5 OPTIMAL LINEAR OUTPUT
FEEDBACK CONTROL SYSTEMS

5.1 INTRODUCTION -

In Chapter 3 we considered the conirol of linear systems described by a state
differential equation of the form

£(t) = AN=z{) + B{Ou(?). 51

An essential part of the theory of Chapter 3 is that it is assumed that the
complete slate vector =(r) is available for measurement and feedback,

In this chapter we relax this assumption and study the much more realistic
case where there is an observed variahle of the form

(#) = Clde(t), . 5.2

which is availahle for measurement and feedback. Control systems where
the observed variable i serves as input to the controller, and not the state =,
will be cailed ouiput feedback control systems. "

In view of the results of Chapter 4, it is not surprising that the optimal
output feedback coatroller turns out to he a combination of an observer,
through which the state of the system is reconstructed, and a control law
which is an instantaneous, linear function of the reconstrucied state. This
control law is the same control law that would have been obtained if the state
had been directly available for observation,

In Section 5.2 we consider a deterministic approach to the output feedback
problem and we obtain regulators through a combination of asymptotically
stable observers and linear, stabilizing control laws. In Section 5.3 a
stochastic approach is taken, and optimal linear feedback regulators are
derived as interconnections of optimal observers and optimal linear state
feedback laws. In Section 5.4 tracking problems are studied. In Section 5.5
we consider regulators and tracking systems with nonzero set points and
constant disturbances. Section 5.6 concerns the sensitivity of linear. optimal
feedback systems to disturbances and system variations, while the chapter
concludes with Section 5.7, dealing with reduced-order feedback controllers.

377



378 Optimal Lincar Output Feedback Control Systems

5.2 THE REGULATION OF LINEAR SYSTEMS
WITH INCOMPLETE MEASUREMENTS

52.1 The Siructure of Qutput Feedback Corirol Systems

In this section we take a deterministic approach to the problem of regulating
a linear system with incomplete measurements. Consider the system described
by the state differential equation

() = AO)=z(t) + B(u(1), 5.3
while the observed variable is given by
y(t) = C{)=(t). 5-4
In Chapter 3 we considered control laws of the form
u(t) = -F(x(r), 5-5

where it was assumed that the whole state x(¢) can be accurately measured.
If the state is not directly available for measurement, a natural approach
is first to construct an observer of the form

(1) = A(DEQR) + BOu() + KO[y() — COD], 5-6
and then interconnect the control law with the reconstructed state (t):
u(t) = —F{)E(1), 5-7

where F(f) is the same as in 5-5. Figure 5.1 depicts the interconnection of the
plant, the ohserver, and the control law. By substitution of the control law
5-7 into the observer equation 5-6, the controller equations take the form

(1) = [A(1) — BF(r) — K(CE(E) + K@ (D),
u(r) = —F{H)£(1).
This leads to the simplified structure of Fig. 5.2.
The closed-loop system that results from interconnecting the plant with

the controller is a linear system of dimension 2n (where 7 is the dimension
of the state z), which can be described as

(ﬂ'ﬂ(l‘)) _ ( A(t) —B(1)F () ) (w(t)) 5.0

5-8

£(1) KNOCE) A@) — K)CH) — BOFE) \2(0)

We now analyze the stability properties of the closed-loop system. To this
end we consider the state z(+) and the reconstruction error

e(r) = z(t) — 1) 5.10
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5.2 Regulation with Incomplete Measurements 381

By subtracting 5-3 and 5-6, it easily follows with the use of 5-4 that e{f)
satisfies

- é(r) = [A(1) — K C(#)]e(®). 5-11
Substitution of #(r) = x(#) — e(t) into 5-3 and 5-7 yields
(1) = [A({t) — BOFO)]=(ty + BEF(D)e(). 5-12

When considering 5-11, it is seen that e(r) converges to zero, independent of
the initial state, if a gain matrix K(¢) can be found that makes 5-11 asymp-
totically stable. However, finding a gain matrix K(¢) that makes 5-11 stable
is equivalent to determining K(¢) such that the observer is asymptotically
stable. As we know from Chapter 4, such a gain often can be found.

Next we consider 512, If B(#) and F(¢) are bounded and e(t) — 0 as ¢t — o,
x(t) will always converge to zero if the system

@(t) = [A(t) — BOYF()]=(r) 513

is asymptotically stable. From Chapter 3 we know that often F(z) can be
determined so that 5-13 is asymptotically stable. Thus we have seen that it is
usually possible to find gain matrices F(¢) and K(¢) such that Eqs. 5-11 and
5-12 constitnte an asymptotically stable system. Since the system 5-9 is
obtained from the system described by 5-11 and 5-12 by a nonsingular linear
transformation, it follows that it is usually possible tc find gain matrices
F(#) and K(t) such that the closed-loop control systems 5-9 is stable. In the
following subsection the precise conditions under which this can be done are
stated. _
Finally, we remark the following. Combining 5-11 and 5-12 we obtain

2O (A(t)—-ﬂ(r)F(r) BOF() ) w(r))
(e'(r)) - 0 A1) — K(NC() (e(z) '

Let us consider the time-invariant case, where all the matrices occurring in
5-14 are constant. Then the characteristic values of the system 5-14, which
are also the characteristic values of the system 5-9, are the zeroes of
sI— 4 4+ BF —BF
det )
0 sI— A4+ KC
=det (s - A 4+ BF)det (s — A + KC). 5-15

514

The reason that the systems 5-9 and 5-14 have the same characteristic values
is that their respective state vectors are related by a nonsingular linear
transformation (see Problem 1.3). Consequently, the set of closed-loop
characteristic values comprises the characteristic values of 4 — BF (the
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regulator poles) and the characteristic values of 4 — KC (the observer
poles):

Theorem 5.1. Consider the interconnection of the time-invariant system

&(#) = Ax(t) 4+ Bu(t),

() = Ca), 1o
the time-invariant observer
#(1) = A%(t) + Bu(®) + K[y(t) — CE1)], 5-17
and the time-invariant control law
u(t) = —F&(1). 5.18

Then the charocteristic values of the interconnected system consist of the
regulator poles (the characteristic values of A — BF) together with the observer
poles (the characteristic values of A — KC).

These results show that we can consider the problem of determining an
asymptotically stable observer and an asymptotically stable state feedback
control law separately, since their interconnection results in an asymptotically
stable control system.

Apart from stability considerations, are we otherwise justified in separately
designing the observer and the control law? In Section 5.3 we formulate a
stochastic optimal regulation problem. The solution of this stochastic version
of the problem leads to an affirmative answer to the question just posed.

In this section we have considered full-order observers only. It can be
shown that reduced-order observers interconnected with state feedback laws
also lead to closed-loop poles that consist of the observer peles together
with the controller poles.

Example 5.1. Position control system.
Consider the positioning system described by the state differential equation
(see Example 2.1, Section 2.2.2, and Example 2.4, Section 2.3)

0 1 0
¢m=& _%m+(%m, 5-19

= 0,787 rad/(V ),

with

5-20
o= 4,651,
The control law

#(1) = —(fu. f2@) 321
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produces the regulator characteristic polynomial

det (s{ — A + BF) =5 4 (o + «fa)5s + «f1. 5-22
By choosing s
S =1254.1 Vjrad,

fo=19.57V sjrad,

5-23

the regulator poles are placed at —10 4 710 s, Let us consider the observer

. 0 1 0 ky
fm=( )&0+(%w+()mm—u,mmm 524
0 —= I ko

where it is assumed that
7= (1, 0)z(f) 5-25

is the observed variable. The observer characteristic polynomial is
Tdet (I — A+ KCO) =5+ (e + ks + oy + Ko 5-26

To make the observer fast as compared to the regulator, we place the
observer poles at —50 4 j50 572, This yields for the gains:

fy = 95.40 571,
ke = 4561 572,

527

In Fig. 5.3 we sketch the response of the output feedback system to the
initial state 2(0) = col (0.1, 0), £(0) = 0. For comparison we give in Fig. 5.4
the response of the corresponding state feedback system, where the control
law 5-21 is directly connected to the state. We note that in the system with
an observer, the observer very quickly catches up with the actual behavior
of the state. Because of the slight time lag introduced by the observer, how-
ever, a greater input is required and the response is somewhat different from
that of the system without an observer.

Example 5.2, The penduium positioning system.
In this example we discuss the pendulum positioning system of Example 1.1
(Section 1.2.3). The state differcntial equation of this system is given by

0 1 0 0 0
0o =L 0 o 1
M M
N i 0. 528
(1) 0 o0 o 1 a(t) + 0 u(?)
_&£ 5 & 0

?

]
(o]
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Fig. 5.3. The response and the input ol Fig. 5.4. The response and the input
the position control system with observer  of the position control system with state
lor z{0) = col(0.1, 0); £(0) = col{0, 0). [leedback (without observer) [or (0} ==
col(0.1, 0).
The components of the state are
£,(1) = s(t),
E() = s(t) + L'$(1),
£,(8) = $(1) + L'g(0).
Here s(t) is the displacement of the carriage and ¢(¢) the angle the pendulum

malkes with the vertical, We assume that both these quantities can be meas-
ured. This yields for the observed variable

(1) 1 0 0 0
1 0 x(f).

5-29

y(f) = 5-30

I

A1 —= 0
1a(?) I 2
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The main function of the control system is to stabilize the system. We
therefore choose as the controlled variable the position of the pendulum

w L) = E(D = s() + L'(0), 531

We first select the regulator poles by solving the regulator problem with the
criterion

f I + po) dr. 532
1}

"To determine an appropriate value of p, we select it such that the estimated
radius w, of the faraway poles such as given in Theorem 3.11 (Section 3.8.1)
is 10 s=1. This yields a settling time of roughly 10/w, = 1 s. It follows from
the numerical values of Example 1.l that the oscillation period of the
pendulum is 2/ F/Ig_: 1.845s, so that we have chosen the settling time
somewhat less than the oscillation period.

To compute p from w,, we must know the transfer function A(s) of the
system from the input force u to the controlled variable {. This transfer
function is given by

-
H(s) = F wa o 5-33
-3
It follows with 3-486 that
o = [BEEMIT 5.34
p J_

With the numerical values of Example 1.1, it can be found that we must

choose
p = 107 m?¥N* 5-35

to make w, approximately 10s~l, It can be computed that the resulting
steady-state gain matrix is given by

F=(389.0, 2691, —1389, —282.4), 5-36

while (he closed-loop poles are —9.870 & j3.861 and —4.085 L j9.329 571,
Figure 5.5 gives the response of the state feedback control system to the
initial state s{0) = 0, $(0) = 0, $(0) = 0.1 rad (= 67), rfx(o) = 0. It is seen
that the input force assumes values up to about 100 N, the carriage displace-
ment undergoes an excursion of about 0.3 m, and the maximal pendulum
displacement is about 0.08 m.

Assuming that this performance is acceptable, we now proceed to deter-
mine an observer for the system. Since we have two observed varijables, there
is considerable freedom in choosing the observer gain matrix in order (o
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5.2 Regulation with Incomplete Measurements 387

attain a given set of observer poles. To simplify the problem we impose the
restriction that.the first component of the observed variable (the displace-
ment) is used only to reconstruct the state of the carriage (i.e., & and &),
and the second component of the observed variable is used only to recon-
struct the motion of the pendulum (i.e., & and £,;). Thus we assume the
foliowing structure of the observer;

0 1 00 0
F : 1
: 0 —< 00 =
FP M . M
ity = (1) + u()
0 0 0 1 0
—£ o £ g 0
L L
ky 0
1 00 0
k, 0
I O L jE0 . 5-37
0 iy -_= 0 = 0
I L
0 Ik

Here the gains iy, ks, kg, and %, are to be determined. It is easily found that
with the structure of 5-37 the observer characteristic polynomial is given by

[sz + s(kl + ﬁ%) + J\—Fa" ey + kﬂjl [s“ + s% + k‘ng'-j 5-38
It is clearly seen that one pair of poles governs the speed of reconstruction
of the motion of the carriage, and the other that of the pendulum. We now
choose the gains &, to /&, such that both pairs of poles are somewhat further
away from the origin than the regulator poles obtained above. There is no
point in choosing the observer poles very far away, since the resulting high
observer gains will give difficulties in the implementation without improving
the control system response very much. We thus select both pairs of observer
poles as

21.2(—1 4 j)s L,

The distance of these poles to the origin is 30 s~L. It can be found with the
numerical values of Example 1.1 that to achieve these observer poles the
gains must be chosen as

ky =414, k3 =354,

ky =859,  k, = T67.

5.39
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Figure 5.5 also gives the response of the interconnection of the resulting
observer with the control law and the pendulum positioning system to
the same initial conditions as before, with #(0) = 0. The estimate §(t) of the
carriage displacement is not shown in the figure since it coincides with the
actual carriage displacement right rom the beginning owing to the special
set of initial conditions. Tt is seen that the estimate § + L' of the pendulum
displacement 5 + L'¢ very quickly catches up with the correct value. Never-
theless, because of the slight time lag in the reconstruction process, the
moticn of the output feedback pendulum balancing system is more viclent
than in the state feedback case. From a practical point of view, this control
system is probably not acceptable because the motion is too violent and the-
system moves well out of the range where the linearization is valid; very
likely the pendulum will topple. A solution can be saught in decreasing p
so as to damp the motion of the system. An alternative solution is to make
the observer laster, but this may cause difficulties with noise in the system,

5.2.2*% Conditions for Pole Assignment and Stabilization of Output
Feedback Control Systems

In this section we state the precise conditions on the system described by
5-3 and 5-4 such that there exist an observer 5-6 and a centrel law 5-7
that make the closed-locp control system 5-9 asymptotically stable (G. W.
Johnson, 1969; Potter and VanderVelde, 1969):

Theorem 5.2. Consider the interconnection of the system
£(t) = A1) + BHu(),
y(t} = C()z(1),

5-40
the observer

(1) = AME) + Bl + KO [y() — COED], 541

and the control law
u(t) = —F()E(1). 5-42

Then sufficient conditions for the existence of gain matrices K(t) and F(z),
1 > to, such that the interconnected system is exponentially stable, are that
the system 5-40 be uniformly completely controllable and uniformly completely
reconstrictible or thot it be exponentially stoble. It the time-invariant situation
(i.e., all matrices occurring in 5-40, 541, and 5-42 are constant), necessary
and sufficient conditions for the existence of stabilizing gain matrices K and F
are that the system 5-40 be both stabilizeble and detectable. In the time-
inpariant case, necessary and sufficient conditions for arbitrary ossignment of
both the regulator and the observer poles (within the restriction that complex
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poles occur in complex conjugate pairs) are that the system be completely
controllable and completely reconstructible.

The proof of this theorem is based upon Theorems 3.1 (Section 3.2.2), 3.2
(Section 3.2.2), 3.6 (Section 3.4.2), 4.3 (Section 4.2.2), 4.4 (Section 4.2.2),
and 4.10 (Section 4.4.3).

5.3 OPTIMAL LINEAR REGULATORS WITH
INCOMPLETE AND NOISY MEASUREMENTS

5.3.1 Problem Formulation and Solution

In this section we formulate the optimal linear repulator problem when the
observations of the system are incomplete and inaccurate, that is, the
complete state vector cannot be measured, and the measurements that are
available are noisy. In addition, we assume that the system is subject to
stochastically varying disturbances. The precise formulation of this problem
is as follows.

Definition 5.1. Consider the system
E(1) = A(Nz() + Bu(@) + m(), 12>ty

z(ty) = @y,

543

where =, is a stochastic vector with mean ¥, and varionce matrix @,. The
observed variable is given by

y() = Ct) + wa(t),  t 2 4. 5-44

The joint stochastic process col (w,, wy) is a white noise process with intensity
Vi) V(D)

T t 2 i‘I_l‘ 5'45
Vi) Vi)

The contralled variable can be expressed as
2(1) = D()z(t), ¢ >, 5-46

Then the stochastic linear optimal ouwtput feedback veguiator problem is the
problem of finding the funetional

u®) = fly(=), e K7 <t], 1 <t<Ly, 5-47

stich that the criterion

g = E[ftl[zr (OR(=(1) + uT(OR(Du(D)] dt 4+ =T(1)P,2(t)} 5-48
to



390 Optimal Linear Qutput Feedbock Control Systems

is minimized. Here Rq(t), Ru(t), and Py are symmefric weighting matrices
such that Ro(t) > 0, Ry(1) > 0, ty <t < f,and Py > 0.

The solution of this problem is, as expected, the combination of the solutions
of the stochastic optimal regulator problem of Chapter 3 (Thecrem 3.9,
Section 3.6.3) and the optimal reconstruction problem of Chapter 4. This
rather deep result is known as the separation principle and is stated in the
following theorem.

Theorem 5.3. The optimal linear solution of the stochastic linear optimal
output feedback regulator problem is the same as the solution of the corre-
sponding stochastic optimal state feedback regulator problem (Theorem 3.9,
Section 3.6.3) except that in the control law the state x(t) is replaced with
its minfmum ean square linear estimator &(t), that is, the input is chosen as

u(t) = —FO(t)&(¢), 5-49

where FO(t) is the gain matrix given by 3-344 and £(t) is the output of the optimal
observer derived in Sections 4.3.2, 4.3.3, and 4.3.4 for the nonsingular un-
correlated, nonsingular correlated, and the singulor cases, respectively.

An outline of the proof of this theorem for the nonsingular uncorrelated
case is given in Section 5.3.3. We remark that the solution as indicated is the
best finear solution. It can be proved (Wonham, 1968b, 1970b; Fleming, 1969 ;
Kushner, 1967, 1971) that, if the processes wy and w, are Gaussian white
noise processes and the initial state 5, is Gaussian, the optimal linear solution
is the optimal solution (without qualification).

Restricting ourselves to the case where the problem of estimating the state
is nonsingular and the state excitation and observation noises are uncorrelated,
we now write out in detail the solution to the stochastic linear output feed-
back regulator problem. For the input we have

u(ty = —Fo(1)E(t), 5-50
with
FUD = RF(DBT(HP(D. 5-51
Here P(¢) is the solution of the Riccati equation
—P(1) = DT(NR,(ND(1) — P(NB(OR(NBT()L(1)

+ ATP(H + P(NA(N), 5-52
P(Il) =P,

The estimate £(¢) is obtained as the solution of

(1) = AW + BOu(®) + K*Dy(t) — CED)],

i(IU) = EU:

5-53
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where
K% = o(OHCT(HOVaHD). 5-54
The variance matrix @(t) is the solution of the Riccati equation
() = V(D — oMCT(OVF(NCHOM + AN + ONAT (),

o(ty) = Qo-

Figure 5.6 gives a block diagram of this stochastic optimal output feedback
control system. '

5.55

5.3.2 Evaluation of the Performance of Optimal Output Feedback
Regulators

We proceed by analyzing the performance of optimal output feedback
control systems, still limiting ourselves to the nonsingular case with un-
correlated state excitation and observation noises. The interconnection of the
sysiern 5-43, the optimal observer 5-53, and the contrel law 5-50 forms a
system of dimension 2#, where n is the dimension of the state x. Let us
define, as before, the reconstruction error

e(t) = =(f) — &(1). 5-56

1t is easily obtained from Eqs. 5-43, 5-53, and 5-50 that the augmented vector
col [e(?), £(¢)] satisfies the differential equation

(é(t)) (A(r)-—K"(z)C(t) 0 )(e(r))

0]\ KMCr  A® — BOFW/ \E0)
(I —K“(t)) (wl(t))

+ , 5-57
0 K1) [ \wa()

(E(tu)) (fv(iu) - -'Fn)
= . 5-58
&(ty) Ty

The reason that we consider col (e, £} is that the variance matrix of this
augmented vector is relatively easily found, as we shall see. All mean square
quantities ol interest can then be obtained from this variance matrix. Let us
denote the variance matrix of col [e(?), £(r}] as

E{ (e(t) — E{e(f)}
(1) — E{#(n}

with the initial condition

)([e(f) — E{e(D}, [#() — E{#O}T )}

(Qu(z) Qn(t))
- . 559
O Ou(®
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The differential equations for the matrices 0y,, 014, and Q. can be obtained
by application of Theorem 1.52 (Section 1.11.2). It easily follows that these
matrices satisfy the equations:

On(t) = [A(1) — K¥(DCMI2u(1) + CudIA() — K°MOCH)]”
+ W(1) + K(OVAHK (1),
O() = On(DCT(DK (1) + 0u(D[A() — BOF'(D)]”
+ [A() — K°(DC(D]Q.() — K WOV(HK(1), 5-60
Ou(1) = QHMCT(ORY (1) + Qual([A(D) — BIOF(D]T + K'(NC(1)Q1a(1)
+ [A(1) — BOF'(D]Qu(1) + K°(V(DK"(1),
with the initial conditions

011(1) = Cus Owlty) =0, Oulty) = 0. 5-61
When considering these equations, we immediately note that of course
0.,(1) = 0(1), t 2ty 5-62

As a result, in the differential equation for Qy,(¢) the terms 04, {(NCT(HKY (¢)
and —Ko(H) V()K" (r) cancel because K°(t) = O()CY (1)Vz2(t). What is left
of the equation for Qj.(¢) is 2 homogeneous differential equation in Q,s(t)
with the initial condition Q,4(#,) = O, which of course has the solution

Q1:() = 0, t 2ty . 5-63

Apparently, e(t) and £(f) are uncorrelated stochastic processes. This is why
we have chosen to work with the joint process col (e, £). Note that e(t) and
&(t) are uncorrelated no matter how the input to the plant is chosen. The
reason for this is that the behavior of the reconstruction error e is independent
of that of the input », and the contribution of the input u(7), f, < 7 < ¢,
to the reconstructed state £(¢) is & known quantity which is subtracted to
compute the covariance of e(¢) and £(¢). We use this fact in the proof of the
separation principle in Section 5.3.3.
The differential equation for Qu.(t) now simplifies to

Ou(1) = TA(1) — B(OFY()]Qua(t) + Qua([A(D) — BOF(1)]"
+ KY(OVu(HKY(1), 5-64
with the initial condition
Qae(fn) = 0. 5-65

Once we have computed Qu.(t), the variance matrix of the joint process

col (e, &) is known, and all mean square quantities or integrated mean square
quantities of interest can be obtained, since

z(t) = e(f) + £(1). 5-66
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Thus we can compute the mean square regulation error as

E{zT(OW,(02(1)} = E{aT() DV ()W, () D(1)a(t)
= tr [DT(OW () DOE{x(HxT(H)}] 5-67
= tr {D¥OW,(HDOEDET(L) + Qulr) + QulN]},

where W,(t) is the weighting matrix and %(?) is the mean of z(¢). Similarly,
we can compute the mean square input as

ET (W, (0u(t)) = EET@OF " (W (OF(NE(0)}
= tr [F*7(8) W, ()P (1) ()}
= tr {FYOW (OFPOECET( + QulD]},  5-68

where W,(7) is the weighting matrix of the mean square input.

It follows that in order to compute the optimal regulator gain matrix
F(1), the optimal filter gain matrix K°(), the mean square regulation error,
and the mean square input one must solve #iree # X n matrix differential
equations: the Riccati equation 5-52 to ohtain P(¢) and from this F°(t),
the Riceati equation 5-55 to determine Q(#) and from this K°%(¢), and finally
the linear matrix differential equation 5-64 to obtain the variance matrix
(aa(t) of £(¢). In the next theorem, however, we state that if the mean square
regulation error and the mean square input are not required separately, but
only the value of the criterion o as given by 5-48 is required, then merely the
basic Riccati equations for P(#) and O(t) need be solved.

Theorem 3.4. Consider the stochostic regulator problem of Definition 3.1.
Suppose that

Valt) >0, Vi) =0 forallt. 569

Then the following facts hold:

(a) All mean square quantities of interest can be obtained from the variance
matrix diag [O(), Qu(#}] of col [e(s), ()], where e(t) = =(1) — £(1), Q)
is the variance matrix of e(t), and Qu(t) can be obtained as the solution of the
matrix differential equation

Oua() = [A() — BOFU()]0us(1) + Cua(DIA(t) — BOYF(H)]"
+ KOVLOKT(@), 121, 579
sz(fn) = 0.

(b) The minimal value of the criterion 5-48 can be expressed in the following
two alternative forms

o = B TP()E + tr [ f IPOKYOVIORY() + QOR(D] dt + Plg(m]
5-71
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and
1
o' = T TP(1)T + tr [P(Tn)Qn + f [P(OTA(D) + QWOFT(ROF(1)] di).
o

5-72

Here we have abbreviated

Ri(t) = DT(ORL(ND(1), 5-73
and P(t) and Q(t) are the solutions of the Riccali equations 5-52 and 5-58,
respectively.
(c) Furihermore, If the aptimal abserver and regulator Riccati equations have
the steady-state solutions Q(1) and P(1) as ty— — o and 1, — o, respectively,
then the time-averaged criterion

- . 1
= lim
tg—+—m tl — t[l
f1—+m

if it exists, can be expressed in the alternative forms

- . 1

6 = lim
fg—=~m t]_ —_
t1—m

EU.“[z’i"(t)Rﬂ(r)z(r) + T (OR(Du(D)] dt}, 5-74
ta

tr [fl[ﬁ(f)ﬁ(r) VE(I)KT(O + Q-(I)Rl(t)] di] 5.75
la fo

and

— ) 1

a= lim
{fp—=—m t]_ —
t —w

, ir { J‘ u[ﬁ(r) V(D) + OFT(ORLOED)] dt]. 5.76
b} g

Here R(t) and F(t) are the gains corresponding to the steady-state solutians
(1) and P(1), respectively.
(d) Finally, in the time-invariant case, where Q(t) and P(t) and thus also
F(t) and K(t) are constant matrices, the following expressions hold;
& = E{z"(DRg(t) + uT ()R (1)}

= tr [PRV,K* + OR,] 5772

= tr [PV, + OFTR,F]. 5-77hb
This theorem can be proved as follows. Setting W,(t) = Ry(t) and W, (1) =
R.(f) in 5-67 and 5-68, we write for the criterion

E{ f BT R + uFORLD(D] dt + :uﬂ'(rl)le(rl)}
{o
=J-h ET(OR(DF(1) + #T(NRLNF(N] dt + T (t,)PrE(1y)
ty
e Unml(r)[g(r) + 0] + FTORDE Wm0 di
fe

+ PO + Qu(ro]]. 578
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Let us separately consider the expression

tr U“[&(r) + TR0 df + PiQu(t)l, 579

where, as we know, (a.(f)is the solution of the matrix differential equation

=32

Oaa(t) = [A() — BIOF(D]0us(1) + Qua DEA(1) — BOF(H)IT
: + KU(OWV(HKT(1), 5-80
Ouo(ty} = 0.

It is not difficult to show (Probiem 5.5} that 5-79 can be written in the form

t
tr U 1tS'(t)K_"(t)Vﬂ(t)K"T (t) dty, 581
to
where S(¢) is the solution of the matrix differential equation

—8(1) = [A() — BOF(DITS() + SOIA() — BOF(1)] + Ry()
+ PMI(ORJ(HFYS), 5-82
S() = P,

Obviously, the solution of this differential equation is
S =P@), <1t 5-83

Combining these results, and using the fact that the first two terms of the
right-hand side of 5-78 can be replaced with Z,7 P(t,)%,, we obtain the desired
expression 5-71 from 5-78.

The alternative expression 5-72 for the criterion can be obtained by
substituting

R.(t} = P(YB(OR(BT(HP() — AT(HP(1} — P(NA() — P(1) 5-84

into 5-71 and inteprating by parts. The proofs of parts (¢} and (d) of Theorem
5.4 follow from 5-71 and 5-72 by letting #; - —oo and ¢, — .

Of course in any practical situation in which #; — 7, is large, we use the
steady-state gain matrices K(t) and F(r) even when #; — ¢, is not infinite.
Particularly, we do so in the time-invariant case, where K and F are constant.
From optimal regulator and observer theory and in view of Section 5.2, we
know that the resulting steady-state output feedback cantral system is asymp-
totically stable whenever the corresponding state feedback regulator and
observer are asymptotically stable.

Before concluding this section with an example, two remarks are made.
First, we note that in the time-invariant steady-state case the following lower
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bounds follow from 5~77a and 5-77h:

lim & > tr (GR.), 5-85a
a0
lim & > tr ( F14). 5-85b
Vg0

These inequalities can be interpreted as follows. Even if we do not at all
weight the input u, and thus do not constrain the input amplitude, the
criterion & still cannot be less than tr (OR,) according to 5-85a. This minimum
contribution to the criterion is caused by the unavoidable inaccuracy in
reconstructing the state. Similarly, even when no measurement noise is
present, that is, V. approaches zero, the criterion & cannot be less then
tr (P¥,). This value is not surprising since it is exactly the value of the criterion
for the state feedback stochastic regulator (see Theorem 3.9, Section 3.6.3).

The second remark concerns the locations of the contro] system poles in
the time-invariant steady-state case. In Section 5.2 we saw that the control
system poles consist of the regulator poles and the observer poles. It seems a
good rule of thumb that the weighting matrices R, and ¥, be chosen so that
the regulator poles and the observer poles have distances to the origin of
roughly the same order of magnitude. It seems to be wasteful to have very
fast regulation when the reconstruction process is slow, and vice versa. In
particular, when there is a great deal of observation noise as compared to the
state excitation noise, the observer poles are relatively ciose to the origin
and the reconstruction process is slow. When we now make the regulator
just a little faster than the observer, it is to be expected that the regulator can
keep up with the observer, A further increase in the speed of the regulator will
merely increase the mean square input without decreasing the mean square
regulation error appreciably. On the other hand, when there is very little
observation noise, the limiting factor in the design will be the permissible
mean square input. This will constrain the speed of the regulator, and there
will be very little point in choosing an observer that is very much faster, even
though the noise conditions would permit it.

Example 5.3, Position control system.
Let us consider the position control systern discussed in many previous
examples. Its state differential equation is

—o

0 1 0
i) = ( ):u(t) + ( ),u(t). 5-86
0 K

Here (1) = col [£,(t}, £&:(0)], with &,(1) the angular position and £,(t) the
angular velocity of the system. The input variable p(¢) is the input voltage.
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The controlled variable is the position, hence is given by
L) = (1, Oz(1). 5-87

In Example 3.8 (Section 3.4.1), we solved the deterministic regulator problem
with the criterion

51
f [L5(r) + pu’(D)] di. 588 -
ia
With the numerical values
« = 0.787 rad/(V s%),

o= 46577, 5-89
p = 0.00002 rad?/ Ve,
we found the steady-state feedback pain matrix
F=(223.6, 18.69). 5-90
The steady-state solution of the regulator Riccati equation is given by
0.1098 0.005682
(0.005682 0.0004753)'

591

The closed-loop regulator poles are —9.66 & /9.09 s7%. From Fig. 3.9
(Section 3.4.1), we know that the settling time of the system is of the order
of 0.3 s, while an initial deviation in the position of 0.1 rad causes an input
voltage with an initial peak value of 25V.

In Example 4.4 (Section 4.3.2), we assumed that the system is disturbed
by an external torque on the shaft r; (f). This results in the following modifica-
tion of the state differential equation:

0 1 0 0
() = ( )I(t) + ( )‘u(t) + ( )-rd(t‘), 5-92
0 —u K ¥

where 1/y is the rotational moment of inertia of the rotating parts. It was
furthermore assumed that the observed variable is given by

()= (1, Ox() + »,(D, 593

where v, (1) represents the observation noise. This expression implies that the
anpular displacement is measured. Under the assumption that +,(¢) and
1,,(f) are adequately represented as uncorrelated white noise processes with
intensities

V,=10N"m?s 5-94
and

¥V, = 107" rad?s, 595
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respectively, we found in Example 4.4 that with = 0.1 kg~ m~2 the steady-
state optimal observer is given by

. 0 1 0
&) = (0 )i'(r) + ( )u(t) + Kn() — (1, 021, 596
hal* 4 #
where the steady-state pain matrix is
i 40.36
K= . 597
814.3

The observer poles are —22.48 4 j22.24 s~1, while the steady-state variance
matrix is given by

_ 0.04036 x 10—* 0.8143 x 10+
0= 598
0.8143 x 10— 36.61 x 10
With
p(t) = —Fi(t), 5-99
the steady-state optimal output feedback controller is described by
. 0 1 0
a(t) = )-"3‘(!) - | JE0) + K — 1, 0F@)],
0 —= ic 5-100

u(t) = —Fi().
It follows that
lim E{Z3) + pu(0)} = tr (PRV.KY + OR;) = 0.00009080 rad®. 5-101
fo—+—m

From this result we find the following bounds on the steady-state rms tracking
error and rms input voltage:

lim /E{L*(#)} < ,/0.00009080 ~ 0.0095 rad, 5-102a
{g—t—m

lim E{pu*(t)} < 0.00005080 rad®, 5-102b
tp——m

50 that

lim VE{u'(0} < /Mz 2.13 V. 5-103
tpat—m il

The exact values of the steady-state rms {racking error and rms input voltage
must be obtained by solving for the steady-state variance matrix of the
augmented state col [»(¢}, £{r)]. As outlined in the text (Section 5.3.2), this
is most efficiently done by first computing the steady-state variance matrix
diag (@13, Qan) of col [e(), £(1)], which requires only the solution of an
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additional 2 x 2 linear matrix equation. Tt can be found that the steady-
state variance matrix [l of col [x(t), £(t)] is given by

Q_E‘.ﬂ Q‘a‘.ﬂ
0.00004562 O 0.00004158 —0.00008145
0 0.006119 —0.00008145 0.002458
B 0.00004158 —0.00008145 0.00004158 —0.00008145
—0.00008145 0.002458 —0.00008145 0.002458
5-104
This yields for the steady-state mean square tracking error
1
0
Em E{{*())} =tr [ o & 00, 0)] = 0.00004562 rad®, © 5-105
fg—t~m
0

so that the rms tracking error is /0.00004362 ~ 0.00674 rad. We see that
this is somewhat less than the bound 5-102. Similarly, we obtain for the
mean square input voltage

0
lim E{pf(0)} = tr [H(FT) (0, F)]=2.258V" 5-106
fg—+—om
so that the rms input voltage is about 1.5 V. It depends, ol course, on the
specifications of the system whether or not this performance is satisfactory.
It is noted that the regulator poles (—9.66 4 79.09) and the observer
poles (—22.48 4 j22.24) are of the same order of magnitude, which is a
desirable situation. Had we found that, for example, the observer poles are
very far away as compared to the regulator poles, we could have moved the
observer poles closer to the origin without appreciahle loss in performance.

5.3.3* Proof of the Separation Principle

In this section we prove the separation principle as stated in Theorem 5.3
for the nonsingular uncorrelated case, that is, we assume that the intensity
V.(t) of the observation noise is positive-definite and that ¥3,(f) = 0 on
[tg; 1] Tt is relatively straightforward to prove that the solution as given is
the best linear solution of the stochastic linear output feedback regulator
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problem. Denoting

. Ry(t) = DH(NR(1)D(1), 5-107
we write
E[T0OR(02(1)]
= E[x"(DR()=(1)]
= E{[=(1) — #() + £(NO]"R(D[=(1) — &) + £(1)]}
= E{{=(1) — (01" Ry(D)[=(1) — (1]}
+ 2E{[z(t) — ZO]TR(DED} + E{ET(HR(DE(D)}. 5-108
Here £(¢) is the minimum mean square linear estimator of x(z) operating on
y(7) and u(7), ty < 7 < ¢. From optimal observer theory we know that

E{[=() — #(O)TRy(1)[=(1) — £(D]} = tr [Ry(HQ(D)], 3-109

where Q(¢) is the variance matrix of the reconstruction error =(t) — 2£(¢).
Furthermore,

E{[a(f) — HOITR(DED} = tr [E{[2() — FOIET(O}IR(D] =0, 5-110

since as we have seen in Section 5.3.2 the quantities e(t) = x(¢) — £(¢) and
&(r) are uncorrelated. Thus we find that we can write

E{zT(DR(N=(1)} = tr [R(NO()] + E{ZTNR(NE(1)},

E{aT(t,)Pyn(1)} = tr [P,O(1)] + E{&7(1)P1#(1)}.
Using 5-111, we write for the criterion 5-48:

5-111

EUh[.f:T(r)Rl(t).i(t) + uT(HR(Du(D)] dt + mﬂ(t,)PIi(:l)}
to

+tr [fthl(r)Q(t) dt + PIQ(tl)]. 5-112

tn
We observe that the last two terms in this expression are independent of the
control applied to the system. Also from optimal observer theory, we know
that we can write (since by assumption the reconstruction problem is non-
singular)
(1) = ANEQE) + BOult) + KOy (@) — COED], 5-113

where K°(t) is the optimal gain matrix. However, in Section 4.3.6 we found
that the innovation process y(r) — C()£(f) is a white noise process with
mtenmty Vq(t) T-hefn—tha—p;ebleln_oLmJnmu%r&g—ﬂTrmHUﬁﬂZ"Wﬂh

3:6:1: It follows from Theorem 3.9 that the optimal linear solution of
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this state feedback stochastic regulator problem is the linear control law
u(t) = —F(8)i(1), 5-114

where FO(t} is given by 5-51.

This terminates the proof of Theorem 5.3 for the case where the recon-
struction problem is nonsingular and the state excitation and observation
noises are uncorrelated. The proof can be extended to the singular correlated
Case,

5.4 LINEAR OPTIMAL TRACKING SYSTEMS WITH
INCOMPLETE AND NOISY MEASUREMENTS

In Section 3.6.2 we considered tracking problems as special cases of stochastic
state feedback regulator problems. Necessarily, we found control laws that
require that both the state of the plant and the state of the reference variable
are available. In this section we consider a similar problem, but it is assumed
that only certain linear combinations of the components of the state can be
measured, wiich moreover are contaminated with additive noise. We
furthermore assume that only the reference variable itself can be measured,
also contaminated with white noise.
We thus adopt the following model for the reference variable z,.(¢):

z(t) = D, ()= (1), 5-115
where

&,(1) = A, (0, (1) + e 0). 5116

In this expression w,; is white noise with intensity ¥,,(¢}. It is furthermore
~ assumed that we observe

Yel) = 2,(1) 4 Wa(t). 5117

"Here w,, is white noise with intensity ¥.(t).
The system to be controlled is described by the state differential equation
(1) = A(t)x(r) + B(Hu(t) + wy(1), 5-118
where w, is white noise with intensity ¥,(t). The system has the controlled
variable
z(t) = D(H=() 5119
and the observed variable
y(6) = C(O)=(t) + wa(r). 5-120
Here w, is white noise with intensity ¥,{¢). We assume that V(1) > 0,
Vo) > 0, €t < 8y
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To obiain an optimization problem, we consider the criterion

EU (1) — 2,7 RAN[D) — 7,(0] + uTOR(Du(D] d1]. 5121

Here Ry(1) > 0, Ra(t) > 0,1, < t £ t;. The first term of the integrand serves
to force the controlled variable 2(f) to follow the reference variable z.(r),
while the second term constrains the amplitudes of the input.

We now phrase the stochastic optimal tracking problem with incomplete
and noisy observations as follows.

Definition 5.2. Consider the system

() = AW () + B(u() + w (@), > dy, 5-122

where x(ty) is a stochasiic variable with mean I, and pariance matrix Oy,
and wy is white noise with intensity V,(t). The controlled variable is

2(t) = D(N)(t), 5-123
and the observed variable is
y(t) = CO)x(t) + wal1), 5-124
where wa is white noise with intensity V,(6), with V(1) > 0, , <1 < 1y
Counsider furthermore the reference variable
2 (1) = D, (= (1), 5-125
€.(1) = A, 1) + w(2), - 5-126

Here =.(1y) is a stochostic variable with mean %,y and variance matrix .,
and Wy is white noise with intensity V. (1). The observed variable for the «,

process is u,(f) = C.(), () + 1w,a(t), 5-127

where wey iy white noise with intensity V(1) >0, ty <t < ty. Then the
optimal lincar tracking problem with incomplete and noisy observations is the
problem of choosing the input to the system 5-122 as a function of y(r) and
¥ (7). 1y < v L 1, such that the criterion

where

E[ftl[[z(t) — z(D]TR,(D[2(D) — 2.(D] + uT(ORL(Du(t)] dt} 5-128
ta
is minimized, where Ry(t) > 0and Ro(t) > 0 for t, <1 < 1.

To solve the problem we combine the reference model and the plant in an
augmented system. In terms of the augmented state &{(f) = col [z(9), %,(r}],

we write
EZICEN B() wa(1)
(1) = ( ):‘E(t) + ( )u(r) + ( ) 5-129
0 4.0 0 Wy (1)
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The observed variable for the augmented system is

¥\ jcn 0 wa(1)
= ):’E(t) + ( ) 5-130
7,() 0 G Wya(7)
For the criterion we write

t
EU l[ET () DY (DR DO + uT(ORLDu(1)] dl}, 5-131

t

where ’
biy=[p®, —D.MN] 5-132
The tracking problem is now in the form of a standard stochastic regulator
problem and can be solved by application of Theorem 35.3. It follows that we

can write
' &)
(1) = —F“(t)( ) 5-133
21

If we assume that all the white noise processes and initial values associated
with the plant and the reference process are uncorrelated, two separate
observers can be constructed, one for the state of the plant and one for the
state of the reference process. Furthermore, we know from Section 3.6.3
that because of the special structure of the tracking problem we can write

Fo(ty = [F@), —Fa()], 5-134

where the partitioning is consistent with the other partitionings, and where
the feedback gain matrix £,(r) is completely independent of the properties
of the reference process.

Figure 5.7 gives the block diagram of the optimal tracking system, still
under the assumption that two separate observers can be used. It is seen that

[
zit}
¥y () i “b::r’“’ Selt) | ke _;C\ | uft) plant “
| reference J_ | y
| .
| o e = —
|
| o
|
o observer l
| Fylt} CA03] for [
% plant E
:ﬂtrﬂilﬂﬂ.m____._____.__MWWM____.______..J

Fig. 5.7. The structure of the optimal tracking system.
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the feedback link of the controller is completely independent of the properties
of the reference variable.

We conciude this section with an examination of the transmission T(s)
of the system in the steady-state time-invariant case. A simple way to find
this transfer matrix is as follows. Set z(0) = #(0) = 0, and assume that the
system is free of noise. It follows that =(t} = #(¢) for #+ > 0. We can thus
completely omit the plant observer in the computation of T{s) and substitute
z(f) wherever we find £(t), We thus have the following relations:

£(t) = A=(t) + Bul(t),
z(t) = Dz(t),

- . 5-135
u(ty = —Fx(t) + Fut (1),
(1) = 4.8,() + Rly.() — CAD)].
Tt easily follows that
Z(5) = T(5)Y.(5), 5136

where Z(5) and Y,(s) are the Laplace transforms of z(z) and y,(¢), and where
(s} = D(sI — A + BE)\BF.(sT — 4, + R, CYK.. 5-137

In peneral 7(0) does not equal the unit matrix, so that step changes in the
reference cause a steady-state error. The reason for this is that the present
control system has not been designed for steps in the reference variable.
If it is important that the control system have a zero steady-state error to
constant references, the design method suggested in the next section should
be adopted. We finally note that in the transmission only the regulator poles
and the reference observer poles occur, while the plant observer poles have
been canceled.

Example 5.4. Position servo

We return to the by now familiar positioning system. Consider the problem
of designing a control system such that the angular position tracks a reference
variable. For the system itsell, the disturbances, and the observation noise
we use the equations and numerical data of Example 5.3 (Section 5.3.2). We
model the reference variable as exponentially correlated noise:

£ = &), 5-138
with

ao=—éam+w4m 2 1, 5139

Here w,, is scalar white noise with constant intensity V,,. It is assumed that
the reference variable is observed with additive white noise, so that we
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medsure

(1) = &) + wa(8), 5-140

where w,. has constant intensity ¥,, and is uncorrelated with w,,;. The steady-
state optimal observer for the reference process is easily computed. It is
described by

E)=— ; E() + RIn() — E), 5-141

where

_ 1 A
K=—-+/=+——. 5-142
0 0‘.— + V;.g :

The optimization criterion is expressed as

i
EU; [l — L(NF + pe(1)] dr]. 5-143

The resulting steady-state control law is given by
u(t)y = —FiEl) + FEO). 5-144

P, and F, have been computed in Example 3.8 (Section 3.4.1), in which we
obtained the following results:

N ﬂ(_a +\/Un+ﬁ) 5-145
Ka ’ ’ o

fiq

e (LYo 1 20)

Using the results of Section 3.6.3, it can be found that

k

_ P
2 = PWIST:
L1 +l( ic)

\/P Ve

Since we now have the reference observer and the regulator gains available,
we can use 5-137 to calculate the transmission 7(s) of the closed-loop tracking

5-146
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system. We obiain

K

T(s) = T2

@ = [ iR

a . 2V ok ok 1 2 . 2V
S"-}-S(o’.“-}-"‘:) = =+ (o&‘—l-"—_)
N NN N

0"\ v,

- (_1‘+K£}_)UE
0" v,

We note that the break frequency of the transmission is the least of the break
frequency of the closed-loop plant and the break frequency of the reference
observer. The break frequency of the closed-loop plant is g, where w,® =
re//p, while the break frequency of the reference observer is

1/2
(%‘,3 + '“EE) . 5-148

Which break frequency is the lowest depends upon the “‘signal-to-noise”
ratio ¥,/ V., of the reference variable and the value of p, which in turn is
determined by the allowable input amplitudes to the plant. Let us first
consider the effect of ¥4/ V,. If the reference variable is accurately measured,
{i.e., Vi is small) the reference observer break frequency is high and the
closed-loop feedback system break frequency will prevail. On the other
hand, if the reference variable is inaccurately measured, the reference
observer limits the total bandwidth of the system.

When we next consider the effect of the weighting factor p, we see that if
p is small, that is, large input amplitudes are allowed, the closed-loop system
break frequency is high and the reference observer determines the break
frequency. Conversely, if p is large, the break {requency is limited by the
closed-loop plant.

Let us assume the following numerical values for the reference process:

0 =355,
V. = 0.4 rad¥s..

5-147

5-149

This makes the reference variable break frequency 0.2 rad/s, while the
reference variable rms value is 1 rad. Let us furthermore assume that the
reference variable measurement noise w,, is exponentially correlated noise
with rms value 0.181 rad and time constant 0.025 s. This makes the break
frequency of the reference variable measurement noise 40 rad/s. Since this
break frequency is quite high as compared to 0.2 rad/s, we approximate the
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measurement noise as white noise with density
V.. = 2{(0.1)°0.0816 = 0.001636 rad?/s. 5-150

With the numerical values 5-149 and 5-150, we find for the reference observer
break frequency the value
1 1/1 1/2
(53 + -’—) o= 15.6 rad/s. 5-151
Since the break frequency of the reference observer is less than the break
frequency of 40 rad/s of the reference measurement noise, we conclude that it
is justified to approximate this measurement noise as white noise.

We finally must determine the most suitable value of the weighting factor
p. In order to do this, we evaluate the control law for various values of p
and compute the corresponding rms tracking errors and rms input voltages.
Omitting the disturbing torque 7, and the system measurement noise 7,
we write for the system equations

#(1) = As(1) + b(1),
‘Ll(t) = _Flm(t) + F_ﬂér(r)r

£) = — S8 + Rind — £0) s15

T

ﬂn=—%am+w4a

7,(8) = &(1) + wral0).
Combining all these relations we obtain the augmented differential equation

(1) A — bE bF, 0 =(f)
;E,( g | = 0 - 1@ - K K £
£(1) 0 0 - % E(1)
0
+ | Rwa(n]. 5-153
w,a(f)

From this equation we can set up and solve the steady-state variance matrix
of the augmented state col [2(t), £.(7), &,(2)], and from this the steady-state
rms tracking error and rms input voltage can be computed. OF course we can
also use the technique of Section 5.3.2. Table 5.1 lists the results for de-
creasing values of the weighting coefficient p. Note that the contributions
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of the reference excitation noise w,, and the reference measurement noise
w,, are given separately, together with their total contribution.

If the maximally allowable input voltage is about 100V, the weighting
coefficient p should certainly not be chosen less than 0.00001; for this value
the rms input voltage is nearly 50 V. The corresponding rms tracking error is
about 0.27 rad, which is still quite a large value as compared to the rms value
of the reference variable of 1 rad. If this rms value is too large, the require-
ments on the reference variable bandwidth must be lowered. It should be
remarked, however, that the values obtained for the rms tracking error and
the rms input are probably larger than the actual values encountered, since
modelling stochastic processes by exponentially correlated noise usually leads
to power spectral density functions that decrease much slower with increasing
frequency than actual density functions.

For p = 0.00001 it can be computed from 5-152 that the zero-frequency
transmission is piven by T(0) = 0.8338. This means that the proposed
control system shows a considerable steady-state error when subjected to a
constant reference variable. This phenomenon occurs, first, because exponen-
tially correlated noise has relatively much of its power at high frequencies
and, second, because the term that weights the input in the optimization
criterion tends to keep the input small, at the expense of the tracking accu-
racy. In the following section we discuss how tracking systems with a zero
steady-state error can be obtained.

The rms values given in Table 5.1 do not include the contributions of the
systemn disturbances and observation errors. Our findings in Example 3.3
suggest, however, that these contributions are negligible as compared to
those of the reference variable.

5.5 REGULATORS AND TRACKING SYSTEMS
WITH NONZERO SET POINTS AND
CONSTANT DISTURBANCES

5.5.1 Nonzero Set Points

As we saw in Chapter 2, sometimes it is important to design tracking systems
that show a zero steady-state error response to constant values of the reference
variable. The design method of the preceding section can never produce such
tracking systems, since the term in the optimization criterion that weights
the input always forces the input to a smaller value, at the expense of a
nonzero tracking error. For small weights on the input, the steady-state
tracking error decreases, but it never disappears completely. In this section
we approach the problem of obtaining a zero steady-state tracking error,
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Table 5.1 The Effect of the Weighting Factor p on the Performance of the Position Servo System

Contribution Contribution Contribution Contribution

of reference of reference of reference of reference

variable to measurement variable to measurement

rms tracking noise to rms Total rms rms input noise to rms Total rms

error tracking error  tracking error voltage input voltage input voltage
p {rad) (rad) (rad) {v) ] V)

0.1 0.8720 0.0038 0.8720 1.438 0.222 1.455
0.01 0.6884 0.0125 0.6885 4.365 0.825 4.442
0.001 0.4942 0.0280 0.4950 10.32 2.69 10.67
0.0001 0.3524 0.0472 0.3556 21.84 B.15 2331
0.00001 0.2596 0.0664 0.2680 43.03 23.08 48.82
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as in Section 3.7.!, [rem the point of view of a variable set point. Consider
the system
B(1) = A2(t) + Bu(r) 5-154

with the controlled variable
z(#) = Dz(t). 5-1535

In Section 3.7.1 we derived the nonzero set point optimal control law

u(ty = —Fa(t) + H7Y(0)z,. 5-156

F is the steady-state gain matrix for the criterion

f [ET(OR2(1) + uT(DRau(N] dt, 5-157
i
while #,(s) is the closed-loop transfer matrix

H(s) = D(sT — A + BFYB. 5-158

It is assumed that the dimension of « equals that of z, and that the open-loop
transfer matrix H(s) = D(sJ — A)2B has no zeroes at the origin. These
assumptions guearantee the existence of H;*(0). Finaily, z, is the set point
for the controlled variable. The control law 5-156 causes the control system
to reach the set point optimally from any initial state, and o make an optimal
transition to the new set point whenever z, changes.

Let us now consider a stochastic version of the nonzero set point regulator
problem. We assume that the plant is described by

(1) = Ax(t) + Bu(t) + wi(f), - 5159
where 1, is white noise. The controlled variable again is
z(t) = Dx(t), 5-160

“but we introduce an observed variable
y(t) = Cx(f) + wal0), 5-161

where W, is also white noise. Suppose that the set point z; for the controlled
variable of this system is accurately known. Then the nonzero set point
steady-state opiimal controller for this system obviously is

u(t) = —F(1) + H;(0)z,
£(1) = A%(F) + Bu(r) + K[y(f) — CHD),
where K is the steady-state optimal observer gain and where F and H,(s)

are as given before. If no state excitation noise and observation noise are
present, the controlled variable will eventually approach z; as ¢ increases.

5-162
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The control law is optimal in the sense that the steady-state value of

E{ZT(I)Ruz(‘) + uT(HRa(0} 5_‘163

is minimized, where = and « are taken relative to their set points, When the
set point changes, an optimal iransition (o the new set point is made.

The controller described by 5-162 may give quite good results when the
set point z; is a slowly varying quantity. Unsatisfactory results may be
obtained when the set point occasionally undergoes step changes. This may
result in the input having too large a transient, necessitating reduction in the
loop gain of the system. This in turn deterjorates the disturbance suppression
properties of the system. This difficulty can be remedied by interpreting quick
changes in the set point as “noise.”” Thus we write the control law 5-162
in the form

u(t) = —FE(t)y + H(0)(1), 5-164

where £,(f) is the estimated set point. The observed set point, r(t), is rep-
resented: as

1) = 2t} + w, (1), 5-165

where 1w, is white noise and #, is the actual set point. In order to delermine
2,(t) (compare Example 4.3, Section 4.3.2, on the estimation of a constant),

we model z, as
Zo(1) = wi(1), 5-166

where 1w, is another white noise process. The steady-state optimal observer
for the set point will be of the form

(1) = Ky[r() — 4(0)], 5-167

where K, is the appropriate steady-state observer gain matrix.

The controller defined by 5-164 and 5-167 has the property that, if no noise
is present and the observed set point #(f) is constant, the controlled variable
will in the steady state precisely equal r(¢). This follows from 5-167, since in
the steady state Z,(#) = r(f) so that in 5-164 £,(#) is replaced with r(¥), which
in turn causes z(f) to assume the value r(r). It is seen that in the case where
r, 2, 4, and z are scalar the prefilter (see Fig. 5.8) defined by 5-164 and 5-167
is nothing but a first-order filter. In the multidimensional case a generaliza-
tion of this first-order filter is obtained. When the components of the un-
correlated white noise processes w, and i, are assumed to be uncorrelated
as well, it is easily seen that K, is diagonal, so that the prefilter consists
simply of a parallel bank of scalar first-order filters. It is suggested that the
time constants of these flters be determined on the basis of the desired
response to steps in the components of the reference variable and in relation
to likely step sizes and permissible input amplitudes.
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Fig. 5.8. Nonzero set point optimal controller with set point observer.

Example 5.5, The positioning system

In Example 5.3 (Section 5.3.2), we found a zero set point optimal controller
for the positioning system. Let us determine the corresponding nonzero set
point control system. We first determine the nonzero set point optimal
control law. It follows from Example 3.8 (Section 3.4.1) that the closed-loop
transfer function H (s} is given by

HJ(s) = "% . 5-168
st s (az 4+ ==

\/F)m+ NG

Consequently, the nonzero set point control law 5-164 is

L
e
where £,(#) is the estimated set point. Let us design for step changes in the
observed set point. The observer 5-167 for the set point is of the form

() = —Fi(t) + —= (0, 5-169

(D) = kolr() — L(00], 5170

where r(t) is the reference variable and %, a scalar gain factor. Using the
numerical values of Example 5.3, we give in Fig. 5.9 the responses of the
nonzero set point control system defined by 5-169 and 5-170 to a step of 1
rad in the reference variable r(#) for various values of the gain ;. Assuming
that an input voltage of up to 100 V is tolerable, we see that a suitable value
of ¥, is about 20 s, The corresponding time constant of the prefilter is
1Jky = 0.05 5.
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Fig. 5.9. Responses of the position contro] system as nonzero set point control system
to a step in the set point of 1 rad for various values of the prefilter gain k,.

5.5.2* Constant Disturbances

In the preceding section we discussed nonzero set point regulators. In the
present section the question of constant disturbances is investigated, which is
somewhat similar to the nonzero set point problem. The approach presented
in this section is somewhat different from that in Section 3.7.2, As in Section
3.7.2, however, controllers with integrating action will be obtained.

Constant disturbances frequently occur in control problems. Often they
are caused by inaccuracies in determining consistent nominal values of the
input, the state, and the controlled variable. These disturbances can usually
be represented through an additional constant forcing term o, in the state
differential equation as follows:

&(t) = Ax(t) + Bu(t) + v, 5171

As in the preceding section, we limit our discussion to the time-invariant
case. For the controlled variable we write

2(f) = Da(r). 5172

Let us assume, for the time being, that the complete state (¢} can be
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observed at all times. Then we can consider the control law
u(ty = —Fa(t) + uy, 5-173

where F is a gain mafrix selected according to some quadratic optimization
criterion of the usual form and where the constant vector u, is to be chosen
such that in steady-state conditions the contribution of the constant dis-
turbance v, to the controlled variable = is canceled.

With the control law 5-173, the closed-loop system equations are

() = (A — BF)x(t) + Bu, + vy,
2(t) = Da(t).

5-174

Since the closed-loop system will be assumed to be asympiotically stable, the
controlled variable eventually approaches a constant value, which is easily
seen to be given by
lim (1) = D(—AY"Buy + D(— A} 0, 5-175
i~tm

Here we have abbreviated
A=A — BF. 5-176

Does there exist a u, such that the steady-state value of z(¢) as given by
5-175 is zero? As in the nonzero set point problem, three cases must be
distinguished:

() The dimension of = is greater than that of u: In this case the vector
equation

D(—A)y'Buy + D{(—Ay W, =0 5177

represents more equations than there are variables, which means that in
general no solution exists. This is the case where it is attempted to control
the variable z(¢) with an input «(¢) of smaller dimension and tno few degrees

of freedom are available.
(b) The dimensians of u and z are the same: In this case 5-177 can be solved
for u, as follows:

g = —H{O)D{—A) . 5-178
Here H,(s) is the closed-loop transfer matrix
H,(5)= D(s] — A — BF) B, 5179

As we know from Theorem 3.10 (Section 3.7), the inverse of H,(0) exists if
the open-loop system transfer matrix D{s/ — 4)™B has no zeroes at the
origin,
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(c) The dimension of = is less than that of u: In this case there are too many
degrees of freedom and the dimension of z can be increased by adding com-
ponents to the controlled variable.

In case (b), where dim (z) = dim {u), the control law

u(t) = —Fa(f) — H7{(Q)D(— A", 5-180
has the property that constant disturbances are compensated in an optimal
manner. This control law, which has been given by Eklund (1969), will be
referred to as the zero-steady-state-error optimal contral law. As we have
seen, it exists when dim (z) = dim (#) and the open-loop system has no
zeroes at the origin.

Let us now suppose that in addition to v, fluctuating disturbances act upon
the system as well, and that the system state can only be incompletely and
inaccurately observed. We thus replace the state differential equation with

(1) = Ax(t) + Bu() + vy + (1), 5-181

where v, is the constant disturbance and w, white noise with intensity ¥;.
Furthermore, we assume that we have for the observed variable

y(1) = Ca(t) + wa(t), 5182

where w; is white noise with intensity V..
In this situation the control law 5-18(¢ must be replaced by

u() = —Fi() — H; 0)D(—A)y 4, 5-183
where :i"(i) and @, are the minimum mean square estimates of x(f) and v,.
An optimal observer can be obtained by modeling the constant disturbance

through
a(2) = 0. 5-184

The resulting sfeady-state optimal observer, however, will have a zero gain
matrix for updating the estimate of vy, since according to the model 5-184
the value of v, never changes (compare Example 4.3, Section 4.3.2, concern-
ing the estimation of a constant). Since in practice vy varies slowly, or
occasionally changes value, it is better to model v, through

(1) = wy(1), 5-185

where the intensity ¥ of the white noise 1w, is so chosen that the increase in
the fluctuations of v, reflects the likely variations in the slowly varying
disturbance. When this model is used, the resulting steady-state optimal
observer continues to track »,(f) and is of the form

3(1) = A8(1) + Bu(t) + 5,2 + Ruly(r) — G,
Bo(1) = Ruly(t) — CH(1)).
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The control system that results from combining this observer with the
control law 5-183 has the property that in the absence of other disturbances
and observation noise the constant disturbance is always compensated so
that a zero steady-state regulation or tracking error results (Eklund, 19689).
As expected, this is achieved by “inteprating action™ of the controller (see
Problem 2.3). The procedure of this section enables us to introduce this
inteprating action and at the same time improve the transient response of the
control system and the suppression of fluctuating disturbances. The procedure
is equally easily applied to muliivariable as to single-input single-output
systems.

It is not difficult to see that the procedure of this section can be combined
with that of Section 5.5.1 when encountering tracking or regulating systems
subject to nonzero set points as well as constant disturbances, by choosing
the input as

u(t) = — F#(1) — H7(0)D(— Ay ™8, + HIY(0),. 5-187

Here 2, is either the estimatled set point and can be obtained as described in
Section 5.5.1, or is the actual set point.

We remark that often is it is possible to trace back the constant disturb-
ances to one or two sources. In such a case we can replace v, with

vy = Gy, 5-188

where (7 is a given matrix and v, a constant disturbance of a smaller dimen-
sion than »y. By modeling v, as inteprated white noise, the dimension of the
observer can be considerably decreased in this manner.

Example 5.6. Integral control of the positioning system

In this example we devise an intepral control system for the positioning
system. We assume that a constant disturbance can enter into the system in
the form of a constant torque t, on the shaft in addition to a disturbing
torque 7, which varies quickly. Thus we modify the state differential equation
5-92 of Exampie 5.3 (Section 5.3.2) ta

0 1 0 0 0
o) = ( ):c(t) + ( ),u(t) + ( )'rd(l‘) + ( )-r,,. 5-189
0 —m K ¥ ¥

As in Example 5.3, we represent the variable part of the disturbing torque
as white noise with intensity V.

Tt is easily seen from 5-189 that the zero-steady-state-error optimal control
law is given by

w(t) = —Fi(t) — L 4, 5-190

ic
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where Fis an appropriate steady-state optimal feedback gain matrix, and #,
is an estimate of =,

To obtain an observer we model the constant part of the disturbance as

() = wolt), 5-191

where the white noise v, has intensity ;. As in Example 5.3, the observed
variable is given by

() = (1, O)x(t) + »,(1), 5-192

where »,, is white noise with infensity V¥,,. The steady-state optimal observer
thus has the form

. Q 1 0 0 ky
86) = ( ):t-(r) + ( );a(z) + ( )ﬁ.(t) + ( )[?J(t) — {1,000,
] 0 —a i ¥ fen
Tolt) = kaln(r) — (1, 0)E(1)],
5-193

where the scalar gains £y, &, and & follow from the steady-state solution of
the appropriate observer Riccati equation. With the numerical values of
Example 5.3, and with the additional numerical value

V,=060N*m®*s, 5-194
it follows that these gains are given by
B, =4274,  F,=9132, [y = 24495 5-195

The assumption 5-194 implies that the rms value of the increment of 7
during a period of 1s is /60 = 7.75 Nm. This torque is equivalent to an

angular
displacement
£, 0005
(rad}
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a 1 2
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Fig. 5.10. Response of the zero steady-state error position control system to a constant
torque of 10 N m on the shall.
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input voltage of nearly 1 V. The observer poles corresponding to the gains
5-195 are —22.44 4 j22.27 and —2.450 571,

By substituting the control law 5-190 into the observer equations 5-193,
it is easily found that the controller has a pole at the origin, hence exhibit
integrating action, as expected. For F we choose the steady-state optimal gain
matrix 5-90 derived in Example 5.3. The corresponding regulator poles are
—0.66 4 j9.09 &7, In Fig. 5.10 we give the response of the control system
from zero initial conditions to a constant disturbance 75 == 10 Nm. It is
seen that the maximum deviation of the angular displacement caused by this
constant torque is not more than about 0.008 rad.

5.6* SENSITIVITY OF TIME-INVARIANT OPTIMAL
LINEAR OUTPUT FEEDBACK CONTROL
SYSTEMS

In Chapter 3, Section 3.9, we saw that time-invariant linear optimal state
feedback systems are insensitive to disturbances and parameter variations
in the sense that the return difference matrix J(s), obtained by opening the
feedback loop at the state, satisfies an inequality of the form

JH(—j)WJ{jw) > W,  for all real m, 5196

where W is the weighting matrix F7R,F.

In this section we see that optimal output feedback systems generally do
not possess such a property, although it can be closely approximated..
Consider the time-invariant system

£(t} = Ax(t) + Bu(®) + wy(t), 5-197

where w, is white noise with constant intensity ¥;. The observed variable is
given by
y(1) = Cx(t) + waft), 5-198

where i, is white noise uncorrelated with i, with constant intensity V..
The controlled variable is :
z(t) = Dx(t), 5-199

while the optimization criterion is specified as

E{ j "BEOR() + 1T OR(D)] dr], 5200
fn

with R, and R, symmetric, constant, positive-definite weighting matrices.
To simplify the analysis, we assume that the controlled variable is also the
observed variable (apart from the observation noise), that is, C = .D. Then
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Fig. 5.11, Simplified output feedback control configuration.

we can schematically represent the control configuration as in Fig. 5.11,
where observer and control law have been combined into the controlier.
Let us now consider thesteady-state controller that results by letting 7, — — oo
and t; — . Then the steady-state observer is described by

£(1) = A$(1) + Bu(t) + Kly(t) — D), 5201
where K is the steady-state observer gain matrix. Laplace transformation of
5-201 and solution for the transform X(s) of £(¢) yields

X(s) = (s] — 4 + RDY[BU(s) + RY(s)], 5202

where U(s) and Y(s) are the Laplace transforms of «(¢) and ¢(¢), respectively.
All initial conditions are assumed to be zero. For the input we have in terms
of Laplace transforms

U(s) = — FX(s), 5.203

where F is the steady-state feedback gain matrix. Substitution of 5-203 into
5-202 and solution for U(s) yields

Us) = —G(5)Y(s), 5-204
where

G(s) = [[ + F(sI — A + RD)'B"1F(sI — A + RD)*K. 5205
‘We now consider the return difference matrix
J(s5) =1+ H{EGE(E) 5-206
for the control system, where

H(s)= D(sI — AB 5.207
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is the plant transfer matrix. Generally, there does not exist a nonnegative-
definite weighting matrix ¥ such that an inequality of the form

I —jo)WI(jw) > W 5-208

is satisfied for all real frequencies w. Indeed, it can easily be proved (see
Problem 5.6) that in the single-input single-output case 5-208 is never satisfied
for all w when W > 0. Of course the inequality 5-208 must hold in some useful
frequency range, adapted to the frequency band of the disturbances acting
upon the plant, since it follows from the optimality of the controller that the
specific disturbances for which the control system has been designed are
attenuated. '

We now prove, however, that under certain conditions satisfaction of
5-208 for all frequencies can be obtained asymptotically. Consider the
algebraic Riccati equation

0 = DTR,D — PBR;'BTP + ATF + PA, 5-209

which must be solved to obtain the regulation gain F = R7“BTP. Suppose
that

R, = pN, 5210
where p is a positive scalar and N a positive-definite matrix. Then it follows
from Theorem 3.14 (Section 3.8.3) that if dim (z) = dim (), and the open-
loop transfer matrix H{s) == D(sf — A)™B has zeroes with nonpositive
real parts only, as p | 0 the desired solution F of 5-209 approaches the zero
matrix. This implies that

lim 7B 1 N“BTF — DTR.D, 5211
plo p
ar
lim pFINF = DTR.D. 5212

plD

Now the general solution of the matrix equation X7X = MTM, where X
and M have equal dimensions, can be written in the form X = UM, where U
is an arbitrary unitary matrix, that is, U satisfies UZU = I. We therefore
conclude from 5-212 that as p | 0 the gain matrix F asymptotically behaves as

Fo-L N-r2gRiep. 5213

Jr

As a resulit,

G(s)— [D(sI — 4 + RDY'BI'D(s] — A + RDy'R, 5214
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as p | 0. It is not difficult to prove that
[D(sI — A 4+ RDYB]"'D(s] — A + RDY*R
= [D(sf — AYBI1D(s] — A K. 5-215
With this it follows for the return difference matrix J(+} of the configuration
of Fig. 5.11 that as Ra— 0
J(8) = Jo(s), 5-216
where
Jo(s) = I+ D(sI — AY K, 5-217
‘We now derive an inequality for the asymptotic return difference matrix Jy(s).
The steady-state variance matrix § satisfies the algebraic Riccati equation
0=V, — GDTV;D3 + AQ + 04T, 5-218
assumning that the state excitation noise and observation noise are un-
correlated, that ¥, > 0, and that the Riccati differential equation possesses a
steady-state solution. We can now go through manipulations very similar to
those in Section 3.9, where we dealt with the semsitivity of the state
feedback regulator. Addition and subtraction of @ and rearrangement yield
0=V, — GDTVi'DO — (sI — A)0 — Q(—sI — AT). 5219
Premultiplication by D(sI — 4)~* and postmultiplication by (—sf — AT)-1DT
give :
0 = D(sI — Ay (¥, — @DV DO)Y—sI — AT)fIDT
— DO(—sI — ATY'DT — D(sI — A)'gD*. 5-220
By adding and subtracting an extra term V., this expression can be rearranged
into the form
[I 4+ D(sI — AY*ODTVI VLI + Vi DO(—sI — ATy DT
= Va4 DI — AWy (—sI — ATY'DT. 5221
Since 00TV, = R we immediately recognize that this expression implies
the equality '

Jo(SWadT(—5) = Vo + D(sI — A*W(—sI — ATYIDT. 5222
Substituting s = jw we see that the second term on the right-hand side is a
nonnegative-definite Hermitian matrix; thus we have

Jo(fo) Vo T (—jw) > ¥, for all real w. 5.223

It follows from Theorem 2.2 (Section 2.10) that

ST (—jw)VtSy(jw) < Vo™*  for a real w, 5.224
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where §,(s) is the asymptotic sensitivity matrix:

SU(S) = J;TI(S) 5225
We also have
T T (—je)Ve' o jew) > V3.
We thus have the following result (Kwakernaak, 1969).

Theorem 5.5. Consider the steady-state time-invariant stochastic optimal
output feedback regulator. Suppose that the observed variable is alse the
controlled variable, that is,

y(6) = Da(t) + walt),
2(t) = Dx(f).

5-226

Also assume that the state excitation noise wy(t) and the observation noise
wo(t) are uncorrelated, that the observation problem is nonsingular, that is,
Vo> 0, and that the steady-state output feedback regulator is asymptotically
stable. Then if dim (u) = dim (2), and the open-loop transfer matrix H(s) =
D(sI — AY'B possesses no right-half plane zeroes, the return difference
matrix of the closed-loop system asymptotically approaches J(s) as R,—0,
where

Jo(s) = I+ D(si — A) K. 5-227

K is the steady-state observer gain matrix. The asymptotic return difference
matrix satisfies the relation

Jo($IVad T (—8) = Vo + D(sI — AWy (—sI — AT)'DT. 5228

The asymptotic refurn difference matrix Jy(s) and ifs inverse, the asymplotic
sensitivity matrix Sy(s) = J,7(s), satisfy the inequalities

Jo(feyVpd T (—jw) > Va Jor all real w,
St (—jm)VF S (jw) < V5t for all real w, 5-229
Jo T (—ja)Vald (jw) > Vil for all real w.
This theorem shows that asymptotically the sensitivity matrix of the output
feedback regulator system satisfies an inequality of the form 5-196, which
means that in the asymptolic control system disturbances are always redoced
as compared to the open-loop steady-state equivalent control system no
matter what the power spectral density matrix of the disturbances. It also
means that the asymptotic control system reduces the effect of all (sufficiently
small) plant variations as compared to the open-loop steady-state equivalent
The following points are worth noting:

(i) The weighting matrix in the sensitivity criterion is 5. This is not
surprising. Let us assume for simplicity that ¥, is diagonal. Then il one of the
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diagonal elements of V, is small, the corresponding component of the
observed variable can be accurately measured, which means that the gain in
the corresponding feedback loop can be allowed to be large. This will have a
favorable effect on the suppression of disturbances and plant varjations at
this output, which in turn is reflected by a large weighting coefficient in the
sensitivity criterion.

(i) The theorem is not valid for systems that possess open-loop zeroes
in the right-half plane.

(iii) In practical cases it is never possible to choose R, very small. This
means that the sensitivity criterion is violated over a certain frequency range.
Examples show that this is usually the case in the high-frequency region. It is
to be expected that the sensitivity reduction is not spoiled too badly when
R, is chosen so small that the faraway regulator poles are much further away
from the origin than the observer poles.

(iv) The right-hand side of 5-228 can be evaluated directly without
solving Riccati equations. It can be used to determine the behavior of the
return difference matrix, in particular in the single-input single-output case.

(v) It can be shown (Kwakernaak, 1969), that a result similar to Theorem
5.5 holds when

D
y() = (M)I(f) + wal?), 5-230

that is, y(t) includes the controlled variable z(1).

Example 5.7. Position control system
Apgain we consider the positioning system described by the state differential

equation
0 1 0 0
() = (1) + pty+ 7). 5-231
0 —a i ¥
Here 7,(r) is white noise with intensity ¥;. The observed variable is
"‘7(t) = (1 3 0)‘1'([) + "uf.ll.(t)s ‘ 5-232
where »,,(f) is white noise with intensity ¥,,. The controlled variable is
L = (1, 0)z(0). 5233

The system satisfies the assumptions of Theorem 5.5, since the controlled
variable is the observed variable, the state excitation and observation noise
are assumed to be uncorrelated, and the open-loop transfer function,

i

H(s) = m . 5-234
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possesses no right-half plane zeroes. To compute the asymptotic return
difference Jo(s), we evaluate 5-228, which easily yields
VoV al Ve
_SE(_S‘J + D'.ﬂ)
_ 8 — o't WV,

Jo(sMo(—s} =1+

a. o a 5-235
—5(—5 4+ o)
Substitution of § = jw provides us with the relation
o 4 _2 a EV
V(o) = Lt ee v Vb, 5-236
wi(w® + &5
or
Cm w(w® + U_ﬂ)
ISe(je)l” = 5-237

Wt + o’ + YV,
which shows that |Sy(jew)| < 1 for all real e.

10
[stjwll
1 1 /\ —
S M0 (rad/s)
Ty 2vy /v
0.4
0.0

Fig.5.12. Asymptotic Bode plots of the sensitivity function of the position control system
for p=~0and p = 0.5 x 10,

Figure 5.12 gives an asymptotic Bode plot of | S(jw)| which shows that the
limiting controller provides protection against all disturbances and param-
eter variations up to a frequency of about (3*V,/V, )**. With the numerical
values

y=01kgm™2,
Vg =10 N*m?s, 5-238
V.. = 10~7rad?®s,

this break frequency is about 31.6 rad/s.
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The frequency range aver which disturbance protection is obtained is
reduced when the weighting factor p in the criterion

1t
E{ f L5 -+ pr*()] dt] 5239
o

is chosen greater than zero. It is reasonable to assume that the disturbance
reduction is not affected so long as the regulator break frequency is much
larger than the observer break frequency. Since the regulator break frequency
(Example 5.3, Section 5.3.2) is (x/v/p)''*, we conclude that with i« = 0.787
rad/(Vs*) the value of p should be 0.5 x 10-% or less {for this value of p
the regulator break frequency is 33.4 radfs). It can be computed, using
Theorem 5.4 (Section 5.3.2), that with this value of p we have

Tim E{£*(®) + pu(f)} = 0.00001906 rad®. 5-240
l—=m .
It follows that the rms input voltage is bounded by

VERA(1)} <

\/0.00001906 617V, <241
P

which is quite an acceptable value when input amplitudes of up to 100 V are
permissible. It can be calculated that the sensitivity function of the steady-
state controller for this value of p is given by

5(s - 4.6)(s° -+ 87.95 4- 3859)
(s® + 47.55 4 1125)(s" 4 44.965 +- 1000) '

S(s) = 5-242

The asymptotic Bode plot of |S(jw)} is given in Fig. 5.12 as well and is
compared to the plot for p = 0. It is seen that the disturbance attenuation
cutofT frequency is shifted from about 30 to about 20 rad/s, while disturbances
in the frequency range near 30 rad/s are slightly amplified instead of atten-
vated. By making p smaller than 0.5 x 10-%, the asymptotic sensitivity
function can be more closely approximated.

Using the methods of Section 5.5.1, it is easy to determine the nonzero set
point aptimal controller for this system. Figure 5.13 gives the response of the
resulting nonzero set point output feedback control system to a step of
0.1 rad in the set point of the angular position, from zero initial conditions,
for the nominal parameter values, and for two sets of of-nominal values.
As in Example 3.25 {Section 3.9), the off-nominal values of the plant con-
stants o and « are assurmed to be caused by changes in the inertial load of the
dc motor. It is seen that the effect of the parameter changes is moderate.



5.7 Controllers of Reduced Dimensions 427
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c
{rad)
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Fig. 5.13. The effect of parameter variations on the responsc of the output feedback
position control system. {7} Nominal load; (4) inertial load 5 of nominal; {¢) inertial [oad
% of nominal,

5.7* LINEAR OPTIMAL OQUTPUT FEEDBACK
CONTROLLERS OF REDUCED DIMENSIONS

3.7.1* Introduction

In Section 5.3.1 we obtained the solution of the stochastic linear optimal
output feedback regulator problem. It is immediately clear that the dimension
of the controller by jtself equals the dimension of the plant, since the optimal
observer has the dimension of the plant, This may be a severe drawhack af the
design methods sugpested, since in some cases a controller of much lower
dimension would render quite satisfactory, although not optimal, perfor-
mance. Moreover, the dimension of the mathematical model of a system is a
number that very much depends on the accuracy of the model. The model
may incorporate some marginal effects that drastically increase the dimensjon
of the model without much improvement in the accuracy of the model.
When this is the case, there seems to be no reason why the dimension of the
controller should also be increased.

Motivated by the fact that the complexity and cost of the controller
increase with its dimension, we intend to investigate in this section methods
for obtaining controllers of lower dimensions than those prescribed by the
methods of Section 5.3. One obvious way to approach the problem of
designing controllers of low dimension is to describe the plant by a cruder
mathematical model, of lower dimension. Methods are available (see e.g.,
Mitra, 1967; Chen and Shieh, 1968b; Davison, 1968a; Aoki, 1968; Kuppura-
julu and Elangovan, 1970; Fossard, 1970; Chidambara and Schainker, 1971)
for reducing the dimension of the model while retaining only the “significant
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modes’’ of the model. In this case the methods of Section 5.3 result in con-
trollers of lower dimension. There are instances, however, in which it is
not easy to achieve a reduction of the dimension of the plant. There are also
situations where dimension reduction by neglecting the ““parasitic’” effects
leads to the design of a controller that makes the actual control system un-
stable (Sannuti and Kokotovié, 1969).

Our approach to the problem of designing low-dimensional controllers is
therefore as follows. We use mathematical models for the systems which are
as accurate as possible, without hesitating to include marginal effects that
may or may not have significance. However we limit the dimension of the
coniroller to some fixed number m, less than r, where » is the dimension of
the plant model. In fact, we attempt to select the smallest m that still produces
a satisfactory control system. We feel that this method is more dependable
than that of reducing the dimension of the plant. This approach was origin-
ally suppested by Newton, Gould, and Kaiser (I1%37), and was further
pursued by Sage and Eisenberg (1966), Sims and Melsa (1970), Johnson
and Athans (1970}, and others.

5.7.2%* Controllers of Reduced Dimensions

Consider the systern described by the equations
(1) = A(Dx() + B{Ou(@) + wi(r), =) = =,
y(8) = C)= () + walt),

where, as usual, z(¢) is an n-dimensional state vector, ©(r) is a A-dimensional
input variable, y(¢) is an /-dimensional observed variable, and »w, and w,
are white noise processes. The joint process col (w,, wy) has the intensity F(¢).
It is furthermore assumed that the initial state =z, is a stochastic vector,
uncorrelated with w, and w,, with mean %, and variance matrix Q,.
We now consider a controller for the system given above described by
g(t) = L(Og() + KOy,  q(t) = g0,
u(t) = —F(q(®),
where g is the m-dimensional state vector of the controller. The observed
variable y serves as input to the controller, and the input to the plant u is the
output of the controller. It is noted that we do not allow a direct link in the
controller. The reason is that a direct link causes the white observation nojse
wq to penetrate directly into the input variable u, which results in infinite
input amplitudes since white noise has infinite amplitudes.
We are now in a position to formulate the linear optimal output feedback
control problem for controllers of reduced dimensions (Kwakernaak and
Sivan, 1971a):

5243

5-244
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Definition 5.3. Consider the system 5-243 with the statistical data given.
Then the optimal ontput feedback comvol problem for a controller of reduced
dimension is to find, for a given integer m, with 1 < m < n, and a given final
time ty, matrix functions L(t), K(1), and F(#), t, < t < 1y, and the probability
distribution af qy, 50 as to minimize o, where

Oy = E{ftl[mT (OR(Dx(H) + uF(OR(Du(H)] dt}. 5-245
fo

Here Ry(f) ond Ry(1), ty <t < 1y, are given matrices, nonnegative-definite
and positive-definite, respectively, for ali t.

In the special case in which m = n, the solution to this problem follows from
Theorem 5.3 which states that (¢} and K(¢) in 5-244 are the optimal regulator
and observer gains, respectively, and

L(t) = A(t) — BIOF(t) — K(E)C(D). 5-246

It is easy to recognmize that o,, m=1,2,---, forms a monotonically
nonincreasing sequence of numbers, that is,

G, 2 Og 2 O3 2> ", 5-247

since an m-dimensional controller is a special case of an (i 4 1)-dimensional
controller. Also, for m > n the value of o, no longer decreases, since we
know from Theorem 5.3 that the optimal controller (without restriction on
its dimension) has the dimension #; thus we have

01 2 03 2 032 """ 2 0pt 2 0p = 0Opyq = Opga=""". 5-248

One way to approach the problem of Definition 5.3 is to convert it to a
deterministic dynamic optimization problem. This can be done as follows.
Let us combine the plant equation 5-243-with the controller equation 5-244.
The control system is then described by the augmented state differential
equation '

(re(z)) _( A —B(I)F(t)) (s(r)) .\ (r 0 )(wl(r))
g/ \kwcw Lo [\go/  \o k@ \w®/

5-249

We now introduce the second-order joint moment matrix

5 = E[(I(I))(ZTU): qT(F))]- 5-250
q(t)
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It follows from Theorem 1.52 (Section 1.11.2) that S() is the solution of the
matrix differential equation

S() = M(H)S() + S(OMT(1) + N(OV(ONT(1), 5251
S(ty) = So,

M ( AD) —B(r)F(:)) N = (1 0)
IRV O <O ONEA 0 K@/
f*"n-"’uT Euan
So=E T 7|
quty Gollo

Using the matrix function S(/), the criterion 5-245 can be rewritten in the form

where

5-252

o, = tr {f“[su(r)Rl(r) + Sl OF(ORADF(D)] dr], 5253
10

where S),(+) and S..(¢) are the n x » and m x m diagenal blocks of §(7),
respectively.

The problem of determining the optimal behaviors of the matrix functions
L(#), F(t), and K{r) and the probability distribution of g, has now been
reduced to the problem of choosing these matrix functions and S, such that
a,, as given by 5-253 is minimized, where the matrix function S{t) follows
from 5-251. Application of dynamic optimization techniques to this problem
(Sims and Melsa, 1970) results in a two-point boundary value problem for
nonlinear matrix differential equations; this problem can be quite formidable
from a computational point of view.

In order to simplify the problem, we now confine ourselves to tlme-
invariant systems and formulate a steady-state version of the problem that
is numerically more tractable and, moreover, is more easily implemented.
Let us thus assume that the matrices A, B, C, ¥, R,, and R, are constant.
Furthermore, we also restrict the choice of controller to time-invariant
controllers with constant matrices L, K, and F. Assuming that the inter-
connection of plant and controller is asymptotically stable, the limit

&, = lim E{zT()R,z(1) + uT(HR.u(1)} 5-254
fg~+—m
will exist. As before, the subscript i refers to the dimension of the controller.
We now consider the problem of choosing the constant matrices L, K, and F
(of prescribed dimensions) such that &,, is minimized.
As before, we can argue that

Op 20 20y 2> " 20y 2 0p=Gpypy = Gpya = """ 5-255

The minimal value that can ever be obtained is achieved for #m = n, since
as we know from Theorem 5.4 (Section 5.3.2) the criterion 5-254 is minimized
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by the interconnection of the steady-state optimal observer with the steady-
state optimal control law.

The problem of minimizing 5-254 with respect to L, K, and F can be
converted into a mathematical programming problem as follows. Since by
assumption the closed-loop control system is asymptotically stable, that is,
the constant matrix M has all its characteristic values strictly within the left-
half complex plane, as f; — — oo the variance matrix S(¢} of the augmented
state approaches a constant steady-state value S that is the unigue solution
of the linear matrix equation

MS 4+ SMT + NVNT =0, 5-256
Also, &, can be expressed as
Em =1r (gllRl + S‘.'.ﬂFTREF)a 5"'257

where 8y, and Sy, are the n X mand m x mdiagonal blocks of S, respectively.

Thus the problem of solving the steady-state version of the linear time-
invariant optimal feedback control problem for controllers of reduced
dimension is rednced to determining constant matrices L, K, and F of
prescribed dimensions that minimize

&, = tr (§3R; + SeFTR.F), 5-258

and satisfy the constraints

(i) MS + SMT + NVNT =0, 5-259a
(i) Re [A{M)] < 0, i=1,2,---,1n+ m. 5-259b
Here the 4,(M), i =1,2,---,n + m, denote the characteristic values of the

matrix M, and Re stands for “the real part of.”

It'is noted that the problem of finding time-varying matrices L{(r}, K(7),
and F(?), t, < ¢ < #, that minimize the criterion &, always has a solution as
long as the matrix A(t) is continuous, and all other matrices occurring in the
problem formulation are piecewise continuous. The steady-state version of
thie probiem, however, that is, the problemt of minimizing &,, with respect
to the constant matrices L, X, and F, has a solution only if for the given
dimension m of the controller there exist matrices L, K, and £ such that the
compound matrix M is asymptotically stable. For m = n necessary and
sufficient conditions on the mairices 4, B, and € so that there exist matrices
L, K, and Fthat render M asymptotically stable are that {4, B} be stabilizable
and {A, C} detectable (Section 5.2.2). For s < n such conditions are not
known, although it is known what is the least dimension of the controller
such that all closed-loop poles can be arbitrarily assigned (see, e.g., Brash
and Pearson, 1970).
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In the following subsection some guidelines for the numerical determine-
tion of the matrices L, X, and F are given. We conclude this section with a
note on the selection of the proper dimension of the controller. Assume that
for given R, and R, the optimization problem has been solved for m =
1,2; -+, n,and that &,, G, - - - , &, have been computed. Is it really mean-
ingful to compare the values of &, G,, * * * , &, and thus decide upon the
most desirable of 7 as the number that gives a sufficiently small value of
&7 The answer is that this is probably not meaningful since the designs
all have different mean square inputs. The maximally allowable mean square
input, however, is a prescribed number, which is not related to the complexity
of the controller selected. Therefore, a more meaningful comparison results
when for each m the weighting matrix K, is so adjusted that the maximally
allowable mean square input is obtained. This can be achieved by letting

-RE = Pru-RE[]: 5-260
where p,, is a positive scalar and R, a positive-definite weighting matrix
which determines the relative importance of the components of the input.

Then we rephrase our problem as follows. For given m, Ry, and Rag, minimize

the criterion . - e
G =11 (SuRy + pruSaaF TRyyF), 5261

with respect to the consiant matrices L, K, and F, subject to the constraints
(i) and (i), where p,, is so chosen that

tr (SaaFT Ry F) 5-262
equals the given maximally allowable mean square input.

5.7.3* Numerical Determination of Optimal Controllers of
Reduced Dimensions

In this section some results are given that are useful in obtaining an efficient

computer program for the solution of the steady-state version of the linear:
time-invariant optimal output feedback control problem for a controller of -

reduced dimension as outlined in the preceding subsection. In particular, we
describe a method for computing the gradient of the objective function
(in this case ,,) with respect to the unknown parameters (in this case the
entries of the matrices L, X, and F). This gradient can be used in any standard
function minimization algorithm employing gradients, such as the conjugate
gradient method or the Powell-Fletcher technique [see, e.p., Pierre (1969)
or Beveridge and Schechter (1970) for extensive reviews of unconstrained
optimization methods].

Gradient methods are particularly useful for solving the present function
minimization problem, since the gradient can easily be computed, as we
shall see. Moreover, meeting constraint (ii), which expresses that the control
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system be asymptotically stable, is quite simple when care is taken to choose
the starting values of L, K, and F such that (ii) is satisfied, and we move with
sufficiently small steps along the search directions prescribed. This is because as
the boundary of the region where the control system is stable is approached,
the criterion becomes infinite, and this provides a natural barrier against
moving out of the stability region.

A remark on the representation of the controller is in order at this point.
Clearly, the value of the criterion &, is determined only by the external
representation of the controller, that is, its transfer matrix F(s/ — L)7*K, or,
equivalently, its impulse response matrix Fexp [L(f — 7)]&. It is well-known
that for a given external representation many fiternal representations (in the
form of a state differential equation together with an output equation)
are possible. Therefore, when the optimization problem is set up starting
from an internal representation of the controlier, as we prefer to do, and all
the entries of the matrices L, K, and F are taken as free parameters, the
minimizing values of L, K, and F are not at all unique. This may give numer-
jcal difficulties. Moreover, the dimension of the function minimization prob-
lem is unnecessarily increased. These difficulties can be overcome by choosing
a canonical representation of the controller equations. For example, when the
controller is a single-input system, the phase canonical form of the state
equations (see Section 1.9) has the minimal number of free parameters.
Similarly, when the controller is a single-output system, the dual phase
cancnical form (see also Section 1.9) has the minimal number of free param-
eters. For multiinput multioutput systems related canonical forms can be
used (Bucy and Ackermann, 1970), It is noted, however, that considerable
reduction in the number of free parameters can often be achieved by imposing
structural constraints on the controller, for example, by blocking certain
feedback paths that can be expected to be of minor significance.

We discuss finally the evaluation of the gradient of &,, with respect to the
entries of L, K, and F. Let p be one of the free parameters. Then introducing

the matrix
R, 0
R= 1, 5-263
0 FR.F?
the gradient of &,, with respect to y can be written as
o - a5 -0
Bm _ 2 4 (SR)] = tr ( R+§ R) 5-264
oy oy dy oy

Furthermore, taking the partial derivative of 5-259a with respect to the
same parameter we find that
oM BS _BMT

]
— S+ M= S§— 4+ —(NV¥NT) =0, 5-265
gy a'y a i oy a}' ¢ )



434 Optimnl Linear Output Feedback Control Systems

At this point it is convenient to introduce a linear matrix equation which is
adjoint to 5-259a and is given by

MTO+ UM 4+ R=0. 5-266

Using the fact that for any matrices 4, B, and C of compatible dimensions
tr (4B) = tr (B4) and tr (C) = tr (C*), we write with the aid of 5-265
and 5-266 for 5-264

G [ (— MTU—UM)+S }
B Loy oy
85 o8 =OR
=t M= — MT) S }
' [ ( dy oy + oy
oM o g aMT d . < aR}
=t S — (NVN S=
T { |: . + S E’y B ( ):\ + 3
= ir [9 aM S50+ U (N VNTY 4+ 8 aR} 5-267
gy dy

Thus in order to compute the gradlent of the ohjective function &, with
respect to y, one of the free parameters, the two linear matrix equations
5-259a and 2-266 must be solved for S and U, respectively, and the resulting
values must be inserted into 5-267. When a different parameter is considered,
the bulk of the computationai effort, which consists of solving the two
matrix equations, need not be repeated. In Section 1.11.3 we discussed
numerical methods for solving linear matrix equations of the type at hand.

Example 5.8. Position control system

In this example we design a position control sysiem with a constraint on
the dimension of the controller. The system to be controlled is the dc motor
of Example 5.3 (Section 5.3.2}, which is described by the state differential
and observed variable equations

. 0 1 0 0
w0 =y _ )0+ | Jud +{ 5268

77(1) =(1, O)T(t) + 'l'm(f),

where 7; and v, are described as white noise processes with intensities V,
and ¥, respectively. As in Example 5.3, we choose the criterion to be
minimized as

lim E{L( + pe’(6)}, 5-269

tg—+—m
where £(t} = (1, 0)x(¢) is the controlled variable. As we saw in Example 5.3,
the optimal controller without limitations on its dimension is of dimensicn
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two. The only possible controller without a direct link of smaller dimension
is a first-order controller, described by the scalar equations

§(t) = Sq(t} + »(2),
p(t) = —eq(t).

Here we have taken the coefficient of #(¢) equal to I, without loss of generality.
The problem to be solved thus is: Find the constanis § and & that minimize
the criterion 5-269.

In Example 5.3 we used the following numerical values:

k=0.787rad{(Vs), a=465"1 »=01kgim?,
V,=10N*m?s, ¥, = 10~7 rad®s.

5-270

5.271

For p = 0.00002 rad®/V* we found an optimal controller characterized by
the data in the first column of Table 5.2.

Table 5.2 A Comparison of the Performances of the Position Control System
with Controllers of Dimensions One and Two

Second-order First-order First-order
optimal controller optimal controller optimal controller
with p = 0.00002 with p = 0.00002 with rms input 1.5V

Rms input voltage

(V) 1.5 1.77 1.5
Rms regulating
error (rad) 0.00674 0.00047 0.01006
E{I*(t)} + pE{#*(0}
(rad® 9.08 4 107% 15.2 »x 105 15.8 x 10-5
Closed-loop poles —5.66 £ j9.09 —400 —1350
(Y —22.48 + /22,24 —2.13 +£11.3 —2.15 £/9.92

It is not difficult to find the parameters of the first-order controller 5-270
that minimize the criterion 5-269. In the present case explicit expressions for
the rms regulating error and input voltage can be found. Numerical or
analytical evaluation of the optimal parameter values for p = 0.00002
rad¥/V* leads to

6= —40051, £=6.75 x 10! V/(rad 5). 5-272

The performance of the resulting controller is listed in the second column of
Table 5.2. It is observed that this controller results in an rms input voltage
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that is larger than that for the second-order optimal controller. By slightly
increasing p a first-order controller is obtained with the same rms input
voltage as the second-order controller. The third column of Table 5.2 gives
the performance of this controller. It is characterized by the parameters

8=—3505", &=4.65x 10" V/(rad s). 5-273

" A comparison of the data of Table 5.2 shows that the first-order optimal

controller has an rms regulating error that is about 1.5 times that of the -
second-order controller. Whether or not this is acceptable depends on the
system specifications. We note that the locations of the dominating closed-
loop poles at —2.15 4 j9.92 of the reduced-order control system are not at
all close to the locations of the dominant poles at —9.66 4 9.09 of the
second-order system. Finally, we observe that the first-order controller
transfer function is

d
6= —— =B X1y 5274
s — 4 s+ 350
This controller has a very large bandwidth. Unless the bandwidth of the
observation noise {(which we approximated as white noise but in practice
has a limited bandwidth) is larger than the bandwidth of the controller, the
controller may as well be replaced with a constant gain of

4.65 x 10!
350
This supgests, however, that the optimization procedure probably should be

repeated, representing the observation noise with its proper bandwidth, and
searching for a zero-order controller (consisting of a constant gain).

~ 133 V/rad. 5-275

5.8 CONCLUSIONS

In this final chapter on the design of continuous-time optimal linear feedback
systems, we have seen how the results of the preceding chapters can be
combined to yield optimal output feedback control systems. We have also
analyzed the properties of such systems. Table 5.3 summarizes the main
properties and characteristics of linear optimal output feedback control
system designs of full order. Almost all of the items listed can be considered
favorable features except the last two.

We first discuss the aspects of digital computation. Linear optimal control
system design usually requires the use of a digital computer, but this hardly
constitutes an objection because of the widespread availability of computing
facilities. In fact, the need for digital computation can be converted into an
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Table 5.3 Characteristics of Linear Optimal Qutput Feedback Control System
Designs

Characteristic judged
favorable (4},
indifferent (), or
unfavorable (—)

Design characteristic

Stability is guaranteed 4+

A good response from initial conditions and to a
reference variable can be obtained

Information about the closed-loop poles is available
The input amplitude or, equivalently, the loop gain, is
easily controlled

+ o+ o+ +

Good protection against disturbances can be obtained

Adequate protection against observation noise can be
obtained

+

The contral sysiem offers protection against plant
variations +

Digital computation is usually necessary for control
system design O

The control system may turn out to be rather complex —

advantage, since it is possible to develop computer programs that largely
automate the control system design procedure and at the same time produce
a great deal of detailed information about the proposed design. Tabje 5.4
lists several subroutines that could be contained in a computer program
package for the design and analysis of time-invariant, continuous-time linear
optimal control systems. Apart from the subroutines listed, such a package
should contain programs for coordinating the subroutines and handling
the data. '

The last item in the list of Table 5.3, concerning the complexity of linear
output feedback controllers, raises a substantial objection. In Section 3.7
we discussed methods for obtaining controllers of reduced complexity. At
present, too little experience with such design methods is available, however,
to conclude that this approach solves the complexity problem.

Altogether, the perspective that linear optimal control theory offers for
the solution of real, everyday, complex linear control problems is very
favorable. It truly appears that this theory is a worthy successor to tradi-
tional control theory.
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Table 5.4 Computer Subroutines for a Linear Optimal Control System Design
and Analysis Package

For discussion and

- Subroutine task references see
Computation of the exponential of a matrix Section 1.3.2
Simulation of a time-invariant linear system Section 1.3.2
Computation of the transfer matrix and characteristic
values of a linear time-invariant system Section 1.5.1
Computation of the zeroes of a square transfer matrix Section 1.5.3

Simulation of a linear time-invariant system driven by
white noise Section 1.11.2

Solution of the linear matrix equation :
MX + AMT = M, Section 1.11.3

Solution of the algebraic Riccati equation and
computation of the corresponding closed-loop
regulator or observer poles Section 3.5

Numerical determination of an optimal controller of
reduced dimension Section 5.7.3

5.9 PROBLEMS

5.1. Angufar velocity regulation system

Consider the angular velocity system described by the state differential
equation :
£(t) = —ab(t) + wu(®) + wio). 5-276

Here £ is the angular velocity, ¢ the driving voltage, and the disturbance wy
is represented as white noise with intensity N. The controlied variable is the
angular velocity:

- L) = £(). 5-277
The observed variable is also the angular velocity:

(1) = &(1) + wi(f), | 5278

where . is represented as white noise with intensity M. The following
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numerical values are assumed:
oo =055,
x = 150 rad/(VsY),
N = 600 rad?/s?,
M = 0.5 rad®/s.

5-279

Suppose that the anpular velocity system is to be made into a regulator
system, which keeps the angular velocity at a constant value. Determine the
optimal output feedback regulator such that the rms input is 10 V, Compute
the rms regulating error and compare this to the rms regulating error when
10 control is applied. '

5.2.  Angular velocity tracking system
Suppose that the system of Problem 5.1 is to be made into an angular

velocity tracking system. For the reference variable we assume exponentially
correlated noise with time constant ) and rms value o. Furthermore, we
assume that the reference variable is measured with additive white noise with
intensity M,. Compute the optimal tracking system. Assume the numerical
values

0=1s,

¢ = 30rad/s, 5-280

M, = 0.8 rad®/s%

Determine the optimal tracking system such that the total rms input is 10 V.
Compute the total rms tracking error and compare this to the rms value of
the reference variabie.

5.3. Nonzero set point angular ue!acrfy carmo! systent

The tracking system of Problem 5.2 does not have the propcrty that a
constant value of the reference variable causes a zero steady-state tracking
error. To obtain such a controller, design a nonzero set point controller as
supgested in Section 5.5.1. For the state feedback law, choose the one obtained
in Problem 5.1. Choose the prefilter such that a step of 30rad/s in the
teference variable causes a peak input voltage of 10 V or less. Compare the
resulting design to that of Problem 5.2.

5.4.% Integral control of the angular velocity regulating system

Consider the angular velocity control system as described in Problem 5.1.
Suppose that in addition to the time-varying disturbance represented by
wy(#} there is also a constant disturbance »,(r) operating upon the dc motor,
so that the state differential equation takes the form

E() = —aE(} + wp() + wy(r) + (1) 5-281



440 Optimal Linear Output Feedback Confrel Systems

The observed variable is given by 5-278, while the numerical values 5-279 are
assumed. The controlled variable is given by 5-277. Design for the present
situation a zero-steady-state-error controller as described in Section 5.5.2.
To this end, assume that v,(f) is represented as integrated white noise and
choose the intensity of this white noise as 250 rad?®/s?. Compute the response
of the resulting integral control system to a step of 50 rad/s® in the constant
disturbance v, from steady-state conditions and comment on this response.
What is the effect of increasing or decreasing the assumed white noise intensity
of 250 rad®/s®?

5.5.% Adjoint matrix differential equations
Consider the matrix differential equation

O(n) = A(DO() + QAT + R(1),  Q(t) = Qo 5-282

together with the linear functional

tr [ ﬁ :1Q(I)S(t) dt + Q(rl)Pl]. 5283

Prove that 5-283 equals

iy
tr [f P(OR(1) dt + P(tn)Qn], 5-284
te
where P(t) is the solution of the adjoint matrix differential equation

—P(1) = P(NA(1) + AT(OP(D) + S(1), P(t) =P, 5-285

5.6.% A property of scalar sensitivity functions

In Section 5.6 we remarked that optimal linear output feedback systems
generally do not possess the property that disturbances are attenuated at all
frequencies as compared to the equivalent open-loop system. For single-
input single-output systems this follows from the following theorem (Bode,
1945; Westcott, 1952).

Consider a single-input sinple-output linear time-invariant system with
transfer function H(s). Let the controller transfer function (see Fig. 5.14)
be given by G(s) so that the control system loop pain function is

L(s) = H(5)G(s), 5.286

and the sensitivity function is
S(s) = —1 . 5-287
‘ 1+ L{s)
Let v denote the difference of the degree of the denominator of L(s) and that
of its numerator. Assume that the control system is asymptotically stable.
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] + utt) z{t)

His}

G(s}

Fig. 5.14. A time-invariant linear feedback system.

Then
+ oo for » = 0,
In [|S( )] do = | —y 7—?& for v =1, 5-288
0 fory > 2,
where
v = lim sL{s). 5-289
&=t

Prove this result. Conclude that for plants and controllers without direct
links the inequality _
|S(w)| < 1 o 5-290

cannet hold for all e, Hint: Integrate In[S(s)] along a contour that consists
of part of the imaginary axis closed with a semicircle in the right-half complex
s-plane and let the radius of the semicircle go to infinity.
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