easily computed and turns out to be
given by

_ 0.0033964(z -+ 0.8575)
" (z — 1)(z — 0.6313) + 0.003396A(z + 0.8575)

() 6-200
In Fig. 6.9 plots are given of |T(e™*)| for A = 0.1s, and for values of 1
between 5 and 100 V/rad. It is seen from these plots that the most favorable
value of A is about 15 V/rad; for this value the system bandwidth is maximal
without the occurrence of undesirable resonance effects.

10

e N

L —— . A=100
\\\h A=50

0.} \\ x=125

’ [ 2=15
T 3-1

—— 3.5

0.0t
1} 5

u.l—i-—{l‘cld/s)

Fig. 6.9. The transmissions of the digital position control system for various values of the
gain factor A.

To compute the mean square tracking error and the mean square input
voltage, we assume that the reference variable can be described by the model

K + 1) = 0.9802r(i) - w(i). 6-201

Here w forms a sequence of scalar uncorrelated stochastic variables with
variance 0.0392 rad®. With a sampling interval of 0.1 s, this represents a
sampled exponentially correlated noise process with a lime constant of 5 s.
The steady-state rms value of r can be found to be 1 rad (see Example 6.9).
With the simple feedback scheme of Example 6.11, the input to the plant
is given by -
u(iy = Ar() — AE.(D), 6-202

which results in the closed-loop difference equation

0.940906 0.08B015 0.05094
(i -k 1) = ( =( (

r@). 6203
—0.9462  0.6313 0.9462

Here the value 2 = 15 ¥/rad has been substituted. Augmenting this equation
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with 6-201, we obtain

EG+D 0.54506 0.08015 0.05094%\ /£&() 0
i+ 1)] = —0.9462 0.6313 0.9462 ELD | + 10 |
i+ 1) 0 0 0.9802 r(H) 1
6-204
We now define the variance matrix
| &()
Q) = E{ | &) | (5.0, £u), r(D) ). 6-205
(i)

Here it is assumed that E{z({;)} = 0 and E{r(i,)} = 0, so that (/) and r{;)
have zero means for all /. Denoting the entries of Qi) as Q;.(1).j, k = 1,2,3
the mean square tracking error can be expressed as
C.() = E{[E:0) — r(0F)
= E{&3(D} — 2E{L (O} + E{r* ()}
= Quli) — 201 + Ouli)

3

1 0 -1
= tr { Q(f) 0 0 01),. 6-206
—1 0 1

For the mean square input, we have
C. (1) = E{p(D)} = E{22[r(i) — LD} = 22C, (). 6-207
For the variance matrix Q(/), we obtain from Theorem 6.22 the matrix differ-
ence equation
O(i + 1) = MO(HMT + NVNT, 6-208
where M {s the 3 % 3 matrix and & the 3 % | matrix in 6-204. ¥ is the vari-
ance of w(i). For the initial condition of this matrix dilference equation, we

- choose
000

om=140 0 0]. 6-209
D O 1

This choice of Q(0) implies that at / = 0 the plant is at rest, while the initial
variance of the reference variable equals the steady-state variance 1 rad®
Figure 6.10 pictures the evolution of the rms tracking error and the rms
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input voltage. It is seen that the settling time is somewhere between 10 and 20
sampling intervals.

It is also seen that the steady-state rms tracking error is nearly 0.4 rad,
which is quite a large value. This means that the reference variable is not very
well tracked. To explain this we note that continuous-time exponentially corre-
lated noise with a time constant of 5 s {from which the reference variable is

ir -]15

rms rms
trocking input
error voltoge
f osf
(rad
‘ ] V)
o 10
0 10 20

sompling instont i ——-

Fig. 6.10. Rms tracking error and rms input voltage for the digita] pesition control
system.

derived) has a 1 % cutoff frequency of 63.665 = 12.7 rad/s (see Section 2.5.2).
The digital position servo is too slow to track this reference variable properly
since its 1% cutoff frequency is perhaps 1 rad/s. We also see, however, that
the steady-state rms input voltage is ahout 4 V. By assuming that the maxim-
ally allowable rms input voltage is 25 V, it is clear that there is considerable
raom for improvement. '
Finally, in Fig. 6.11 we show the response of the position digital system
to a step of 1 rad in the reference variable. This plot confirms that the settling
time of the tracking error is somewhere between 10 and 20 time intervals,

'l -
pasition

Clit

- UIMH

0 10 20
sompling instant | —=—

Fig. 6.11, The response of the digital position controf system to a step in the reference
varinble of 1 rad.
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depending upon the accuracy required. From the root locus of Fig. 6.8, we
see that the distance of the closed-loop poles from the origin is about 0.3.
The corresponding estimated 13 settling time according to 6-199 is 20.6
time intervals.

6.3.4 Further Aspects of Linear Discrete-Time Control System
Performance

In this section we briefly discuss other aspects of the performance of linear
discrete-time control systems. They are: the effect of disturbances; the effect
of observation noise; and the effect of plant parameter uncertainty. We can
carry out an analysis very similar to that for the continuous-time case. We
very briefly summarize the results of this analysis. To describe the effect of
the disturbances on the mean square tracking error in the single-input single-
output case, it turns out to be useful to introduce the sensitivity function

S(E) = ———— | 6-210
1 + H{z)G(z)
where
H(z) = D(z — A B+ E 6-211
is the open-loop transfer function of the plant, and
G(z) = F(zI — LYK, + H, 6-212

is the transfer function of the feedback link of the controller. Here it is
assumed that the controlled variable of the plant is also the observed vari-
able, that is, in 6171 C = D and E; = E,; = E. To reduce the effect of the
disturbances, it turns out that |S(e’)| must be made small over the frequency
band of the equivalent disturbance at the controlled variable, If

IS <1 forall0 <8< m, 6-213

the closed-loop system always reduces the effect of disturbances, no matter
what their statistical properties are, If constant disturbances are to be
suppressed, S(1) should be made small (this statement is not true without
qualification if the matrix 4 has a characteristic value at 1), In the case of a
‘multiinput multioutput system, the sensitivity function 6-21@ is replaced with
the sensitivity matrix

5(z) = {I + HEGE] 6-214

and the condition 6-213 is replaced with the condition

ST WS < W, forall0 <6< m 6-215

where W, is the weighting matrix of the mean square tracking error.
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In the scalar case, making S(e’”) small over a prescribed frequency band
can be achieved by making the controller transfer function G(e’) large over
that frequency band. This conflicts, however, with the requirement that the
mean square input be restricted, that the effect of the observation noise be
restrained, and, possibly, with the requirement of stability. A compromise
must be found.

The condition that S(e’") be small over as large a frequency band as pos-
sible also ensures that the closed-loop system receives protection against para-
meter variations. Here the condition 6-213, or §-215 in the multlivariable
case, guarantees that the effect of small parameter variations in the closed-
loop system is always less than in an equivalent open-loop system.

6.4 OPTIMAL LINEAR DISCRETE-TIME STATE
FEEDBACK CONTROL SYSTEMS

6.4.1 Introduction

In this section a review is given of linear optimal control theory for discrete-
time systems, where it is assumed that the state of the system can be com-
pletely and accurately observed at all times. As in the continuous-time
case, much of the attention is focused upon the regulator problem, although
the tracking problem is discussed as well. The section is organized aleng the
lines of Chapter 3.

6.4.2 Stability Improvement by State Feedback

In Section 3.2 we proved that a continuous-time linear syslem can be stabi-
lized by an appropriate feedback law if the system is completely controllable
or stabilizable. The same is true for discrete-time systems.

Theorem 6.26. Let
(i + 1) = Ax(i) 4+ Bu{i) 6-216

represent a time-invariant linear discrete-time system. Consider the time-
invariant control layw
u(i) = —Fx(j). 6-217

Then the closed-loop characteristic values, that is, the characteristic values of
A — BF, can be arbitrarily located in the complex plane (within the resiviction
that complex characteristic values ocenr in complex conjugate pairs) by
choosing F suitably if and only if 6-216 is completely controllable. It is possible
to choose F such that the closed-loop system is stable if and only if 6-216 is
stabilizable.
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Since the proof of the theorem depends entirely on the properties of the
matrix 4 — BF, it is essentially identical to that for continuous-time systems.
Moreover, the computational methods of assigning closed-loop poles are the
same as those for continuous-time systems. '

A case of special interest occurs when all closed-loop characteristic values
are assigned fo the origin, The characteristic palynomial of A — BF then is
of the form

det (Al — A + BF) = 2", 6-218

where 7 is the dimension of the system. Since according to the Cayley-
Hamilten theorem every matrix satisfies its own characteristic equation, we
must have

(Ad— BF)"=0. 6-219

In matrix theory it is said that this maltrix is nilpotent with index n. Let
us consider what implications this has. The state at the instant / can be ex-
pressed as

w(f) = (4 — BFY=(0). 6-220

This shows that, if 6-219 is satisfied, any initial state (0} is reduced to the
zero state at or before the instant #, that is, in # steps or less (Cadzow, 1968;
Farison and Fu, 1970). We say that a system with this property exhibits a
state deadbeart response. In Bection 6,.4.7 we encounter systems with onpuf
deadbeat responses.

The preceding shows that the staie of any completely controilable time-
invariant discrete-time system can be forced to the zero state in at most n
steps, where n is the dimension of the system. It may very well be, however,
that the control Iaw that assigns all closed-loop poles to the origin leads to
excessively large input amplitudes or to an undesirable transient behavior.

We summarize the present results as follows.

Theorem 6.27. Let the stafe difference equation
(i + 1} = A=z(?) + Bui) - 6-221

represent a completely controllable, time-invariant, n-dimensional, linear
discrete-time sysiem. Then any initial state can be reduced to the zero state in at
most n steps, that is, for every =(0) there exists air input that makes x(n) == 0.
This can be achieved tlrough the time-invariant feedback law

u{i) = —Fa(i), 6-222

where I is so chosen that the matrix A — BF has all its characteristic values
at the origin.
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Lixample 6,13, Digital position control system
The digital positioning system of Example 6.2 (Section 6.2.3) is described
by the state difference equation

1 0.08013\ 0.0033%6
= (o 0.6313 )z (0.06308 )‘” > 6323
The system has the characteristic polynomial
(z — D(z — 0.6313) = 2* — 1.6313z 4 0.6313. 6-224
In phase-variable canonical form the system can therefore be represented as
L : 0 1 , AN
s+ D= (-0.6313 1.6313)z 0+ (1)”0)' 6225

The transformed state = (1) is related to the original state z{i) by (i) = Tz'(i),
where by Theorem 1.43 (Section 1.9) the matrix 7 can be found to be

0.002912 0.003396
~ \_.0.06308 0.06308

It is immediately seen that in terms of the transformed state the state dead-
beat control law is given by

6-226

(i) = —(—0.6313, 1.6313)"(i). 6-227
In terms of the original state, we have

i{f) = — (—0.6313, 1.6313) T (), 6-228
or :

p(iy = —(138.5, 17.33)z(i). 6-229

In Fig. 6.12 the complete response of the deadbeat digital position control
system to an initial condition x(0) = col (0.1, 0) is sketched, not only at the
sampling instants, but also at the intermediate times. This response has been
obtained by simulating the continuous-time positioning system while it is
controlled with piecewise constant inputs obtained from the discrete-time
control law 6-229. It is seen that the system is completely at rest after two
sampling periods.

6.4.3 The Linear Discrete-Time Optimal Regulator Problem

Analogously to the continuous-time problem, we define the discrete-time
regulator problem as follows.

Definition 6.16. Consider ihe discrete-time linear system
x(i 4 1) = AD=() + B(DHul), 6-230
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Fig. 6.12. State deadbeat response of the digital position cantrol system.

where
. , (ip) = . 6-231
with the controlled variable ‘
2(i) = D(x(i). 6-232
Consider as well the criterion
-1
D ETG A+ DR+ D2(i + 1) + uT(DR(Du())] + «T(i)Px(iy), 6-233
i=ig .

where Ry(i+1)>0 and Ri(i) >0 for i=1iy, ip+1,--+,i,— 1, and
Py > 0. Then the problem of determining the input u(i) for i = iy, iy + 1, -,
1, — 1, is called the discrete-time deterministic linear optimal regulator problem.
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If all matrices occurring in the problem formulation are canstant, we refer to
it ay the time-invariant discrete-time lincar aptimal regnlator problem.

It is noted that the two terms following the summation sign in the criterion
do not have the same index. This is motivated as follows. The initial value of
the controlled variable z(#,) depends entirely upon the initial state (i;) and
cannot be changed. Therefore there is no point in including a term with
z(iy) in the criterion. Similarly, the final value of the input #(i,) affects only
the system behavior beyond the terminal instant #,; therefore the term in-
volving #(i;) can be excluded as well. For an extended criterion, where the
criterion contains a cross-term, see Problem 6.1.

It is also noted that the controlled variable does not contain a direct link
in the problem formulation of Definition 6.16, although as we saw in Section
6.2.3 such a direct link easily arises when a continuous-time system is dis-
cretized. The omission of a direct link can be motivated by the fact that
usually some freedom exists in selecting the controlled variable, so that aften
it is justifiable to make the instants at which the controlled variable is to be
controlled coincide with the sampling instants. In this case no direct link
enters into the controlled variable (see Section 6.2.3). Regulator problems
where the controlled variable does have a direct link, however, are easily
canverted to the formulation of Problem 6.1.

In deriving the optimal control law, ocur approach is different from the
continuous-time case where we used elementary calculus of variations; here
we invoke dynamic programming (Bellman, 1957; Kalman and Koepcke,
1958). Let us define the scalar function o[x{7), /] as follows:

i1—1

min_ [z[z-’"(f+ DRy + D+ 1)
wlf),eer, uliy—1} =

ofa(i), 1] = + W TR D] + rcT(fl)le(fl)] 6-234

fori=igig+1,-+-,i;—1,

2T(i))Pyz(iy) for i = i,.

We see that ofz(f), /] represents the minimal value of the criterion, computed
over the period /.7 4+ 1, - -+, i, when at the instant / the system is in the state
x(7). We derive an iterative equation for this function. Consider the instant
i — 1, Thenif the input u(i — 1}is arbitrarily selected, but »(¢), (i + 1),-- -,
u(i; — 1) are chosen optimally with respect to the state at time /, we can
write for the criterion over the period i — 1,7,---,#:

i1—1

MZ 7 + DRy + D(f + 1) + u” (NRL(Du(N] + m""(il)Px-'ﬂ({i)
— ET(DR(D2()) + uT(i — DRI — Du(i — D] + ofz(D), il 6235
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Obviously, to determine #°(7 — 1), the optimal input at time /i — 1, we
must choose u(i — 1) so that the expression

2T (DRy2(D) + v (i — DRu(i — 1) + afz(i), {] 6-236

is minimized. The minimal value of 6-236 must of course be the minimal
value of the criterion evaluated over the control periodsi — 1,4, ---,7i; — 1.
Consequently, we have the equality

a[z(i — 1), i — )] = min {zT(HR,(N=(i)

uli-1)
+ uT(i — DRI — Du(i — 1) + o[z(®), i1}. 6-237

By using 6-230 and 6-232 and rationalizing the notation, this expression takes
the form

oz, i — 1) =min {[A(i — Dz + B(i — Dul"R(DN[A(i — D= + B(i — Du]
' Y b WTRY( — Du + o([Ai — e + B(i — Dul, )}, 6238

where

R,(D) = DT¥(DRL()D(D). © 6-239
This is an iterative equation in the function oz, /). It can be solved in the
order o{xz, i), o{w.i, — 1), o(z,ip— 2),---,since oz, i) is given by

6-234, Let us attempt to find a solution of the form
a(z, i) = zTP(i)x, | 6-240

where P(i), i = §y, iy + 1, - - -, #;. is a sequence of matrices to be determined.
From 6-234 we immediately see that

P(i))= P,. 6-241
Substitution of 6-240 into 6-238 and minimization shows that the optimal
input is given by
u(i— 1) = —F(i — D=(i — 1), i=ip+1, -, i, 6-242
where the gain matrix F(i — 1) follows from
F(i — 1) = {Ro(i — 1) + B™(i — D[R,() + P(D]B( — D}
- BT(i — )R, (}) 4+ P()JA(i — 1). 6-243

The inverse matrix in this expression always exists since R.(f—1)> 0
and a nonnegative-definite matrix is added. Substitution of 6-242 into
6-238 yiclds with 6-243 the following difference equation in P(j):

P(i — 1) = A%(i — D[R(D) + PMOIA(F — 1Y — B(i — DF({i — 1],
i=iy+ 1, -,i;. 6244
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It is easily verified that the right-hand side is a symmetric matrix.
We sum up these results as follows.

Theorem 6.28. Consider the discrete-time deterministic linear optimal
regulator problem. The optimal input is given by

ll(i) = —'F(I'):U(I'), P= iﬂ: lll] + ls T, f1 - 1: 6-245
where
F(i) = {Ry(i) + BT(DIR(i + 1) + P(i + D]BN}
- BTHO[R(i + 1) + P(i + 1)]4(). 6-246

Here the inverse always exists and

R(i) = DTORDDG), i=ip+1,ig+2, ", 6247

The sequence of matrices P(i}, i = iy, iy + 1, , iy — 1, satisfies the matrix
difference equation

P(i) = ATDIR,(i + 1) + P(i + DJAG) — BOHF(D)],

i=ipig+1,-"-,i;—1, 6-248
with the terminal condition
P{i))=P,. 6-249

The value of the criterion 6-233 achieved with this control law is given by
z (i) P(ig)=(ip). 6-250

We note that the difference equation 6-248 is conveniently solved backward,
where first £(i) is computed from P(i 4 1) through 6-246, and then P(i) from
P(i + 1) and F(i) through 6-248. This presents no difficulties when the aid of
a digital computer is invoked. Equation 6-248 is the equivalent of the con-
tinuous-time Riccati equation.

Tt is not difficult to show that under the conditions of Definition 6.16 the
solution of the discrete-time deterministic linear optimal regulator problem
as given in Theorem 6.28 always exists and is unique.

Example 6.14. Digital position control system
Let us consider the digital positioning system of Example 6.2 (Section
6.2.3). We take as the controlled variable the position, that is, we let

L) = (1, 0)x(i). 6-251
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The Following criterion is selected. Minimize

f1—1

2+ 1) + ') 6-252
=0
Table 6.1 shows the behavior of the gain vector #{(i) for iy = I0 and p =
0.00002. We sce that as / decreases, F(7) approaches a steady-state value

F = (110.4, 12.66). 6-253

The response of the corresponding steady-state closed-loop system to the
initial state 2(0) = col (0.1, 0) is given in Fig. 6.13,

Table 6.1 Behavior of the Feed-
back Gain Vector F{i) for the
Dipital Position Control System

F()

T

(107.7, 8.63)
(114.0, 12.66)
(109.4, 12.58)
(110.3, 12.64)
(110.4, 12.66)
(1104, 12.66)
(1104, 12.66)
(110.4, 12.66)
(110.4, 12.66)
(1104, 12.66)

O YW Ry~ oD

6.4.4 Steady-State Solution of the Discrete-Time Regulator Problem

In this section we study the case where the control period extends from i, to
infinity. The following results are in essence identical to those for the con-
tinuous-time case.

Theorem 6.29. Consider the discrete-time deterninistic linear optimal
regulator problem and its soluiion as given in Theorem 6.28. Assume rthat
A(@), B(), R(i + 1), and R.(i) are bounded for i > i,, and suppose that

Ri+1D2al, RDZ2PL P24, 6-254

where o and § are positive constants.

(i) Then if the system 6-230 is either
(a) completely controllable, or
(b) exponentially stable,
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Fig. 6.13. Response of the optimal digi-
tal position control system to the initial
condition ={0) = col(0.1, 0).

the solution P(i} of the difference equations 6-246 and 6-248 with the terniinal
condition P(i,) = 0 converges io a nonnegative-definife sequence of matrices
P(i) as iy — oo, whicl is a solution of the difference equations 6-246 and 6-248.
(ii) Moreover, if the system 6-230, 6-232 is either

(€) both uniformly completely controllable and uniformly complefely
reconstructible, or

(d) exponentially stable,
the solution P(i) of the difference equations 6-246 and 6-248 with the terminal
condition P(i,) = P, converges to P(i) as iy — o for any P, > 0.
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The stability of the steady-state control Iaw that corresponds to the steady-
state solution P is ascertained from the following result.

Theorem 6.30. Consider the discrete-time deterministic linear optimal
regulator problem and suppose that the assumptions of Theorem 6.29 concerning
A, B, Ry, Ry, and R, are satisfied. Then If the system 6-230, 6-232 is either

(&) uniformly completely controllable and uniformly completely recon-
structible, or

(b) exponentially stable,
the following facts hold.

(i) The steady-state eptimal control law

u(i) = — F(Dz (), - 6255

where F(i) is obtained by substituting P(i) for P(i) in 6-246, is exponentially
stable.
(ii) The steady-state aptimal control law 6-255 minimizes

i1
lim { S+ DRy(F+ D2(i 4+ 1) + uT(DR(Du ()] + 2T(i)Pyz(iy)}  6-256
f1—+ o \i=Ty

Jor all Py > 0. The minimal value of 6-256, which is acliieved by the steady-state
aptimal control law, is given by

‘ =2 (i) P(ig)=(i,). 6-257

The proofs of these theorems can be given along the lines of Kalman’s

proofs (Kalman, 1960) for continuous-time systems. The duals of these

theorems (for reconstruction) are considered by Deyst and Price (1968).

In the time-invariant case, the following facts hold (Caines and Mayne,
1970, 1971).

Theorem 6.31. Consider the time-invariant discrete-time linear optimal
regulator problem. Then if the system is botl stabilizable and detectable the
Jollowing facts hold.

() The solution P(i) of the difference equations 6-246 and 6-248 with the
terminal condition P(i;) = P, converges to a constant steady-state solution P
as iy — oo for any P, > 0.

(ii) The steady-state optimal control law is time-tnoariant and asymptotically
stable.

(i) The steady-state optimal control law minimizes 6-256 for all P, > Q.
The minimal value of this expression is given by

w (i) Pr(ig).  6-258
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In conclusion, we derive a result that is useful when studying the closed-loop
pole locations of the steady-state time-invariant optimal regulator. Define
the quantity
PO =[R(G+ 1)+ P+ Dl + 1),
f=ipig4 Lo i — 1, 6259

where R, and P are as given in Theorem 6.28. We derive a difference equation
for p(i). From the terminal condition 6-249, it immediately follows that

pli,— D= [Ry(iD + Pi]=(iy). 6-260

Furthermore, we have with the aid of 6-248

p(i — 1) = Ry(i=(i) + P()=()
= Ry(D() + ATD[Re(i + 1) + P(i + DILA®) — BEFG)(i)
= Ry()z(i) + AT(OIR( + 1) + P + Dl + 1)
= Ry(D=(i) + AT(Dp(d). 6-261
Finally, we express #({) in terms of p(i). Consider the following string of
equalities “
=Ry (HBT()p()) = —RyOBTDR,(i + 1) + P + D]=(i + 1)
= —R7(HBT(D[Ry(i + 1) + P(i + DIAD=() + B(i)u"(1)]
= —Ry'(DBY(DIR(i + 1) + P(i + 1)]A()=()
—R(DBT(D[R.(i + 1) + P(i + 1)IB(n°(d). 6-262
Now from 6-246 it follows that
BY()[Ry(i + 1) + P(i + 1)]4(Da(i)
= {Ry(1) + BT(DIR.(i + 1) + P(i + DIBO}IF(Da(i)
= —{Ry(i) + BTO)R(i + 1) + P(i + DIBD} (). 6263
Substitution of this into 6-262 yields
—R;Y(DBT(Dp(i) = u"(i). 6-264
Inserting () as given here into the state difference equation, we obtain the
following two-point boundary-value problem
Iﬂ(i + 1) = A(i)m(i) — B(i)R;!hl(i)BT(i)p(f)a i= iDs fﬂ + 1: Tt I.1 - 1:
p(i - 1) = Rl(i)m(i) + AT(i)p(i)z i= iU + 15 l.0 + 2: s il —1
w(iy) = @,

pli, — 1) = [R,(iy) + Pi]=(iy). 6-265
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We could have derived these equations directly by a variational approach to
the discrete-time regulator problem, analogously to the continuous-time

version.
Let us now consider the time-invariant steady-state case. Then p(i) is

defined by ~
P} = (By + Pl(i + 1), P=ig g+ 1,---. 6-266

In the time-invariant case the difference equations 6-265 take the form

z(i 4 1) = Az(i) — BRz'BTp(i), i=1ipig4+1,"",

. . ; L. , 6-267
p(i — 1) = Ry=(i) + AT p(d), i=ig+1,i,+2,---
Without loss of generality we take iy = 0; thus we rewrite 6-267 as
z(i + 1) = Az(i) — BR7'BTp(i), i=0,1,2,---,

) ) T Bp(D) 6268

pH)=Ruz(i+ D+ ATp(i+1), i=0,1,2,---

We study these difference equations by z-transformation. Application of the
z-transformation to both equations yields

zX(z) — zx, = AX(z) — BR;*BTP(z),
P(z) = zR,X(2) — 2R3, + zATP(z} — zATp,,

where x, = z(0), p; = p(0), and X(z) and P(z) are the z-transforms of = and
7, respectively. Solving for X(z) and P(z), we write

X(=) zZl — A4 BR;7BT \7 EL
= . 6-270
P(z) —R, U~ AT —Ryz, — ATp,

‘When considering this expression, we note that each component of X(2) and
P(z) is a rationa] function in z with singularities at those values of z where

zl — A BR;'BT
det = 0. 6-271
—R, =l — 4"

Letz;, j=1,2,+-, denote the roots of this expression, the left-hand side
of which is a polynomial in z and 1/z. If z; is a root, 1/2; also is a root. More-
over, zero can never be a root of 6-271 and there are at most 2n roots (1 Is
the dimension of the state z). It follows that both z(i) and p(i} can be de-
scribed as linear combinations of expressions of the form z;%, iz, %7, - - -,
for all values of j. Terms of the form i*zf, £ = 0,1, -+, — 1, occur when
z; has multiplicity /. Now we know that under suitable conditions stated in
Theorem 6.31 the steady-state response of the closed-loop repulaior is
asymptotically stable. This means that the initial conditions of the difference
equations 6-268 are such that the coefficients of the terms in z(f) with powers
of z; with |} > 1 are zero. Consequenily, (7} is a linecar combination of

6-269
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powers of those roots 2, for which |z;] < 1. This means that these roots are
characteristic values of the closed-loop regulator. Now, since 6-271 may have
less than 27 roots, there may be less than # roots with moduli strictly less
than 1 (it is seen in Section 6.4.7 that this is the case only when 4 has one or
more characteristic values zera). This leads to the conclusion that the re-
maining characteristic values of the closed-loop regulator are zero, since z
appears in the denominators of the expression on the right-hand side of
6-270 after inversion of the matrix.

We will need these results later (Section 6.4.7) to analyze the behavior of
the closed-loop characteristic values. We summarize as follows.

Theorem 6.32, Consider the time-invariant discrete-time deterministic linear
optimal regulator problem. Suppose that the n-dimensional system

(i + 1) = Az({f) + Bu()),

-2
2(i) = Dx(f), 6272

is stabilizable and detectable. Let z;, j = 1,2, -+ -, r, with r < n, denote those
roots of ‘

2l — A BR;'BT
( ) =0 6-273

—D¥R.D £ — AT
that have moduli strictly less than I. Then z;, j= 1,2, r, constitute r

of the characteristic values of the closed-loop steady-state optimal regulator.
The remaining n — r characteristic values are zero.

Using an approach refated to that of this section, Vaughan (1970) gives a
method for finding ihe steady-state solution of the regulator problem by
diagonalization,

Example 6.15. Stirred tanic
Consider the problem of regulating the stirred tank of Example 6.3
{Section 6.2.3) which is descrihed by the state difference equation

0.9512 0 4.877 4.877
(i + 1) = e + u{i). 6-274
0 0.9048 —1,1895 3.569
We choose as controlled varjables the outpoing flow and the concentration,
that is,
0.01 0
2(i) = &(1). 6-275
: 0 1
The crilerion is given by
3T+ DRyz(i + 1) + uT(DRu(D)]. 6-276

=1
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Exacily as in the continuous-lime case of Example 3.9 (Section 3.4.1}, we
choose for the weighting matrices

50 0 + 0
Ry= and Ro=p .
0 0.02 0o 3

where p is a scalar constant to be determined.
The steady-state feedback gain maltrix can be found by repeated applica-
tion of 6-246 and 6-248. For ¢ = | numerical computation yields

6-277

—0.7029
0.04548 )

6-278
05083 amd 0,633\
The closed-loop characteristic values are (,5092-1 /6708088, Figure 6.14

shows the response of the closed-loap system to the initial conditions z(0) =
col (0.1, 0) and 2(0) = col (0, 0.1). The response is quite similar to that of the
corresponding continuous-time regulator as given in Fig. 3.11 (Section 3.4.1).

0.07125
0.01357

. 0.1 0.1
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Fig. 6.14. Closed-loop responses of the regulated stirred tank, discrete-time version.
Leflt column: Responses of volume and concentration to the initial conditions Z,(0) =
0.1 m®* and &£,(0) = 0 kmol/m®. Right column: Responses of volume and concentration
to the initial conditions £,(0) = 0 m® and £,(0) = 0.1 kmol/m®,
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6.4.5 The Stochastic Discrete-Time Linear Optimal Regulator

The stochastic discrete-time linear optimal regulator problem is formulated
as follows.

Definition 6.17. Consider the discrete-time linear system

z( + 1) = ANzE) + B(Hu()) + w(d),
x(ip) == =z, 6-279

where w(i), i = Iy, iy + 1, -+, Iy — 1, constitutes a sequence of uncorrelated,
zero-mean stochastic variables with variance matrices V(i), i =1y,
i — 1. Let

z(i) = D{D=z(i) 6-280

be the controlled variable. Then the problem of minimizing the criterion

z [zT(r + DRy(i 4+ 1=(i + 1) + uT(DR(Du(D] + n:T(rl)Pln:(rl)] 6-281

=iy
wihere Ry(i + 1) > 0, Re( > 0fori=iy -+, i — 1and P, > 0, is termed
the stochastic discrete-time lineay optimal vegulator problem. If all the matrices
in the problem formulatian are constant, we refer to it as the time-invariant
stochastic discrete-time linear optimal regulator problem.

As in the continnous-time case, the solution of the stochastic regulator prob-
lem is identical to that of the deterministic equivalent (Aslrom Koepcke,
and Tung, 1962; Tou, 1964; Kushner, 1971).

Theorem 6.33. The criterion 6-281 of the stochastic discrete-time linear
optimal regulator problem is minimized by choosing the input according to
the control law

u(f) = —F({Hz()), i=idgfg+1,---,5—1, 6-282
Where

F(i) = {R(i) + BY(DIR,(i + 1) + P(i + DIBDO}
*BT(DH[R(i + 1) 4+ P(i + D]A(D. 6-283
The sequence of matrices P(i), i = #y, -+ + , iy — 1, is the solution of the matrix
difference equation )

P(i) = AT(DIR,(i + 1) + P(i + DIIAG) — BHF()),
i=1,fy+1,---,i; —1, 6-284
Wwith the terminal condition
P(i,) = P, 6-285
Here

R(D) = D (()Ry({) D(i). 6-286
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The value of the criterion 6-281 achieved with this control law is given by

x, TP (i), + '>“ tr {V(i — DIP() + RN} 6-287

J= {u
This thearem can be proved by a relatively straightforward extension of the
dynamic programming argument of Section 6.4.3. We note that Theorem
6.33 gives the linear control law 6-282 as #he optimal solution, without
further qualification, This is in contrast to the continuous-time case (Theorem
3.9, Section 3.6.3), where we restricted oursell to linear contro] laws.

As in the continuous-time case, the stochastic regulaior problem encom-
passes regulator problems with disturbances, tracking problems, and track-
ing problems with disturbances. Here as well, the structure of the solutions of
each of these special versions of the problem is such that the feedback gain
from the state of the plant is not afected by the properiies of the dlsturbanccs
of the reference variable (see Problems 6.2 and 6.3). o

Here too we can investigate in what sense the steady-state control law
is optimal. As in the continuous-time case, it can be surszed that, if it exists,
the steady-state control law minimizes

1 ftN-1
lim = E 3 [2"(i + DRy(i + D=(i + 1) + uT(r)Rﬂ(J)u(I)] 6-288
N-rw i=ig
(assuming that this expression exists for the steady-state optimal control
law) with respect to all linear control laws for which this expressions exists.
The minimal value of 6-288 is given by :

R B -
im = 3 tr {[Ry()) + P(DIV(j — D}, 6-289
Nom N i=i41
where P( 1), J 2 iy, is the steady-state solution of 6-284, In the time-invariant
case, the steady-state control law moreover minimizes
lim E{=7(i + DRuz(i + 1) + uZ(HRau(i)} 6-290
fg—=w-rto
with respect to all time-invariant control laws. The minimal value of 6-290
is given by
e [(R + P)V_I _ 6-291.
Kushner (1971) discusses these facts.

Example 6.16. Stirred tank with disturbances

In Example 6.10 (Section 6.2.12), wa modeled the stirred tank with dis-
turbances in the incoming concentrations through the stochastic difference
equation 6-168. If we choose for the components of the controlled variablz the
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outgoing flow and the concentration in the tank, we have

w0 (0.01 00 o) ” 29
z2it) = : Z1). C -
0 1 0 0
‘We consider the criterion
N-1 .
E( > 10 + DRe(i + 1) + ul(i)Rgu(f')], 6-293
=0

. where the weighting matrices Ry and R, are selected as in Example 6.15. For
p = 1 numerical computation yields the steady-state feedback pain matrix

0.07125 —0.070258 —0.009772 —0.003381
= . 6-294

— \0.01357 0.04548 0.008671 0.003052

Comparison with the solution of Example 6.15 shows that, as in the contin-
uous-time case, the feedback link of the control law (represented by the first
two columns of F) is not affected by introducing the disturbances into the
model (see Problem 6.2).

The steady-stale rms values of the ovtgoing flow, the concentration, and
the incoming flows can be computed by setiing up the closed-loop systern
state difference equation and solving for @, the steady-state variance matrix
of the state of the angmented system.

6.4.6 Linear Discrete-Time Regulatoré with Nonzero Set Points and
Consiant Disturbances

In this section we study linear discrete-time regulators with nonzero set
points and constant disturbances. We hmit ourselves to time-invariant
systems and first consider nonzero set point regulators. Suppose that the
system
z(i + 1) = A=z(i) + Bu(i),
z(i) = Dz(i), 6-295
must be operated about the set point
' 2(i) = z,, ' _ 6-296
where 2, is a given constant vector. As in the continuous-time case of Section
3.7.1, we introduce the shifted state, input, and controlled variables. Then the

steady-state control law that returns the system from any initial condition to
the set point optimally, in the sense that a criterion of the form

ST 4+ DRZ( + 1) + w DR (D] 6297

is={p
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is minimized, is of the form .
w'(i) = — Fr'(D), 6-298
where #', ', and 2’ are the shifted input, state, and conirolled variables,
respectively, and where £ is the steady-state feedback gain matrix. In terms
of the original system variables, this control law must take tbe form

u(iy = —Fa(i) -+ uj, 6-299
where 1, is a constant vector. With this control law the closed-loop system is
descrihed by

(i + 1} = Ax(i) + Buy,
(7} = Da(i), 6-300
where _
A=4— BF. 6-301

Assuming that the closed-loop system is asymptotically stable, the controlled
variable will approach a constant steady-state value

lim 2(i) = H(1)uj, 6-302
i~+m
where H,(z) is the closed-loop transfer matrix
H,(2) = D(zI — A)B. 6-303

The expression 6-302 shiows that a zero steady-state error is obtained when

1, is chosen as
uh = H (D, 6-304

provided the inverse exists, where it is assumed that dim (¢) = dim (z). We
call the control law L :
u(i) = —Fx() + H7'(1)=,() - 6-305
the nonzero set point optimal control law.

We see that the existence of this control law is determined by the existence
of the inverse of J7,(1). Completely analogously to the continuous-time case,
it can be shown that -

det [H,(5] = X&) 6-306
(=)
where ¢,(z) is the closed-loop characteristic poelynomial
¢,(z) = det (zI — A + BF), -~ - 6-307

and where y(z) is the open-loop numerator polynomial; that is, p(z) follows
from
det [H(2)] = @) . 6-308
$(z) :
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Here
H(@)= DI — A)'B 6-309
is the open-loop transfer matrix and
#(z) = det (2 — A4) 6-310

is the open-loop characteristic polynomial. The relation 6-306 shows that
H, (1) exists provided (1) 7 0. Since H{e’”) describes the frequency response
of the open-loop system, this condition is equivalent to requiring that the
open-loop frequency response matrix have a numerator polynomial that does
not vanish at § = 0.

We summarize as follows.

Theorem 6.34. Consider the time-invariant discrete-time linear system
z(i + 1) = A=(i) 4+ Bu(i),
2(i) = Dx(i), 6-311

where dim(z) = dim(u}. Consider any asymptotically stable time-invariant
control law

u(i) = — Fe(i) + uy- 6-312
Let H(z) be the open-loop transfer matrix
H{z) = Dl — AY'B 6-313

and H (2) the closed-loop transfer matrix
H(z) = D(zl — A + BF)™B. 6-314

Then H,(1) is nonsingular and the controlled variable 2(i) can under steady-state
conditions be mainiained m any constant set point zq by choosing

ul, = H:Y(1)z, 6-315

if and only if H(z} has a nonzero numerator polynomial that has no zeroes at
z=1. - '

It is noted that this theorem holds not only for the optimal control law, but
for any stable control law.

Next we very briefly consider regulators with constant disturbances. We
suppose that the plant is described by the state difference and output equa-

. tions

(i + 1) = A=x(i) + Bu(i) + vy,
2(i) = Da(i), 6-316

where v, is a constant vector. Shifting the state and input variables, we reach
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the conclusion that the control law that returns the shifted state optimally
to zero must be of the form

u(i) = — Fa(i) + uj, 6317
where 1y is a suitable constant vector. The steady-state response of the con-
trolled variable with this control law is given by

lim z(i} = H(uy + DI — Ay o, 6-318
where H,(z) = D(zI — A + BF)™B. It is possible to make the steady-state
response 6-318 equal to zero by choosing

uy = —H,,_l(l)D(I — ff)_lvﬂ. 6-319

provided dim (z) = dim (7} and H,(1} is nonsingular. Thus the zero-steady-
state-error aptimal control lawv 15 given by

u(i) = —Fa(iy — H7() DI — Ay o, 6-320
The conditions for the existence of H,71(1) are given in Theorem 6.34.

The disadvantage of the control law 6-320 is that its application requires
accurate measurement of the constant disturbance vy This difficulty can be
circumvented by appending to the system an “integral state’ ¢ (compare
Section 3.7.2), defined by the diflerence relation

g+ 1) =g + 2, I h 6-321
with g(i;) given. Then it can easily be seen that any asymptotically stable
control law of the form

u(i} = —F (i) — Fuq(f) 6-322

suppresses the effect of constant disturbances on the controlled variable,
that is, z(f) assumes the value zero in steady-state conditions no matter what
the value of v, is in 6-316, Necessary and sufficient conditions for the existence
of such an asymptotically stable control law are that the system 6-316 be
stabilizable, and-.[assuming that dim () = dim (z)] that the open-loop
transfer matrix possess no zeroes at the origin.

Example 6.17. Digital position control system

In Example 6.6 (Section 6.2.6), we saw that the digital positioning system
of Example 6.2 (Section 6.2.3) has the transfer function
0.003396(z -+ 0.8575)
(z — )z — 0.6313)
Because the numerator polynomial of this transfer function does not have a
zero at z = 1, a nonzero set point optimal controller can be obtained. In

H(z) = 6-323
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Example 6.14 (Section 6.4.3), we obtained the steady-state feedback gain
vector F = (110.4, 12.66). It is easily verified that the corresponding
nonzero sel point optimal control law is given by

u(i) = —Fa(i) + 110.44,, . 6324

where {, is the (scalar) set point. Figure 6.15 shows the response of the
closed-loop system to a step in the set point, not only at the sampling
instants but also at intermediate times, obtained by simulation of the
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continuous-time system. The system exhibits an excellent response. not quite
as fast as the deadbeat response of Fig. 6.12, but with smaller input
amplitudes.

6.4.7 Asymptotic Properties of Time-Invariant Optimal Control Laws

In this section we study the asymptotic properties of time-invariant steady-
state optimal control laws when in the criterion the weighting matrix R, is

replaced with
Ry = pN, 6-325

where p | 0. Let us first consider the behavior of the closed-loop poles.
In Theorem 6.32 (Section 6.4.4) we saw that the nonzero closed-loop char-
acteristic values are those roots of the equation

zl — 4 BR;*BT
det =0 6-326
—R; 71— AT :

that have moduli less than 1, where R, = D*R,D. Using Lemmas 1.2
{(Section 1.5.4) and 1.1 (Section 1.5.3), we write

(zI —A BR;lBT)
det
—R, ZU— AT
= det(z] — A)det [z 1 — AT + R (=] — A)"'BR7'B™]
= det (2 — A) det (27 — AT)
- det [ 4+ R,(zI — AYBR7'BT(z1 — ATy
= det (I — A)det (z7 — AT)
- det [I + R3'BT(z'T — ATY 'R (2] — A)'B]
= det (2 — A)det (z~I — AT)

- det ,:I + 1 N7BTET — ATy "DTRy Dl — A)‘IB:I
P

= ¢(z)(z7") det ,:I + 1 N'IHT(z“l)RﬂH(z):I, 6-327
where f
P(z) = det (2 — 4) 6-328
is the open-loop characteristic polynomial, and
H(z) = D(zl — A)'B 6-329

is the open-loop transfer matrix.
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To study the behavior of the closed-loop characteristic values, let us first
consider the single-input single-output case. We assume that the scalar
transfer function H{z) can be written as

p()
$(2)’

H(2) = 6-330
where

T
$(2) = 2" [ (z — =), m, 7% 0, i=1,2,-",4, 6-331
=1

with g < n, is the characteristic polynomial of the system, and where

Fy
T,U(Z) = asz—ﬂ]:[ (Z - 1":')7 ¥ ?5 0: [= 11 2: R 6-332
i=1

with p < s < n — 1, is the numerator polynomial of the system. Then 6-327
takes the form (assuming R; = 1 and N = 1):

lf:{(z— )(—um)+ ﬂg(z— (——1',-). 6-333

To apply standard root locus techniques, we bring this expression into the
form

H (=) ”

e I P N I
i (__ _ i=L i
i=1

We conclude the following concerning the loci of the 2g roots of this ex-
pression, where we assume that 4 > p (see Problem 6.4 for the case g < p).

1. The 2q loci originate for p = oo at m;and 17, i= 1,2, -+, q.
2. As p | 0, the loci behave as follows,
(a) p roots approach the zeroes v, i = 1,2, -+, p;
(b) p roots approach the inverse zeroes 1y, i =1,2,---, p;
(c) g — p roots approach 0;
(d) the remaining § — p roots approach infinity.
3. Those roots that go to infinity as p | 0 asymptotically are at a distance

] 1/(g—n)

o H ¥;
— = 6-335

PH"‘Ti

=1
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from the origin. Consequently, those roots that go to zero are asymptotically

at a distance
[ 1/{g—mn)

i

E=l 6-336
* I

from the origin. =
Information about the optimal élosed-]oop poles is obtained by selecting

those roots that have moduli less than 1. We conclude the following,

Theorem 6.35. Consider the steady-state solution of the time-invariant
single-input  single-output discrete-time linear regulator problem. Let the
open-loop transfer function be given by

Fl

s ] (= — #)

H(@) =—"t— a0, 6-337
z1:—-':! H (z . 11"-)
i=1
where the w; # 0,i=1,2,---,q, are the nonzero open-loop characteristic
values, and v; # 0, i = 1,2, -+, p, the nonzero zeroes. Suppose that n >

g > p, it —12>5 > pandihatin the criterion 6-233 we have Ry = land R, =
p. Then the following holds.
(2) Of the n closed-loop characteristic values n — q are ahvays at the origin.
(b) As p | 0, of the g remaining closed-loop characteristic values p approach
the numbers #,,i=1,2,--+,p, where

I U
fi=11 if v > 1.

7,

6-338

(c) As p | 0, the g — p other closed-loop characteristic values go to zero.
These closed-loop poles asymptotically are at a distance

T 1/(q—~m)
p II=
SE— 6-339
o n
I %
. s =1
from the origin.
(d) As p—+ o0, the g nonzero closed-loop characteristic values approach the
mumbers #,i=1,2, -+, q, where
Ty Tf I"'Til S ]:

' =31 i > 1. 6-340

wy
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Let us now consider the behavior of the nonzero set point optimal control
law derived in Section 6.4.6. For a single-input single-output system, it is
easily seen that the system transfer function from the (scalar) set point
{,(1} (now assumed to be variable) to the controlled variahle £(i) is given by

_ 2L
T(Z) - }Ic(l) E]

where H (2} is the closed-loop transfer function. As in the continuous-time
case (Section 3.8.2), it is easily verified that we can write

6-341

H=)= —z- s 6-342

where (z) is the open-loop transfer function numerator polynomial and
&, (2) the closed-loop characteristic polynomial. For (z) we have

n
w(z) = 0™ ] (2 — 7). 6-343

{==1

while in the limit p | 0 we write {or the closed-loop characteristic polynomial

Po(2) = ?—"”’ﬁ (z — 7). 6-344

i=1
Substitution into 6-342 and 6-341 shows that in the limit p | O the control
system transfer function can be written as

Ty() = z]_f[ (’“ - ”") TI (1 — 1ﬂ”"). - 6-3;15

A
=1 \z — ¥/ =1\l — m,

=

Now if the open-loop transfer function has no zeroes outside the unit circle.
the limiting control system transfer function reduces to

Tz} =

6-346

z'.'l—‘E

This represents a pure delay, that is, the controlled variable and the variable
set point are related as follows:

L) = Lyli — (1 — )] 6-347
‘We summarize as follows.

Theorem 6.36. Consider the nonzero set point optimal control Iaw, as
described in Section 6.4.6., for a single-input single-output system. Let Ry = ]
and Ry = p. Then as p | 0, the contral system transmission (that is, the
transfer function of the closed-loop system from the set point to the controlled
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variable) approaches

To(@) = —— 1T (z - T"') f[ (1 - 11"), 6-343

2" =1 \e — §/ k=1 \] — Vg

where the #,,i = 1,2, -, p are derived from the nonzero open-loap zeroes
v, i=1,2,--+,p. as indicated in 6-338, and where n is the dimension of the
system and s the degree of the numerator polynomial of the system. If the
open-loop transfer function has ne zeroes outside the unit circle, the limiting
system transfer function is

To(e) = —— 6-349

2
]
1

which represents a pure delay.

We see that, if the open-loop system has no zeroes outside the unit circle,
the limiting closed-loop system has the property that the response of the
controlled variable to a step in the set point achieves a zero iracking error
after n — 5 time intervals. We refer to this as output deodbeat response.

We now discuss the asymptotic behavior of the closed-loop characteristic
values for muliiinput systems. Referring back to 6-327, we consider the
roots of

P(z)d(="") det [1 + i N—H T(z“l)RaH(z)} : 6-350

Apparently, for p = oo those roots of this expression that are finite are the
roots of '

PP 6-351
Let us write
o
$(z) = 2" [I (z — =), 6-352
i=1 .
and assume that »; 2 0,i=1,2,---,q. Then we have
T
bz =[] (2 — =)= — m), 6-353
i=1

which shows that 2g root loci of 6-350 originate for p = oo at the nonzero
characteristic values of the open-loop system and their inverses.

Let us now consider the roots of 6-350 as p | 0. Clearly, those roots that
stay finite approach the zeroes of

$()bE) det [HT(=HR:H(2)]. 6-354

Let us now assume that the input and the controlled variable have the same
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dimensions, so that H(z) is a square transfer matrix, with

det [H(=)] = ¥ . 6-355
B(z)
Then the zeroes of 6-354 are the zeroes of
wE (). 6-356

Let us write the numerator polynomial y(2) in the form

n
P(2) = az" " ]____!_' (z — 1), : 6-357

where v, = 0,i=1,2,-- -, p. Then 6-356 can be written as

n
o TT (z — »)(=" — »)). 6-358
. i=1
This shows that 2p root loci of 6-350 terminate for g = 0 at the nonzero
zeroes vy, i = 1,2, -+, p, and the inverse zeroes /v, | =1,2,---,p.

Let us suppose that g > p (for the case g < p. see Problem 6.4). Then
there are 2¢q root loci of 6-350, which originate for p = = at the nonzero
open-loop poles and their inverses. As we have seen, 2p loci terminate for
p = 0 at the nonzero open-loop zeroes and their inverses. Of the remaining
2g — 2p loci, ¢ — p must go to infinity as p | 0, while the other g — p loci
approach the origin.

The nonzero closed-loop poles are those roots of 6-350 that lie inside the
unit circle. We conclude the following,

Theorem 6.37. Consider the steady-state solution of the time-invariant
regulator prablem. Suppose that dim (u) = dim (2) and let H(z) be the open-
loop transfer matrix

H(z) = D(zI — AY'B. _ 6-359
Furthermore, let
det [H(z)] = ) s 6-360
$(z)
where
a
Pz} =" T (z — =), 6-361
=1

with m; 520, i=1,2,-++,q, is the open-loop characteristic polynamial.
In additian, suppose that

il
p(z) =™ 7 ]] (z — ), 6-362

=1
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with p < q, and where v, # 0, i = 1,2, -+, p. Finally, set Ry = pN where
N > 0and p is a positive scalar. Then we have the following.
(a) Of the n closed-loop poles, n — q always are at the origin.
(b) As p | 0, of the remaining q closed-loap poles, p approach the numbers
fi=1,2,++,p, where
¥ if W<l

#; = -
Loy pi>t 6-363
Y;

(c) As p 0, the g — p other closed-laap poles go to zero,
(d) As p— o0, the g nonzero closed-Ioop poles approach the numbers #;, -
i=1,2,--+,q, where
if |7T1| S 1:
6-364

=
i

'n-'l
f 1 .
- if |m|>1.

KLH

We note that contrary to the continuous-time case the closed-loop poles
remain finite as the weighting matrix R, approaches the zero matrix.
Similarly, the feedback gain matrix £ also remains finite. Often, but not
always, the limiting feedback pain matrix can be found by setting R, =0 in
the difference equations 6-246 and 6-248 and iterating until the steady-state
value is found (see the examples, and also Pearson, 1965; Rappaport and
Silverman, 1971).

For the response of the closed-loop system with this limiting feedback
law, the following is to be expected. As we have seen, the limiting closed-loop
system asymptotically has n — p characteristic values at the origin. If the
open-loop zeroes are all inside the unit circle, they cancel the corresponding
limiting closed-loop poles. This means that the response is determined by the
n — p poles at the origin, resnlting in a deadbeat response of the controlled
variable after #» — p steps. We call this an output deadbeat response, in
contrast to the state deadbeat response discussed in Section 6.4.2. If a system
exhibits an output deadheat response, the output reaches the desired value
exactly after a finite number of steps, but the system as a whole may remain
in motion for quite a long time, as one of the examples at the end of this
section illustrates. If the open-loop system has zeroes outside the unit circle,
the cancellation effect dees not occur and as a result the limiting regulator
does not exhibit a deadbeat response.

It is noted that these remarks are conjectures, based on analogy with the
continuous-time case. A complete theory is missing as yet. The examples at
the end of the section confirm the conjectures. An essential difference between
the discrete-time theory and the continuous-time theory is that in the dis-
crete-time case the steady-state solution P of the matrix equation 6-248
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generally does not approach the zero matrix as R, goes to zera, even if the
open-loap transfer matrix possesses no zeroes outside the unit circle.

Example 6.18. Digital position control system

Let us consider the digital positioning system of Example 6.2 (Section
6.2.3). From Example 6.6 {(Section 6.2.6), we know that the open-loop
transfer function is
' 0.003396(z + 0.8575)
(z — 1}z — 0.6313)
It follows from Theorem 6.37 that the optimal closed-loop poles approach

0 and —0.8575 as p | 0. It is not difficult to find the loci of the closed-loop
characteristic values. Expression 6-334 takes for this system the form

(z — D)z — 0.6313)(z — 1)(z — 1.584)
.. 0.00001 566

P
The loci of the roots of this expression are sketched in Fig. 6.16. Those loci
that lie inside the unit circle are the loci of the closed-loop poles. It can be

H(z) = 6-365

2(z + 0.8575)(z + 1.166). 6-366

Im

f

Re —

Fip. 6.16. Loci of the clus;ed-loup poles and the inverse closed-loop poles for the digital
position control system,
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found that the limiting feedback gain matrix F, for p = 0 is given by
Fo=(294.5, 23.60), 6-367

Let us determine the corresponding nenzero set point optimal control law.
We have for the limiting closed-loop transfer function

Hy2) = w(z) _ 0.003396(z + 0.8575) _ 0.003396
T @) 2(z + 0.8575) 2

6-368

Consequently, H (1) = 0.003396 and the nonzero set point optimal control
law is
u{iy = —Fz(i} + 294.50,(1. 6-369

Figure 6.17 gives the response of the system to a step in the set point, not
only at the sampling instants but also at intermediate times. Comparing with
the state deadbeat response of the same system as derived in Example 6.13,
we observe the following.

(a) When considering only the response of the angular position at the
sampling instants, the system shows an output deadbest response after one
sampling interval. In between the response exhibits a bad overshoot, however,
and the actual settling time is in the order of 2 s, rather than 0.1 5.

(b} The input amplitude and the angular velocity assume large values,

These disadvantages are characteristic for output deadbeat control
systems. Better results are achieved by not letting p go 1o 2e10. For p=
0.00002 the closed-loop poles are at 0.2288 . 0.3184. The step response
of the corresponding closed-loop system is given in Example 6.17 (Fig. 6.15)
and is obviously much better than that of Fig. 6.17.

The disadvantages of the output deadbeat response are less pronounced
when a larger sampling inlerval A is chosen. This causes the open-loop zero
at —0.8575 to move closer to the origin; as a result the output deadbeat
control system as a whole comes to rest much faster. For an alternative
solution, which explicitly takes into account the behavior of the system
between the sampling instants, see Problem 6.5.

Example 6.19. Stirred tank with time delay

Consider the stirred tank with time delay of Example 6.4 (Section 6.2.3).
As the components of the controlled variable we choose the outgoing
flow and concentration; hence

(0.01 0 0 o)
z(i) = z(i). 6-370
0 1 00
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It can be found that the open-loop transfer matrix of the system is

4.877 4.877
z — 0.9512 2z — 0.9512
H(z) = : 6-371
—1.1895 3.569

2(z — 0.9048) z(z — 0.9048)

The determinant of the transfer matrix is

- 26.62
det [H(z)] = . 6-372
z(z — 0.9512)(z — 0.9048)
Because the open-loop characteristic polynomial is given by
$(z) = 2%z — 0.9512)(z — 0.9048), 6-373
the numerator polynomial of the transfer matrix is
p(z) = 26.622. 6-374

As a result, two closed-loop poles are always at the origin. The loci of the
two other poles originate for p = oo at 0.9512 and 0.9048, respectively, and
both approach the origin as p | 0. This means that in this case the output
deadbeat control law is also a state deadbeat control law.

Let us consider the criterion

S [RY + DRy + 1) + uT(HRu(D], 6-375
=0
where, as in previous examples,
50 0 10
Ry = and R,=p : 6-376
0 0.02 0 3

When one attempts to compute the limiting feedback law for p = 0 by
setting R, = 0 in the difference equation for P(¢) and F{/), difficulties occur
because for certain choices of P; the matrix

Ry + BT[R, + P(i + 1)]B 6-377

becomes singular at the first iteration. This can be avoided by choosing a
very small value for p (e.g., p = 10™"). By using this technique numerical
computation yields the limiting feedback pain matrix

_ {01463 —0.1720 02262 —0.6786
Fy= . 6-378

0.04875 0.1720 —0.2262 0.6786
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Fig. 6.18. Deadbeat response of the stirred tank with time delay. Left column: Responses
of volume, concentration, feed no, 1, and leed no. 2 to the initial condition §,(0) = 0.01 m,
while nll other components of the inilial state are zero. Right column: Responses of volume,
conceniration, feed no. 1, and feed no. 2 to the initial condition §,(0) = 0.01 kmol{md;
while all other components of the initiai state are zero.

In Fig. 6.18 the deadbeat response to two initial conditions is sketched.
It is observed that initial etrors in the volume £, are reduced to zero in one
sampling petiod. For the concentration &, two sampling periods are required;
this is because of the inherent delay in the system.

6.4.8 Sensitivity

In Section 3.9 we saw that the continuous-time time-invariant closed-loop
regulator possesses the property that it always decreases the effect of disturb-
ances and parameter variations as compared to the open-loop system. It is
shown in this section by a counter example that this is not generally the case
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for discrete-time systems. The same example shows, however, that protection
over a wide range of frequencies can still be obtained.

Example 6.20. Digital angular velocity control
Consider the angular velocity control system of Example 3.3 (Section
3.3.1), which is described by the scalar state differential equation

£}y = —ab(r) + rp(t). 6-379
Let us assume that the input is plecewise constant aver intervals of duration

A. Then the resulting discrete-time system is described by

E(i + 1) = e 8E(i} + (1 — e (i), 6-380
24

where we have replaced £(FA) with £() and u(iA) with u(i}. With the
numerical values o = 0.5 57%, « = 150 rad/(V 5%, and A = 0.1 5, we obtain

G+ 1) = 095128() + 14.64u(i). 6-381
The controlled variable {() is the angular veiocity £(i}, that is,
L) = &£). 6-382
Let us consider the problem of minimizing
I8+ 1) + (] 6-383
It is easily found that with p = 1000 the steady-state solution is given by
P = 1.456, "
F = 0,02240, 6-384
The retorn difference of the closed-loop system is
J(z) = I + (zI — A)BF, 6-385
which can be found to be '
(o) = 2= 06232 6-386
z — (.9512
To determine the behavior of J{z) for z on the unit circle, set
z = eluh,
where A = 0.1 s is the sampling interval. With this we find
v E,.m,')lg _ 1.388 — 1.246 cos (wA) 6.387

" 1.905 — 1.902 cos {wA)
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Fig. 6.19. Behavior of the return difference for a first-order discrete-time regulatar.

Figure 6.19 gives a plot of the behavior of |J(e*)|. We see that sensitivity
reduction is achieved for low frequencies up to about 7 radfs, but by no
means for all frequencies. If the significant disturbances occur within the
frequency band up to 7 rad/s, however, the sensitivity reduction may very
well be adequate.

6.5 OPTIMAL LINEAR RECONSTRUCTION OF THE
STATE OF LINEFAR DISCRETE-TIME SYSTEMS

6.5.1 Introduction

This section is devoted to a review of the optimal reconstruction of the state
of linear discrete-time systems. The section parallels Chapter 4.

6.5.2 The Formulation of Linear Discrete-Time Reconstruction Problems

In this section we discuss the formulation of linear discrete-time reconstroc-
tion problems. We pay special attention to this question since there are
certain differences from the continuous-time case. As before, we take the
point of view that the linear discrete-lime system under consideration is
obtained by operating a linear continuous-time system with a piecewise
constant input, as indicated in Fig. 6.20. The instants at which the input
changes value are given by #,7=0,1, 2,-+-, which we call the control
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Fig. 6.20. Relationship of contro] actuation instant 7, and observation instant r:.

instants. These instants form the basic time grid. We furthermore introduce
the observation instanis t,, i=0,1,2,- ,whichare the instants at which the
observed variable ; J(l‘) of the contlnmme syStemis samipled:-Itisassumed
that the observation instant #; always precedes the-control-instant f,. The
difference 7;., — t{ will be called the processing delay; in the case of a control
system, it is the time that is available to process the observation y(t;) in
order to determine the input w{#;,).
Suppose that the continuous-time system is described by

(6} = A(O=(t) - BOu(r) + wi 1), P>y, 6-388

where 1w, is white noise with time-varying intensity V(). We Furthermore
assume that the observed variable is given by

W) = CUe(r) + wolr)), 1=0,1,2,--+, 6-389

where the wa(t;), i=0,1,2,-+-, form a sequence of uncorrelated sto-
chastic vectors. To ohtain the discrete-time description of the system, we
write

2t} = Oy, t)a(t) + [j

it

tizt

(141, T)B(7) n"r:| u(1,)

1
-} f Ot 1, MW (v) dv. 6-390
and t

te'
y(t) = COYD(L )t + [C(t:-) f (1L, 7)B() ﬂ u(t)

1
+ C) f Bt i) dr + woltD), 6-391
i1

wherein bothcasesi = 0, 1, 2, - - -, and where (0(2, #3) is the transition matrix
of the system 6-388. We see that the two equations 6-390 and 6-391 are of
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the form
(i + 1) = Az (Dar (@) + By (Dert(D) + wH (D),
yr () = C;(Dx+ () + E (Dt () + wat(@).

6-392

This method of setting up the discrete-time version of the problem has the
following characteristics.

1. In the discrete-time version of the reconstruction problem, we assume
that y+(7) is the latest observation that can be processed to obtain a recon-
structed value for z+{i + 1).

2, The output equation generally contains a direct link. As can be seen
from 6-391, the direct link is absent [i.e., E,(f) = 0] when the processing
delay takes up the whole interval (¢,, 7,.,).

3. Even if in the continuous-time problem the state excitation noise 1w,
and the observation noise w, are uncorrelated, the state excitation noise
wy* and the observation noise w,t of the discrete-time version of the problem
will be carrelated, because, as can be seen from 6-390, 6-391, and 6-392,
both wy*(i) and wy*(i) depend upon wy(¢) for 7; € t < t;. Clearly, wyt(i)
and w,*(7) are uncorrelated only if #; = ¢;, that is, if the processing delay
takes up the whole interval (t;, 7;,,).

Example 6.21. The digital pasitioning system
Let us consider the digital positioning system of Example 6.2 (Section
6.2.3). It has been assumed that the sampling period is A. We now assume
that the observed variable is the angular displacement £,, so that in the
continuous-time version
c=1(1,0). 6-393

We moreover assume that there is a processing delay A,, so that the observa-
tions are taken at an interval A, before the instants at which control actuation
takes place. Disregarding the noises that are possibly present, it is easily
found with the use of 6-391 that the observation equation takes the form

7 (i) = |:], 1 (1— e“"A'):l zHi) + E(A’ _1 + 1 e"“""") pt(), 6-394
. o o o o
where
Al=A—A, 6-395

With the numerical value
Ay = 0.02s, 6-396

we obtain for the observation equation

(i) = (1, 0.06608)x+(7) + 0.0023814+(1). 6-397
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6.5.3 Discrete-Time Observers

In this section we consider dypamical systems that are able to reconstruct
" the state of another system that is being observed.

Definition 6,18. /e system
(i + 1) = ADE0) + BOu@® + SOy () 6-398
is a full-order observer for the system

z(i + 1) = A(De() + B(u(),

6-399
y(i) = C()x() + E@u(i),
if
#(iy) = =(iy) 6-400
implies
(@) =), 21 6-401

Jor all u(i), | 2 iy

It is noted that consistent with the reasoning of Section 6.5.2 the latest
observation that the observer processes for obtaining x(y + 1) is #(i). The
following theorem pives more information about the structure of an
observer.

Theorem 6.38, The system 6-398 is a full order observer for the system
6-399 if and only if
A() = 4(@) ~ KDOCG),

B()) = B(i) = KHEW), 6-402
€() = K@),
all for i > iy, where K(i) is an arbitrary time-varying matrix.

This theorem is easily proved by subtracting the state difference equations
6-399 and 6-398. With 6-402 the observer can be represented as follows:

(i + 1) = ADEE) + B(u() + KDy() — COEE) — E@Du(D)]. 6-403

The observer consists of a model of the system, with as extra driving variable
an input which is proportional to the difference y(f) — #(/) of the observed
variable (i) and its predicted value

A6) = COD + EGuG). 6-404

We now discuss the stability of the observer and the behavior of the
reconstruction error (i) = (i) — £(i).
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Theorem 6.39. Consider the observer 6-398 for the system 6-399. Then the

reconstruction error
e(i) = =) — £() 6-405

satisfies the difference equation
e(i + 1) = [A()}) — K(DC(D)]e@), 12> i 6-406
The reconstruction error has the property that
e(i) — 0, s [— oo, 6-407
Jor all e(iy), if and only if the observer is asympiotically stable.

The difference equation 6-406 is easily found by subtracting the state difference
equations in 6-399 and 6-398. The behavior of A() — K(NC(f) determines
both the stability of the observer and the behavior of the reconstruction
error; hence the second part of the theorem.

As in the continuous-time case, we now consider the question: When does
there exist a gain matrix K that stabilizes the observer and thus ensures that
the reconstruction error will always eventually approach zero ? Limiting our-
selves to time-invariant systerns, we have the following result.

Theorem 6,40. Consider the fime-invariant observer
£(i + 1)'= A&() + Buli) + K[y() — CE(i) — Eu(i}] 6-408
for the time-invariant system
(i + 1) = Az() + Bu(i),
y(i) = Cx(i} + Eu(i).

Then the observer poles (that is, the characteristic values of 4 — KC) can be
arbitrarily located in the complex plane (within the resiviction that complex
poles occur in complex conjugate pairs) by suitably choosing the gain matrix K
if and only if the system 6-409 is completely reconstructible.

6-409

The proof of this theorem immediately follows from the continuous-time
equivalent (Theorem 4.3, Section 4.2.2). For systems that are only detectable,
we have the following result.

Theorem 6.41. Consider the time-invariant observer 6-408 for the tine-
invariant system 6-409. Then a gain matrix K can be found such that the
observer is asymptotically siable if and only if the system 6-409 is detectable.

A case of special interest occurs when the observer poles are all located at
the origin, that is, all the characteristjc values of 4 — KC are zero. Then the
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characteristic polynomial of 4 — KC is given by
det [\ — (4 — KCY] = 2", 6-410
so that by the Cayley-Hamilton theorem
(4 — KC)* = 0. 6-411

It follows by repeated application of the difference equatlion 6-406 for the
reconstruction error that now

e(n) = (4 — KCy'e(0) =0 6-412

for every (0}, which means that every initial value of the reconstruction
error is reduced to zero in at most # steps. In analogy with deadbeat control
laws, we refer to observers with this property as deadbear observers. Such
observers produce a completely accurate reconstruction of the state after
at most # steps.

Finally, we point out that il the system 6-409 has a scalar observed variable
¥, 8 unique solution of the pain matrix K is abtained for a given set of
observer poles. In the case of multioutput systems, however, in general
many different gain matrices exist that result in the same set of observer
poles.

The observers considered so far in this section are systems of the same
dimension as the system to be observed. Because of the output equation
y(i) = C(Da(i} + E(Hu(i), we have available m equations in the unknown
state z(f) (assuming that # has dimension /); clearly, it must be possible to
construct a reduced-order observer of dimension # —m to reconstruct
x(7} completely. This observer can be constructed more or less analogously to
the continuous-time case (Section 4.2.3).

Example 6.22, Digital positioning system
Consider the digital positioning system of Example 6.2 {Section 6.2.3),
which is described by the state diflference equation

1 0.08015' 0.003396
z(i+ 1) = z(i) + (i) 6-413
0 0.6313/ 0.06308

As in Example 6.21, we assume that the observed variable is the angular
position but that there is a processing delay of 0.02 s. This yields for the
observed variabie:

() = (1, 0.06608)x(/) + 0.002381 (7). 6-414

It is easily verified that the system is completely reconstructible so that
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Theorem 6.40 applies. Let us write K = col (ky, k,). Then we find
1 — k, 0.08015 — 0.06608k,
A—KC= : . 6-415
—k, .0.6313 — 0.06608k,
This matrix has the characteristic polynomial

2% 3 (—1.6313 + k, + 0.06608%.)z + (0.6313 — 0.6313k, + 0.01407ky).

6-416

We obtain a deadbeat observer by setting
—1.6313 + k; + 0.06608%, = 0, 6417

0.6313 — 0.6313k, + 0.01407k, =
This results in the gain matrix

1.159
K= . 6-418

7.143

An observer with this gain reduces any initial reconstruction error to zero
in at most two sieps.

6.5.4 Optimal Discrete-Time Linear Observers

In this section we study discrete-time observers that are optimal in a well-
defined sense. To this end we assume that the system under consideration is
affected by disturbances and that the observations are contaminated by
observation noise. We then find observers such that the reconstructed state
is optimal in the sense that the mean square reconstruction error is mmumzed
We formulate our problem as follows.

Definition 6.19. Consider the systemn
w(i + 1) = A=) + BOu() + wi{D,
y() = COz() + E@Qu) + wali)s P2

Here col [wi(D), wa()], i > iy, forms a sequence of zero-mean, uncorrelated
vector stochastic variables with variance matrices

(VI(:') Vm(f))

., . b
Va(D) V(i) _
Furthermore, x(i;) is a vector stochastic variable, uncorrelated with w, and
Wa, With

6-419

> ig. 6-420

E{e(i)} =7,  E{[o(io) — Blls(i) — 5’} = 0p 6421



6.5 Optimal Reconstruction of the State 529

Consider the observer
(i + 1) = ADEE) + BOu(i) + K(Dy() — CEEG) — EHu)]
6-422

Sor this system. Then the problem of finding the sequence of matrices K*(iy),
Koy + D, -+, K9i — 1), and the initial condition £(iy), s0 as to minimize

E{T()W(ie(D)}, 6-423
where e(i) = (i) — £(i), and where W(i) is a positive-definite symmetric
weighting martrix, is termed the discrete-time optimal observer problem. If

Vo) > 0, i> Iy,
the optimal observer problem is called nonsingular.

To solve the discrete-time optimal observer problem, we first establish the
difference equation that is -satisfied by the reconstruction error e(i). Sub-
traction of the system state difference equation 6-419 and the observer
equation 6-422 yields
e(i + 1) = [4() — KOCDe()) + wi(@) — KDwe(D), 724
6-424
Let us now denote by {(i) the variance matrix of e(), and by &(i} the mean
of e(). Then we write
E{e(DeT(D)} = Qi) + &(De"(i), 6-425
so that
E{eT(DW(De(D)} = eT(OW(DEG) + tc [G(DW (D). 6-426
The first term of this expression is obviously minimized by making &(/) = 0.
This can be achieved by letting &() = 0, which in turn is done by choosing
(i) = T,. 6-427
The second term in 6-425 can be minimized independently of the first term.
With the aid of Theorem 6.22 (Section 6.2.12), it follows from 6-424 that O
satisfies the recurrence relation

a@i + 1) = [A() — KOCHIGMIAMD — KHCHIT
+ V(i) — Va(DK*() — KOV + KOVMKT(),

i> i, 6-428

with
O(i)) = Q. : 6-429
Repeated application of this recurrence relation will give us (i + 1) as a
function of K(i), K(f — 1), - - -, K(ip). Let us now consider the problem of
minimizing tr [ + DWW + 1)} with respect to K(iy), K(i, + 1), * -, K(i).
This is equivalent to minimizing g(i + 1), that is, finding a sequence of
matrices Ko(i,), K°(G, + 1), --., K%) such that for the corresponding
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value @(i 4+ 1) of @(i + 1) we have Q@i + 1) < J(i + 1). Now 6-428 gives
us J(i + 1) as a function of K(i) and O(f), where J(i) is a function of
K(y), ++ -, K — 1). Clearly, for given K(i}, (i -+ 1) is a monotone function
of J(i), that is, if Q(/} < O(i) then Q@i + 1) < O(i + 1), where Q(i + 1) is
obtained from Q(i) by 6-428. Therefore, O(i + 1) can be minimized by first
minimizing @i} with respect to K(ig), K(i, + 1), - - -, K(i — 1), substituting
the minimal value Q(i) of g(i) into 6-428, and then minimizing @( + 1)
with respect to K(i).

Let us suppose that the minimal value Q(/) of (i) has been found.
Substituting @(/) for J(i) into 6-428 and completing the square, we obtain

3G + 1) = [K — (40CT + V(W + CQCT) (1, + €OCT)

" [K = (40CT + Vin)(Ve + COCTY )

— (AQCT + Vi)(Va + COCTYHCOAT + Vi)

+ 4047 + ¥4, 6-430
where for brevity we have omitted the arguments { on the right-hand side
and where it has been assumed that

Va(D) + C(HOMHCT (D) 6-431
is nonsingular. This assumption is always justified in the nonsingular observer

problem, where V(i) > 0. When considering 6-430, we note that J(i 4 1)
15 minimized with respect to K() if we choose K{7) as K°(), where

K(i) = [A(DQHCT() + VDIV + CHEMHCTDI™. 6-432
The corresponding value of J(i + 1) is given by

" 0(i + 1) = [A(D) — K°(DHCMIADAT() + 14(7) — K'(DVE(G), 6-433
with

Qi) = O 6-434

The relations 6-432 and 6-433 together with the initial condition 6-434 enable
us to compute the sequence of gain matrices recurrently, starting with K(i,).
‘We summarize our conclusions as follows.

Theorem 6.42. The optimal gain matrices K"i), i > i, for the nonsingular
optimal observer probleni can be obtained from the recurrence relations

K1) = [A(DEHICT () + VDIV + CHOMHCT (M),
Qi + 1) = [4() - K"(NCHIOMAT(D) + V(D) — K (VEG),
both for i > iy, with the initial condition .
Q@) = Qo 6-436
The initial condition of the observer should be chosen as
#(fy) = Ty : 6-437

6-435
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The matrix QQ) is the variance matrix of the reconstruction error e(i) =
x(i) — &(i). For the optimal observer the pean square reconstruction error is

i
givern b) E{(OW DD} = tr [QW D], 6-438

Singular optimal observation problems can be handled in a manner that
is more or less analogous to the continuous-time case (Brammer, 1968; Tse
and Athans, 1970). Discrete-time observation problems where the state
excitation noise and the observation noise are colored rather than white noise
processes (Jazwinski, 1970) can be reduced to singular or monsingular
oplimal observer problems.

We remark finally that in the literature a version of the discrete-time linear
optimal observer problem is usually given that is different from the one con-
sidered here in that it is assumed that y(f + 1) rather than »(/) is the latest
observation availabie for reconstructing (i 4+ 1). In Problem 6.6 it is shown
how the solution of this alternative version of the problem can be derived
from the present version.

In this section we have considered optimal observers. As in the continuous-
time case, it can be proved (see, e.g., Meditch, 1969) that the optimal
observer is actually the minimum mean square linear estimator of z(i + 1)
given the data u(j) and y{(j), j =iy, iy + 1, -+, i; that is, we cannot find
any other linear operator on these data that yields an estimate with a smaller
mean square reconstruction error. Moreover, if the initial state x, is Gaussian,
and the white noise sequences w, and v, are jointly Gaussian, the optimal
observer is the minimum mean square estimator of (i 4 1) given u(j), (),
J=lwiy+1,-+,i;thatis,itis impossible to determine any other estimator
operating on these data that has a smaller mean square reconstruction error
{see, e.g., Jazwinski, 1970).

Example 6.23. Stirred tank with disturbances
In Example 6.10 {Section 6.2.12), weconsidered & discrete-time version of
the stirred tank. The plant is described by the state diiference equation

0.9512 0 0 0
0 0.9048 0.0669 0.02262

(i + 1) = | 0
0 08825 0
0 0 0 0.9048
4877 4877
—1.1895 3.569
0 u(fy + wy(i), 6-439

0 0
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" where wy (i), i > {,, is a sequence of uncorrelated zero-mean stochastic
variables with the variance matrix 6-169. The components of the state are
the incremental volume of the fluid in the tank, the incremental concentration
in the tank, and the incremental concentrations of the two incoming feeds.
We assume that we can observe at each instant of time { the incremental
volume, as well as the incremental concentration in the tank. Both observa-
tions are contaminated with uncorrelated, zero-mean observation errors with
standard deviations of 0.001 m® and 0.001 kmol/m?, respectively. Further-
more, we assume that the whole sampling interval is used to process the data,
so that the observation equation takes the form

( bo 0 { ) 6-440
y(i) = () + wu(i), -
y(i) 01 0 ) )
where wy(i), I > 1y, have the variance matrix
1077 0
. 6-441
o 10t

The processes w; and w, are uncorrelated. In Example 6.10 we found that the
steady-state variance matrix of the state of the system is given by

0 0 0 0

0 0.00369 0.00339 0.00504
0 0.00339 0.0100 0

0 0.00504 0 0.0400

6-442

Using this variance matrix as the jmitial variance matrix @(0) = @Q,, the
recurrence relations 6-435 can be solved. Figure 6.21 gives the evolution of
the rms reconstruction errors of the last three components of the state as
obtained from the evolution of @{i), i > 0. The rms reconstruction error of
the first component of the state, the volume, of course remains zero all the
time, since the volume does not fluctuate and thus we know its value exactly
at all times.

It is seen from the plots that the concentrations of the feeds cannot be
reconstructed very accurately because the rms reconstruction errors approach
steady-state values that are hardly less than the rms values of the fluctuations
in the concentrations of the feeds themselves. The rms reconstruction error
of the concentration of the tank approaches a steady-state value of about
0.0083 kmol/m®. The reason that this error is larger than the standard
deviation of 0.001 kmol/m? of the observation error is the presence of the
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Fig. 6.21. Behavior of the rms reconstruction errors lor the stirred fank with disturbances.

processing delay—the observer must predict the concentration a full sampling
interval ahead.

6.5.5 Innovations

In this section we state the following fact, which is more or less analogous to
the corresponding continuous-time result.

Theorem 6.43. Consider the optimal observer of Theorem 6.42. Then the
innovation process :
y(i) — E(Qu(i) — COED, 1> iy, . 6-443
is a sequence of zero-mean uncorrelated stochastic vectors with variance
matrices

CHONCTH + Vud), i 2y 6-444
That the innovation sequence is discrete-time white noise can be proved

analogonsly to the continuous-time case. That the variance matrix of 6-443
is given by 6-444 follows by inspection,

6.5.6 Duality of the Optimal Observer and Regulator Problems;
Steady-State Properties of the Optimal Observer

In this subsection we expose the duality of the linear discrete-time optimal
regulator and observer problems. Here the following results are available.
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Theorem 6.44.  Consider the linear discrete-time optimal regulator problem
(DORP) of Definition 6.16 (Section 6.4.3) and the linear discrete-time aptimal
observer problem (DOOP) of Definition 6.19 (Section 6.5.4). Let in the
observer problem V,(f) be given by

V() = GOWMETD, 1> i, 6-445
where
V(i) >0, P>, 6-446
Suppose also that the state excitation noise and the observation noise are un-
correlated in the DOOP, that is,
V(i) =0, i> iy 6-447
Let the various matrices occurring in the DORP and the DOOP be related
as follows:
A of the DORP equals AT (i* — i) of the DOOP,
B(i) of the DORP equals C*(i* — i) of the DOOP,
D(i + 1) of the DORP equals G*(i* — i) of the DOOP,
Ry(i + 1) of the DORP equals V4(i* — i) of the DOOP,
Ry(D) of the DORP equals Vo(i* — i) of the DOGP,
P, of the DORP equals Oy of the DOOP,
all for i < i, — 1. Here
i*f=q+i— 1 _ 6-448
Under these conditions the salutions of the DORP (Theorem 6.28, Section
6.4.3) and the DOOP (Theorem 6.42, Section 6.5.4) are related as follows.

(@) P(i 4+ 1) of the DORP equals O(G* — 1) — V(i* — i) of the DOOP for
i<i—1;

(b) F(i) of the DORP equals KY(i* — i) of the DOOP for i < i, — 1;

(c) The closed-loop regulator of the DORP,

(i 4+ 1) = [A() — BOF =), 6-449
and the unforced reconstruction error equation of the DOOP,
e(f + 1) = [4() — K¥DC(De(d), 6-450

are dual with respect to i* in the sense of Definition 6.9.

The proof of this theorem follows by a comparisen of the recursive matrix
equations that determine the solutions of the regulator and observer problems.
Because of duality, computer programs for regulator problems can be used
for observer problems, and vice versa. Moreover, by using duality it is very
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simple to derive the following results concerning the steady-state properties
of the nonsingular optimal observer with uncorrelated state excitation and
observation noises from the corresponding properties of the optimal reguiator.

Theorem 6.45. Consider the nonsingular optimal observer problem with
uncorrelated state excitation and observation noises of Definition 6.19 (Section
6.3.4). Assume that A({), C(i), V(i) = G(i)'Va(i)GT(i) and Va (i) are bounded
Jor all i, and that

Va) > af, Vo) > pI,  foralli, 6451

where o and 8 are positive constants,
(1) Then if the system 6-419 is either
{a) completely reconstructible, or
{(b) exponentially stable,
and the initial variance Oy, =0, the variance Q(i) of the reconstruction
error converges to a steady-state solution G(i) as iy— — oo, which satis-
fies the matrix difference equations 6-435.
(ii) Moreover, if the system

w(i 4 1) = A@() + Gihw(),  y() = C(e(i),  6-452

is either
(c) boih uniformly completely reconstructible and wniformly completely
controllable (from wy), or
(d) exponentially stable,
the variance Qi) of the reconstruction error converges 1o 0(1) for ij—
— oo for any initial variance Qg > 0.
(iii} If either condition (c) or (d) holds, the steady-state optimal observer,
which is obtained by wsing the gain matrix K corresponding to the steac{)r—
stare varianee @, is exponentially stable.
(iv) Finally, if either condition (c) or (d) holds, the steady-state observer
minintizes
lim E{eT()W(i)e()} 6-453
ig~+—o
Jor every initial variance Oy The minimal value of 6-453, which is achieved
by the steady-state optimal observer, is given by

tr [GHOW)]- 6-454

Similarly, it follows by ‘“‘dualizing” Theorem 6.31 (Section 6.4.4) that, in
the time-invariant nonsingular optimal observer problem with uncorrelated
state excitation and observation noises, the properties mentioned under (ii),
(iii}, and {iv) hold provided the sysiem 6-452 is both detectable and stabiliz-
able. .
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We leave it as an exercise for the reader to state the dual of Theorem 6.37
(Section 6.4.7) concerning the asymptotic behavior of the regulator poles.

6.6 OPTIMAL LINEAR DISCRETE-TIME
OUTPUT FEEDBACK SYSTEMS

6.6.1 Introduction

In this section we consider the design of optimal linear discrete-time control
systems where the state of the plant cannot be completely and accurately
observed, so that an observer must be connected. This section parallels
Chapter 3.

6.6.2 The Regulation of Systems with Incomplete Measurements

Consider a linear discrete-time system described by the state difference
equation
z(i + 1) = A=) + B{)u(), 6-455

with the controlled variable
z(f) = D(=(). 6-456

In Section 6.4 we considered controlling this system with state feedback

control laws of the form :
(i) = —F(D=z(). . 6-457

Very often it is not possible to measure the complete state accurately, how-
ever, but only an observed variable of the form

¥(i) = C)x() + E@ui) 6-458

is available. Assuming, as before, that ¥(7) is the latest observation available
for reconstructing =(f 4 1), we can connect an observer to this system of the
form '

20 + 1) = A@ED) + Blul) + K@yE) — EQu) — CHEG)]. 6-459

Then a most natural thing to do is to replace the state = in 6-457 with its

reconstructed value £:
u(i) = —F(D&(D). 6-460

We first consider the stability of the interconnection of the plant given by
6-455 and 6-458, the observer 6-459, and the control law 6-460. We have the
following result, completely analogous to the continuous-time result of
Theorem 3.2 (Section 5.2.2).
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Theorem 6.46. Consider the intercomrection of the system described by
6-455 and 6-458, the observer 6-439, and the control Inw 6-460. Then sufficient
conditions for the existence of gain matrices F(i) and K(i), i > iy, such that the
interconnected system is exponentially stable are that the system described by
6-455 and 6-458 be uniformly completely controllable and uniformly completely
reconstructible, or that it be exponentially stoble. In the time-invariant case
(i.e., all matrices occurring in 6-455, 6-458, 6-459, and 6-460 are constant)
necessary and sufficient conditions for the existence of stabilizing gain matrices
K and F are that the system given by 6-4535 and 6-458 be both stabilizable and
detectable. Moreaver, in the time-invariant case, necessary and sufficient con-
ditions for arbitrarily assigning all the closed-loop poles in the complex plane
(within the restriction that complex poles occur in complex conjugate pairs) by
suitably choosing the gain matrices K and F are that the system be both com-
pletely reconstructible and completely controllable.

The proof of this theorem follows by recognizing that the reconstruction error

e()) = =(7) — £() 6-461
satisfies the difference equation
e(i + 1) = [A()) — K(DC(D)]e(i). 6-462
Substitution of #(i) = z(i) + e(/) into 6-460 yields for 6-455
(i + 1) = [A()) — BOFD=() + BUEF(De(i). 6-463

Theorem 6.46 then follows by application of Theorem 6.29 (Section 6.4.4),
Theorem 6.45 (Section 6.5.4), Theorem 6,26 (Section 6.4.2), and Theorem
6.41 (Section 6.5.3). We moreover see from 6-462 and 6-463 that in the time-
invariant case the characteristic values of the interconpected system
comprise the characteristic values of 4 — BF (the regilator poles) and the
characteristic values of 4 — KC (the observer poles).

A case of special interest occurs when in the time-invariant case all the
regulator poles as well as the observer poles are assigned to the origin. Then
we know from Section 6.5.3 that the observer will reconstruct the state
completely accurately in at most » steps (assuming that » is the dimension of
the state ), and it follows from Section 6.4.2 that after this the regulator will
drive the system to the zero state in at most another # steps. Thus we have
obtained an output feedback control system that reduces any initial state to
the origin in at most 2u steps. We call such systems output feedback state
deadbeat contral systems.

Example 6.24. Digital position output feedback state deadbeat control system
Let us consider the digital positioning system of Example 6.2 (Section
6.2.3). In Example 6.13 (Section 6.3.3) we derived the state deadbeat control
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Fig. 6.22. Response of the output feedback state deadbeat position control system from
the initial state col[=(0}, £(0)] = col{0.1, 0, 0, 8). The responses are shown at the sampling
instants only and not at intermediate times.

law for this system, while in Example 6.22 (Section 6.5.3) we found the
deadbeat observer. In Fig. 6.22 we give the response of the interconnection of
deadbeat control law, the deadbeat observer, and the system to the initial
state

%(0) =col (0.1, D), &(0)=0. 6-464

Tt is seen that the initial state is reduced to the zero state in four steps. Com-
parison with the state feedback deadbeat response of the same system, as
depicted in Fig. 6.12 (Section 6.3.3), shows that the output feedback control
system exhibits relatively large excursions of the state before it returns to the
zero state, and requires larger input amplitudes.
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6.6.3 Optimal Linear Discrete-Time Regulators with Incomplete
and Noisy Measurements

We begin this section by defining the central problem.
Definition 6.20. Consider the linear discrete-time system

a(i + 1) = A(Dx() + B(Du() + w(D),

6-4
®(ip) = oy, 2 iy, 6

where x,; is a stochastic vector with mean %, and variance matrix (. The
abserved variable of the system is
y(i) = C(D=() + E@u(d + walh). : 6-466

The variables col (i), wa(i)] form a sequence of uncorrelated stochastic
vectors, uncorrelated with x,, with zere means and variance matrices

; (i) V(i
E{(WI(I))(WITU), WﬂT(i))] _ ( 6] (T))’ P>, 6467

wali) ZONRZ0
The controlled variable can be expressed as
z(i) = D(@)=(). : 6-468

Then the stoehastic linear discrete-time optimal owiput feedback regulator
problem is the prablem of finding the functional

u(i) = flyGo). ylig + 1), -, y(@E — 1), 1], h<Li<i;—1, 6469
swch that the criterion

f1—1

o= E[ z 270 + DRy(i + 1)=(i + 1) 4+ uT(DR,(Du(d)] + =T (i)P(i,)
o 6-470
is minimized. Here Ry(i + 1) > 0 and Ro(1) >0 for i, < i<y — 1, and
P, >0
As in the continuous-time case, the solution of this problem satisfies the

separation principle (Gunckel and Franklin, 1963; Astrém, 1970; Kushner,
1971).

Theorem 6,47, The solution of the stechastic linear discrete-time optimal
output feedback problem is as follows. The optimal input is given by

u(i) = —F)E(), i <i<i,—1, 6-471

where F(i), iy < i < iy — 1,isthe sequence of gain maitrices for the deterministic
optimal regulator as given in Theorem 6.28 (Section 6.4.3). Furtherniore, £(i)
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is the minimum mean-square linear estimator of x(i) given y(j), i K j<i - 1;
&(f) for the nonsingular case [i.e., V,(i) > 0, iy £ i < iy — 1] can be obtained
as the output of the optimal observer as described in Theorem 6.42 (Section
6.5.4).

We note that this theorem states t/ie optimal solution to the stochastic linear
discrete-time optimal output feedback problem and not just the optimal
linear solution, as in the continuous-time equivalent of the present theorem
(Theorem 5.3, Section 5.3.1). Theorem 6.47 can be proved analogously to the
continuous-time equivalent.

‘We now consider the computation of the criterion 6-470, where we restrict
ourselves to the nonsingular case. The closed-loop control system is described
by the relations

w(i + 1) = A=) + BDu() + wii),
y({@) = CHOxE) + E@u() + wa(d), 6-472
u(f) = —F()E(),
£ 4+ 1) = ADE[E) + BOu() + KO [y(@) — E@Qu() — CHED).
In terms of the reconstruction error,
e(i) = =(i) — (7). 6-473
and the observer state £(i), 6-472 can be rewritten in the form
e(i + 1) A() — K(HCE) 0 e(i)
&a+n)=( KO)CQ) A@—B@HJ@@)

I —K(O\ fw (i
+ N oara
0 K@) J\w(d) _
with the 1nitial condition

(e(fu)) _ (ﬂ’(fu) — % 6-475
&)\ ®m )

Defining the variance matrix of col [e(i), £(i)] as

EKdﬂ_Eﬁww@Wn—Ek%m,f%ﬂQEmeﬂ
(1) — E{8()}

=(&ﬁ)Qﬂﬂ

Q) Qul(d)

it can be found by application of Theorem 6.22 (Section 6.2.12) that the

), i 2> i, 6-476
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matrices 0,(1), j, k = 1, 2, satisfy difference equations, of which we give only
that for Oga:

Q‘J.'-:(f +1)= K(i)c(i)Qu(i)CT(f)KT(i)
+ [A(i) — B(DF(D]QLMHCT(HKT()
+ K()C(DQ1:(NIA() — BHFHIT
+ [A() — B(F(D)]Qu(NA() — BOFMIT
+ KMOV(DKT(D), 12 i 6-4717

with the initial condition
Ona(iy) = 0. 6-478

Now obviously @,,(i) = 0(i), where (i) is the variance matrix of the
reconstruction error. Moreover, by setting up the difference equation for
0.s, it can be proved that Q,.({)=0, {;, < i< i — 1, which means that
analopously with the continuous-time case the quantities e(7) and £(7) are
uncarrelated for iy < i< i, — 1. As a result, 0., can be found from the
difference equation

On(i + 1) = KOICHEMCT() + V(KT (7)
+ [A() — BOF()]Qeu(DIA() — BAFHY, 6-479
Oua(iy) = 0.

When the variance matrix of col [e(i), £({)] is known, all mean square and
rms quantities of interest can be computed, In particular, we consider the
criterion 6-470. In terms of the variance matrix of col (e, £) we write for the
criterion:

111

a = Z,7P(iy)%, + tr 2 R + DG + 1) + Quli + 1))

i=ip

+ FI(DR(DF()0x()} + PLIQG) + Qﬂﬂ(fl)]}, 6-480
where
R,(1) = DT()R,(i) D(i), 6-481

and P(f) is defined in 6-248. Let us separately consider the terms

tr {fil[Rl(" + DQue(i + 1) + FI(NDRLNF()Qu(D)] + P 1Qaa(il)}

i=ig

111
= tr[ 2 [Ri()) + FIOR(DF ()]0} + [PL + Rl(fl)]sz(il)], 6-482

f=ig+1
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where we have used the fact that Qu.(f,) = 0. Now using the results of
Problem 6.7, 6-482 can be rewritten as

tr {Qgﬂ(fu)ﬁ(fu) + 3 PGKG —1)

F==in+1

[CG — DA = NCT( = 1) + V(j — DIKT(j — 1)}, 6-483
where P satisfies the matrix difference equation

B(i — 1) = [A(i — 1) — B(i — 1)F(i — DIPB(3)
[A(i — 1) — B(i — 1)F(i — 1)] + R,(i) + FT()RL(DF(i), 6-484

ﬁ(fl) =P 4 R1(f.1)-

It is not difficult to rtecognize that B(i) = P(i) + Ry{i), ip+ 1< i< iy
By using this, substitntion of 6-483 into 6-480 yields for the criterion

i1—1

o= T P(ig)g + 3 tr {Ry(i + DE( + 1) + [P(i + 1) + R(i + DIK()

i=fy

- [CHRICTE) + Vg(i)lfcﬂ‘(f)} + tr [P,0(i)]. 6-485

By suitable manipulations it can be found that the criterion can be expressed
in the alternative form:

a = E,TP(i)T, + tr [P(i)C,]

+ 3t (IR )+ PG+ DIKG + QOFT)

(R + BOIR( + 1) + PG+ 1)]B(i)}F(f)}. 6-486

We can now state the following theoremi.

Theorem 6.48. Consider the stochastic output feedback regulator problem of
Definition 6.20. Suppose that V(i) > 0 for all i. Then ihe following facts hold.
(a) The minimal value of the criterion 6-470 can be expressed in the
alternative forms 6-485 and 6-486.
(b) In the time-invariant case, in which the optimal observer and reguiator
problems have steady-state solutions as iy — — oo and iy — o0, characterized
by @ and P, with corresponding steady-state gain matrices K and F, the
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Jollowing holds:

lim — E{ilz_l[zT(t' £ DR+ Dl + 1) + T @R(u()]
ig—:-»mm 1 — g =
" = lim E{="(i + 1DRq=(i + 1) + uT())Reu(i)}

=tr [R,0 + (P + RYR(CACT + V)R]
= tr {(R, + P)I}, + QFT[Ry + B"(R, + P)B]F}. 6-487
(c} Afl mean square quantities of interest can be obiained from the variance
matrix diag [Q{), Op:()] of col [e(7), £(1)]. Here e(i) = x(i) — (i), Q) is
the variance matrix of e(i}, and Q. (i) can be obtained as the solution of the
mafrix difference equation

Qua(i + 1) = [4()) — BOIF(Y]Qas()AG) — BOHF()T
+ KOCHEmCT () + VaMIKF (@), i 2, 6-488
Qaaliy) = 0.
The proof of part (b) of this theorem follows by application of part (a).

The general stochastic regulator problem can be specialized to tracking
problems, regulation problems for systems with disturbances, and tracking
problems for systems with disturbances, completely analogous to what we
have discussed for the continuous-time case,

6.6.4 Nonzero Set Points and Constant Disturbances

The techniques developed in Section 5.5 for dealing with time-invariant
regulators and tracking systems with nonzerc set points and constant dis-
turbances can also be applied to the discrete-time case. We first consider the
case where the system has a nonzero set point z; for the controlled variable.
The system state difference equation is
(i + 1) = Az()) + Buli) + wi(i), i> i 6-489
the controlled variable is
z() = D=(D), > i 6-490
and the observed variable is
y(i)y = Cz(iy + Eu(i) + wo(i), i > i 6-491

The joint process col (wy, ws) is given as in Definition 6.20 (Section 6.6.3).
From Section 6.4.6 it follows that the nonzero set point controller is spec-
ified by

u(i) = —F&(i) + H7(1)%, 6-492
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where F 15 a suitable feedbdck gain matrix, and
H.(z) = Dzl — A + BB 6-493

is the (square) closed-loop transfer matrix (assuming that dim (z) = dim (u)).
Furthermore, #£(i) is the minimum mean square estimator of x(i) and Z,
that of z,.

How £ is obtained depends on how we model the set point. If we assume
that the set point varies according to

(i + 1) = 2(F) + 1 (£), 6-494
and that we observe
r(i) = z5() + w, (i), 6-495

where col (wy, w,) constilutes a white noise sequence, the steady-state optimal
observer for the set point is of the form

25(i + 1) = 2,0 + K, [r(i) — &())]. 6-496

This observer in conjunction with the control law 6-492 yields a zero-sieady-
state-error response when the reference variable r(7) is constant.

Constant disturbances can be dealt with as follows. Let the state difference
equation be given by

2(i + 1) = Az() + Bu()) + vy + wy(i), 6-497

where o, is a constant disturbance. The controlled variable and observed
variable are as given before. Then from Section 6.4.6, we obtain the zero-
steady-state-error contro) law

(i) = — F&(i) — HX) DU — Ay 3y, 6-498

with all quantities defined as before, 4 = 4 — BF, and &, an estimate of ;.
In order to obtain #,, we model the constant disturbance as

vo(i + 1Y = vy(N) + we(D), 6-499

where v, constitutes a white noise sequence. The steady-state optimal
observer for x(f) and z,(i) will be of the form

20 + 1) = AZ() + Bu(i) + 5,0) + Ruly() — C2(1) — EGu()],
foli + 1) = Boli) + Raly()) — CE()) — EGu(i)].

This observer together with the control law 6-498 produces a zero-steady-
state-error response Lo a constant disturbance. This is a form of integral
contral.

6-500
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Example 6.25. Integral control of the digital positioning system
Consider the digital positioning system of previous examples. In Example
6.14 (Section 6.4.3), we obtained the state feedback contro] law

(i) = —Fr()) = —(110.4, 12.66)z(i). 6-501

Assuming that the servo motor is subject to constant disturbances in the form
of constant torques on the shaft, we must include a term of the form

0.003396
v = o 6-502
0.06308

in the state difference equation 6-26, where « is a constant. It is easily seen
that with the state feedback law 6-501 this leads to the zero-steady-state-error

control law
w() = —Fi() — &(@). 6-503

The observer 6-500 is in this case of the form

1 0.08015) ) (0.003396

0 0.6313 # 0.06308 )[‘u(l) + &)l

:E'(f—|—1)=(

k,
+ (] )[??(f) — (1, 0)E@)],

3

&+ 1) = &) + kz[n(@) — (1, OZL())] - 6-504
Here it has been assumed that
() = (1, 0=z({) 6-505

is the ohserved variable (i.e., the whole sampling interval is used for proc-
essing the data), and k,, &, and %, are scalar gains to be selected, We
choose these gains such that the observer is a deadbeat observer; this results
in the following values: ‘

fey = 2.6313, iy = 18.60, kg = 158.4, 6-506

Figure 6.23 shows the response of the resulting zero-steady-state-error control
system from zero initial conditions to a relatively large constant disturbance
of 10V (i.e., the disturhing torque is equivalent to a constant additive input
voltage of 10 V). It is seen that the magnitude of the disturbance is identified
after three sampling intervals, and that it takes the system another three to
four sampling intervals to compensate fully for the disturbance.
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6.7 CONCLUSIONS

In this chapter we have summarized the main results of linear optimal control
theory .for discrete-time systems. As we have seen, in many instances the
continuous-time theory can be extended to the discrete-time case in a fairly
straightforward manner. This chapter explicitly reviews most of the results
needed in linear discrete-time control system design.

Although in many respecis the discrete-time theory parallels the continuous-
time theory, there are a few differences. One of the striking dissimilarities is
that, in theory, continuous-time control systems can be made arbitrarily
fast. This cannot be achieved with discrete-time sysiems, where the speed of
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action is restricted by the sampling interval. The fastest type of control that
can be achieved with discrete-time systems is deadbeat control.

In this chapter we have usually considered linear discrete-time systems
thought to be derived from continuous-time systems by sampling. We have
not paid very much attention to what happens befween the sampling interval
instants, however, except by pointing out in one or two examples that the
behavior at the sampling instants may be misleading for what happens in
-between. This is a reason for caution, As we have seen in the same examples,
it is often possible to modify the discrete-time problem formulation to obtain
a more acceptable design.

The most fruitful applications of linear discrete-time control theory lie in
the area of computer process control, a rapidly advancing field.

6.8 PROBLEMS

6.1. A modified discrete-time regulator problem
Consider the linear discrete-time system

(i + 1) = AD=E) + Bu(d), 6-507
with the modified criterion

i1—1

2 [= (DR (=(i) + 257 (DR Du(i) + uT(HR(Du(D)]
o + 2T(i)Pa(i). 6508

Show that minimizing 6-508 for the system 6-507 is equivalent to a standard
discrete-time regulator problem where the criterion

gl

2 [0+ DRI+ Da(i + 1) + o' T(DR(D' (D] + =T (i)P,2(i)) 6-509
is minimized for the system
(i + 1) = A" + B (@), 6-510
with
e Ry(D) — Ri(DRT(DRI(D), i=i+1L,p+2-,h—1
Ri(i) = .
2 = !1!
(i) = u(i) + RT(DRE(D=(D), i=in il 1L, — 1, 6-511
A'(f) = A — B(DR (DR, i=lpip+1,--, i —L

6.2. Stochastic state feedback regulator problems structured as regpulator
problems with disturbances
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Consider the linear discrete-time system

w(i + 1) = A=) + B(Du(@) + o),

6-512
z(i} = D(@)x(i).
Here the disturbance variable v is modeled as
b(i) = Dy,
)= Duli) 6-513

ﬂ:d(i + 1) = Ad(i)mﬂ(i) + “’d(i)a

where the w,(f), { > i,, form a sequence of uncorrelated stochaslic vectors
with given variance matrices. Consider also the criterion '

E[fgl[z'f(i 4 DR + Dl + 1) + wT(DRDuD] + zT(i)Paliy)]. 6514

i=lg

(a) Show how the problem of controlling the system such that the criterion
6-514 is minimized can be converted into a standard stochastic regulator
problem. '

(b) Show that the optimal conirol law can be expressed as

u(f) = —F(z()) — Fi)n,(), i=ipi+1,--",0i—1, 6515

where the feedback gain matrices F(i), { =iy, * -+, i, = 1, are completely
independent of the properties of the disturbance variable.

6.3. Stochastic state feedback regulator problems structured as tracking
problems
Consider the linear discrete-time system

x(i + 1) = A(D=() + B{u(d),
z(/) = DDx().

Consider also a reference variable z,, which is modeled through the equations

2()) = D, (1),
(i + 1) = A, (), 0} + wiD),

6-316

6-517

where w,.(i), { > i, forms a sequence of uncorrelated stochastic vectors with
variance matrices V,(f). Consider as well the criterion

11-1
B S0+ D = 2+ DFRG + DG+ D — 20+ 1]

=iy

+ wT(DRy(Du(i)). 6-518



6.8 Problems 549

(a) Show how the problem of controlling the system such that the
criterion 6-518 is minimized can be converted into a standard stochastic
discrete-time optimal regulator problem.

(b) Show that the optimal controf law cun be expressed in the form

”(i) = '_F(‘)"L(i) + Fr([)"br(f), i= iﬂ: f[l + ]a T I.1 - 1: 6'519

where the feedback gain matrices F(i}, /== iy, -+, 7, — 1, are completely
independent of the properties of the reference variable.

6.4. The closed-loop regulator poles

Prove the following generalization of Theorem 6.37 (Section 6.4.7).
Consider the steady-state solution of the time-invariant linear discrete-time
optimal regulator problem. Suppose that dim (z) = dim («) and let

H(z) = Dzl — AY"B,

. _ w3
dEL [H(Z)] _ lib(Z) L]
be) =TTz — ), withms0,i=1,2-,q, °°20

fa=l

il
pE)=2""T[ (= — =), with 1, £ 0,i=1,2,---,p,
=1
and
Ry = pN,

with &V >> 0 and p a positive scalar. Finaliy, set r == max (p, g). Then:

{a) OF the » closed-loop regulator poles, 7 — r always stay at the origin,

(b) As p | 0, of the remaining  closed-loop poles, p approach the numbers
Pn,i=1,2,-+-,p, which are defined as in 6-363.

(c} As p} 0, the r — p other ciosed-loop poles approach the origin,

{d) Asp i oo, of the r nonzero closed-loop poles, ¢ approach the numbers
ft i =1, , ¢, which are defined as in 6-364,

(e) As p | o, the r — p other nonzero closed-loop poles approach the
origin.

6.5, Mixed continuous-time discrete-time regulator problem
Consider the discrete-time system that results from applying a piecewise
constant input to the contimious-time system

(1) = AD)x()) + B(Ou(t). 6-521

Use the procedure and notaticn of Section 6.2.3 in going from the continuous-
time to the discrete-time version. Suppose now that one wishes to take into
account the behavior of the system between the sampling instants and consider
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therefore the integral criterion (rather than a sum criterion)

t ]
L f [T (OR(Dx(f) + uT(ORLu()] dt + T(t, ) Py(t,).  6-522

Here ¢, is the first sampling instant and #; the last.

(a) Show that minimizing the criterion 6-522, while the system 6-521 is
commanded by stepwise constant inputs, is equivalent to minimizing an
expression of the form

rle1

2 [sT(tARI (D (1) + 22T (IRL(Du(t) + vT(tIRDu(t)]

={n

+ z%(t, )P x(2;,) 6-523
for the discrete-time system

of;40) = D(tiya, 1)2(1:) + [f

i

i

+1(D(ti+1’ T)B(T) dT:[ U(t,'), 6"524

where (¢, ¢,) is the transition matrix of the system 6-521. Derive expressions
for Ri(i), Rix(D), and Ri(i}.

(b) Suppose that 4, B, R,, and R, are constant malrices and also let the
sampling interval #,;; — #; = A be constant. Show thatif the samplinginterval
is small first approximations to Ri, Ry,, and R; are piven by

R{™ RA,
Ris = 3R, BA®, 6-525
402 (R + BTRBADA.
6.6. Alrernative version of the discrete-time optimal observer problem
Consider the system .
(i + 1) = A(Dx() + Bu() + w(i),
y(i} = CE=z(@) + E@Qu(@) + wold), {21,
where col [w, (7}, wa()]. > s forms a sequence of zero-mean uncorrelated
vector stochastic variables with variance matrices

i) V(i) o
’ s i > ig. 6-527
Vi) V(i)
Furthermore, x(iy) is a vector stochastic variable, uncorrelated with w; and
Wa, with mean T, and variance matrix Q. Show that the best linear estimator
of (i) operating on ¥(j), iy < j < i (not { — 1, as in the versjon of Section
6.5}, can be described as follows:
&+ 1) = [T — K@i + DCE + DI[A@E@) + B(Hu()]
+KGE+ D+ D) —EG+ Du@+ 1)1, i>4. 6-528

6-526
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Here the gain matrices K are obtained from the iterative relations
K(i + 1) = [S(F + DCT( + 1) + ﬁz(;)]{(:(i + DS( + DCT( + 1)

N0 DN VRN F AT,

S(i 4+ 1) = ADHODAT() + VD),

0 + 1) = [T — K + DCGi + ISt + 0 AN/ R, 6529

all for i > iy, Here Q(i) is the variance matrix of the reconstruction error
=(i) — &(i), and S(/) is an auxiliary matrix. The initial condition for 6-528
is given by

&(iy) = [I — K(i)C(ig)%y + K(ig)[y(ip) — E(ig)u(n)l, 6-530
where
K(in) = QnCT(in)[C(in)QuCT(iu) + Vn("n)]*l- 6-531

The initial variance matrix, which serves as initial condition for the iterative
equations 6-529, is given by

Q(iy) = [I — K(ig)C(in)1Q0- 6-532

Hint: To derive the observer equation, express ¥(/ 4 1) in terms of =(f) and
use the standard version of the observer problem given in the text.

6.7. Property of a matrix difference equation
Consider the matrix difference equation

06 + 1) = ANOMAT() + R(), H<i<ih—1, 6533
together with the linear expression
i1—1
tr [ 3 000 + Pigti | 6-534
=i
Prove that this expression can also be written as
i1 ’
tr [QDP(:‘D) + 3 RG- I)P(f)} 6-535
F=ig41
where the sequence of matrices P(), iy < j < 1, satisfies the matrix difference
equation
P(i— D)= AT — DPDAG— 1D+ S(i—1), i{H+1<i<ip,
P(i;) = P,.

6-536
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6.8. Linear discrefe-time optimal output feedback controllers of reduced
dimensions
Consider the linear time-invariant discrete-time system

(i + 1) = Az{i) + Buli) + wy i), z(fy) = Ty,
z(i) = D(x(i), 6-537
y(1) = C@(i) + EDu(i) + wyli),
all for i > #y, where col [wy(7), wa(i)], { > i, forms a sequence of uncorrelated

stochastic vectors uncorrelated with x,. Consider for this system the time-
invariant controller

gl + 1) = Lg() + Kyy(,
u(i) = —Fy(i) — Kup(i).
Assume that the interconnection of controller and plant is asymptotically
stable.

{(a) Develop matrix relations that can be used to compute expressions of
the form '

6-538

lim E{zT(DRz(i)} 6-539
and v
lim E{u™()Ru ()} 6-540
-+—m )

Presuming that compuler programs can be developed that determine the
controller matrices L, K, F, and K, such that 6-539 is minimized while
6-540 is constrained to a pgiven value, outline a method for determining
discrete-time optimal output feedback controllers of reduced dimensjons.
(Compare the continuous-time approach discussed in Section 5.7.)

(b) When gradient methods are used to solve numerically the optimization
problem of (a), the following result is useful. Let Af, N, and R be given
matrices of compatible dimensions, each depending upon a parameter p.
Let § be the solution of the linear matrix equation

§=MSMT + N, 6-541
and consider the scalar
‘ tr (SR) 6-542
as a function of y. Then the gradient of 6-542 with respect to y is given by
SRl =u (X5 N o420l ar), s
dy dy dy ay

where U js the sofution of the adjoint matrix equation

‘ =MTOM + R. 6-544
Prove this.



	Title
	Preface
	Acknowledgements
	Contents
	Notation and Symbols
	Chapter 1: Elements of Linear System Theory
	Chapter 2: Analysis of Linear Control Systems
	Chapter 3: Optimal Linear State Feedback Systems
	Chapter 4: Optimal Linear Reconstruction of the State
	Chapter 5: Optimal Linear Output Feedback
	Chapter 6 - Linear Optimal Control Theory for Discrete-Time Systems

	6.1 Introduction

	6.2 Theory of Linear Discrete-Time Systems

	6.3 Analysis of Linear Discrete-Time Control Systems

	6.4 Optimal Linear Discrete-Time State Feedback Control Systems

	6.5 Optimal Linear Reconstruction of the State of Linear Discrete-Time Systems

	6.6 Optimal Linear Discrete-Time Output Feedback Systems

	6.7 Conclusions

	6.8 Problems


	References
	Author Index
	Subject Index

