
6% LINEAR OPTIMAL CONTROL 
THEORY FOR DISCRETE-TIME 
SYSTEMS 

6.1 INTRODUCTION 

In the first five chapters of this book, we treated in considerable detail linear 
control theory for continuous-time systems. In this chapter we give a con- 
densed review of the same theory for discrete-time systems. Since the theory 
of linear discrete-time systems very closely parallels the theory of linear con- 
tinuous-time systems, many of the results are similar. For this reason the 
comments in the text are brief, except in those cases where the results for 
discrete-time systems deviate markedly from the continuous-time situation. 
For the same reason many proofs are omitted. 

Discrete-time systems can be classified into two types: 

1. Inherently discrete-time systems, such as digital computers, digital 
fiiters, monetary systems, and inventory systems. In such systems it makes 
sense to consider the system at discrete instants of time only, and what 
happens in between is irrelevant. 
2. Discrete-time systems that result from consideringcontinuous-limesystems 
a t  discrete instants of time only. This may be done for reasons of convenience 
(e.g., when analyzing a continuous-time system on a digital computer), or 
may arise naturally when the continuous-time system is interconnected with 
inherently discrete-time systems (such as digital controllers or digital process 
control computers). 

Discrete-time linear optimal control theory is of Fea t  interest because of 
its application in computer control. 

6.2 THEORY OF LINEAR DISCRETE-TIME 
SYSTEMS 

6.2.1 Introduction 

In this section the theory of linear discrete-time systems is briefly reviewed. 
The section is organized along the lines of Chapter 1. Many of the results 
stated in this section are more extensively discussed by Freeman (1965). 

, 442 
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6.2.2 State Description of Linear Discrete-Time Systems 

I t  sometimes happens that when dealing with a physical system it is relevant 
not to observe the system behavior a t  all instants of time t but only at  a 
sequence of instants /,, i = 0, 1,2, . . . . Often in such cases it is possible to 
characterize the system behavior by quantities defined at  those instants only. 
For such systems the natural equivalent of the state differential equation is the 
state fiiierer~ce eqttation 

x(i + 1) = f[x(i), u(i), i], 6-1 

where x(i) is the state and u(i) the input a t  time t,. Similarly, we assume that 
the output at time ti is given by the ottput eqt~ation 

Linear discrete-time 
the form 

systems are described by state difference equations of 

x(i + 1) = A(i)x(i) + B(i)u(i), 6-3 

where A(i) and B(i) are matrices of appropriate dimensions. The correspond- 
ing output equation is 

?I@) = C(i)x(i) + D(i)u(i). 6-4 

If the matrices A ,  B, C, and D are independent of i, the system is time- 
inuariant. 

Example 6.1. Sauings bardc accotmt 
Let tlie scalar quantity ~(17) he tlie balance of a savings bank account a t  the 

beginning of the wth month, and let o. be tlie monthly interest rate. Also, 
let the scalar quantity rr(17) be the total of deposits and withdrawals during the 
17-th month. Assuming that the interest is computed monthly on the basis of 
the balance at the beginning of the month, the sequencex(n), n = 0, 1,2, .. . , 
satisfies the linear difference equation 

where x, is the initial balance. These equations describe a linear time-in- 
variant discrete-time system. 

6.2.3 Interconnections of Discrete-Time and Continuous-Time Systems 

Systems that consist of an interconnection of a discrete-time system and a 
continuous-time system are frequently encountered. An example of particular 
interest occurs when a digital computer is used to control a continuous-time 
plant. Whenever such interconnections exist, there must be some type of 
interface system that takes care of the communication between the discrete- 
time and continuous-time systems. We consider two particularly simple types 
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t i m e  

Fig. 6.1. Continuous-to-discrete-time conversion. 

of interface systems, namely, cor~tin~~otrs-to-discrete-li~z~e (C-to-D) corzuerfers 
and discrete-to-contir~t~ot~s-fi,,ze (D-to-C) conuerters. 

A C-to-D converter, also called a so~npler (see Fig. 6.1), is a device with a 
continuous-time function f ( t ) ,  t 2 to, as input, and the sequence of real 
numbers f+(i) ,  i = 0 ,  1 ,2 ,  . . . , at times t i ,  i = 0,  1,2, . . . , as output, 
where the following relation holds: 

f+(i) = f ( t i ) ,  i = 0, 1, 2 , .  . . . 6-6 

The sequence of time instants t i ,  i = 0 ,  1,2, . . . , with to < tl < t2 < . . . , 
is given. In the present section we use the superscript + to distinguish 
sequences from the corresponding continuous-time functions. 

A D-to-C converter is a device that accepts a sequence of numbers f+(i) ,  
i = 0 , 1 , 2 ; ~ ~ , a t g i v e n i n s t a n t s t i , i = O , 1 , 2 ; ~ ~ , w i t h t 0 < t , < t , < ~ ~ ~ ,  
and produces a continuous-time function f ( t ) ,  t > t,, according to a well- 
defined prescription. We consider only a very simple type of D-to-C con- 
verter known as a zero-order hold. Other converters are described in the 
literature (see, e.g., Saucedo and Schiring, 1968). A zero-order hold (see 
Fig. 6.2) is described by the relation 

zero -order , 1 fltl - 

Pig. 6.2. Discrete-to-continuous-time conversion. 
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Figure 6.3 illustrates a typical example of an interconnection of discrete- 
time and continuous-time systems. In order to analyze such a system, it is 
often convenient to represent the continuous-time system together with the 
D-to-C converter and the C-to-D converter by an eyuiualent discrete-time 
system. To see how this equivalent discrete-time system can be found in a 
specific case, suppose that the D-to-C converter is a zero-order hold and 
that the C-to-D converter is a sampler. We furthermore assume that the 
continuous-time system of Fig. 6.3 is a linear system with state differential 
equation 

?(t )  = A(t)x(t)  + B(t)u(t), 6-8 
and output equation 

~ ( t )  = C(t )x ( f )  + D(t)u(t). 6-9 

Since we use a zero-order hold, 

u(t) = zf(t,), t i  2 t < t,,, i = 0, 1,2, . . . . 6-10 

Then from 1-61 we can write for the state of the system at time ti+, 

a+,) = mit,,,, ow + [J?(t,+,, T)B(T) dT] l l ( t j ) ,  6-11 

where @ ( t ,  t o )  is the transition matrix of the system 6-8. This is a linear state 
difference equation of the type 6-3. In deriving the corresponding output 
equation, we allow the possibility that the instants at which the output is 
sampled do not coincide with the instants at which the input is adjusted. 
Thus we consider the olrtpzrt associated lvitlt the i-111 san~pling interual, which 
is given by 

~ ( t l ) ,  6-12 
where 

tj I ti < ti+,, 6-13 

for i = 0,1 ,2 , .  . . . Then we write 

Now replacing .(ti) by x+(i), rf(t,) by u+(i), and ?/( t i )  by y+(i), we write the 
system equations in the form 
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We note that the discrete-time system defined by 6-15 has a direct link even 
if (he continuous-time system does not have one because D,,(i) can be different 
from zero even when D(tl) is zero. The direct link is absent, however, if 
D(t )  = 0 and the instants 11 coincide with the instants t i ,  that is, t i  = t i ,  

i = 0 , 1 , 2 ; . .  . 
In the special case in whicb the sampling instants are equally spaced: 

ti+l - ti = A, 6-17 
and 

I !  - t .  = A', , 8 6-18 

while the system 6-8, 6-9 is time-invariant, the discrete-time system 6-15 is 
also time-invariant, and 

We call A the sarnplir~gperiod and l /A the sornplir~g rate. 
Once we have obtained the discrete-time equations that represent the 

continuous-time system together with the converters, we are in a position 
to study the interconnection of the system with other discrete-time systems. 

Example 6.2. Digitolpositionirig sj~stern 
Consider the continuous-time positioning system of Example 2.4 (Section 

2.3) which is described by the state differential equation 

Suppose that this system is part of a control system that is commanded by a 
digital computer (Fig. 6.4). The zero-order hold produces a piecewise constant 
input ~ ( t )  that changes value at equidistant instants of time separated by 
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Fig. 6.4. A digital positioning system. 

intervals of length A. The transition matrix of the system 6-20 is 

d i g i t a l  
computer  

From this it is easily found that the discrete-time description of the positioning 
system is given by 

x+(i + 1) = Ax+(i) + b,d(i), 6-22 
where 

- l i ( i 1  p + [ i l  - positioning 
s y s t e m  

and 

Note that we have replaced .(ti) by x+(i) and p( t i )  by p+(i). 
With the numerical values 

zero-order 

hold 
-.--- 

we obtain for the state difference equation 

p ( t )  - sornpler 

Let us suppose that the output variable il(t) of the continuous-time system, 
where 

7 1 w  = (1, O)X(O, 6-27 

is sampled at the instants t i ,  i  = 0,1,2, . . . . Then the output equation for 
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the discrete-time system clearly is 

where we have replaced ?l(fJ with ?lf(i). 

Example 6.3. Stirred tank 
Consider the stirred tank of Example 1.2 (Section 1.2.3) and suppose that 

it forms part of a process commanded by a process control computer. As a 
result, the valve settings change at discrete instants only and remain constant 
in between. I t  is assumed that these instants are separated by time intervals 
of constant length A. The continuous-time system is described by the state 
differential equation 

I t  is easily found that the discrete-time description is 

xf(i + 1) = Ax+(i) + Btrf(i), 
where 

With the numerical data of Example 1.2, we find 

4.877 4.877 
B = (  

-1.1895 3.569 
where we have chosen 

A = 5 s .  

Example 6.4. Stirred tank with time delay 
As an example of a system with a time delay, we again consider the stirred 

tank but with a slightly different arrangement, as indicated in Fig. 6.5. Here 
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f e e d  F1 f e e d  F 2  

I outgoing Flow F 
concentrotion c 

volume V 
-concentrot ion c 

Fig. 6.5. Stirred tank with modified configuration. 

the feeds are mixed before they flow into the tank. This would not make any 
difference in the dynamic behavior of the system if it were not for a transport 
delay T that occurs in the common section of the pipe. Rewriting the mass 
balances and repeating the linearization, we h d  that the system equations 
now are 

where the symbols have the same meanings as in Example 1.2 (Section 
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1.2.3). In vector form we write 

Note that changes in the feeds have an immediate effect on the volume but a 
delayed effect on the concentration. 

We now suppose tliat the tank is part of a computer controlled process so 
that the valve settings change only at fixed instants separated by intervals of 
length A. For convenience we assume that the delay time T is an exact multiple 
kA of the sampling period A. This means that the state difference equation of 
the resulting discrete-time system is of the form 

I t  can be found tliat with the numerical data of Example 1.2 and a sampling 
period 

A = 5 s ,  6-36 
A is as given by 6-31, while 

I t  is not difficult to bring the difference equation 6-35 into standard state 
difference equation form. We illustrate this for the case k = 1. This means 
that the effect of changes in the valve settings are delayed by one sampling 
interval. To evaluate the effect of valve setting changes, we must therefore 
remember the settings of one interval ago. Thus we define an augmented 
state vector 

/ tI+N \ 

By using this definition it is easily found that in terms of the augmented state 
the system is described by the state difference equation 
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where 

0.9512 0 0 

0.9048 -1.1895 

0 0 0 

0 0 0 

We point out that the matrix A' has two characteristic values equal to zero. 
Discrete-time systems obtained by operating finite-dimensional time-invariant 
linear differential systems with a piecewise constant input never have zero 
characteristic values, since for such systems A, = exp (Ah) ,  which is always 
a nonsingular matrix. 

6.2.4 Solution of State Difference Equations 

For the solution of state difference equations, we have the following theorem, 
completely analogous to Theorems 1.1 and 1.3 (Section 1.3). 

Theorem 6.1. Consider the state dijj%r.ence eqrration 

x(i + 1 )  = A(i)x(i) + B(i)ll(i). 6-41 

The solrrtior~ of this equotiorl can be expressed as 

- 1)A(i - 2) . . .A(&)  for i 2 i, + 1 ,  
6-43 

for i = in. 

The transition matris O(i, i,) is the solutio~t of the dl@-re~nce eqrration 

I fA ( i )  does not depend ipon i,  

@(i,  i,) = A<-io. 6-45 
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Suppose that the system has an output 

If the initial state is zero, that is, x(iJ = 0, we can write with the aid of 
6-42 : 

i 

( i  = 2 K t  ( j )  i 2 i,. 6-47 
i = i o  

Here 
C(i)@(i, j + l)B(j), j 2 i - I ,  

K(i, j )  = 6-48 
j =  1,  ' 

will be termed the pulse response matrix of the system. Note that for time- 
invariant systems K depends upon i - j only. If the system has a direct link, 
that is, the output is given by 

the output can be represented in the form 

i 

y(i) = 2 K(i ,  j)u(j), i 2 to, 6-50 
J=io 

where 
C(i)@(i, j + l)B(j) for j < i - I ,  

K(i, j )  = 6-51 
f o r j  = i. 

Also in the case of time-invariant discrete-time linear systems, diagonaliza- 
tinn of the matrix A is sometimes useful. We summarize the facts. 

Theorem 6.2. Consider the tiine-invariant slate rllfjrence eqtration 

Sqpose that the ntatrix A has n distinct characteristic v a l ~ m  A,, A,, . . . ,2,, 
with corresponding cl~aracteristic vectors el, e!, . . . , en. Define the 11 x n 
n~atrices 

T = (el, e,, . . . ,en) ,  
6-53 

A = diag (A,, A?, . . . , A,,). 

T i m  the transition nlatrix of the state dflerence eq~iotion 6-41 can be written 
as 

a,(! i ) - = Tfi-ioT-1, o - 6-54 
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Suppose that the inuerse niatrix T - I  is represented as 

idlere f,, f,, . . . , f ,  are row vectors. Then the solutio~t of the d~yerence e91ra- 
tion 6-52 can be expressed as 

Expression 6-56 shows that the behavior of the system can be described as a 
composition of expanding (for lAjl > I), sustained (for 141 = I), or con- 
tracting (for lAjl < 1) motions along the characteristic vectors e,, e,, . . . , e, 
of the matrix A. 

6.2.5 Stability 

In Section 1.4 we defined the following forms of stability for continuous-time 
systems: stability in the sense of Lyapunov; asymptotic stability; asymptotic 
stability in the large; and exponential stahility. All the definitions for the 
continuous-time case carry over to the discrete-time case if the continuous 
time variable t is replaced with the discrete time variable i. Time-invariant 
discrete-time linear systems can be tested for stability according to the follow- 
ing results. 

Theorem 6.3. The time-i~luariant liltear discrete-time system 

is stable in the sense of Lj~apl~nou if and only if 
(a) all the cl~aracteristic uahes of A lraue nioduli not greater than I ,  and 
(b) to any clraracteristic uah~e iidtlr ~itod~rllw eqaal to 1 aud ~~ilrltiplicitj~ ni 
there correspomi exactly m clmracteristic uectors of the matrix A. 

The proof of this theorem when A has no multiple characteristic values is 
easily seen by inspecting 6-56. 

Theorem 6.4. The tinie-ir~uariant lineor discrete-time system 

is asymptotically stable ifarid o ~ d y  ifaN of tlte characteristic ualues of A have 
~ i iodd i  strictly less than I .  
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Theorem 6.5. Tlre time-invariant linear discrete-time system 

is exponentially stable i fmld only if it is asjmlptotically stable. 

We see that the role that the left-half complex plane plays in the analysis 
of continuous-time systems is taken by the inside of the unit circle for 
discrete-time systems. Similarly, the right-half plane is replaced with the 
outside of the unit circle and the imaginary axis by the unit circle itself. 

Completely analogously to continuous-time systems, we define the stable 
subspace of a linear discrete-time system as follows. 

Definition 6.1. Consider the n-rlin~ensional time-invariant linear discrete-time 
system 

s ( i  + 1) = Ax(i). 6-60 

Suppose tlrat A has n distinct characterisfic values. Then we define the stable 
subspace of fhis sj~sfenl as the rea/lirlearsubspacespa~lnedbj~ those characteristic 
uectors of A that carresparld to clraracteristic ualrres witlr n~odrrli strictly less 
than 1. Sbiiilarl~~, the rmstable srrbspace of the sjrstenz is the real subspace 
spanned by those characteristic uectorsof A that correspond to clraracteristic 

, ualrres with nlodrrli eqt~al to or greater tlzan I .  

For systems where the characteristic values of A are not all distinct, we have: 

Definition 6.2. Consider the n-dimensional time-invariant linear discrete-time 
system x( i  + 1) = As(i) .  6-61 

Let Jrj be the nrrll space of (A  - %jI)"'J, ivllere 1, is  a cl~aracteristic val~re of 
A and rn, the ~nultiplicity of fhis cl~aracteristic ual~re in the cl~aracteristicpoly- 
non~ial of A.  T l~en  we dqine the stable sr~bspace of the sj~stem as the real 
srrbspace of the direct sunz of those ntrll spaces Jlrj that correspond to 
characteristic ualr~es of A isit11 n~odnlistrictly less rlran I .  Similarly, the lrnstable 
rt~bspace is the real srrbspace of the direct srm of tllose nlrll spaces .AT, that 
corresporld to clraracteristic valrres of A with mod~rligreater than or equal to I .  

Example 6.5. Digital positioning systent 
It is easily found that the characteristic values of the digital positioning 

system of Example 6.2 (Section 6.2.3) are 1 and exp (-d). As a result, the 
system is stable in the sense of Lyapunov hut not asymptotically stable. 

6.2.6 Transform Analysis of Linear Discrete-Time Systems 

The natural equivalent of the Laplace transform for continuous-time vari- 
ables is the z-transform for discrete-time sequences. We define the z-transfor~n 
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V(z) of a sequence of vectors u(i), i = 0, 1,2, . . . , as follows 

where z is a complex variable. This transform is defined for those values of 
z for which the sum converges. 

To understand the application of the r-transform to the analysis of linear 
time-invariant discrete-time systems, consider the state dilference equation 

Multiplication of both sides of 6-63 by z-' and summation over i = 0, 1, 
2, . . . yields 

zX(z) - zs(0) = AX(z) + BU(z), 6-64 

where X(z) is the z-transform of s(i), i = 0, 1,2, . . . , and U(z) that of u(i), 
i = 0, 1,2, . . . . Solution for X(z) gives 

X(z) = (zI - A)-lBU(z) + (21 - A)-lzx(0). 6-65 

In  the evaluation of (zI - A)-l, Leverrier's algorithm (Theorem 1.18, 
Section 1 S.1) may be useful. Suppose that an output ~ ( i )  is given by 

Transformation of this expression and substitution of 6-65 yields for s(0) = 0 

W = H ( W ( 4 ,  6-67 

where Y(z) is the z-transform of ~ ( i ) ,  i = 0, 1,2, . . . , and 

H(z) = C(z1 - A)-'B + D 6-68 

is the z-transfer matrix of the system. 
For the irrverse transfortnatiot~ of z-transforms, there exist several methods 

for which we refer the reader to the literature (see, e.g., Saucedo and Schiriog, 
1968). 

I t  is easily proved that the z-transform transfer matrix H(z) is the z-trans- 
form ofthe pulse response matrix ofthe system. More precisely, let the pulse 
transfer matrix of time-invarianl system be given by K(i - j )  (with a slight 
inconsistency in the notation). Then 

14 

H(z) = 2 2-iK(i). 
i-n 

We note that H(z) is generally of the form 

H(z) = P(z) 
det (zI - A) ' 
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where P(z) is a polynomial matrix in z. The poles of the transfer matrix 
H(z) are clearly the characteristic values of the matrix A ,  unless a factor of the 
form z - A, cancels in all entries of He) ,  where A, is a characteristic value 
of A. 

Just as in Section 1.5.3, if H(z) is a square malrix, we have 

where $@) is the cliaracteristic polynomial $(z) = det (zI - A) and yl@) is a 
polynomial in z. We call the roots of y(z) the zeroes of the system. 

The frequencjr response of discrete-time systems can conveniently be in- 
vestigated with the aid of the z-transfer matrix. Suppose that we have acom- 
plex-valued input of the form 

- 
where j = 4-1. We refer to the quantity 0 as the norinalized angt~larfre- 
quencjr. Let us first attempt to find a particular solution to the state difference 
equation 663 of the form 

It is easily found that this particular solution is given by 

x i )  = ( e O  - A - B  ,,, eiO' , i=0,1,2; . .  . 6-74 

The general solution of the I~on~ogeneo~~s difference equation is 

xlz(i) = A'a, 6-75 

where a is an arbitrary constant vector. The general solution of the inhomo- 
geneous state ditference equation is therefore 

x(i) = A'a + (eioI - A)-'Btr,,,e'O. i = 0,1,2, . . . . 6-76 

If the system is asymptotically stable, the first term vanishes as i--m; 
then the second term corresponds to the sfeadjwfafe respoflse of the state to 
the input 6-72. The corresponding steady-state response of the output 6-66 
is given by 

y(i) = C(eiol - A)-'BU ,,, eiO' + Dtf,,,ej0' 

= H(e'O)rr,,,eiO', 6-77 

where H e )  is the transfer matrix of the system. 
We see that the response of the system to inputs of the type 6-72 is deter- 

mined by the behavior of the z-transfer matrix for values of z on the unit circle. 
The steady-state response to real "sinusoidal inputs," that is, inputs of the 
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form 
u(i) = a. cos (8 )  + sin (if& i = 0, 1,2, . . . , 6-78 

can be ascertained from the moduli and arguments of the entries of H(efo). 
The steady-state response of an asymptotically stable discrete-time system 
with z-transfer matrix H(z) to a constant input 

tr(i)=u,,, i = 0 , 1 , 2 ; . . ,  6-79 
is given by 

lim y(i) = H(l)tl,,,. 6-80 
i- m 

In the special case in which the discrete-time system is actually an equiva- 
lent description of a continuous-time system with zero-order hold and 
sampler, we let 

0 = oA, 6-81 

where A is the sampling period. The harmonic input 

is now the discrete-time version of the continuous-time harmonic function 

e3"'tr,,,, t 2 0, 6-83 

from which 6-82 is obtained by sampling at equidistant instants with sampling 
rate l/A. 

For suficiently small values of the angular frequency o, the frequency 
response H(ejmA) of the discrete-time version of the system approximates the 
frequency response matrix of the continuous-time system. I t  is noted that 
H(eimA) is periodic in w with period 27r/A. This is caused by the phenomenon 
of aliasing; because of the sampling procedure, high-frequency signals are 
indistinguishable from low-frequency signals. 

Example 6.6. Digitolpositioning system 
Consider the digital positioning system\ of Example 6.2 (Section 6.2.3) and 

suppose that the position is chosen as the output: 

I t  is easily found that the z-transfer function is given by 

Figure 6.6 shows a plot of the moduds and the argument of H(eim4), 
where A = 0.1 s. In the same figure the corresponding plots are given of the 
frequency response function of the original continuous-time system, which 
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continuous-time 
-270 

(degrees) 
-360 

discrete- t ime 

Fig. 6.6. The frequency response funclions or the continuous-time and the discrete-time 
positioning syslems. 

is given by 
0.787 

We observe that for low frequencies (up to about 15 rad/s) the continuous- 
time and the discrete-time frequency response function have about the same 
modulus but that the discrete-time version has a larger phase shift. The plot 
also illustrates the aliasing phenomenon. 

6.2.7 Controllability 

In Section 1.6 we defined controllability for continuous-time systems. This 
definition carries over to the discrete-time case if the discrete-time variable i 
is substituted for the continuous-time variable t .  For the controllability of 
time-invariant linear discrete-time systems, we have the following result 
which is surprisingly similar to the continuous-time equivalent. 

Theorem 6.6. The 11-dime~isional linear tilne-i~luariant discrete-tim system 
ivitl~ state dt%ference eq~ration 
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is cofnpleteb co~itrollable i fo~id  on!^ ifthe coliinn~ vectors of the controllability 
nratvis 

P = (B, AB, A'B, . . . , A"-IB) 6-88 

For a proof we refer the reader to, for example, Kalman, Falb, and Arbib 
(1969). A t  this point, the following comment is in order. Frequently, com- 
plete controllability is defined as the property that any initial state can be 
reduced to the zero state in a finite number of steps (or in a h i t e  length of 
time in the continuous-time case). According to this definition, the system 
with the state difference equation 

is completely controllable, although obviously it is not controllable in any 
intuitive sense. This is why we have chosen to define controllability by the 
requirement that the system can be brought from the zero state to any non- 
zero state in a finite time. In the continuous-time case it makes little differ- 
ence which definition is used, but in the discrete-time it  does. The reason is 
that in the latter case the transition matrix @(i, i,), as given by 6-43, can be 
singular, caused by the fact that one or  more of the matrices A(j)  can be 
singular (see, e.g., the system of Example 6.4, Section 6.2.3). 

The complete controllability of time-varying linear discrete-time systems 
can be tested as follows. 

Theorem 6.7. The Ii~lear discrete-time system 

is conlpleie~ contro/iab/e iforid oldy iffor every i, there exists an i, 2 i, + 1 
siich that the sjm~n~etric nonriegafiue-defiftife rnofrix 

is no~rsi~~g~rlar.  Here @(i, in) is the trafisitio~~ ntatris of the systent. 

Uniform controllabiljty is defined as follows. 

Definition 6.3. The tinre-uarying system 6-90 is r~nifornrlj~ contpletely 
contvollable ifthere exist an integer /c 2 1 andposifiue consfo~~ts a,, a,, Po, 
alld pl SIICI'I that 

(a) W(i,, i, + I )  > 0 for all  i,; 6-92 

( 1  o 5 i i + 1) I for all  i,; 6-93 

(c) 5 aT(in + I<, in)W-'(in, i, + /c)[Il(in + I<, i,) 5 j1I 
for all  i,. 6-94 
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Here W(i,, i,) is the nlatrix 6-91, and @(i, in) is the transition matrix of the 
system. 

I t  is noted that this definition is slightly diKerent from the corresponding 
continuous-time definition. This is caused by the fact that in the discrete- 
time case we have avoided defining the transition matrix @(i, in) for i < i,. 
This would involve the inverses of the matrices A( j ) ,  which do not necessarily 
exist. 

For  time-invariant systems we have: 

Theorem 6.8. The time-inuariant h e a r  discrete-time system 

is u n f o r ~ ~ ~ l y  c o n ~ p l e f e ~  controllable if and only f i t  is conzpletely controllable. 

For time-invariant systems it is useful to define the concept of controllable 
subspace. 

Definition 6.4. The controllable srrbspace of the linear time-inuariailt discrete- 
time system 

x( i  + 1 )  = Ax(i) + Bli(i) 6-96 

is the linear srrbspace consisting of the states that can be reachedfrom the zero 
state within afinite n~onber of steps. 

The following characterization of the controllable subspace is quite con- 
venient. 

Theorem 6.9. The coi~frollable subspace of the n-rlirnensional time-hworiant 
linear discrete-time sj,sfe~n 

is the linear subspace spanned bjr the col~min uectors of the controllabilit~t 
nlotrix P. 

Discrete-time systems, too, can be decomposed into a controllable and an 
uncontrollable part. 

Theorem 6.10. Consider the ~~-rlirnensional linear time-invariant discrete- 
time system 

x( i  + 1 )  = Az(i)  + Bu(i). 6-98 

Farm a r~onsingular iransforniatio~t inatrix T = (TI ,  T,), where the colun~ns 
of TI form a basis for the controllable sl~bspace of the system, and the co11nni1 
vectors of T2 together with those of TI span the t~~hole 11-dimensional space. 
Define the transformed state variable 
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Then the tra~lsfornled state variable satisJes the state d13erence eqtiatioir 

ivlrere thepair {Ail, B;} is conipletely cantrollable. 

Here the terminology "the pair {A, B) is completely controllable" is short- 
hand for "the system x( i  + 1) = Ax(;) + Bo(i) is completely controllable." 

Also stabilizability can be defined for discrete-time systems. 

Definition 6.5. Tlre liizear time-inuariant discrete-time system 

is stabilizablc if its unstable subspace is co~rtaiiled in its cor~trolloble subspace. 

Stahilizability may be tested as follows. 

Theorem 6.11. Suppose that the linear tirl~e-i~luariant discrete-tirlle systeriz 

is trarlsformed accorrlirtg to Theorem 6.10 irtto the form 6-100. Then the SJJsteIil 
is stabili~able if and only f a l l  the cl~aracteristic ualtm of the matrix Ah2 haue 
~izod~rli strictly less than 1. 

Analogously to the continuous-time case, we define the characteristic 
values of the matrix A;, as the co~ttrollablepales of the sytem, and the remain- 
ing poles as the  con con troll able poles. Thus a system is stabilizable if and only if 
all its uncontrollable poles are stable (where a stable pole is defined as a 
characteristic value of the system with modulus strictly less than 1). 

6.2.8 Reconstructibility 

The definition of reconstructibility given in Section 1.7 can be applied to 
discrete-time systems if the continuous time variable t is replaced by the 
discrete variable i. The reconstruclibility of a time-invariant linear discrete- 
time system can be tested as follows. 

Theorem 6.12. The n-dimensional time-inuariant linear discrete-time systeriz 
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is cw~ipletelj~ reconstrttctible i fand only iftlre row vectors of the reconstracti- 
bility nmtri.r 

span flre ivltole n-di~iiensio~~alspace, 

A proof of this theorem can be found in Meditch (1969). For general, time- 
varying systems the following test applies. 

Theorem 6.13. Tlre linear discrete-tinte system 

x( i  + 1 )  = A(i)x(i) + B(i)o(i), 

y(i) = C(i)x(i) 
6-1 05 

is co~itpletely reconstrrrctible i f  aad 0 4  if for every i, there exists an i, 
i, - 1 sriclt that the syninietric nonnegative-defi~~ite ntatrix 

it 
T . .  M(io,  i l )  = 2 (I> ( I ,  I ,  -I- l)CT(i)C(i)@(;, io + 1) 6-106 

i=io+1 

is nonsir~g~tlor. Here @(i,  i,) is the transition matrix of the sysleriz. 

A proof of this theorem is given by Meditch (1969). 
Uniform complete reconstructibility can be defined as follows. 

Definition 6.6. The tirne-varying system 6-105 is rmiforrrrly conlpletdy 
reconstractible if there exist an integer Ic 2 1 andpositive constants a,, a,, 
Po. and P1 SIICII that 

(a) M(i, - k, i,) > 0 fov all i,; 6-107 

(b) I < M 1 (  - I ,  i )  a jar all i,; 6-108 

(c) /&I < O(i,, i, - 1c)M-'(i, - lc, iJOT(i,, i, - 1') < P1I 

for all i,. 6-109 

Here M(i,, i,) is the rnatrix 6-106 and O(i, i,l is t l ~  fransitiorr ~ilatrix of the 
systent. 

We are forced to introduce the inverse of M(i,, i,) in order to avoid defining 
(D(i, i,,) for i less than io. 

For time-invariant systems we have: 
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Theorem 6.14. The time-iauario~~t linear discrete-time sJlste111 

is l~ti fonnly conlpletely reco~~sfrl~ctible if and only i f  it is  completely recon- 
strl~ctible. 

For time-invariant systems we introduce the concept of unreconstructible 
subspace. 

Definition 6.7. The ~~nreconstvctble subspnce of the ~~-di~intnzsional linear 
time-immriant discrete-the systcm 

is the lillear slrbspace cortsisti~zg of the states x,  for ivhich 

i x i n  0 = 0 i > in. 6-112 

Here 6-112 denotes the response of the outpul variable y of the system to the 
initial state x(i,) = x,, with u(i)  = 0, i > i,. The following theorem gives 
more information about the unreconstructible subspace. 

Theorem 6.15. Tlle ~n~reconstr~rcfible subspoce of the linear tinre-i~luariant 
discrete-tirile system x( i  + 1 )  = Ax(i) + Btr(i), 

y ( i )  = Cx(i)  

is the 1nd1 space of the recollstractibi/it~~ rllatrix Q. 

Using the concept of an unreconstructible subspace, discrete-time linear 
systems can also be decomposed into a reconstructible and an unrecon- 
structible part. 

Theorem 6.16. Co~lside~. the litlear time-imariont rliscrete-time system 

Form the nonsb~gulor fronsformotior~ matrix 

where the rows of U,  form a basis for the s~tbspace which is spamed ~ J J  the 
rows of tlre reco~~sfrlrctibi~it~~ rnatrix Q of the systoi~. U, is so chosen that its 
rai~u together wit11 those of U, span the ivlrole n-dimensional space. DeJne 
the transfornled state voriable 

x'(t) = Ux(t).  6-116 
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Tlrert in terms of the trarlsformed state uariable the system car7 be represented 
by the state dtrererzce eqttation 

Here the terminology "the pair {A, C} is completely reconstructible" means 
that the system x( i  + 1) = Ax(i),  y(i) = Cx(i)  is completely reconstructible. 

A detectable discrete-time system is defined as follows. 

Definition 6.8. TIE linear time-inuariant discrete-time system 

is dctcctablc i f  its u~treco~rstrnctible st~bspace is contair~erl i~dtlriti its stable 
s116spoce. 

One way of testing for detectability is through the following result. 

Theorem 6.17. Consifler the h e a r  time-inuariant discrete-time S J I S ~ ~ I ~  

Suppose that it is tra1tsfor171ed accordi~rg lo Tlteoreln 6.16 into the form 6-117. 
Tl~en the s j~ tern  is detectable ifarzd O I I ~ J J  i f  all the cltaracteristic values of tlre 
matri.x Ah haue ~itoduli strictly less tllalt one. 

Analogously to the continuous-time case, we define the characteristic 
values of tlie matrix A;, as the reconstructible poles, and the characteristic 
values of A;? as the t~~treconstructiblepoles of the system. Then a system is 
detectable if and only if all its unreconstructible poles are stable. 

6.2.9 Duality 

As in the continuous-time case, discrete-time regulator and filtering theory 
turn out to be related through duality. I t  is convenient to introduce tlie follow- 
ing definition. 

Definition 6.9. Consider the linear discrete-time system 
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111 addition, co~lsider the system 

x*(i + 1) = AT(i* - i)x*(i) + cT(i* - i)rt*(i), 
6-121 

~ ' ( i )  = BT(i* - i)x*(i), 

lvlrere i" is an arbitrorj,fised integer. Tim tile system 6-121 is termed the dual 
of the system 6-120 1vit11 respect to i*. 

Obviously, we have the following. 

Theorem 6.18. Tlre dual of the system 6-121 wit11 respect to i* is the 
original system 6-120. 

Controllability and reconstruclibility of systems and their duals are related 
as follows. 

Theorem 6.19. Cot~sirler the system 6-120 orzd its dual 6121: 

(a) The systetn 6-120 is co~npletely co~~trollable if and only i f i t s  dual is com- 
p le te /~~  reconstr~rctible. 
(b) The system 6-120 is cotnplefe/JI reconstntctible if and only if its dttal is 
cot~~pletely corttrollable. 
(c) Assrrrne that 6-120 is ti~ne-inuaria~~t. T11efl 6-120 is stabilizable ifand only 
if6-121 is detectable, 
( d )  ASSINIIC tl~at 6-120 is time-invariant. Tlren 6-120 is detectable if and ortly 
if6-121 is stabilizable. 

The proof of this theorem is analogous to that of Theorem 1.41 (Section 
1.8). 

6.2.10 Phase-Variable Canonical Forms 

Just as for continuous-time syslems, phase-variable canonical forms can be 
defined for discrete-time systems. For single-input systems we have the 
following definition. 

Definition 6.10. A single-iilptrt time-i~ruaria~tt linear discrete-tirue system is 
in ghnsc-unviable canorrical fovm if it is represented in the form 
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Here the ai, i = 0,  1 ,  . . . .  11 - 1 are the coefficients of the characteristic 
polynomial 

of the system, where a ,  = 1 .  Any completely controllable time-invariant 
linear discrete-time system can be transformed into this form by the pre- 
scription of Theorem 1.43 (Section 1.9). 

Similarly we introduce for single-output systems the following definition. 

Definition 6.11. A single-autp~rf time-ir~uariant linear. discrete-time system is 
in dmlphase-ua~'iab1 canonical fo~wt if it is represented as fallo~vs 

6.2.11 Discrete-Time Vector Stochastic Processes 

In  this section we give a very brief discussion of discrete-time vector sto- 
chastic processes, which is a different name for infinite sequences of stochastic 
vector variables of the form u(i), i = .... - 1 ,  0, 1, 2, . . . .  Discrete-time 
vector stochastic processes can be characterized by specifying all joint 
probability distributions 

P{u(i,) l u,, o(i,) u,, . . . .  u(i,,) < u,"} 
= P{u(i, + k )  2 u,, v(i, + k )  2 u,, . . . .  u(i,,, + k )  2 u,,} 6-126 

for all real u,, u,, .... u ,... for all integers i,, i,, .... in,, and for any integers 
ni and k the process is called stationary. If the joint distributions 6-126 are all 
multidimensional Gaussian distributions, the process is termed Gat~ssian. 
We furthermore define: 

Definition 6.12. Consider the rliscrete-tilne uector stocliastic process v(i). 
Tl~en we call 

m( i )  = E{u(i)} 6-127 
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the mean of the process, 

W j )  = E{u(i)vT(j)l 
the second-order joint moment m n t ~ i x ,  a~id 

R,,(i, j )  = E{[v(i) - !ii(i)][u(j) - ~ i ~ ( j ) ] ~ ' }  6-129 

the covariance matrix of the process. Filial&, 

Q(i) = E{[u(i) - ~n(i)][v( i )  - in(i)lz'} = R,(i, i )  6-130 

is the uariance rnatris oad C,,(i, i )  the second-order manlent n~atr is  of the 
process. 

If the process v is stationary, its mean and variance matrix are independent 
of i, and its joint moment matrix CJi ,  j) and its covariance matrix R,,(i, j )  
depend upon i - j  only. A process that is not stationary, but that has the 
property that its mean is constant, its second-order moment matrix is finite 
for all i and its second-order joint moment matrix and covariance matrix 
depend on i - j  only, is called wide-sertse stationorj,. 

For wide-sense stationary discrete-time processes, we define the following. 

Definition 6.13. Thepolver spectral density matrix Xu(@, -T < 0 < T, of a 
ivide-sense stationarj~ discrete-tir1ieprocess u is dejned as 

T i t  exists, where R,(i - li) is the couariartce matrix- of the process and 11'lrere - 
j =  4-1. 
The name power spectral density matrix stems from its close connection with 
the identically named quantity for continuous-time stochastic processes. 
The following fact sheds some light on this. 

Theorem 6.20. Let u be a wide-seme smtionary zero. meart discrete-time 
stochastic process iviflr power spectral dnisify matrix- .Xu(@. Then 

A nonrigorous proof is as follows. We write 
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since 

$ for i = 0, 

otlierwise. 

Power spectral density matrices are especially useful when analyzing the 
response of time-invariant linear discrete-lime systems when a realization of a 
discrete-time stochastic process serves as the input. We have the following 
result. 

Theorem 6.21. Consider an asyrnptoticalI) stable time-inuoriont littear 
discrete-titite sjlstenl 11~iflf z-transjer lttafrix H(z). Let tlre i~lptrt to the system 
be a reoliratiort of a ivide-sense stationarj) discrete-time stoclrasfic process tr 

with power spectral density matrix S,,(O), ~vl~iclr is appliedfr.oin time -m on. 
Tl~ett the otlfprrt y is o realization of a wide-sense statio~taiy discrete-time 
sfoc/~astic process icdth power spectroi densitjr ~ttatrix 

Example 6.7. Seqrrence of ntlrhm/I) tntcorrelated variables 
Suppose that the stochastic process u(i), i = . . . , -1, 0, 1,2, . . . , con- 

sists of a sequence of mutually uncorrelated, zero-mean, vector-valued sto- 
chastic variables with constant variance matices Q. Then the covariance 
matrix of the process is given by 

Q for i = j: 
R0(i - j )  = 

0 f o r i # j .  

This is a wide-sense stationary process. Its power spectral density matrix is 

S,(O) = Q. 6-137 

This process is the discrete-time equivalent of white noise. 

Example 6.8. Esportentioily correlated noise 
Consider the scalar wide-sense stationary, zero-mean discrete-time sto- 

chastic process v with covariance function 

We refer to A as the sampling period and to T as the time constant of the 
process. The power spectral density function of the process is easily found 
to be 
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6.2.12 Linear Discrete-Time Systems Driven by White Noise 

In the context of linear discrete-time systems, we often describe disturbances 
and other stochastically varying phenomena as the outputs of linear discrete- 
time systems of the form 

Here s(i) is the state variable, y(i) the output variable, and is(i), i = . . . , 
-1,0, 1 ,2 ,  . . . , a sequence of mutually uncorrelated, zero-mean, vector- 
valued stochastic vectors with variance matrix 

As we saw in Example 6.7, the process iashows resemblance to the white noise 
process we considered in the continuous-time case, and we therefore refer to 
the process 111 as discrete-tbne ivhite noise. We call V(i) the variance matrix of 
the process. When V(i) does not depend upon i, the discrete-time white noise 
process is wide-sense stationary. When w(i) has a Gaussian probability distri- 
bution for each i, we refer to 111 as a Ga~cssian discrete-time 114ite noiseprocess. 

Processes described by 6-140 may arise when continuous-time processes 
described as the outputs of continuous-time systems driven by white noise 
are sampled. Let the continuous-time variable x(t) be described by 

where 111 is white noise with intensity V(t). Then if t,, i = 0, 1, 2, . . . , is a 
sequence of sampling instants, we can write from 1-61: 

where @(t, to) is the transition matrix of the direrential system 6-142. Now 
using the integration rules of Theorem 1.51 (Section 1.11.1) it can be seen 
that the quantities 

6-144 

i = 0,1,2,  . . . , form a sequence of zero mean, mutually uncorrelated sto- 
chastic variables with variance matrices 

l:"@(ti+l, T)B(T)v(T)BT(T)@T(~,,.~, T) d ~ .  6-145 

It  is observed that 6-143 is in the form 6-140. 
It  is sometimes of interest to compute the variance matrix of the stochastic 

process s described by 6-140. The following result is easily verified. 
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Theorem 6.22. Let the stoclrastic discrete-time process s be the sol~rtiorz of 
the linear stoclzastic d~%ference eyrratio~i 

nrlrere w(i), i = -1 ,  0, 1, 2, . . . , is a sequerrce of nirrtnally rrrrcorrelated 
zero-mean, vector-val~red stochastic variables with uariarrce matrices V(i) .  
Sippose that x(iJ = x ,  has mean 111, and variance niatrix Q,. Tlfen the mean 
of m( i )  = E{r(i)}, 6-147 

and the varia~ice matrix of s ( i ) ,  

~vl~ere @(i,  in) is the tra~isition rnatrix of the dr@rence eyr~ation 6-146, i~hi le  
Q(i)  is tlre solrrtiori of the matrix d~%fererlce eyuatio~r 

Q(i + 1) = A(i)Q(i)AT(i) + B(i)V(i)BT(i), i = i,, in + 1, . . . , 
6-150 

&?(in) = Q,. 
When the matrices A ,  B, and V are constant, the following can be stated 
about the steady-state behavior of the stochastic process z. 

Theorem 6.23. Let the discrete-time stacliastic process a: be tlre solfrtio~l of 
tlre sfaclrastic diference eqlratiorr 

~ihere A arid B are coristalit and idrere the rrricorrelated seqtrence of zera-niean 
stochastic variables is has a constant uoriarice nratrix V. Tlrerl i fa l l  rlre clrar- 
acteristic valrres of A have mod~rli strictly less than I ,  arid in - - m, the co- 
variance niatrix of the process tends to art asymptotic ualrre R&j)  i~~lriclr 
depends on i - j only. Tlre corresponding asymptotic variance nratrix g is the 
rrrliqrre solrrtiorr of the niatrix eq~ratiori 

0 = A Q A ~  + B V B ~ ' .  6-152 

In later sections we will be interested in quadratic expressions. The following 
results are useful. 

Theorem 6.24. Let the process r be the sol~rtiort of 
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11111ere the w(i) are a seqrrerice of niutually wicorrelated zero mean stocl~astic 
variables ivitl~ variance matrices V(i). Let R( i )  be a giuen seqttence of non- 
negative-defi~lite syr~imetric matrices. Then 

- 
~vl~ere the nonnegative-dej~iite syrto~ietric matrices P(i )  are the sol~rfior~ of the 
matrix dtrerence eqtration 

P(i) = AT(i)P(i + 1)A(i) + R(i),  i = il - 1 ,  i ,  - 2, . . . , i,, 
6-155 

P(il) = R ( i J  
I f  A and R are constant, and all the cl~aracteristic valttes of A have 111od1l1i 
strictly less than I ,  P(i)  approaches a ca~tsta~it value P as il -+ m, where P is 
the unique solution of the matrix eqtration 

One method for obtaining the solutions to the linear matrix equations 6-152 
and6-156is repeated application of 6-150 or 6-155. Berger (1971) gives another 
method. power (1969jAgives a transformation that brings equations of the 
type 6-152 or 6-156 into the form 

M I X  + X M , ~  = N,,  6-157 

or vice versa, so that methods of solution available for one of these equations 
can also be used for the other (see Section 1 .I 1.3 for equations of the type 
6-157). 

A special case occurs when all stochastic variables involved are Gaussian. 

Theorem 6.25. Corisider the stocl~astic discrete-time process x described by 

x(i + 1 )  = A(i)x(i) + B(i)iv(i), 

x(io) = xV 6-158 

T l m  if the nilttually v~~correlated stocl~astic variables ~ ( i )  are Ga~cssiari and 
the irlitial state x, is Gaussian, x is a Gaussialtpracess. 

Example 6.9. Exponentially correlated noise 
Consider the stochastic process described by the scalar difference equation 

where the w(i)  form a sequence of scalar uncorrelated stochastic variables 
with variance ua3 and where la] < 1. We consider E the output of a time- 
invariant discrete-time system with z-transfer function 
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and with the sequence w as input. Since the power spectral density function of 
w is 

&(a) = urn2, 6-161 

we find for the spectral density matrix of 5, according to 6-135, 

We observe that 6-162 and 6-139 have identical appearances; therefore, 
6-159 generates exponentially correlated noise. The steady-state variance 
u,.%f the process 5 follows from 6-152; in this case we have 

Example 6.10. Stirred taizlc rvith dn'istto.baizces 
In Example 1.37 (Seclion 1.11.4), we considered a continuous-time model 

of the stirred tank with disturbances included. The stochastic state differential 
equation is given by 
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where i s  is white noise with intensity 

\ 
Here the components of the state are, respectively, the incremental volume 
of fluid, the incremental concentration in the tank, the incremental concen- 
tration of the feed F,, and the incremental concentration of the feed F,. 
The variations in the concentrations of the feeds are represented as exponenti- 
ally correlated noise processes with rms values o, and o3 and time con- 
stants 8, and e,, respectively. 

When we assume that the system is controlled by a process computer so 
that the valve settings change at instants separated by intends 4, the dis- 
crete-time version of the system description can he found according to the 
method described in the beginning of this section. Since this leads to some- 
what involved expressions, we give only the outcome for the numerical 
values of Example 1.37 supplemented with the following values: 

G, = 0.1 kmol/m3, 

With this the stochastic state difference equation is 

where iv(i), i 2 i,, is a sequence of uncorrelated zero-mean stochastic vectors 
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with variance matrix 

By repeated application of 6-150, it is possible to find the steady-state value 
Q of the variance matrix of the state. Numerically, we obtain 

This means that the rms value of the variations in the tank volume is zero 
(this is obvious, since the concentration variations do not affect the flows), 
the rms value of the concentration in the tank is J m c  0.0625 kmol/m3, 
and the rms values of the concentrations of the incoming feeds are 0.1 
kmol/m3 and 0.2 kmol/ma, respectively. The latter two values are of course 
precisely G~ and G,. 

6.3 ANALYSIS OF LINEAR DISCRETE-TIME 
CONTROL S Y S T E M S  

6.3.1 Introduction 

In this section a brief review is given of the analysis of linear discrete-time 
control systems. The section closely parallels Chapter 2. 

6.3.2 Discrete-Time Linear Conhol Systems 

In this section we briefly describe discrete-time control problems, introduce 
the equations that will be used to characterize plant and controller, define the 
notions of the mean square tracking error and mean square input, and state 
the basic design objective. First, we introduce theplant, which is the system 
to  be controlled and which is represented as a linear discrete-time system 
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characterized by the equations 

x(i + 1) = A(i)x(i) + B(i)zr(i) + v,,(i), 

z(i) = D(i)x(i) + E,(i)u(i), 

for i = in, in + 1, . . .. 
Here x is the slate of the plant, x, the ir~itial state, u the inpzrt variable, y the 
obserued variable, and z the controlled variable. Furthermore u, represents 
the disturbance uariable and v,, the obseruation noise. Finally, we associate 
with the plant a reference variable r( i ) ,  i = in, i, + 1 ,  . . . . I t  is noted that in 
contrast to the continuous-time case we allow both the observed variable 
and the controlled variable to have a direct link from the plant input. The 
reason is that direct links easily arise in discrete-time systems obtained by 
sampling continuous-time systems where the sampling instants of the output 
variables do not coincide with the instants at which the input variable changes 
value (see Section 6.2.3). As in the continuous-time case, we consider sepa- 
rately tracking problenzs, where the controlled variable z( i )  is to follow a 
time-varying reference variable r(i) ,  and regt~lotorproblems, where the refer- 
ence variable is constant or slowly varying. 

Analogously to the continuous-time case, we consider closed-loop and 
operz-loop controllers. The general closed-loop controller is taken as a linear 
discrete-time system described by the state difference equation and the output 
equation 

q(i + 1 )  = L(i)q(i) + Kr(i)r(i) - Kf(i)y(i) ,  
6-172 

u(i) = F(i)q(i) + H7(i)r(i) - Hf(i)y(i) .  

We note that these equations imply that the controller is able to process the 
input data r(i)  and y(i) instantaneously while generating the plant input 
u(i) .  If there actually are appreciable processing delays, such as may be the 
case in computer control when high sampling rates are used, we assume that 
these delays have been accounted for when setting up the plant equations 
(see Section 6.2.3). 

The general open-loop controller follows from 6-172 with Kf and H, 
identical to zero. 

Closely following the continuous-time theory, we judge the performance 
of a control system, open- or closed-loop, in terms of its meal1 square troclcing 
error and its mean square input. The mean square tracking error is defined as 

C,(i) = E{eT(i)lV,(i)e(i)}. 6-173 
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where 
e(i)  = z(i)  - r ( i ) .  6-174 

We(;)  is a nonnegative-definite symmetric weighting matrix. Similarly, the 
mean square input is defined as 

C J i )  = E{u2'(i)W,(i)ii(i)}, 6-175 

where W,,(i)  is another nonnegative-dehite weighting matrix. Our basic 
objectiue in designing a control system is to reduce the mean square tracking 
error as mlch as possible, ~vhile at the same time Iceeping the meart square 
input doion fa a reasonable ualire. 

As in the continuous-time case, a requirement of primary importance is 
contained in the following design rule. 

Design Objective 6.1. A control system s l~ot~ld  be nsy!nptotical[y stable. 

Discrete-time control systems, just as continuous-time control systems, 
have the properly that an unstable plant can be stabilized by closed-loop 
control but never by open-loop control. 

Example 6.11. Digital position control system with proportional feedback 
As an example, we consider the digital positioning system of Example 6.2 

(Section 6.2.3). This system is described by the state difference equation 

Here the first component t , ( i )  of s ( i )  is the angular position, and the second 
component t 2 ( i )  the angular velocity. Furthermore, p( i )  is the input voltage. 
Suppose that this system is made into a position servo by using proportional 
feedback as indicated in Fig. 6.7. Here the controlled variable [ ( i )  is the 
position, and the input voltage is determined by the relation 

In this expression r(i)  is the reference variable and 2. a gain constant. We 
assume that there are no processing delays, so that the sampling instant of the 

system 

Rig. 6.7. A digital positioning system &h proportional feedback. 
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output variable coincides with the instant at which a new control interval is 
initiated. Thus we have 

c( i )  = (I, O)x(i). 6-178 

In Example 6.6 (Section 6.2.6), it was found that the open-loop z-transfer 
function of the plant is given by 

By using this it is easily found that the characteristic polynomial ofthe closed- 
loop system is given by 

In Fig. 6.8 the loci of the closed-loop roots are sketched. I t  is seen that when 
rl changes from 100 to 150 V/rad the closed-loop poles leave the unit circle, 

Fig. 6.8. The root loci of the digital 
position control system. x , Open-loop 
poles; 0, open-loop zero. 

hence the closed-loop system becomes unstable. Furthermore, it is to be 
expected that, in the stable region, as rl increases the system becomes more and 
more oscillatory since the closed-loop poles approach the unit circle more and 
more closely. To avoid resonance effects, while maximizing A, tbe value of A 
should be chosen somewhere between 10 and 50 V/rad. 

6.3.3 The Steady-State and the Transient Analysis 
of the Tracking Properties 

In this section the response of a linear discrete-time control system to the 
reference variable is studied. Both the steady-state response and the transient 
response are considered. The following assumptions are made. 
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1. Design Objectiue 6.1 is satisfied, that is, t l~e  control sj~stern is asyn~ploti- 
cally stable. 

2. The control systern is tiine-invariant and the ~seigliting matrices W. arid 
W,, are constant. 

3. The distrrrbance variable u, and the obseruation noise v,, are identical 
to zero. 

4. The reference uariable car1 be represented as  

i )  = r + r ) ,  i = i,, i, + 1, . . . , 6-181 

wl~ere tlre constant part  r, is a stochartic vector ~aitlr seco~id-order n~ome~tt 
matris 

E{I.,I.,~} = R,, 6-182 

and flre uariablcpart r, is a wide-sense stafionarjr zero-mean vector sfoclrastic 
process with power spectral density nlotrix Z,(O). 

Assuming zero initial conditions, we write for the z-transform Z(z) of the 
controlled variable and the z-transform U(Z) of the input 

Z(Z) = T(z)R(e), 
6-183 

U(z) = N(z)R(z). 

Here T(z) is the trans~nissian of the system and N(z) the transfer matrix from 
reference variable to input of the control system, while R(z) is the z-transform 
of the reference variable. The control system can beeither closed- or open- 
loop. Thus if E@) is the z-transform of the tracking error e(i) = z(i) - r(i), 
we have 

E(z) = [T(z) - dR(z)). 6-184 

To derive expressions for the steady-state mean square tracking error and 
input, we study the contributions of the constant part and the variable 
part of the reference variable separately. The constant part of the reference 
variable yields a steady-state response of the tracking error and the input as 
follows: 

lim e(i) = [T(1) - Ilr,, 
i- m 

6-185 
lim u(i) = N(l)r,. 
i - m  

From Section 6.2.1 1 it follows that in steady-state conditions the response of 
the tracking error to the variable part of the reference variable has the power 
spectral density matrix 

[T(ei" - I]X,(8)[T(e-i0) - IIT. 6-186 
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Consequently, the stea+state meall square traclihig error can be expressed as 

C,, = lim C,(i) 
i- m 

= E{roTIT(l)  - I ] ~ W . [ T ( I )  - Ilr,} 

This expression can be rewritten as 

+ [ T o )  - I T  W [ T ( ~ )  - I]%(@ do . 6-188 
271 -ii ) 

Similarly, the steadjwtate mean square input can be expressed in the form 

C,,, = lim C,,(i) 
i-m 

Before further analyzing these expressions, we introduce the following 
additional assumption. 

5. Tlie constant part arzd the variable part of the reference variable have 
tmcorrelated conrpo~ients, tlrot is, both Ro  and &(0) are diagonal and can be 
il'ritten in the form 

Ro = diag (R,,,, Ro.,. . . . , R o J ,  6-190 
W )  = diag [X,,,(o), x,,,(Q, . . . , Z,,,(0)1, 

ivl~ere p is the dimerrsion of the reference uariable orld tlre controlled uariable. 

With this assumption we write for 6-188: 

- I ] ~ W , [ T ( ~ ' "  - I ] } , ~  do, 6-191 

where denotes the i-th diagonal entry of the matrix M. Following 
Chapter 2, we now introduce the following notions. 

Definition 6.14. Let p(i), i = . . . , -1, 0, 1,2, . . . , be a scalar wide-sense 
stationarj~ discrete-time stocl~asticprocess ivithpo~ser spectral densityfunctiolz 
ZJO). Tllen t l ~ e  norr~~alizcdfieqr~e~~cy band @ of this process is defiled as the 
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Here a. is so chosen that the freqrrencj, band contai~ls a giue~lfiaction 1 - E ,  

i~here E is snloN wit11 respect to 1 ,  of I~ol f f lrepoi~~er of tlieprocess, that is, 

As in Chapter 2, when the frequency band is an interval [0,, 02], we define 
0: - 0, as the nor~iiolized bot~d~eidtl~ of the process. When the frequency band 
is an interval [O, o,], we define 8, as the ltor7ltolized cutoff freqlmcji of the 
process. 

10 the special case where (he discrete-time process is derived from a con- 
tinuous-time process by sampling, the (not normalized) bandwidth and cut- 
off frequency follow from the corresponding normalized quantilies by the 
relation 

w = =/A, 6-194 

where A is the samplingperiod and w the (not normalized) angular frequency. 
Before returning to our discussion of the steady-stale mean square tracking 

error we introduce another concept. 

Definition 6.15. Let T(z) be the trarrsnzissior~ of an asj~i~tptotically stable 
time-inuariant linear discrete-time corltrol sjwtenr. Tlzeri icv define the rro~~rrma- 
l i icd~cql lencj~ bandof the i-th lidi of the co~~trolsjiste~tt as the set of nor/lialized 

frequencies 0 ,  0 < B 7i, for which 

{[T(e-j") - IITW,[T(eiU) - I]},; < .s2W,,+ 6-195 

Here E is o giueli rt~rr~iber ~~hiclr is small 11-it11 respect to I ,  CI', is the i~vightillg 
matris for the mean square trackiltg error, and Wc,, ,  the i-$11 rliagoiiol e n t ~ y  of 
ry,. 
Here as well we speak of the bandwidth and the cutoff fregltencjr of the i-th 
link, if they exist. If the discrete-time system is derived from a con- 
tinuous-time system by sampling, the (not normalized) bandwidth and cutoff 
frequency can be obtained by the relation 6-194. 

We can now phrase the following advice, which follows from a considera- 
tion of 6-191. 

Design Objective 6.2. Let T(z) be tlrep x p trarlsrnission of art asj~ritptotically 
stable time-imariant linear discrete-time control system, for i ~ h i c l ~  both the 
coristont and the uarioble part of the referelice variable haue lmcorreloted 
conlponents. Tlieri in order to obtain a sn~all steady-state nieail square troclcing 
error, t l ~ e f i e p e ~ i c j ~  band of each of the p links sl~ottld contoirl the frequencj~ 
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in the form of discrete-time systems driven by discrete-time white noise. 
The variance matrix of the state of the system that results by augmenting 
the control system difference equation with these models can be computed 
according to Theorem 6.22 (Sectlon 6.2.12). This variance matrix yields all 
the data required. The example at the end of this section illustrates the pro- 
cedure. Often, however, a satisfactory estimate of the settling time of a given 
quantity can be obtained by evaluating the transient behavior of the response 
of the control system to the constant part of the reference variable alone; 
this then becomes a simple matter of computing step responses. 

For time-invariant control systems, information about the settling time 
can often be derived from the location of the closed-loop characteristic values 
of the system. From Section 6.2.4 we know that all responses are linear com- 
binations of functions of the form A', i = i,, io + 1, . . ., where A is a char- 
acteristic value. Since the time it  takes IAl' to reach 1 % of its initial value of 1 
is (assuming that 121 < 1) 

7 - 
6-198 

time intervals, an estimate of the 1 % settling time of an asymptotically stable 
linear time-invariant discrete-time control system is 

time inlervals, where A,, I = 1,2 ,  . . . , 11, are the characteristic values of the 
control system. As with continuous-time systems, this formula may give 
misleading results inasmuch as some of the characteristic values may not 
appear in the response of certain variables. 

We conclude this section by pointing out that when a discrete-time control 
system is used to describe a sampled continuous-time system the settling 
time as obtained from the discrete-time description may give a completely 
erroneous impression of the settling time for the continuous-time system. 
This is because it occasionally happens that a sampled system exhibits quite 
satisfactory behavior a t  the sampling instants, while betieeeri the sampling 
instants large overshoots appear that do not settle down for a long time. We 
shall meet examples of such situations in later sections. 

Example 6.12. Digital positioit coritrol system with proportional feedback 
We illustrate the results of this section for a single-input single-output 

system only, for which we take the digital position control system of Example 
6.1 1. Here the steady-state tracking properties can be analyzed by considering 
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the scalar transmission T(z), which is easily computed and turns out lo be 
given by 

O.O03396rl(r + 0.8575) 
T(z) = . 6-200 

(a - l)(z - 0.6313) + 0.003396rl(z + 0.8575) 

In Fig. 6.9 plots are given of IT(ejYA)I for A = 0.1 s, and for values of rl 
between 5 and 100 V/rad. It is seen from these plots that the most favorable 
value of rl is about 15 V/rad; for Uiis value the system bandwidth is maximal 
without the occurrence of undesirable resonance effects. 

Fie. 6.9. The transmissions of the digital position control system for various values of the 
gain factor 7.. 

To compute the mean square tracking error and the mean square input 
vollage, we assume that the reference variable can be described by the model 

Here 111 forms a sequence of scalar uncorrelated stochastic variables with 
variance 0.0392 rad2. With a sampling interval of 0.1 s, this represents a 
sampled exponentially correlated noise process with a time constant of 5 s. 
The steady-state rms value of r can be found to be I rad (see Example 6.9). 

With the simple feedback scheme of Example 6.1 1, the input to the plant 
is given by 

p(i) = rlr(i) - Atl(i), 6-202 

which results in the closed-loop difference equation 

Here the value rl = 15 V/rad has been subsliluted. Augmenting this equation 
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with 6-201, we obtain 

0.94906 0.08015 0.05094 t,(i) 

-0.946'2 0.6313 0.9462 it;', + [ ' , I ( ~ ) .  

0 0 0.9802 

6-204 
We now define the variance matrix 

Here it is assumed that E{x(i,)} = 0 and E{r(i,)} = 0, so that x(i) and r(i) 
have zero means for all i. Denoting the entries of Q(i) as Q,,(i), j, 1; = 1.2,3, 
the mean square tracking error can be expressed as 

For the mean square input, we have 

C,,(i) = E{p"i)} = E{??[r.(i) - t1(i)]3 = ?Xn( i ) .  6-207 

For the variance matrix Q(i), we obtain from Theorem 6.22 the matrix differ- 
ence equation 

Q(i + 1) = MQ(i)MT + N V N T ,  6-208 

where M is the 3 x 3 matrix and N the 3 x 1 matrix in 6-204. V is the vari- 
ance of w(i). For the initial condition of this matrix dilference equation, we 
choose 

/o 0 o\ 

\o 0 I /  

This choice of Q(0) implies that at  i = 0 the plant is at  rest, while the initial 
variance of the reference variable equals the steady-state va~iance 1 radz. 
Figure 6.10 pictures the evolution of the rms tracking error and the rms 
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input voltage. I t  is seen that the settling time is somewhere between 10 and 20 
sampling intervals. 

I t  is also seen that the steady-state rms tracking error is nearly 0.4 rad, 
which is quite a large value. This means that the reference variable is not very 
well tracked. To explain this we note that continuous-time exponentially corre- 
lated noise with a time constant of 5 s (from which the reference variable is 

trocking 
error 

I rod l  

0 

input 
vottoge 

Pig. 6.10. Rrns tracking error and rms input voltage for the digital position control 
system. 

derived) has a 1 %cutoff frequency of 63.66/5 = 12.7 rad/s (see Section 2.5.2). 
The digital position servo is too slow to track this reference variable properly 
since its 1 % cutoff frequency is perhaps 1 rad/s. We also see, however, that 
the steady-state rms input voltage is about 4 V. By assuming that the maxim- 
ally allowable rms input voltage is 25 V, it is clear that there is considerable 
room for improvement. 

Finally, in Fig. 6.11 we show the response of the position digital system 
to a step of 1 rad in the reference variable. This plot confirms that the settling 
time of the tracking error is somewhere between 10 and 20 time intervals, 

Fig. 6.11. The response of the digital position control system to a step in the reference 
variable of 1 tad. 
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depending upon the accuracy required. From the root locus of Fig. 6.8, we 
see that the distance of the closed-loop poles from the origin is about 0.8. 
The corresponding estimated 1 % settling time according to 6-199 is 20.6 
time intervals. 

6.3.4 Further Aspects of Linenr Discrete-Time Control System 
Performance 

In this section we briefly discuss other aspects of the performance of linear 
discrete-time control syslems. They are: the effect of disturbartces; the effect 
of obseruatioi~ noise; aud the ezect of plant parameter. ta~certainty. We can 
carry out an analysis very similar to that for the continuous-time case. We 
very briefly summarize the results of this analysis. To describe the effect of 
the disturbances on the mean square tracking error in the single-input single- 
output case, it turns out to be useful to introduce the sellsitiuityfrrr~cfion 

where 

is the open-loop transfer function of the plant, and 

is the transfer function of the feedback link of the controller. Here it is 
assumed that the controlled variable of the plant is also the observed vari- 
able, that is, in 6-171 C = D and El = E, = E. To reduce the effect of the 
disturbances, it turns out that IS(eio)I must be made small over the frequency 
band of the equivalent disturbance at the controlled variable. If 

IS(ej")l I 1 for all 0 < 0 < R, 6-213 

the closed-loop system always reduces the effect of disturbances, no matter 
what their statislical properties are. If constant disturbances are to he 
suppressed, S(1) should be made small (this statement is not true without 
qualification if the matrix A has a characteristic value at 1). In the case of a 
.multiinput multioutput system, the sensitivity function 6-210 is replaced with 
the sensitivity rttatrix 

S ( 4  = [I + H(z)G(z)l-: 6-214 

and the condition 6-213 is replaced with the condition 

~~(e-~O) lKS(e i~)  _< Wn for all 0 I 0 < R, 6-215 

where W, is the weighting matrix of the mean square tracking error. 
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In the scalar case, making S(elO) small over a prescribed frequency band 
can be achieved by malting tlie controller transfer function G(elo) large over 
tliat frequency band. This conflicts, however, with tlie requirement that the 
mean square input be restricted, tliat the effect of the observation noise be 
restrained, and: possibly, with the requirement of stabilily. A compromise 
must be found. 

The condition that S(e'') be small over as large a frequency band as pos- 
sible also ensures that the closed-loop system receives protection against para- 
meter variations. Here tlie condition 6-213, or 6-215 in the multivariable 
case, guarantees that the erect of small parameter variations in the closed- 
loop system is always less than in an equivalent open-loop system. 

6.4  O P T I M A L  LINEAR DISCRETE-TIMES STATE 
F E E D B A C K  CONTROL S Y S T E M S  

6.4.1 Introduction 

In  this seclion a review is given of linear optimal control theory for discrete- 
time systems, where it is assumed that tlie state of the system can be com- 
pletely and accurately observed at all times. As in tlie continuous-time 
case, much of tlie attention is focused upon tlie regulator problem, although 
the tracking problem is discussed as well. The section is organized along the 
lines of Chapter 3. 

6.4.2 Stability Improvement by State Feedback 

In Section 3.2 we proved that a continuous-time linear system can be stabi- 
lized by an appropriate feedback law if the system is complelely controllable 
or stabilizable. The same is true for discrete-time systems. 

Theorem 6.26. Let 

x( i  + 1 )  = Ax(i) + Bu(i) 6-216 

represent a ti~ne-invariant linear discrete-time system. Consider tlie time- 
iiluaria~it co!llrol /all' 

I@) = -Fx(i). 6-217 

Tlren the closed-loop characterisfic val~res, that is, the cliaracteristic valms of 
A - BF, call be arbitrarilj, located in the coniplexpla~ie (wifhi~i the restrictio~~ 
that coulples cl~aracferistic ualzies occur iii co~iplex co~ljllgate pairs) b j ~  
cl~oosing Fsiiitably if and only if6-216 is c ~ ~ i ~ p l e t e l y  co~~trolloble. It ispossible 
to choose F such that the closed-loop system is stable if aid only if6-216 is 
stabilizable. 
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Since the proof of the theorem depends entirely on the properties of the 
matrix A - BF, it is essentially identical to that for continuous-time systems. 
Moreover, the computational methods of assigning closed-loop poles are the 
same as those for continuous-time syslems. 

A case of special interest occurs when all closed-loop characteristic values 
are assigned to the origin. The characteristic polynomial of A - B F  then is 
of the form 

det ( A 1  - A + BF) = ,Irt, 6-218 

where n is the dimension of the syslem. Since according to the Cayley- 
Hamilton theorem every matrix satisfies its own characteristic equation, we 
must have 

(A - BF)" = 0. 6-219 

In matrix theory it is said that this malrix is riilpotent with index n. Let 
us consider what implications this bas. The state at the instant i can be ex- 
pressed as 

x(i) = (A - BF)'x(O). 6-220 

This shows thal, if 6-219 is satisfied, any initial state x(0) is reduced to the 
zero state at or before the instant n ,  that is, in 11 steps or less (Cadzow, 1968; 
Farison and Fu, 1970). We say that a system with this property exhibits a 
state deadbeat response. In Section 6.4.7 we encounter systems with orrtptrt 
deadbeat responses. 

The preceding shows that the state of any completely conlrollable lime- 
invariant discrete-time system can be forced to the zero state in at most 11 

steps, where 11 is the dimension of the system. It may very well be, however, 
that the control law that assigns all closed-loop poles to the origin leads to 
excessively large input amplitudes or to an undesirable transient behavior. 

We summarize the present results as follows. 

Theorem 6.27. Let the state dlffprence eglratioll 

represent a conipletel~~ controllable, time-iiivarianf, n-diiiie~isionol, linear 
discrete-time sj~sterii. Tlren any i~iitialstate cmi be reduced to the zero state iri at 
most 11 steps, that is, for euerjl x(0) tlrere exists an input that ilialies x(n) = 0. 
This can be acliieued tl~ro~rglr the time-invariant feedbacli law 

t~here F is so clrosen tllat the matrix A - BF has all its clraracteristic values 
at the origin. 
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Example 6.13. Digitalpositiort control sjlstenl 
The digital positioning system of Example 6.2 (Section 6.2.3) is described 

by the state difference equation 

The system has the characteristic polynomial 

(3 - l)(z - 0.6313) = z2 - 1.63132 + 0.6313. 6-224 

In phase-variable canonical form the system can therefore be represented as 

The transformed state x'(i) is related to the original state x(i) by x(i) = Txl(i), 
where by Theorem 1.43 (Section 1.9) the matrix Tcan be found to be 

I t  is immediately seen that in terms of the transformed state the state dead 
beat control law is given by 

p(i) = -(-0.6313, 1.6313)x'(i). 6-227 

In terms of the original state, we have 

In Fig. 6.12 the complete response of the deadbeat digital position control 
system to an initial condition x(0) = COI (0.1,O) is sketched, not only at the 
sampling instants, but also at the intermediate times. This response has been 
obtained by simulating the continuous-time positioning system while it is 
controlled with piecewise constant inputs obtained from the discrete-time 
control law 6-229. It is seen that the system is completely at rest after two 
sampling periods. 

6.4.3 The Linear Discrete-Time Optimal Regulator Problem 

AnalogousIy to the continuous-time problem, we define the discrete-time 
regulator problem as follows. 

Definition 6.16. Consider the discrete-time linear system 
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Fig. 6.12. State deadbeat response of the digital position control system. 

ivl~ere 
x(iJ = x,. 6-231 

~siilt the cor~trolled varioble 
z(i) = D(i)x(i). 6-232 

Coruider as well the criterion 

 here R,(i + 1) > 0 and R,(i) > 0 for i = i,, i, + 1 ,  . . . , il - I ,  and 
PI 2 0. Then theproblem of determinirig the irtplrf u(i) for i = i,, i, + 1,  . . . , 
il - 1 , is called the discrete-time deterntinistic h e a r  opti~~ialreg~tlatorproble~~~. 
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If oil motrices occurring in tireprobien~ for~iluio/io~~ ore co~~stont, ive refer to 
it as /he tinre-iaunr.iant discr.ete-tiiirc linear. optimal r~eplator.problenr. 

I t  is noted that the two terms following the summation sign in the criterion 
d o  not have the same index. This is motivated as follows. The initial value of 
the controlled variable z(i,,) depends entirely upon the initial state x(iJ and 
cannot be changed. Therefore there is no point in including a term with 
z(i,,) in the criterion. Similarly, the final value of the input ~(i,) affects only 
tbe system behavior beyond the terminal instant i,; therefore the term in- 
volving rr(i,) can be excluded as well. For  an extended criterion, wllere the 
criterion contains a cross-term, see Problem 6.1. 

I t  is also noted that the controlled variable does not contain a direct link 
in the problem formulation of Definition 6.16, altliougll as we saw in Section 
6.2.3 such a direct link easily arises when a continuous-time system is dis- 
cretized. The omission of a direct link can be motivated by the fact that 
usually some freedom exists in selecting the controlled variable, so that often 
it is justifiable to make the instants at which the controlled variable is to be 
controlled coincide with the sampling instants. In tliis case no direct link 
enters into the controlled variable (see Section 6.2.3). Regulator problems 
where the conlrolled variable does lime a direct link, however, are easily 
converted to the formulation of Problem 6.1. 

In  deriving the optimal control law, our approach is different from Lhe 
continuous-time case where we used elementary calculus of variations; here 
we invoke dynamic programming (Bellman, 1957; Kalman and Koepcke, 
1958). Let us define the scalar function u[x(i), i] as follows: 

1 min s,[%' + 1 ) M i  + I M j  + 1) ,=, 

I f o r i = i , , i , + l ; . . , i , - 1 ,  

x'(il)Pp%(il) for i = i,. 

We see that u[x(i), i] represents the minimal value of the criterion, computed 
over the period i, i + I ,  . . % , i,, when at the instant i the system is in the state 
~ ( i ) .  We derive an iterative equation for tliis function. Consider the instant 
i - 1. Then if the input u(i - I) is arbitrarily selected, but u(i), u(i + I ) ,  . . . , 
u(i, - 1) are chosen optimally with respect to the state a t  time i, we can 
write for the criterion over the period i - I ,  i, . . . , i,: 
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Obviously, to determine tru(i - I ) ,  the optimal input at time i - 1, we 
must choose u(i - 1) so that the expression 

is minimized. The minimal value o r  6-236 must of course be the minimal 
value of the criterion evaluated over the control periods i - 1, i, . . . , i, - 1. 
Consequently, we have the equality 

u[x(i - I), i - I)] = min {zT(i)R,(i)z(i) 
ttli-11 

+ ul'(i - 1)R2(i - l)u(i - 1) + u[x(i), i]}. 6-237 

By using 6-230 and 6-232 and rationalizing the notation, this expression takes 
the form 

u(x, i - 1) = min {[A(i- 1)x + B(i - 1)111~R,(i)[A(i - 1)x + B(i - 1)u] 

+ t rT~, ( i  - 1)ff + u([A(i - 1)x + B(i - l)ff], i)}, 6-238 
where 

Rl(i) = DT(i)R,(i)D(i). 6-239 

This is an iterative equation in the function u(x, i). I t  can be solved in the 
order ( x  i )  ( x ,  i - 1 )  u(x, il - 2) ,  . . . , since x i )  is given by 
6-234. Let us attempt to find a solution of the form 

whereP(i), i = i,, i, + 1, . . . , i,, is a sequence of matrices to be determined. 
From 6-234 we immediately see that 

Substilution of 6-240 into 6-238 and minimization shows that the optimal 
input is given by 

i - 1) = - - x i  - 1 i = i, + 1, . . . , i,, 6-242 

where the gain matrix F(i - 1) follows from 

The inverse matrix in this expression always exists since R?(i - I)  > 0 
and a nonnegalive-definite matrix is added. Substitution of 6-242 into 
6-238 yields with 6-243 the following difference equation in P(i): 
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I t  is easily verified that the right-hand side is a symmetric matrix. 
We sum up these results as follows. 

Theorem6.28. Consider the discrete-time rleterntiaistic liaear opfirval 
reg~rlatorproblern. The optimal irplt  is giue~z bj, 

Here the inverse alwajm exists arzd 

The sequence of rnatrices P(i ) ,  i = i,, i, + 1 ,  . . . , il - 1 ,  satisfies the matrix 
dl@-rertce eqtratiorz 

P(i)  = AT(i)[Rl(i + 1 )  + P(i + l ) ] [A( i )  - B(i)F(i)], 

i = i , , i , + l ; . . , i , - 1 ,  6-248 
with the tern~iaal condition 

P(il) = PI. 6-249 

The value of the criterion 6-233 achievedivith this control law isgiven by 

We note that the difference equation 6-248 is conveniently solved backward, 
where first F(i) is computed from P( i  + 1) through 6-246, and then P(i) from 
P( i  + I) and F(i) through 6-248. This presents no di5culties when the aid of 
a digital computer is invoked. Equation 6-248 is the equivalent of the con- 
tinuous-time Riccati equation. 

It is not ditlicult to show that under the conditions of Definition 6.16 the 
solution of the discrete-time deterministic linear optimal regulator problem 
as given in Theorem 6.28 always exists and is unique. 

Example 6.14. Digitalpositiar~ corttrol system 
Let us consider the digital positioning system of Example 6.2 (Section 

6.2.3). We take as the controlled variable the position, that is, we let 
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The following criterion is selected. Minimize 

.. - 
2 [5'(i + 1) + pp2(i)l. 6-252 
i=o 

Table 6.1 shows the behavior of the gain vector F(i) for il = 10 and p = 
0.00002. We see that as idecreases, F(i) approaches a steady-state value 

The response of the corresponding steady-state closed-loop system to the 
initial state x(0) = col (0.1, 0 )  is given in Fig. 6.13. 

Table 6.1 Behavior of the Feed- 
back Gain Vector F(i) for the 
Digital Position Control System 

i F(i) 

6.4.4 Steady-State Solution of the Discrete-Time Regulator Problem 

In this section we study the case where the control period extends from io to 
infinity. The following results are in essence identical to those for the con- 
tinuous-time case. 

Theorom6.29. Consider the discrete-tirile deterrnirlistic lirlear oplirrml 
regulator probleril and its solutio~~ as given in Tlleoren~ 6.28. Ass~nile that 
A(i), B(i ) ,  Rl(i + I) ,  arld R,(i) ore bounded for i 2 in, arld sippose that 

R,(i + 1) 2 al ,  R,(i) 2 PI, i 2 io,  6-254 

where a. and ,T are positive constants. 
(i) Tlrer~ if the system 6-230 is either 

(a) conlpletely controllable, or 
(b) expone~~tially stable, 
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ongulor 
position 
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t r o d )  
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ongulor 
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sompling instont i L 

Fig. 6.13. Response of the optimal digi- 
tal position control syslem to the initial 
condition 4 0 )  = col(O.l.0). 

the sohrtion P(i)  of the d ~ ~ e r e ~ i c e  equations 6-246 arid 6-248 ivitli the terminal 
conditio~i P(i,) = 0 cowxrges ta a no~i~iegatiue-defiiiite segrrerice of niatrices 
P(i )  as i, -> a, ivlrich is a solirtio~i of the diference egr~ations 6-246 and 6-248. 
(ii) Moreover, i f the  system 6-230, 6-232 is either 

(c) both irniforriily coiiipletely controllable arid rrnifomly co~npletely 
r.econstrirctible, or. 

( d )  espoporier~tially stable, 
the sol~rliorr P(i) of the dr%fer.erice equatioru 6-246 arid 6-248 ivith the terminal 
condition P(iJ = PI converges to P( i )  as i, - m for. arij~P, > 0. 
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The stability of the steady-state control law that corresponds to the steady- 
state solution P is ascertained from the following result. 

Theorem6.30. Cortsider tlre discrete-time determi~ristic linear optbnnl 
reg~datorproblem artrlsuppose tlrat tlre assuniptiolu of Tlzeoreitt 6.29 corrcerning 
A, B,  R,, R,, and R, are satisjied. Tlren if the systein 6230,6-232 is either 

(a) 101if01711ly corilpletely corrtrollable arid unifonirly con~pletely recolt- 
sfrrrctible, or 

@) esporrerrtially stable, 
the fol lon~i~~g facts hold. 
(i) Tlre steady-state optbiral corrlral law 

wlrere P(i )  is obrairted b j ~  stibstitrrting P(i) for P(i )  in 6-246, is exporrentially 
stable. 
(ii) Tlre  stead^-state optiriial corttrol laiv 6-255 rrtinirnizes 

lim (i [zz'(i + L)R,(i+ i)z(i + I) + u2'(i)RSi)u(i)] + I"(~JP~X(~J 6-256 
i,-m i d "  I 
for allP, 2 0. Tlre ntini~ital value of 6-256, i ~ f ~ i c l ~  is aclrieved by tlzesteady-state 
optintal control law, is given $ 

The pro& of these theorems can be given along the lines of Kalman's 
proofs (Kalman, 1960) for continuous-time systems. The duals of these 
theorems (for reconstruction) are considered by Deyst and Price (1968). 
In the time-invariant case, the following facts hold (Caines and Mayne, 
1970, 1971). 

Theorern6.31. Consider tlie tilite-iriuariant discrete-time liltear optimal 
regulator proble~n. Tlren if the system is botlr stobilizable and defectoble tlre 
folloi~~ing facts Izold. 

(i) Tlze solution P(i)  of the dijfererrce eqrratiorrs 6-246 and 6-248 with the 
terntiiial co~rdifion P(iJ = P, conuerges lo a constant steady-state soltrtiorr P 
as i, -> m for any Pl 2 0. 
(ii) TIE steady-state Opthila/ control lail, is tiate-iliuariant and osj~nlptotical!~~ 

stable. 
(iii) Tlze steadj~-state optimal control law n ~ i ~ r i n i i ~ ~  6-256 for all Pl > 0. 
Tlre minintal ualtie of this espression is giver1 bj1 
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In conclusion, we derive a result that is useful when studying the closed-loop 
pole locations of the steady-state time-invariant optimal regulator. D e h e  
the quantity 

p(i) = [Rl(i + 1) + P(i  + I M i  + 11, 
i = i  o ,  i + l;.. , i ,  - I,  6-259 

where R, a n d P  are as given in Theorem 6.28. We derive a difference equation 
forp(i) .  From the terminal condition 6-249, it immediately follows that 

p(il - 1) = [Rl(iJ + pllx(iI). 6-260 

Furthermore, we have with the aid of 6-248 

p(i - 1) = R,(i)x(i) + P(i)s( i )  

= Rl( i )4 i )  + AZ'(i)[Rl(i + 1) + P(i + l ) ] [A( i )  - B(i)F(i)]s(i) 

= Rl(i)z(i) + AT(i)[Rl(i + 1) + P(i  + l ) ] s ( i  + 1) 
= R,(i)s(i) + AT(i)p(i). 6-261 

Finally, we express uo(i) in terms of p(i). Consider the following string of 
equalities 

Now from 6-246 it follows that 

BT(i)[Rl(i + 1) + P(i  + l )]A(i)x( i )  

= {Rd f )  + B z I i ) [ ~ , ( i  + 1) + P(i + l)]B(i)}F(i)x(i)  

= -{Rdi)  + B T ( i ) [ ~ , ( i  + 1) + P(i + l)]B(i)}tro(i). 6-263 

Substitution of this into 6-262 yields 

Inserting zro(i) as given here into the state ditrerence equation, we obtain the 
following two-point boundary-value problem 
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We could have derived these equations directly by a variational approach to 
the discrete-time regulator problem, analogously to the continuous-time 
version. 

Let us now consider the time-invariant steady-state case. Then p(i) is 
defined by 

p(i) = (Rl + P)x(i+ I ) ,  i  = i,, i, + 1, .... 6-266 

In the time-invariant case the difference equations 6-265 take the form 

x(i + 1) = Ax(i) - BRilBTp(i), i = i,, i, + 1, . . . , 
p(i - 1) = R,x(i) + ATp(i), i = i , + 1 , i 0 + 2 ; . .  . 6-267 

Without loss of generality we take i, = 0 ;  thus we rewrite 6-267 as 

x(i + 1) = Ax(i) - BRi1BTP(i), i = 0 , 1 , 2 ; . . .  

p(i) = R,x(i + 1) + ATp(i + I ) ,  i = 0,  1,2, . . . . 6-268 

We study these difference equations by z-transformation. Application of the 
z-transformation to both equations yields 

where x, = x(O),p, =p(O), and X(z) and P(z) are the z-transforms of x and 
p,  respectively. Solving for X(z) and P(z), we write 

When considering this expression, we note that each component of X(z) and 
P(z) is a rational function in z with singularities at those values of z where 

21 - A  BR;,B~ 
det ( ) = a .  

-R1 2-lI - AT 

Let z,, j = 1 ,2 , .  . . , denote the roots of this expression, the left-hand side 
of which is a polynomial in z and l/z. Ifz, is a root, 112, also is a root. More- 
over, zero can never he a root of 6-271 and there are at most 2n roots (n is 
the dimension of the state x). It follows that both x(i) and p(i) can he de- 
scribed as linear combinations of expressions of the form z,', iz:, i%,', . . . , 
for all values of j. Terms of the form ilizj', k = 0,1, . . . , I  - 1, occur when 
z, has multiplicity I .  Now we know that under suitable conditions stated in 
Theorem 6.31 the steady-state response of the closed-loop regulator is 
asymptotically stable. This means that the initial conditions of the dEerence 
equations 6-268 are such that the coefficients of the terms in x(i) with powers 
of z, with lzjl 2 1 are zero. Consequently, x(i) is a linear combination of 
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powers of those roots z, for wliich 1z,1 < 1. This means that these roots are 
characteristic values of the closed-loop regulator. Now, since 6-271 may have 
less than 211 roots, there niay be less than 11 roots with moduli strictly less 
than 1 (it is seen in Section 6.4.7 that this is the case only when A has one or 
more characteristic values zero). This leads to the conclusion that the re- 
maining characteristic values of the closed-loop regulator are zero, since z 
appears in the denominators of tlie expression on tlie right-hand side of 
6-270 after inversion of the matrix. 

We will need these results later (Section 6.4.7) to analyze the behavior of 
the closed-loop cliaracteristic values. We sumniarize as follows. 

Theorem 6.32. Consider the time-i17uaria11t discrete-ti111e rleter1i1i17isfic li17ear 
optinla1 regulator problem. Sllppose that the 11-di~~~e~isional sjistern 

is stabilizable and detectable. Let zj, j = 1, 2, . . . , r ,  wit11 r < 11,  denote those 
roots o f  

that lraue mod11li strictly less tho11 I .  T11er1 zi, j = 1, 2, . . . , r., co~~st i t l~te  r 
of the cl~aracteristic uallles of the closed-loop steadjr-state opti111a1 reg~~lator. 
The re~ l ia i l~ i~~g  11 - r cl~aracteristic ual~les ore zero. 

Using an approach related to that of this section, Vaughan (1970) g' ives a 
method [or finding the steady-state solution of the regulator problem by 
diagonalization. 

Example 6.15. Stirred tarlli 
Consider tlie problem of regulating tlie stirred tank of Example 6.3 

(Section 6.2.3) which is described by tlie state diITerence equation 

0.9512 0 4.877 4.877 
a(i + I) = ).(;I + ( ( i ) .  6-274 

0 0.9048 -1.1895 3.569 

We choose as controlled variables the outgoing flow and tlie concentration, 
that is. 
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Exaclly as in tlle continuous-time case of Example 3.9 (Section 3.4.1), we 
choose for the weighting matrices 

where p is a scalar constant to be delermined. 
The steady-stale feedback gain malrix can be found by repeated applica- 

tion of 6-246 and 6-248. For p = I numerical computation yields 

The closed-loop characleristic values are 0J932&+6$9%. Figure 6.14 
sliows tlie response of tlie closed-loop system to the initial condilions x(0) = 
col (0.1,O) and x(0) = c01 (0,O.l). Tlie response is quite similar to that of the 
corresponding continuous-time regulator as given in Fig. 3.11 (Section 3.4.1). 

increment01 
v o l u m e  

5 1  

Fig. 6.14. Closed-loop responses of the regulated stirred tank, discrete-time version. 
Left column: Responses o r  volume and concentration to tlle initial conditions El(0) = 
0.1 ma and &(0) = 0 kmol/m8'. Right column: Responses o r  volume and concentration 
to the initial conditions 5,(0) = 0 rn3 and &(0) = 0.1 kmol/mn. 
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6.4.5 The Stochastic Discrete-Time Linear Optimal Regulator 

The stochastic discrete-time linear optimal regulator problem is formulated 
as follows. 

Definition 6.17. Consirler the discrete-time linear system 

lvlrere ie(i), i = i,, i, + 1, . . . , i, - 1 ,  constit~rtes a seq~rence of ~wcorreloted, 
zero-niearz stochastic unriobles ivith variance matrices V )  i = i,,, . . . , 
i,- I .  Let 

z(i) = D(i)x(i) 6-280 

be the coritralled variable. Tlren the problerii of niininiizing the criterion 

ii~lrere R,(i + 1) > 0, R,(i) > 0 for i = i,, . . . , i, - 1 andP, 2 0, is tenired 
the stochastic rliscrete-time linenr opli~~ralregulnfarprnblc~~r. I f  all the niotrices 
in the problem forniulation are constant, ise refer to it os the tinre-inuariant 
staclrastic discrete-time linear optimal reg.rrlntnr prohlem. 

As in the continuous-time case, the solution of the stochastic regulator prob- 
lem is identical to that of the deterministic equivalent (Astrom, Koepcke, 
and Tung, 1962; Tou, 1964; ICushner, 1971). 

Theorem 6.33. The criterion 6-281 of the staclrostic discrete-time linear 
opti~iral regulator problem is niinimized by choosing tlre input accordi~rg to 
tlre control law 

F(i)  = {R,(i) + BT(i)[R,(i + 1) + P(i + I)]B(i)}--l 
BT(i)[Rl(i + 1) + P( i  + l )]A(i ) .  6-283 

Tlre sequence of matricesP(i), i = i,, . . . , i, - 1 ,  is the sol~rtion of the liiatrix 
dlfere~ice eq~ration 

P(i)  = AT(i)[R,(i + 1) + P(i + l ) ] [A( i )  - B(i)F(i)], 
i = i,, i, -b 1, . . . , il - 1, 6-284 

with the ternii~ial condition 
P(iJ = P,. 6-285 

Here 

R,(i) = ~ " ( i ) ~ , ( i ) ~ ( i ) .  6286 
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TIE uallte of the crilerion 6-281 aclrieuedicfth this control law isgiuei~ b j ~  

11 

~n'PP(io)% + tr { V ( j  - N W )  + Rl( j ) l l .  6-287 
,=id 1 

This theorem can be proved by a relatively straiglitforward extension of the 
dynamlc programming argument of Section 6.4.3. We note that Theorem 
6.33 gives the linear control law 6-282 as the optimal solnlion, without 
further qualification. This is in conrrast to tlie continuous-time case (Theorem 
3.9, Section 3.6.3), where we restricted ourself to linear control laws. 

As in the continuous-time case, tlie stochastic regulator problem encom- 
passes regulator problems with disturbances, tracking problems, and track- 
ingproblems with disturbances. Here as well, tlie structure of the solutions of 
each of these special versions of tlie problem is such that the feedback gain 
from tlie state of the plant is not affected by the properties of the disturbances 
of the reference variable (see Problems 6.2 and 6.3). 

Here too we can investigate in what sense the steady-state control law 
is optimal. As in the continuous-time case, it can be surmised that, if it exists, 
the steady-state control law minimizes 

(assuming that this expression exists for the steady-state optimal control 
law) with respect to all linear control laws for which this expressions exists. 
The minimal value of 6-288 is given by 

where P ( j ) ,  j 2 in, is tlie sleady-state solution of 6-284. In the time-invariant 
case, tbe steady-state control law moreover minimizes 

lim ~ { z ' ( i  + l)R,z(i + 1) + l rT( i )~ ,u ( i ) }  6-290 
to+-m 

with respect to all time-invariant control laws. The minimal value of 6-290 
is given by 

tr [(R, + P)U. 6-291 

Kusliner (1971) discusses these facts. 

Example 6.16. Stirred tar~lc with disfrobartces 
In  Example 6.10 (Section 6.2.12), we modeled the stirred tank with dis- 

turbances in the incoming concenlrations through the stochastic difference 
equation 6-168. If we choose for tlie components of tlie controlled variable the 
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outgoing flow and tlie concentration in the tank, we have 

0.01 0 0 0 
z(i) = x(i). 

0 1 0 0  
We consider the criterion 

1\-1 

E[  2 [zT(i + 1)RAi + I) + ~i'(i)~,u(i)I, 6-293 
*=o 

where the weighting matrices R, and R, are selected as in Example 6.15. For 
p = 1 numerical computation yields the steady-state feedback gain matrix 

Comparison with the solution of Example 6.15 shows that, as in tlie contin- 
uous-time case, tlie feedback link of the control law (represented by the iirst 
two columns or F) is not affected by introducing the disturbances into the 
model (see Problem 6.2). 

The steady-stale rms values OF the outgoing flow, the concentration, and 
the incoming flows can be computed by setting up the closed-loop system 
state difference equation and solving for 0, the steady-state variance matrix 
of the state of the augmented system. 

6.4.6 Linear Discrete-Time Regulators with Nonzcro Set Points and 
Constant Disturbances 

In this section we study linear discrete-time regulators with nonzero set 
points and constant disturbances. We limit ourselves to time-invariant 
systems and first consider nonzero set point regulators. Suppose that the 
system 

z(i + 1) = Ax(i) + Bu(i), 
z(i) = Dz(i), 6-295 

must be operated about the set point 

z(i) = z,, 6-296 

where z, is a given constant vector. As in the continuous-time case of Section 
3.7.1, weintroduce theshifted state, input, and controlled vadables. Then the 
steady-state control law that returns the system from any initial condition to 
the set point optimally, in the sense that a criterion of the form 
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is minimized, is of the form 
d ( i )  = -Fx'(i), 6-298 

where u', rc', and z' are the shifted input, state, and controlled variables, 
respectively, and where P i s  the steady-state feedback gain matrix. In terms 
of the original system variables, this control law must take the form 

~ ( i )  = -Fk(i) + I I ; ,  6-299 

where 11; is a constant vector. With this control law the closed-loop system is 
described by 

where 

Assuming that the closed-loop system is asymptotically stable, the controlled 
variable will approach a constant steady-state value 

lim z(i) = Ho(i)t~A, 6-302 
i-m 

where H&) is the closed-loop transfer ~natrir 

HJz) = D(zI - J)-)-lB. 6-303 

The expression 6-302 shows that a zero steady-state error is obtained when 
11; is chosen as 

11; = H;'(l)z,, 6-304 

provided the inverse exists, where it is assumed that dim (u) = dim (2). We 
call the control law 

~ ( i )  = -Fx(i) + H;'(l)z,(i) 6-305 
the nonzero set point optimal control law. 

We see that the existence of this control law is determined by the existence 
of the inverse of H J ) .  Completely analogously to the continuous-time case, 
it can be shown that 

where &(z) is the closed-loop characteristic polynomial 

4Jz)  = det (zI - A + BF), 6-307 

and where y(z)  is the open-loop numerator polynomial; that is, y(z) follows 
from 
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Here 

is the open-loop transfer matrix and 

4(z) = det (zI - A) 

is the open-loop characteristic polynomial. The relation 6-306 shows that 
H,-l(1) existsprovidedy(1) + 0. SinceH(ef0) describes the frequency response 
of the open-loop system, this condition is equivalent to requiring that the 
open-loop frequency response matrix have a numerator polynomial that does 
not vanish at 0 = 0. 

We summarize as follows. 

Theorem 6.34. Consider the time-invariant discrete-time linear sj~stem 

ivliere dim@) = dim([(). Consider any asj~n~ptotically stable time-invariant 
control laiv 

II(~) = -Fx(i) + 11;. 6-312 

Let H(z) be the open-loop transfer niatrix 

H(z) = D(zI - A)-IB 6-313 

and H&) the closed-loop transfer riiatrix 

Then HJ1) is nonsingt~lor and the confrolled variable z(i) can under steady-state 
conditions be maintained ar any consto~~t setpoint z, by cl~oosing 

11; = H;l(l)~o 6-315 

ifand only ifH(z) has a nonzero nrn~~eratorpoly~~o~iiial that has no zeroes at 
z = 1 .  

It is noted that this theorem holds not only for the optimal control law, but 
for any stable control law. 

Next we very briefly consider regulators with constant disturbances. We 
suppose that the plant is described by the state difference and output equa- 
tions 

x(i + 1) = Ax@) + Blr(i) + v,, 

z(i) = Dx(i), 6-316 

where v, is a constant vector. Shifting the state and input variables, we reach 
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the conclusion that the control law that returns the shifted state optimally 
to zero must be of the form 

u(i) = -Fx(i) + u;, 6-317 

where 11; is a suitable constant vector. The steady-stale response of the con- 
trolled variable with this control law is given by 

where HJz) = D k I  - A + BWB. I t  is possible to make the steady-state 
response 6-318 equal to zero by choosing 

4 = - H ~ ( ~ ) D ( I  - ~)-lu,. 6-319 

provided dim (z) = dim (11) and HJ1) is nonsingular. Thus the rero-steady- 
state-error optimal control law is given by 

The conditions for the existence of H,-l(l) are given in Theorem 6.34. 
The disadvantage of tlie control law 6-320 is that its application requires 

accurate measurement of the constant disturbance u,. This difficulty can be 
circumvented by appending to the system an "integral state" q (compare 
Section 3.7.2), defined by the difference relation 

with q(i,) given. Tlien it can easily be seen that any asymptotically stable 
control law of the form 

z(i) = -Flx(i) - F%q(i) 6-322 

suppresses the effect of constant disturbances on the controlled variable, 
that is, z(i) assumes the value zero in steady-state conditions no matter what 
the value of u, is in 6-316. Necessary and sufficient conditions for the existence 
of such an asymptotically stable control law are that the system 6-316 be 
stabilizable, and [assuming that dim (11) = dim (z)] that the open-loop 
transfer matrix possess no zeroes a t  the origin. 

Example 6.17. Digital position control system 
In Example 6.6 (Seclion 6.2.6), we saw Uiat tlie digital positioning system 

of Example 6.2 (Section 6.2.3) has the transfer function 

Because the numerator polynomial of this transfer function does not have a 
zero a t  z = 1, a nonzero set point optimal controller can be obtained. I n  
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Example 6.14 (Section 6.4.3), we obtained the steady-state feedback gain 
vector F = (110.4, 12.66). It is easily verified that the corresponding 
nonzero set point optimal control law is given by 

where 5, is the (scalar) set point. Figure 6.15 shows the response of the 
closed-loop system to a step in the set point, not only at the sampling 
instants but also at intermediate times, obtained by simulation of the 

ongulor  
p o s ~ t i o n  
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continuous-time system. The system exbibits an excellent response, not quite 
as fast as the deadbeat response of Fig. 6.12, but with smaller input 
amplitudes. 

6.4.7 Asymptotic Properties of Time-Invariant Optimal Control Laws 

In this section we study the asymptotic properties of time-invariant steady- 
state optimal control laws when in the criterion the weighting matrix R? is 
replaced with 

Rz  = pN, 6-325 

where p 1 0. Let us first consider the behavior of the closed-loop poles. 
In Theorem 6.32 (Section 6.4.4) we saw that the nonzero closed-loop char- 
acteristic values are those roots of the equation 

that have moduli less than I ,  where R, = DTR,D. Using Lemmas 1.2 
(Section 1.5.4) and 1.1 (Section 1.5.3), we write 

det ( Z I  - A B R ; ~ B ~ '  

-R1 2-'I - A T  

= det (21 - A) det [=-'I - AT + Rl (d  - A)-'BR;'BT] 

= det (21 - A) det (z-lI - AT)  

det [I + Rl(zl - A)-lBR;l~T(z-lI - AT)-'] 

= det (21 - A) del(z-'I - AT) 

det [I + R;'BT(z-'I - AT)-'R1(zI - A)-'B] 

= det (21 - A) det (=-'I - AT) 

= $(.)$(z-') det , 

where 
I 

$(z) = det ( z I  - A )  6-328 

is the open-loop characteristic polynomial, and 

is the open-loop transfer matrix. 
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To study the behavior of the closed-loop characteristic values, let us first 
consider the single-input single-output case. We assume that the scalar 
transfer function H(z) can be written as 

where 

with q 5 11, is the characteristic polynomial of the system, and where 

withp 5 s < n - 1, is the numerator polynomial of the system. Then 6-327 
takes the form (assuming R, = 1 and N = 1): 

TO apply standard root locus techniques, we bring this expression into the 
form 

We conclude the following concerning the loci of the 2q roots of this ex- 
pression, where we assume that q > p (see Problem 6.4 for the case q < p). 

1. The 2q loci originate for p = a at ri and l/m{, i = 1,2,  . . . , q. 
2. As p 1 0, the loci behave as follows. 

(a) p roots approach the zeroes v;, i = 1,2, . . . , p ;  
(b) p roots approach the inverse zeroes llv,, i = 1,2, . . . , p ;  
(c) q - p roots approach 0; 
(d) the remaining q - p roots approach infinity. 

3. Those roots that go to infinity as p 1 0 asymptotically i re  at a distance 

n n vi uZ ;=I -- 

l i b n l  

fir; ;=I 
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from the origin. Consequently, those roots that go to zero are asymptotically 
at a distance 

Information about the optimal closed-loop poles is obtained by selecting 
those roots that have moduli less than 1. We conclude the following. 

Theorem6.35. Consider the steadystate salr~tiort of the time-irmaria~~t 
single-inprrt single-output discrete-time linear regulator prablerrr. Let the 
open-loop transfer frorction be giver1 by 

aze1'n (a  - Y;) 
H(2) = 3 a # &  6-337 " 

2"- n (2 - Tr;) 
1=1 

ivlrere the 7ij # 0, i = 1, 2,  . . . , y ,  are the nonzero opelr-loop clraracteristic 
valrres, and v; # 0, i = 1,2, . . . , p ,  the nonzero zeroes. Strppose tlrat n 2 
q 2 p, n - 1 2 s 2 pand that in tlre criterion 6-233 we have R, = 1 arrd R, = 
p. Tlten the followirtg holds. 

(a) Of tlre n closed-loop cliaracteris~ic uahres 12 - q are ahvays at the origin. 
(b) As p 1 0, of the y rerirai~iing closed-loop clraracteristic ualiresp approaclr 

the irrrrrrbers 1:;, i = l , 2 ,  . . . , p ,  ivhere 

(c) As p I 0, the y - p other closed-loop characteristic uahm go to zero. 
Tlrese closed-loop poles asymptotically are at a distance 

I i=l I 
porn the origin. 

(d) As p -+ m, the qnonzero closed-loop characteristic ualrres approaclr the 
numbers 6,, i = 1,2, . . . , q, ivlrere 
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Let us now consider the behavior of the nonzero set point optimal control 
law derived in Section 6.4.6. For a single-input single-output system, it is 
easily seen that the system transfer function from the (scalar) set point 
2;,(i) (now assumed to be variable) to the controlled variable ( ( i )  is given by 

where H,(z) is the closed-loop transfer funclion. As in the continuous-time 
case (Section 3.8.2), it is easily verified that we can write 

where yr(z) is the open-loop transfer function numerator polynomial and 
$&) the closed-loop characteristic polynomial. For y~(e) we have 

n 
y(z) = mu-' (e - I:), 6-343 

i=1 

while in the limit p 1 0 we write for the closed-loop characteristic polynomial 

Substitution inlo 6-342 and 6-341 shows that in the limit p 1 0  the control 
system transfer function can be written as 

Now if the open-loop transfer function has no zeroes outside the unit circle. 
the limiting conlrol system transfer Function reduces to 

This represents a pure delay, that is, the controlled variable and the variable 
set point are related as follows: 

<(i)  = [ ,[ i  - (11 - s ) ] .  6-347 
We summarize as follows. 

Theorem 6.36. Co~isider the rlorlzero set poiizt optimal control la~s ,  as 
described in Section 6.4.6., for a s;~lgle-inp~~t single-orrtpit system. Let R, = I 
and R1 = p. The11 as p 1 0 ,  the control system transn~issio~r (that is, the 
transferfiirlctior of the closed-loop sjrsteni from tlre s e t p o i ~ ~ t  to the controlled 
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variable) approaclm 

rvhere the gj, i = 1,2, . . . , p  are deriued from the uonrera open-loop zeroes 
vj, i = 1 ,  2, . . . , p ,  as indicated in 6338, and ilhere 11 is the d i ~ i ~ e ~ ~ s i o ~ z  of the 
systenl arid s the degree of the numerator p o ~ ~ ~ o n ~ i a l  of the system. If the 
open-loop transferfir~tctior Itas no zeroes outside the tmit circle, the linliting 
sjutem fra1tsferfirnctio11 is 

11,11icl1 represents a p w e  delaji. 

We see that, if the open-loop system has no zeroes outside the unit circle, 
the limiting closed-loop system has the property that the response of the 
controlled variable to a step in the set point achieves a zero tracking error 
after n - s time intervals. We refer to this as o~rtp~rt deadbeat resporne. 

We now discuss the asymplotic behavior of the closed-loop cliaracteristic 
values for mulliinput systems. Referring back to 6-327, we consider the 
roots of 

Apparently, for p = m those rools of this expression that are finite are the 
roots of 

&)$(.-?. 6-351 
Let us write 

and assume that vi # 0, i = I,', . . . , g. Then we have 

which shows that 2g root loci of 6-350 originate for p = m at the nonzero 
characteristic values of the open-loop system and their inverses. 

Let us now consider the roots of 6-350 as p I 0. Clearly, those roots that 
stay finile approach the zeroes of 

+(z)+(z-') det [ H ~ ( z - ~ ) R , H ( z ) ] .  6-354 

Let us now assume that the input and the controlled variable have the same 
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dimensions, so that H(z) is a square transfer matrix, with 

Then the zeroes of 6-354 are the zeroes of 

Let us write the numerator polynomial y(z) in the form 

where 11, Z 0, i = 1,2,  . . . . p .  Then 6-356 can he written as 

This shows that 2p root loci of 6-350 terminate for p = 0 at the nonzero 
zeroes v;, i = 1,2,  . . . , p ,  and the inverse zeroes l /vi ,  1 = 1 ,2 ,  . . . , p .  

Let us suppose that q > p  (for the case q < p, see Problem 6.4). Then 
there are 2q root loci of 6-350, which originate for p = m a t  the nonzero 
open-loop poles and their inverses. As we have seen, 2p loci terminate for 
p = 0 at the nonzero open-loop zeroes and their inverses. Of the remaining 
27 - 2p loci, q - p must go to infinity as p I 0, while the otherq - p loci 
approach the origin. 

The nonzero closed-loop poles are those roots of 6350 that lie inside the 
unit circle. We conclude the following. 

Theorem 6.37. Consider the steady-state solution of tlre film-iitvariant 
regrrlatorproblem. Suppose that dim (u) = dim (2) and let H(z) be the open- 
loop transfer matrix 

H(z) = D(zI - A)-1B. 6-359 
F~irthernrore, let 

Y ( 4  det [H(z)] = - , 
4(4  

wit11 rri # 0, i = 1 ,  2, . . . , q, is the open-loop cltaracteristic polynomial. 
1,1 addition, srrppose tlrat 
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~vith p 5 q ,  and where vj # 0, i = 1,2, . . . , p .  Finalh, set R, = P N  ivhere 
N > 0 and p is a positive scalar. Then we have the folloising. 

(a) Of the 11 closed-loop poles, 11 - q always are at the origin. 
(b) As p 1 0, of the reritainingq closed-looppoles,p approach the n~nnbers 

li, i = 1, 2, . . . , p,  i14ere 

(c) As p 0, the q - p other closed-loop poles go to zero. 
(d) As p + m, the q nonzero closed-loop poles approach the ininlbers Gi, . 

i = 1,2,  . . . , q ,  idlere 

We note that contrary to the continuous-time case the closed-loop poles 
remain finite as the weighting matrix R? approaches the zero matrix. 
Similarly, the feedback gain matrix P also remains finite. Often, but not 
always, the limiting feedback gain matrix can be found by setting R, = 0 in 
the difference equations 6-246 and 6-248 and iterating until the steady-state 
value is found (see the examples, and also Pearson, 1965; Rappaport and 
Silverman, 1971). 

For the response of the closed-loop system with this limiting feedback 
law, the following is to be expected. As we have seen, the limiting closed-loop 
system asymptotically bas n - p  characteristic values a t  tlie origin. If the 
open-loop zeroes are all inside the unit circle, they cancel the corresponding 
limiting closed-loop poles. This means that the response is determined by the 
n - p poles a t  the origin, resulting in a deadbeat response of the controlled 
variable after n - p  steps. We call this an output deadbeat response, in 
contrast to the state deadbeat response discussed in Section 6.4.2. If a system 
exhibits an output deadbeat response, the output reaches the desired value 
exactly after a finite number of steps, but the system as a whole may remain 
in motion for quite a long time, as one of the examples a t  the end of this 
section illustrates. If tlie open-loop system has zeroes outside the unit circle, 
tlie cancellation effect does not occur and as a result the limiting regulator 
does not exhibit a deadbeat response. 

I t  is noted that these remarks are conjectures, based on analogy with the 
continuous-time case. A complete theory is missing as yet. The examples a t  
the end of the section confirm the conjectures. An essential difference between 
the discrete-time theory and the continuous-time theory is that in the dis- 
crete-time case the steady-state solution P of the matrix equation 6-248 
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generally does not approach the zero matrix as R? goes to zero, even if the 
open-loop transfer matrix possesses no zeroes outside the unit circle. 

Example 6.18. Digital position corttrol system 
Let us consider the digital positioning system of Example 6.2 (Section 

6.2.3). From Example 6.6 (Section 6.2.6), we know that the open-loop 
transfer function is 

I t  follows from Theorem 6.37 that the optimal closed-loop poles approach 
0 and -0.8575 as p 10. I t  is not dimcult to find the loci of the closed-loop 
characteristic values. Expression 6-334 takes for this system the form 

The loci of the roots of this expression are sketched in Fig. 6.16. Those loci 
that lie inside the unit circle are the loci of the closed-loop poles. I t  can be 

Pig. 6.16. Loci of the closcd-loop poles and the inverse closcd-loop poles for the digital 
position control system. 
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found that the limiting feedback gain matrix Fo for p = 0 is given by 

Let us determine the corresponding nonzero set point optimal control law. 
We have for the limiting closed-loop transfer function 

Consequently, HJ1) = 0.003396 and the nonzero set point optimal control 
law is 

Figure 6.17 gives the response of the system to a step in the set point, not 
only at the sampling instants but also at intermediate times. Comparing with 
the state deadbeat response of the same system as derived in Example 6.13, 
we observe the following. 

(a) When considering only the response of the angular position a t  the 
sampling instants, the system shows an output deadbeat response after one 
sampling interval. In between the response exhibits a bad overshoot, however, 
and the actual settling time is in the order of 2 s, rather than 0.1 s. 

(b) The input amplitude and the angular velocity assume large values. 
These disadvantages are characteristic for output deadbeat control 

systems. Better results are achieved by not letting p go to zero. For  p = 
0.00002 the closed-loop poles are at 0.2288 f 0.3184. The step response 
of the corresponding closed-loop system is given in Example 6.17 (Fig. 6.15) 
and is obviously much better than that of Fig. 6.17. 

The disadvantages of the output deadbeat response are less pronounced 
when a larger sampling interval A is chosen. This causes the open-loop zero 
a t  -0.8575 to move closer to the origin; as a result the output deadbeat 
control system as a whole comes to rest much faster. For an alternative 
solution, which explicitly takes into account the behavior of the system 
between the sampling instants, see Problem 6.5. 

Example 6.19. Stirred tartlc with time ilelajf 
Consider the stirred tank with time delay of Example 6.4 (Section 6.2.3). 

As the components of the controlled variable we choose the outgoing 
flow and concentration; hence 



Fig. 6.17. Response of the output deadbeat digital position control system to a step in the 
set point of0.1 md. 

518 
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It can be found that the open-loop transfer matrix of the system is 

The determinant of the transrer matrix is 

26.62 det [H(z)] = 
z(z - 0.9512)(z - 0.9048) 

Because the open-loop characteristic polynomial is given by 

$(z) = z2(z - 0.9512)(z - 0.9048), 6-373 

the numerator polynomial of the transfer matrix is 

As a result, two closed-loop poles are always at the origin. The loci of the 
two other poles originate for p = m at  0.9512 and 0.9048, respectively, and 
both approach the origin as p 1 0 .  This means that in this case the output 
deadbeat control law is also a state deadbeat control law. 

Let us consider the criterion 

where, as in previous examples, 

50 0 
R3 = ( ) and R2 = O ) .  6-376 

0 0.02 0 3 

When one attempts to compute the limiting feedback law for p = 0 by 
setting XI = 0 in the difference equation for P(i) and F(i),  difficulties occur 
because for certain choices of PI the matrix 

becomes singular a t  the first iteration. This can be avoided by choosing a 
very small value for p (e.g., p = 10-O). By using this technique numerical 
computation yields the limiling feedback gain matrix 
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Fig. 6.18. Deadbcat response of the stirred tank with time delay. Lelt column: Responses 
of volume, concentration, fccd no. 1 ,  and feed no. 2 to the initial condition &(O) = 0.01 m', 
while all othercomponcnts of the inilial state arczero. Right column: Responses of volume, 
concentration, iced no. 1, and reed no. 2 to the initial condition &(0) = 0.01 kmol/m8, 
while all other components of the initial state are zero. 

In  Fig. 6.18 the deadbeat response to two initial conditions is sketched. 
I t  is observed that initial errors in the volume 6, are reduced to zero in one 
sampling period. For the concentration 5, two sampling periods are required; 
this is because of the inherent delay in the system. 

6.4.8 Sensitivity 

In Section 3.9 we saw that the continuous-time time-invariant closed-loop 
regulator possesses the property that it always decreases the effect of disturb- 
ances and parameter variations as compared to the open-loop system. I t  is 
shown in this section by a counter example that this is not generally the case 
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for discrete-time systems. The same example shows, however, that protection 
over a wide range of frequencies can still be obtained. 

Example 6.20. Digital angdar velocity control 
Consider the angular velocity control system of Example 3.3 (Section 

3.3.1), which is described by the scalar state differential equation 

k(1) = - d ( t )  + ~ p ( t ) .  6379 

Let us assume t11a~ the input is piecewise constant over intervals of duration 
A. Then the resulting discrete-time system is described by 

where we have replaced c(iA) with f(i) and p(iA) with p(i). With the 
numerical values a = 0.5 s-1, K = 150 rad/(V s?), and A = 0.1 s, we obtain 

C(i + 1) = 0.9512f(i) + 14.64p(i). 6-381 

The controlled variable c(i) is the angular velocity f(i), that is, 

Xi) = W.  6382 

Let us consider the problem of minimizing 

I t  is easily found that with p = 1000 the steady-state solution is given by 

P = 1.456, 

F = 0.02240. 6-384 

The return difference of the closed-loop system is 

J(Z) = I + (21 - A)-~BR 6-385 

which can be found to be 

To determine the behavior of J(z) for z on the unit circle, set 

z = 

where A = 0.1 s is the sampling interval. With this we find 

ejWA - 1.388 - 1.246 cos (ma) 
I J (  )I - 1.905 - 1.902 cos (ma) 
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W-Irod/gl 

Fig. 6.19. Behavior o r  the return difference for a lirst-order discrele-time regulator. 

Figure 6.19 gives a plot of the bellavior of JJ(ejaA)/. We see that sensitivity 
reduction is achieved for low frequencies up to about 7 radls, but by no 
means for all frequencies. If the significant disturbances occur within the 
frequency band up to 7 rad/s, however, the sensitivity reduction may very 
well be adequate. 

6.5 O P T I M A L  LINEAR R E C O N S T R U C T I O N  O F  T H E  
S T A T E  O F  LINEAR DISCRETE-TIME S Y S T E M S  

6.5.1 Introduction 

This section is devoted to a review of the optimal reconstruction of the state 
of linear discrete-time systems. The section parallels Chapter 4. 

6.5.2 The Formulation of Linear Discrete-Time Reconstruction Problems 

In this section we discuss the formulation of linear discrete-time reconstruc- 
tion problems. We pay special altention to this question since there are 
certain differences from the continuous-time case. As before, we take the 
point of view that the linear discrete-time system under consideration is 
obtained by operating a linear continuous-time system with a piecewise 
constant input, as indicated in Fig. 6.20. The instants at which the input 
changes value are given by ti, i = 0, 1 ,  2, . . . , which we call the corltrol 
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I 
u l t l  i I 4 I processing 

I I deW 

I I 
ti iti ti+, - t i m e  

Pig. 6.20. Relationship of control actuation instant li and observation instant t i .  

instants. These instants form the basic time grid. We furthermore introduce 
the observatiorl inst,a@$j i = 0, 1,2, . . . ,which are the instants atwhich the 

.---_?_ _ 
observed variable ~ ( t )  of the continuous-tlme systemiss~mpled>It7~-as~med 
t h a ~ ~ l i e ~ ~ v a t i o n - i r i S t 5 i i f f i ~ ~ w ~ ~ e ~ f h e - c o n t r o 1 - i n s t m t  ti.+,. The 
difference ti.+, - tl will be called theprocessi~lg delaj,; in the case of a control 
system, it is the time that is available to process the observation y(t:) in 
order to determine the input s(tj+,). 

Suppose that the continuous-time system is described by 

where is, is white noise with time-varying intensity V1(t). We Curthermore 
assume that the observed variable is given by 

where the ~e~( t I ) ,  i = 0, I,,, . . . , form a sequence of uncorrelated sto- 
chastic vectors. To obtain the discrete-time description of the system, we 
write 

and 

where in both cases i = 0, 1, 2, . . . ,and where cl~(t, 1,)is the transitionmatrix 
of the system 6-388. We see that the two equations 6-390 and 6-391 are of 
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the form 
x+(i + I) = A,(i)x+(i) + B,(i)rr+(i) + ivl+(i), 

6-392 
y+(i) = C,(i)x+(i) + E,(i)r+(i) + iv$(i). 

This method of setting up the discrete-time version of the problem has the 
following characteristics. 

1. In the discrete-time version of the reconstruction problem, we assume 
that y+(i) is the latest observation that can be processed to obtain a recon- 
structed value for s-1-(i + 1). 

2.  The output equation generally contains a direct link. As can be seen 
from 6-391, the direct link is absent [i.e., E,(i) = 01 when the processing 
delay takes up the whole interval (t,, f,,). 

3 .  Even if in the continuous-time problem the state excitation noise iv1 
and the observation noise iv, are uncorrelated, the state excitation noise 
111,+ and the observation noise ivZ+ of the discrete-time version of the problem 
will be carrelafed, because, as can be seen from 6-390, 6-391, and 6-392, 
both iv1+(i) and w2+(i) depend upon ~ v , ( f )  for i ,  i tl. Clearly, iv1+(i) 
and icQ(i) are uncorrelated only if f i  = t i ,  that is, if the processing delay 
takes up the whole interval ( t i ,  ti+1). 

Example 6.21. Tlie rligifal posifioni~ig system 
Let us consider the digital positioning system of Example 6.2 (Section 

6.2.3). I t  has been assumed that the sampling period is A. We now assume 
that  the observed variable is the angular displacement f l ,  so that in the 
continuous-time version 

C = (1,O). 6-393 

We moreover assume that there is a processing delay A,i, so that the observa- 
tions are taken at an interval A, before the instants a1 which control actuation 
takes place. Disregarding the noises that are possibly present, it is easily 
found with the use of 6-391 that the observation equation takes the form 

where 
A' = A - A,. 

With the numerical value 
A ,  = 0.02 s, 

we obtain for the observation equation 
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6.5.3 Discrete-Time Observers 

In this section we consider dynamical systems that are able to reconstruct 
' the slate of another system that is being observed. 

Definition 6.18. The sJlstelll 

s ( i  + 1) = A(i) t( i )  + B(i)u(i) + d(i)y(i) 6-398 

is afrrll-ordev obserucr for the sj~stelli 

x(i + 1 )  = A(i)x(i) + B(i)n(i), 
6-399 

y(i) = C(i)x(i) + E(i)u(i), 
'J 

Z(iJ = x(io) 
iiitplies 

3(i) = x(i), i 2 io, 
for all u(i), i 2 iu. 

I t  is noted that consistent with the reasoning of Section 6.5.2 the latest 
observation that the observer processes for obtaining x(i + 1) is y(i). The 
following theorem gives more information about the structure of an 
observer. 

Thwrcm 6.38. The system 6-398 is R j'idl order observer for the systeiit 
6-399 if and only if 

&i) = A(i) - K(i)C(i), 

a// for i 2 i,, i ~ h m  K(i) is an arbitrar~ time-vorj~ii~g niatrix 

This theorem is easily proved by subtracting the state dimerence equations 
6-399 and 6-398. With 6-402 the observer can be represented as follows: 

+ 1 .  A ) )  + B i ( )  + K i i )  - ( i i )  - ( ) ( i ) ] .  6-403 

The observer consists of a model of the system, with as extra driving variable 
an input which is proportional to the difference y(i) - g(i) of the observed 
variable y(i) and its predicted value 

We now discuss the stability of the observer and the behavior of the 
reconstruction error e(i) = x(i) - t ( i ) .  
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Theorem 6.39. Consider tlie obseruer 6-398 for tlre sjvtenl 6-399. T l m  the 
reconstnrctioll error 

e(i)  = z ( i )  - $ ( j )  6-405 

satisfies the dgerence eq~ration 

e ( i  + 1 )  = [A(i)  - R(i)C(i)]e(i) ,  i > i,. 6-406 

Tlre recorwfrirction error has the property that 

e( i )  -t 0: ns i -  m, 6-407 

for all e(i,), i fand only i f the  obseruer is asj~mptoticaliJI stable. 

The dilference equation 6-406 is easily found by subtractingthe state difference 
equations in 6-399 and 6-398. The behavior of A( i )  - K(i)C(i) determines 
both the stability or  the observer and the behavior of the reconslruction 
error; hence the second part of the theorem. 

As in the continuous-time case, we now consider the question: When does 
there exist a gain matrixK that stabilizes tlie observer and thus ensures that 
the reconstruction error will always eventually approach zero? Limiting our- 
selves to time-invariant systems, we have tlie following result. 

Theorem 6.40. Consider the tirne-inuariant observer 

( i  + 1 = A )  + I )  + [ ( i )  - ( i )  - E L ) ]  6-408 

for the time-i~iuariant sjistem 

T l ~ n  t l ~ e  obserus poles (that is, the clraracteristic ual~res of A - KC) can be 
arbitrarily located in the con~plex- plane (~~' i t l~i l l  the restriction that co~~lples  
poles occw in comples conjugate pairs) b j ~  siritably cl~oosin~g t l~e  gain matrix- K 
if and oiliJI if tlre s jv ten~ 6-409 is con~pletely reconstrirctible. 

The proof of this theorem immediately follows from the conlinunus-time 
equivalent (Theorem 4.3, Section 4.2.2). For systems that are only detectable, 
we have the following result. 

Theorem 6.41. Consider the time-inuariant obseruer 6-408 for the time- 
irluariallt system 6-409. Tlreil a gab1 111atris K can be folrnd sidr that the 
observer is asj~n~ptotically stable if and only iftlre system 6-409 is detectable. 

A case of special interest occurs when the observer poles are all located at  
the origin, that is, all the characteristic values of A - KC are zero. Then the 
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characteristic polynomial of A - KC is given by 

det [?.I - (A - KC)] = ?.", 6-410 

so that by tlie Cayley-Hamilton theorem 

( A  -KC)" = 0. 6-411 

I t  follows by repeated application of the difference equation 6-406 for tlie 
reconstruction error that now 

411) = (A - ICC)"e(O) = 0 6-412 

for every e(O), which means tliat every initial value of the reconstruction 
error is reduced to zero in at most n steps. In  analogy with deadbeat control 
laws, we refer to observers with this property as deadbeat observers. Such 
observers produce a completely accurate reconstruction or the state after 
at most n steps. 

Finally, we point out tliat ifthe system 6-409 has a scalar observed variable 
y, a unique solution of the gain matrix K is obtained for a given set of 
observer poles. In the case of multioutput systems, however, in general 
many different gain matrices exist that result in the same set of observer 
poles. 

The observers considered so far in this section are systems of the same 
dimension as the system to be observed. Because of the output equation 
y(i) = C(i)%(i) + E(i)rt(i), we have available ni equations in the unlcnown 
state x(i) (assuming that y has dimension ni); clearly, it must be possible to 
construct a reduced-order observer of dimension n - 111 to reconstruct 
x(i) completely. This observer can be constructed more or less analogously to 
the continuous-time case (Section 4.2.3). 

Example 6.22. Digital positioni~lg sysfeni 
Consider the digital positioning system of Example 6.2 (Section 6.2.3), 

which is described by the state difference equation 

As in Example 6.21, we assume that tlie observed variable is the angular 
position but that there is a processing delay of 0.02 s. This yields for tlie 
observed variable: 

?i(i) = (1, O.O6608)x(i) + O.O02381p(i). 6-414 

I t  is easily verified that the system is completely reconstructible so that 
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Theorem 6.40 applies. Let us wrile K = col (k,, k:). Then we find 

This matrix has the characteristic polynomial 

8 + (-1.6313 + k, + 0.066081cJz + (0.6313 - 0.6313k1 + 0.01407kJ. 
6-416 

We obtain a deadbeat observer by setting 

This results in the gain matrix 

An observer with this gain reduces any initial reconstruction error to zero 
in at most two steps. 

6.5.4 Optimal Discrete-Time Linear Observers 

In this section we study discrete-time observers that are optirnal in a well- 
defined sense. To this end we assume that the system under consideration is 
affected by disturbances and that the observations are contaminated by 
observation noise. We then h d  observers such that the reconstructed state 
is optimal in the sense that the mean square reconstruction error is minimized. 
We formulate our problem as follows. 

Definition 6.19. Co~~sider the SYS~PIII 

Here col [w,(i), w,(i)], i 2 i,, f o rm a sequence of zero-mean, uricorrelated 
vector sfocl~astic variables ivitlr uariance matrices 

Firrtlrern~ore, x(iJ is a vector stocl~astic variable, wrorrelated with is, and 
I V ~ ,  ~vith 

E{x(i,)} = Zn, E { [ ( i )  - Zn][x(in) - ] = . 6-421 
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Consider the obseruer 
.4(i + I) = A(i)*(i) + B(i)u(i) + K(i)[y(i)  - C(i).4(i) - E(i)u(i)] 

6-422 

for this sjrstenl. T11er1 the probkm offinding the segoence of nlatrices P ( i U ) ,  
Ku(iu + I),  . . . , Ku(i - I), and the initial corlditio~~ *(in), so as to nli~timize 

~ { e " ( i )  W(i)e(i)}, 6-423 
wl~ere e(i) = z( i )  - 3(i), ond i l h ~  W( i )  is o positive-definite symiletric 
weigl~ting matrix, is ternled the discrete-time optimal obseruerp~~oblern. If 

V,(i)>O, i 2 i o ,  

the optimal obseruerprobler~l is called no~~si~~grrlor. 

To solve the discrete-time optimal observer problem, we first eslablish the 
difference equation that is satisfied by the reconstruction error e(i). Sub- 
traction of the system state difference equation 6-419 and the observer 
equation 6-422 yields 

( i  + I) = [ A )  - ( i ) ( i ) ] ( )  + I ( )  - K ( ) ( i )  i 2 i,. 
6-424 

Let us now denote by &(i) the variance matrix of e(i) ,  and by Z(i) the mean 
of e(i). Then we write 

so that 
~ { e " ( i )  W(i)e(i)} = ZT(i) W(i)P(i) + tr [&(i)W(i)]. 6-426 

The first term of this expression is obviously minimized by making P(i) = 0. 
This can he achieved by letting P(iJ = 0, which in turn is done by choosing 

$(in) = 2,. 6-427 

The second term in 6-425 can be minimized independently of the first term. 
With the aid of Theorem 6.22 (Section 6.2.12), it follows from 6-424 that & 
satisfies the recurrence relation 

&(i + 1) = [A(i) - K(i)C(i)]&(i)[A(i) - K(i)C(i)lT 

+ Vl(i) - V12(i)KT(i) - K(i)V$(i) + K(i)V2(i)Kz'(i), 
i 2 in, 6-428 

with - 
Q(iu) = C!O. 6-429 

Repeated application of this recurrence relation will give us &(i + 1) as a 
function of K(i), K( i  - l), . . . , K(iu). Let us now consider the problem of 
minimizing t r  [&(i + 1)W(i + l ) ]  with respect to K(iu), K(iu + I ) , - .  . . , K(i). 
This is equivalent to minimizing &(i + I), that is, finding a sequence of 
matrices Ku(i,), Ko(iu + I), . . . , KU(i) such that for the corresponding 
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value Q(i  + 1) of &(i + 1) we have Q(i  + 1 ) s  &(i + 1 ) .  Now 6-428 gives 
us &(i + 1 )  as a function of K(i) and &(i), where &(i) is a function of 
K(i,), . . . , K(i - 1). Clearly, for given K(i) ,  &(i + 1 )  is amonotone function 
of Q(i), that is, if Q(i) 5 &(i) then Q(i  + 1) $ &(i + I), where Q(i  + I )  is 
obtained from Q(i) by 6-428. Therefore, &(i + 1) can be minimized by k s t  
minimizing &(i) with respect to K(io), K(io + I ) ,  . . . , K(i - l ) ,  substituting 
the minimal value Q(i) of &(i) into 6-428, and then minimizing &(i + 1) 
with respect to K(i).  

Let us suppose that the minimal value Q(i) of &(i) has been found. 
Substituting Q(i) for &(i) into 6-428 and completing the square, we obtain 

&(i + 1)  = [K - (AQCT + V&$ + CQCT)-'](I< + CQC') 

[K - (AQCT + VI,)(V2 + CQCZ')-l]x' 

- ( A Q C ~  + vI2)(v2 + C Q C ~ ) - ' ( C Q A ~  + vz) 
+ AQA~' + I / , ,  6-430 

where for brevity we have omitted the arguments i on the right-hand side 
and where it has been assumed that 

T$(i) + c(i)Q(i)cl '( i)  6-431 
is nonsingular. This assumption is always justified in the nonsingular observer 
problem, where Vz( i )  > 0. When considering 6-430, we note that &(i + 1) 
is minimized with respect to K(i)  if we choose K(i) as KO(i), where 

KO(i) = [A(i)Q(i)CT(i) + VI2(i)][V;(i) + C(i)Q(i)CT(i)]-'. 6-432 
The corresponding value of &(i + 1 )  is given by 

Q(i + 1) = [A(i) - KO(i)C(i)]Q(i)AT(i) + V1(i) - KO(i)Vz(i), 6-433 
with 

Q(iJ = ow 6-434 
The relations 6-432 and 6-433 together will1 the initial condition 6-434 enable 
us to compute the sequence of gain matrices recurrently, starting with K(io). 

We summarize our conclusions as follows. 

Theorem 6.42. The optimal gain niatrices K"(i), i 2 io, for the nonsingtrlar 
opti~i~al obseruer problem'can be obtainedfiom the recrrrrerlce relations 

Ko(i) = [A(i)Q(i)cT(i) + VI2(i)][VL(i) + c(i)Q(i)cT(i)]-l ,  6-435 

Q(i + l) = [A(i) - Ko(i)C(i)]Q(i)AT(i) + T/,(i) - Ko(i)Vz(i), 
both for i 2 io, with the ir~itial condition 

w0) = ow 6-436 
The i~iitial conditiorz of the observer slro~rld be chosen as 

$(in) = ?to. 6-437 
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Tlte ~natris Q(i) is the uariarlce matrix of the recorlsN.uction error e(i) = 
x(i)  - &(i). For the optiriial observer the mean square reconstrrtction error is 
given by 

~ { e ~ ( i ) W ( i ) e ( i ) }  = tr [Q(i)W(i)]. 6-438 
Singular optimal observation problems can be handled in a manner that 

is more or less analogous to the continuous-time case (Brammer, 1968; Tse 
and Athans, 1970). Discrete-time observation problems where the state 
excitation noise and the observation noise are colored rather than white noise 
processes (Jazwinslci, 1970) can be reduced to singular or nonsingular 
optimal observer problems. 

We remark finally that in the literature a version of the discrete-time linear 
optimal observer problem is usually given that is dirrerent from the one con- 
sidered here in that it is assumed that y(i + 1) rather than y(i)  is the latest 
observation available for reconstructing x( i  + 1 ) .  In Problem 6.6 it is shown 
how the solution of this alternative version of the problem can be derived 
from the present version. 

I In this section we have considered optimal observers. As in the continuous- 
time case, it can be proved (see, e.g., Meditch, 1969) that the optimal 
observer is actually the nlirtbnrrrii mean square linear esti~iiator of x( i  + 1) 
given the data o ( j )  and y ( j ) ,  j = in, in + I , .  . . , i ;  that is, we cannot find 
any other linear operator on these data that yields an estimate with a smaller 
mean square reconstruction error. Moreover, if the initial state x, is Gaussian, 
and the white noise sequences TI', and I!'? are jointly Gaussian, the optimal 
observer is the minimum mean square estimator of x( i  + 1) given ~ ( j ) ,  y ( j ) ,  
j = in, i,, + 1, . . . , i; that is, it is impossible to determine any other estimator 
operating on these data that has a smaller mean square reconstruction error 
(see, e.g., Jazwinslti, 1970). 

Example 6.23. Stirred tarlk wit11 disturbances 
In Example 6.10 (Section 62.12). we considered a discrete-time version of 

the stirred tank. The plant is described by the state difference equation 

10.9512 0 0 O \ 



532 Discrete-Time Systems 

where iv,(i), i 2 i,, is a sequence of uncorrelated zero-mean stochastic 
variables with the variance matrix 6-169. The components of the state are 
the incremental volume of the fluid in the tank, the incremental concentration 
in the tank, and the incremental concentrations of the two incoming feeds. 
We assume that we can observe at each instant of time i the incremental 
volume, as well as the incremental concentration in the tank. Both observa- 
tions are contaminated with uncorrelated, zero-mean observation errors with 
standard deviations of 0.001 m3 and 0.001 kmol/m3, respectively. ' ~u r the r -  
more, we assume that the whole sampling interval is used to process the data, 
so that the observation equation takes the form 

where w,(i), i 2 i,, have the variance matrix 

The processes IV, and 111, are uncorrelated. In Example 6.10 we found that the 
steady-state variance matrix of the state of the system is given by 

Using this variance matrix as the initial variance matrix Q(0) = Q,, the 
recurrence relations 6-435 can be solved. Figure 6.21 gives the evolution of 
the rms reconstruction errors of the last three components of the state as 
obtained from the evolution of Q(i), i 2 0. The rms reconstruction error of 
the first component of the state, the volume, of course remains zero all the 
time, since the volume does not fluctuate and thus we know its value exactly 
at all times. 

It is seen from the plots that the concentrations of the feeds cannot be 
reconstructed very accurately because the rms reconstruction errors approach 
steady-state values that are hardly less than the rms values of the fluctuations 
in the concentrations of the feeds themselves. The rms reconstruction error 
of the concentration of the tank approaches a steady-state value of about 
0.0083 kmol/m3. The reason that this error is larger than the standard 
deviation of 0.001 kmol/m3 of the observation error is the presence of the 
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Fig. 6.21. Behavior o f  the rms reconstruction errors f o r  the stirred tank with disturbances. 
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processing delay-the observer must predict the concentration a full sampling 
interval ahead. 

rms reconstruct ion Errol 
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6.5.5 Innovations 

In this section we state the following fact, which is more or less analogous to 
the corresponding continuous-time result. 

Theorem 6.43. Consider the optilnal obseruer of Tl~eoren~ 6.42. Tlrerz the 
innountion process 

is a sequence of zero-mean ~lncorrelated stochastic vectors with variance 
~iiafrices 

C(i)Q(i)C1'(i)+V2(i),  ' i > i o .  6-444 

That the innovation sequence is discrete-time white noise can be proved 
analogously to the continuous-time case. That the variance matrix of 6-443 
is given by 6-444 follows by inspection, 

6.5.6 Duality of the Optimal Observer and Regulator Problems; 
Steady-State Properties of the Optimal Observer 

In this subsection we expose the duality of  the linear discrete-time optimal 
regulator and observer problems. Here the following results are available. 
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Theorem 6.44. Corwider the linear discrete-time optinla1 reg~rlator problem 
(DORP) of Dejirition 6.16 (Section 6.4.3) oi~d the liilear discrete-time optin~al 
observer problem (DOOP) of Dejirlitioll 6.19 (Section 6.5.4). Let in the 
obseruerproble~n V,(i) be given b j ~  

Sqpose also that the state excitatiorr noise arrd the observation noise ore m- 
correlated in the DOOP, that is, 

Let the uariolrs matrices occurrb~g in the DORP and the DOOP be related 
as folloic~s: 

A(i) of the DORP equals ~ ' ' ( i ' ~  - i )  of the DOOP, 

B(i) of tlre DORP eqr~ols CT(i* - i )  of the DOOP, 

D(i + 1 )  of the DORP equals ~ ' ' ( i *  - i )  of the DOOP, 

R,(i + 1 )  of the DORP equals V3(i* - i )  of the DOOP, 

R,(i) of the DORP equals V,(i" - i )  of the DOOP, 

PI of the DORP equals Q, of flre DOOP, 

all for i < i, - 1. Here 
i* = i, + i, - 1. 6-448 

Under these conditions the sol~~lions of the DORP ( T l ~ e o r e ~ ~ ~  6.28, Section 
6.4.3) and tile DOOP (Tlleorenr 6.42, Section 6.5.4) are related as folloi~~s. 

(a) P(i + 1 )  of the DORP equals Q(i* - 1 )  - V1(i* - i )  of the DOOP for 
i < i l - 1 ;  
(b) F(i) of the DORP eqr~als KuT(i" - i )  of the DOOP for i < i, - 1 ;  
(c) The closed-loop reg~rlafor of the DORP, 

and tlre uiforced recoirstrrrction error eyrrafiorl of the DOOP, 

ore dual with respect to i" in the sense of Dejtrition 6.9. 

The proof of this theorem follows by a comparison of the recursive matrix 
equations that determine the solutions of the regulator and observer problems. 
Because of duality, computer programs for regulator problems can be used 
for observer problems, and vice versa. Moreover, by using duality it is very 
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simple to  derive the following results concerning the steady-state properties 
o f  the nonsingular optimal observer with uncorrelated state excitation and 
observation noises from the corresponding properties o f  the optimal regulator. 

Theorem 6.45. Consider the rronsi~rg~rlar optimal obseruer problem ilritlr 
trncorrelatedstate escitation arid obseruation noises of De$nifion 6.19 (Secfiarl 
6.5.4). Assroile that A( i ) ,  C(i), Tfl(i) = ~ ( i ) V , ( r ) ~ " ( i )  aud Vz(i)  are bormrled 

far all i ,  and that 

V8(i)  2 XI, V&) 2 PI, for all i ,  6-451 

islrere a. and P are positiue constants. 
( i)  Tlrerr ifllre sj)sfem 6-419 is either 

(a) co17lpletely reconstructible, or 
( b )  exponetrtial@ stable, 

and tlre initial uariance Q, = 0, the uariauce Q(i)  of tlre reconstrltction 
error cot~ue,ges to a steadystate sol~ftio~t Q(i) as i, -t - m, i~~lricl~ satis- 

fies the matrix di@erence eqrratians 6-435. 
(ii) Moreover, if tlre system 

x( i  + 1 )  = A(i)x(i) + G(i)w,(i), ( i )  = C ( i ) ( i )  6-452 

is eitlrer 
(c)  both trnifortrrly con~plefely recor~strr~ctible and ~arfon11ly carilpletely 

cantrollable (fiortr w,), or 
( d )  esponentiall~~ stable, 

tlre uariarrce Q(i) of tlre reconstrr~ction error converges to &) for in- 
- 4 for ally initial uariarrce Q, 2 0. 
(iii) If eitlrer condition (c) or ( d )  holds, the steady-state aptirnal obseruer, 
114iclr is obtai~red b j ~  rrsirlg flre goin matrix R corresponding fo the stea+- 
state uariance Q,  is exponentially stable. 
(iv) Finally, if eitlrer corrdition (c) or ( d )  Iralds, the steady-state observer 
1rririir77izes 

l im f i { e T ( i ) ~ ( i ) e ( i ) }  6-453 
,o--m 

far euerjf it7itiaI uariance 0,. Tlre riiiltinlal ~allle of 6-453, i~~/ric/l is aclrieued 
b ~ l  the steadjr-state optimal obseruer, is giuen by 

tr [Q(i)llT(i)]. 6-454 

Similarly, i t  follows by "dualizing" Theorem 6.31 (Section 6.4.4) that, in  
the time-invariant nonsingular optimal observer problem with uncorrelated 
state excitation and observation noises, the properties mentioned under (ii), 
(iii), and (iv) hold provided the system 6-452 is both detectable and stabiliz- 
able. 
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We leave it as an exercise for the reader to state the dual of Theorem 6.37 
(Section 6.4.7) concerning the asymptotic behavior of the regulator poles. 

6.6 O P T I M A L  LINEAR DISCRETE-TIME 
O U T P U T  FEEDBACK SYSTEMS 

6.6.1 Introduction 

In this section we consider the design of optimal linear discrete-time control 
systems where the state of the plant cannot be completely and accurately 
observed, so that an observer must be connected. This section parallels 
Chapter 5. 

6.6.2 The Reylation of Systems with Incomplete Measurements 

Consider a linear discrete-time system described by the state difference 
equation 

with the controlled variable 
z(i) = D(i)x(i). 

In Section 6.4 we considered controlling this system with state feedback 
control laws of the form 

~ ( i )  = -F(i)x(i). 6-457 

Very often it is not possible to measure the complete state accurately, bow- 
ever, but only an observed variable of the form 

is available. Assuming, as before, that y(i) is the latest observation available 
for reconstructing x(i + I), we can connect an observer to this system of the 
form 

Then a most natural thing to do is to replace the state x in 6-457 with its 
reconstructed value 3: 

xi(;) = -F(i)e(i). 6-460 

We k s t  consider the stability of the interconnection of the plant given by 
6-455 and 6-458, the observer 6-459, and the control law 6-460. We have the 
following result, completely analogous to the continuous-time result of 
Theorem 5.2 (Section 5.2.2). 
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Theorem 6.46. Consider the infercom~ection of the systern described by 
6-455 ojld 6-458, the obseruer 6-459, and the co~lfrol low 6-460. Tim sl~ficient 
conditions for the cxiste~tce ofgoilz lllalrices F(i) or~dK( i ) ,  i 2 i,, sttcl~ that the 
irltercoltllected system is expor~ential[y stable are that the system described by 
6-455 ojld 6-458 be uniformly con~pletely controllable artd tinfor~itly conyletely 
reco~mtr~ictible, or thof it be exponentiall~~ stable. 61 the tirile-inuoriant case 
(i.e., all matrices occurrii~g in 6-455, 6-458, 6-459, and 6-460 are constant) 
neCeSSUrJ> ond slcflcie~lt conditioas for the esisfellce of sfobilisi~g gain motrices 
K and F ore that the sjrstem giuen b j ~  6-455 and 6-458 be both stabilizable and 
detectable. Moreouer, in the tirile-inuoriont case, r~ecessory and su~flcie~rt con- 
ditiom for arbitrorih assigni~lg all the closed-loop poles in the con~plexplane 
(within the restriction that co~nplexpoles occur in complex conj~igafepairs) b j ~  
suitably cltoosing the gain matrices K and F are that tlte system be both cool- 
pleteh reconstr~ictible and co~~~plete ly  co~~rrollable. 

The proof of this theorem follows by recognizing that the reconstruction error 

e(i)  = x( i )  - 2(i)  6-461 

satisfies the dilference equation 

e(i  + 1 )  = [A(i)  - K(i)C(i)]e(i). 6-462 

Substitution of 2(i)  = x(i) + e(i)  into 6-460 yields for 6-455 

x( i  + 1 )  = [A(i)  - B(i)F(i)]x(i) + B(i)F(i)e(i). 6-463 

Theorem 6.46 then follows by application of Theorem 6.29 (Section 6.4.4), 
Theorem 6.45 (Section 6.5.4), Theorem 6.26 (Section 6.4.2), and Theorem 
6.41 (Section 6.5.3). We moreover see from 6-462 and 6-463 tbat in the time- 
invariant case the characteristic values of the interconnected system 
comprise the characteristic values of A - BF (the regtllator poles) and the 
characteristic values of A - KC (the obseruerpoles). 

A case of special interest occurs when in the time-invariant case all the 
regulator poles as well as the observer poles are assigned to the origin. Then 
we know from Section 6.5.3 that the observer will reconstruct the state 
completely accurately in at most I I  steps (assuming tbat 11 is the dimension of 
the state x) ,  and it follows from Section 6.4.2 that after this the regulator will 
drive the system to the zero state in at most another 11 steps. Thus we have 
obtained an output feedback control system that reduces any initial state to 
the origin in at most 2n steps. We call sucli systems ol~tput feedback state 
deadbeat control systems. 

Example 6.24. Digitalposftion outplit feedboclc state deadbeat control system 
Let us consider the digital positioning system of Example 6.2 (Section 

6.2.3). In Example 6.13 (Section 6.3.3) we derived the state deadbeat control 
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Fig. 6.22. Response of the oulput feedback state deadbeat position control system from 
the initial state col[z(O), i(0)I = col(O.1, 0, 0, 0). The responses are shown at thesampling 
instants only and not at intermediate times. 

law for this system, while in Example 6.22 (Section 6.5.3) we found the 
deadbeat observer. I n  Fig. 6.22 we give the response of theinterconnection of 
deadbeat control law, the deadbeat observer, and the system to the initial 
state 

x(0) = col (0. I, 0), 2(0) = 0. 6-464 

I t  is seen that the initial state is reduced to the zero state in four steps. Com- 
parison with the state feedback deadbeat response of the same system, as 
depicted in Fig. 6.12 (Section 6.3.3), shows that the output feedback control 
system exhibits relatively large excursions of the state before it returns to the 
zero state, and requires larger input amplitudes. 
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6.6.3 Optimal Linear Discrete-Time Regulators with Incomplete 
and Noisy Measurements 

We begin this section by defining the central problem. 

Definition 6.20. Consider the linear discrete-time syste~n 

1i41er.e xu is a stocl~astic vector wit11 mean Z, and variance matrix Q,. The 
obserued variable of t l ~ e  system is 

The uariables col [w1(i), ie,(i)] form a seqlrerlce of rtrlcorrelated stocl~astic 
vectors, uncorrelated with x,, with zero nteam and uar.iance matrices 

The controNed variable can be expressed as 

z(i)  = D(i)x(i). 6-468 

Then the stoclrastic linear discrete-tirne optinral orrtprrt feedback r~galator 
problem is the problem o f f i ~ r l i , ~ g  thefiulctiorlal 

u( i )  = f [?/(in), y(in + 1). . . . . y(i - 1). i ] ,  io < i < il - 1. 6-469 

such that the criteriorl 

I i,-1 

CI = B 2 [zT(i + i)R,(i + I*(i + 1) + u f  i)R;(i)u(i)l + zT(il)Plx(iI)] 
k i n  

6-470 

is ntinimized. Here R,(i + 1 )  > 0 and R,(i) > 0 for in 5 i 5 il - 1, a~ td  
PI > 0. 

As in the continuous-time case. the solution of this nroblem satisfies the 
separation principle (Gunckel and Franklin, 1963; ~ s G o m ,  1970; Knshner, 
1971). 

Theorem 6.47. The soltrtion of the stochastic linear discrete-time optirrtal 
outpltt feedbacliproble~n is as folloi~~s. The optintal input is given bj, 

where F(i) ,  in < i < i, - 1, is theseqllerlce ofgain matrices for the detemtinistic 
optimal regulator as giuen in Theorem 6.28 (Sectiort 6.4.3). Fio.tlre,?nore, *( i )  
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is the niirzinium mean-square linear estimator of x(i)giueri ?/(j), io 5 j I i - 1; 
&(i) for the nonsi~igtlar case [i.e., K2(i) > 0, in i i, - 11 can be obtained 
as tlre o~ttplrt of the optbiial observer as described in Theorem 6.42 (Sectio~z 
6.5.4). 

We note that this theorem states the optimal solution to the stochastic linear 
discrete-time optimal output feedback problem and not just the optimal 
linear solution, as in the continuous-time equivalent of the present theorem 
(Theorem 5.3, Section 5.3.1). Theorem 6.47 can be proved analogously to the 
continuous-time equivalent. 

We now consider the computation of the criterion 6-470, where we restrict 
ourselves to the nonsingular case. The closed-loop control system is described 
by the relations 

In terms of the reconstruction error, 

and the observer state i(i), 6-472 can he rewritten in the form 

with the initial condition 

Defining the variance matrix of col [e(i), &(i)] as 

it can be found by application of Theorem 6.22 (Section 6.2.12) that the 
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matrices Q,,(i), j, k = 1, 2, satisfy difference equations, of which we give only 
that for Q,,: 

&(i + I )  = ~(i)~(i)Q~~(i)C"(i)K~(i) 
+ [A(i)  - B(i)F(i)]&(i)CT(i)KT(i) 

+ K(i)C(i)Q,,(i)[A(i) - B(i)F(i)lT 

+ [A(i)  - B(i)F(i)]Q,,(i)[A(i) - ~ ( i ) F ( i ) ] ~  

+ ~ ( i ) V , ( i ) K ~ ( i ) ,  i 2 is, 6-477 

with the initial condition 
Q&) = 0. 6-478 

Now obviously Qll(i) = Q(i), where Q(i)  is the variance matrix of the 
reconstruction error. Moreover, by setting up the difference equation for 
Q,,, it can be proved that Q&) = 0, i, < i il - 1, which means that 
analogously with the continuous-time case the quantities e(i)  and *(i) are 
nricorrelated for i, < i < i, - 1. As a result, Q,, can be found from the 
difference equation 

When the variance matrix of col [e(i) ,  i ( i ) ]  is known, all mean square and 
rms quantities of interest can be computed. In particular, we consider the 
criterion 6-470. In terms of the variance matrix of col (e ,  &) we write for the 
criterion: 

where 
Rl(i) = DT(i)R,(i)D(i), 6-481 

and P(i) is defined in 6-248. Let us separately consider the terms 
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where we have used the fact that Qz,(i,) = 0. Now using the results of 
Problem 6.7, 6-482 can be rewritten as 

wherep satisfies the matrix difference equation 

I t  is not dificult to recognize that P(i)  = P(i) + R,(i), i, + 1 I i i,. 
By using this, substitution of 6-483 into 6-480 yields for the criterion 

By suitable manipulations it can be found that the criterion can be expressed 
in the alternative form: 

We can now state the following theorem. 

Theorem 6.48. Consider the stoclrastic o~rtpzrt feedback regtdator problem of 
Dejtiition 6.20. S~rppose that V?(i) > 0 for all i. TIIPII the follo~~'i~rg facts hold. 

(a)  The riiiiziiizal vahfe of the criteriori 6-470 can be expressed in tlre 
alter~zative foriiis 6-485 and 6-486. 

(b)  hz flre tirile-invariant case, in i~drich the optirilal obseruer mrd regulalor 
probleriis ham stea4-state solr,tioiis as i, -r -m arrd i,- m, cliaracterized 
by 0 and P ,  11'itlz corresponding steady-state gain tnatrices R arid p, the 
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f o l l o ~ s i ~ ~ g  I~olds: 

lim I@'[zTc~ + l )R3(i  + j)z(i + 1)  + ~ i ~ ( i ) R ~ ( i ) c i ( i ) ]  
io--m 1, - l o  I=;" 
i t - m  

= lim E{zZ'(i + l)R,z(i + 1)  + uT(i)R,n(i)} 
io--m 

= tr [R,Q + ( P  + R ~ X ( C Q C ~  + V,)Rz'] 

= t r  { ( R ,  + P)I< + Q F ~ ' [ R ,  + Bz'(Rl + P)B]F}. 6-487 

(c) All meon square quanlities of interest can be obtained from the variance 
matrix- diag [Q(i), Q,?(i)] of col [e(i), $(i)]. Here e( i )  = x( i )  - $(i) ,  Q(i)  is 
the variance matrix of e(i), and Qn,(i) can be obtained as the solrrtion of the 
nlatrix d~$%mce eqiiatiorl 

Qn2(i + 1) = [A(i)  - B(i)F(i)]Qnn(i)[A(i) - B(i)F(i)lT 

+ K(i)[C(i)Q(i)CT(i) + Vn(i)lKz'(i), i 2 i,,, 6-488 

The proof of part (b) of this theorem follows by application of part (a). 

The general stochastic regulator problem can be specialized to tracking 
problems, regulation problems for systems with disturbances, and tracking 
problems for systems with dislurbances, complelely analogous to what we 
have discussed for the conlinuous-time case. 

6.6.4 Nonzero Set Points and Constant Disturbances 

The techniques developed in Section 5.5 for dealing wit11 time-invariant 
regulators and tracking systems with nonzero set points and constant dis- 
turbances can also be applied to the discrele-time case. Wefirst consider the 
case where the system has a nonzero set point z, for the controlled variable. 
The system state difference equation is 

the controlled variable is 

and the observed variable is 

y(i) = Cx(i) + Etr(i) + wn(i), i 2 i,,. 6-491 

The joint process col (w,, I I ' ~ )  is given as in Definilion 6.20 (Section 6.6.3). 
From Section 6.4.6 it follows that the nonzero set point controller is spec- 
ified by 

~ ( i )  = -F t ( i )  + H- G I  ( w u ,  6-492 
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where E is a suitable feedback gain matrix, and 

is the (square) closed-loop transfer matrix (assuming that dim (2) = dim (11)). 
Furthermore, 8(i) is the minimum mean square estimator of x(i)  and i, 
that of 2,. 

How i, is obtained depends on how we model the set point. If we assume 
that the set point varies according to 

z,(i + 1) = z,(i) + ~v,(i), 6-494 
and that we observe 

r(i) = z,(i) + wS(i), 6-495 

where col (w,, w,) constitutes a white noise sequence, the steady-state optimal 
observer for the set point is of the form 

This observer in conjunction with the control law 6-492 yields a zero-steady- 
state-error response when the reference variable r(i) is constant. 

Constant disturbances can be dealt with as follows. Let the state difference 
equation be given by 

where u, is a constant disturbance. The controlled variable and observed 
variable are as given before. Then from Section 6.4.6, we obtain the zero- 
steady-state-error control law 

u(i) = -h?(i) - H;'(l)D(I - &-'8,,, 6-498 

with all quantities defined as before, = A - BF, and 8,  an estimate of 0,. 

In order to obtain 6,. we model the constant disturbance as 

where w, constitutes a white noise sequence. The steady-state optimal 
observer for x(i) and zo(i) will be of the form 

*(i + 1) = Afi(i) + Blr(i) + 6,(i) + X,[y ( i )  - C:?(i) - E(i)t~(i)],  
6-500 

So({ + I) = 6,(i) + l?&(i) - Cfi(i) - E(i)u(i)]. 

This observer together with the control law 6-498 produces a zero-steady- 
state-error response to a constant disturbance. This is n form OF integral 
control. 
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Example 6.25. Integral co~itrol of tire digital positiorzi~ig system 
Consider the digital positioning system of previous examples. In Example 

6.14 (Section 6.4.3), we obtained the state feedback control law 

tr(i) = -Fx(i) = - (1 10.4, 12.66)x(i). 6-501 

Assuming that the servo motor is subject to constant disturbances in the form 
of constant torques on the shaft, we must include a term of the form 

in the state difference equation 6-26, where a is a constant. I t  is easily seen 
that with the state feedback law 6-501 this leads to the zero-steady-state-error 
control law 

p(i) = -B( i )  - 2(i). 6-503 

The observer 6-500 is in this case of tlie form 

2(i + 1) = d(i) + Ic, [g(i) - (I , O)8(i)]. 6-504 

Here it has been assumed that 

ql(i) = (1 ,  O)x(i) 

is the observed variable (i.e., the whole sampling interval is used for proc- 
essing the dala), and ic,, k3, and lc, are scalar gains to be selected. We 
choose these gains sucli that the observer is a deadbeat observer; this results 
in the following values: 

Figure 6.23 shows the response of the resulting zero-steady-state-error control 
system from zero initial conditions to a relatively large constant dislurbance 
of 10 V (i.e., the disturbing torque is equivalent to a constant additive input 
voltage of 10 V). It is seen that the magnitude of the disturbance is identified 
after three sampling intervals, and that it takes the system another three to 
four sampling intervals to compensate fully for tlie disturbance. 



546 Discrete-Time Systems 

sampling instant i d  

input 
voltoge 

ongulor 
position 

E r i i )  

I 
I rod)  

::I, , I  , , , . , , 

0 
0 10 

sampling inston t i - 
Fig. 6.23. Response of the digital positioning system with integral control from zero 
initial conditions to a conslant dislurbnncc. 

6.7 CONCLUSIONS 

In this chapter we have summarized the main results of linear optimal control 
theory for discrete-time systems. As we have seen, in many instances the 
continuous-time theory can be extended to the discrete-time case in a fairly 
straightforward manner. This chapter explicitly reviews most of the results 
needed in linear discrete-time control system design. 

Allhough in many respecls the discrete-time theory parallels the continuous- 
time theory, there are a few dilTerences. One of the striking dissimilarities is 
that, in theory, continuous-time control systems can be made arbitrarily 
fast. This cannot be achieved with discrete-time systems, where the speed of 
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action is restricted by the sampling interval. The fastest type of control that 
can be achieved with discrete-time systems is deadbeat control. 

In  this chapter we have usually considered linear discrete-time systems 
thought to be derived from continuous-time systems by sampling. We have 
not paid very much attention to what happens between the sampling interval 
instants, however, except by pointing out in one or two examples that the 
behavior at the sampling instants may be misleading for what happens in 
between. This is a reason for caution. As we have seen in the same examples, 
it is often possible to modify the discrete-time problem formulation to obtain 
a more acceptable design. 

The most fruitful applications of linear discrete-time control theory lie in 
the area of computer process control, a rapidly advancing field. 

6.8 PROBLEMS 

6.1. A niodi$ed discrete-time reg~rlator proble~n 
Consider the linear discrete-time system 

z( i  + 1) = A(i)z(i) + B(i)a(i), 

with the modified criterion 

i,-1 

2 [zT(i)Rl(i)z(i) + 2z2'(i)R12(i)u(i) + ~f ' ( i )R~(i)u(i)]  
i= io  

+ xT(il)Plz(il). 6-508 
Show that minimizing 6-508 for the system 6-507 is equivalent to a standard 
discrete-time regulator problem where the criterion 

is minimized for the system 

x(i + 1) = Ar(i)z(i) + B(i)ul(i), 6-510 
with 

1 )  - R 1 i ) R 1 ( ) R ( i )  i = i, + I ,  i, + 2, . . . , i, - 1, 
R;(i) = 

lo, I . = 11, . 

6.2. Stocl~astic state feerlbaclc regdator problents structr~red as regulator 
problents i~dfh rlistrrrbances 
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Consider the linear discrete-time system 

Here the disturbance variable u is modeled as 

where the ie,(i), i 2 in, form a sequence of uncorrelated stocbaslic vectors 
with given variance matrices. Consider also the crilerion 

(a) Show how the problem of controlling the system such that the criterion 
6-514 is minimized can be converted into a standard stochastic regulator 
problem. 

(b) Show that the optimal control law can be expressed as 

I )  = -( i )x( i )  - F ( ) x ( ) ,  i = i,, in + 1, . . . , i, - 1, ,6315 

where the feedbaclc gain matrices F(i), i = i,, . . . , i, - I ,  are completely 
independent of the properties of the disturbance variable. 

6.3. Stacliastic state feedbaclc regldator prable~its str~rctrrred a s  traclcing 
prablerils 

Consider the linear discrete-time system 

Consider also a reference variable z,, which is modeled through the equations 

where ie,(i), i 2 in, forms a sequence of uncorrelated stoc11astic vectors with 
variance matrices VJi). Consider as well the criterion 
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(a) show how the problem of controlling the system such that the 
criterion 6-518 is minimized can be converted into a standard stochastic 
discrete-time optimal regulator problem. 

(b) Show that the optimal control law can be expressed in the form 

where the feedback gain matrices F(i), i = i,,, . . . , i, - 1, are con~pletely 
independent of the properties of the reference variable. 

6.4. The closenLloop regdatorpoles 
Prove the following generalizalion of Theorem 6.37 (Section 6.4.7). 

Consider the steady-state solution of the lime-invariant linear discrete-time 
optimal regulalor problem. Suppose that dim (z) = dim (I,) and let 

7/@) det [H(z)]  = - , 
dJ(4 

I ( )  = z (z - ) with 71; # 0, i = 1, 2, . . . , p, 
i=l 

and 
R? = pN, 

with N > 0 and p a positive scalar. Finally, set r = max (p, q). Tben: 
(a) Of the 11 closed-loop regulator poles, 11 - r always stay a t  the origin. 
(b) As p 4 0, of the remaining r closed-loop poles,p approach the numbers 

1:. ,, i = 1,2,  . . . , p, which are de!ined as in 6-363. 
(c) As p 0, the r - p other closed-loop poles approach the origin. 
(d) As p m, of the r nonzero closed-loop poles, q approach the numbers 

1 ,  

t 
73. i = 1, . . . , q, which are deli ned as in 6-364. 

(e) As p 4 m, the r - p other nonzero closed-loop poles approach the 
origin. 

6.5. Mixed co11ti/l11olis-ti171e discrete-time rcg~~lotorproblc~n 
Consider the discrete-lime system that results from applying a piecewise 

constant input to the continuous-time system 

<(t)  = A(t)x(l) + B(t)~c(t). 6-521 

Use the procedure and notation of Section 6.2.3 in going from the continuous- 
time to the discrele-lime version. Suppose now that one wishes to take into 
account the behavior of the system between the sampling instants and consider 
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therefore the integral criterion (rather than a strm criterion) 

Here t,<, is the Erst sampling instant and ti, the last. 
(a) Show that minimizing the criterion 6-522, while the system 6-521 is 

commanded by stepwise constant inputs, is equivalent to minimizing an 
expression of the form 

<I--1 
2 [s l ' ( tJ~;( i )x ( tJ  + 2 ~ ~ ( t ~ ) R ; ~ ( i ) r r ( t J  + u2'(tJR6(i)s(tJ] 
<=in 

+ X ~ ' ( ~ , , ) P ~ X ( ~ ~ , )  6-523 
for the discrete-time system 

x(ti+J = @(tjfl .  t.)x(ti) + [i, :"' [?(ti,.,, T)B(T) d~ u(ti), 6-524 I 
where O(t ,  t,) is the transition matrix of the system 6-521. Derive expressions 
for R;(i), R;,(i), and Ri(i). 

(b) Suppose that A ,  5, R,, and R,  are constant matrices and also let the 
sampling interval t,, - t; = A be constant. Show tbatifthe samplinginterval 
is small first approximations to R;, R;,, and R; are given by 

R: r RIA, 

R;, r +RlBA2, 6-525 

R,' ri (R,  + f B~'R,BA~)A.  

6.6. Alternaliue version of the discrete-time optimal obseruerproblen~ 
Consider the system 

where col [1vl(i), w,(i)], i 2 i,, forms a sequence of zero-mean uncorrelated 
vector stochastic variables with variance matrices 

~urthermore, x(i,,) is a vector stochastic variable, uncorrelated with 115 and 
w,, with mean go and variance matrix Q,. Show that the best linear estimator 
of s( i)  operating on ? / ( j ) ,  ill i, j i (not i - 1, as in the version of Section 
6.5), can be described as follows: 
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Here the gain matrices R a r e  obtained from the iterative relations 

K ( i  + 1) = [S(i + 1)CX'(i + I )  + *)][C(i + 1)S(i + l)CT(i + 1) 

4-1 ,h) +,-1-1, 

S( i  + I )  = A(i)O_(i)AT(i) + Vl(i), 

Q(i + 1) = [I - K(i  + 1)CCi + 1)]S(i + 1 )  6-529 

all for i 2 i,. Here Q(i) is the variance matrix of the reconstruction error 
x( i )  - *(i), and S( i )  is an auxiliary matrix. The initial condition for 6-528 
is given by 

i = 1 - K ( ) C ( i ) ]  + K ( i ) ( i )  - E ( i ) ( i ) ] ,  6-530 
where 

The initial variance matrix, which serves as initial condition for the iterative 
equations 6-529, is given by 

Hint: To derive the observer equation, express y(i + 1) in terms of a(i) and 
use the standard version of the observer problem given in the text. 

6.7. Propertj~ of a ii~afrix diference equation 
Consider the matrix difference equation 

O(i - + 1) = A(i)O_(i)AZ'(i) + R(i), f ,  < i 2 i - I ,  6-533 

together with the linear expression 

Prove that this expression con also be written as 

where the sequence of matrices P( j ) ,  i, 2 j j i,, satisfies the matrix difference 
equation 



6.8. Lhtear discrete-ti~nc opti~t~al olfrp~ft feedback coflhol/ers of reduced 
cli,i~e~lsio~u 

Consider the linear time-invariant discrete-time system 

all for i 2 i,, where col [w,(i), i~'?(i)], i 2 ill, forms a sequence of uncorrelated 
stochastic vectors uncorrelated with xn. Consider for this system the time- 
invarianl controller 

Assume that the interconnection of controller and plant is asymptotically 
stable. 

(a) Develop matrix relations that can be used to compute expressions of 
Ihe form 

lim E{zT(r)R,z(i)} 6-539 
Ill--m 

and 
Iim fi{u2'(i)~$f(i)}. 6-540 

10--m 

Presuming that computer programs can be developed that determine the 
controller matrices L, K,, F, and K, such that 6-539 is minimized while 
6-540 is constra~ned to a given value, outline a method for determining 
discrete-time optimal output feedback controllers of reduced dimensions. 
(Compare the continuous-time approach discussed in Section 5.7.) 

(b) When gradient methods are used to solve numerically the optimization 
problem of (a), the follow~ng result is useful. Let M, N, and R be given 
matrices of compatible dimensions, each depending upon a parameter y. 
Let S be the solution of the linear matrix equation 

S = M S M ~  + N, 
and consider the scalar 

t r  (SR) 

as a function of y. Then the gradient of 6-542 with respect to 11 is given by 

a - a M - )  6-5, 
- [tr (SR)] = tr + 2U- SMZ' , 
J Y  37, 

where 0 is the solution of the adjoint matrix equation 

ii= hlTi7M+ R. 6-544 
Prove this. 
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