
5.1 INTRODUCTION 

In Chapter 3 we considered the control of linear systems described by a state 
differential equation of the form 

An essential part of the theory of Chapter 3 is that it is assumed that the 
complete state vector x ( t )  is available for measurement and feedback. 

In this chapter we relax this assumption and study the mncli more realistic 
case where there is an observed variable of the form 

which is available for measurement and feedback. Control systems where 
the observed variable ?/ serves as input to the controller, and not the state x ,  
will be called ontplct feedbock control sjWms. 

In  view of the results of Chapter 4, it is not surprising that the optimal 
output feedback controller turns out to be a combination of an obserker, 
tbrough which the state of the system is reconstructed, and a control law 
which is an instantaneous, linear function of the reconstructed state. This 
control law is the same control law that would have been obtained if the state 
had been directly available for observation. 

In Section 5.2 we consider a deterministic approacb to the output feedback 
problem and we obtain regulators tbrough a combination of asymptotically 
stable observers and linear, stabilizing control laws. In Section 5.3 a 
stochastic approach is taken, and optimal linear feedback regulators are 
derived as interconnections of optimal observers and optimal linear state 
feedback laws. I n  Section 5.4 tracking problems are studied. In Section 5.5 
we consider regulators and tracking systems witb nonzero set points and 
constant disturbances. Section 5.6 concerns the sensitivity of linear optimal 
feedback systems to disturbances and system variations, while the chapter 
concludes witb Section 5.7, dealing witb reduced-order feedback controllers. 



378 Optimnl Linear Output Feedback Control Systems 

5.2 T H E  REGULATION O F  LINEAR S Y S T E M S  
W I T H  I N C O M P L E T E  MEASUREMENTS 

5.2.1 The Structure of Output Feedback Control Systems 

In this section we take a deterministic approach to the problem of regulating 
a linear system with incomplete measurements. Consider the system described 
by the state differential equation 

while the observed variable is given by 

In Chapter 3 we considered control laws of the form 

where it was assumed that the whole state x(t) can be accurately measured. 
If the state is not directly available for measurement, a natural approach 
is f i s t  to construct an observer of the form 

and then interconnect the control law with the recor~striicted state i.(t): 

u(t) = -F(t)i.(t), 5-7 

where F(t) is the same as in 5-5. Figure 5.1 depicts the interconnection of the 
plant, the observer, and the control law. By substitution of the control law 
5-7 into the observer equation 5-6, the controller equations take the form 

This leads to the simplified structure of Fig. 5.2. 
The closed-loop system that results from interconnecting the plant with 

the controller is a linear system of dimension 2n (where 11 is the dimension 
of the state x), which can be described as 

We now analyze the stability properties of the closed-loop system. To this 
end we consider the state x(t) and the reconstruction error 
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By subtracting 5-3 and 5-6, it easily follows with the use of 5-4 that e(t) 
satisfies 

Substitution of *(t) = x(t) - e(t) into 5-3 and 5-7 yields 

When considering 5-11, it is seen that e(t) converges to zero, independent of 
the initial state, if a gain matrix K(t) can be found that makes 5-11 asymp- 
totically stable. However, finding a gain matrix K(t) that makes 5-11 stable 
is equivalent to determining K(t) such that the observer is asymptoticnlly 
stable. As we know from Chapter 4, such a gain often can be found. 

Next we consider 5-12. IfB(t) and F(t) are bounded afld e(t) + 0 as t - m, 
x(t) will always converge to zero if the system 

is asymptoticauy stable. From Chapter 3 we know that often F(t) can be 
determined so that 5-13 is asymptotically stable. Thus we have seen that it is 
usually possible to find gain matrices F(t) and K(t) such that Eqs. 5-11 and 
5-12 constitute an asymptotically stable system. Since the system 5-9 is 
obtained from the system described by 5-11 and 5-12 by a nonsingular linear 
transformation, it follows that it is usually possible to find gain matrices 
F(t) and K(t) such that the closed-loop control systems 5-9 is stable. In the 
following subsection the precise conditions under which this can be done are 
stated. 

Finally, we remark the following. Combining 5-11 and 5-12 we obtain 

Let us consider the time-invariant case, where all the matrices occurring in 
5-14 are constant. Then the characteristic values of the system 5-14, which 
are also the characteristic values of the system 5-9, are the zeroes of 

= det (sI - A + BF) det (d - A + KC). 5-15 

The reason that the systems 5-9 and 5-14 have the same characteristic values 
is that their respective state vectors are related by a nonsingular linear 
transformation (see Problem 1.3). Consequently, the set of closed-loop 
characteristic values comprises the characteristic values of A - B F  (the 
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regttlator poles) and the characteristic values of A - KC (the obseruer 
poles) : 

Theorem 5.1. Corzsicfer the i~ltercow~ectiorz of the time-invariant system 

x(t) = Ax(t) + Bu(t), 

?l(t) = W f ) ,  
the time-inuariartt obseruer 

&) = A$@) + B&) + ~ [ y ( t )  - ~ * ( t ) ] ,  5-17 

arld the tirite-il~uariartt control law 

u(t) = -F*(t). 5-18 

Then the cl~arocteristic ual~res of the interconnected system corlsist of the 
regulator poles (the cl~aracteristic vol~res of A - BF) togetl~er ivith the obseruer 
poles (the clraracteristic ual~res of A - KC). 

These results show that we can consider the problem of determining an 
asymptotically stable observer and an asymptotically stable state feedback 
control law separately, since their interconnection results in an asymptotically 
stable control system. 

Apart from stability considerations, are we otherwise justified in separately 
designing the observer and the control law? In Section 5.3 we formulate a 
stochastic optimal regulation problem. The solution of this stochastic version 
of the problem leads to an affirmative answer to the question just posed. 

In this section we have considered full-order observers only. I t  can be 
shown that reduced-order observers interconnected with state feedback laws 
also lead to closed-loop poles that consist of the observer poles together 
with the controller poles. 

Example 5.1. Position corltrol system. 
Consider the positioning system described by the state differential equation 

(see Example 2.1, Section 2.2.2, and Example 2.4, Section 2.3) 

with 

a = 4.6 s-1. 
The control law 

P(t) = -(JLf,)*(t) 
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produces the regulator characteristic polynomial 

det (sI - A + BF) = s3 + ( a  + ~ f , ) s  + ~f,. 5-22 
By choosing 

f, = 254.1 V/rad, 
5-23 

= 19.57 V slrad, 

the regulator poles are placed a t  -10 & j10 s-l. Let us consider the observer 

is the observed variable. The observer characteristic polynomial is 

det (sI - A + KC) = s3 + (a  + k1)s + ak, + k?. 5-26 

To make the observer fast as compared to the regulator, we place the 
observer poles at -50 =k j50 s-l. This yields for the gains: 

In Fig. 5.3 we sketch the response of the output feedback system to the 
initial state x(0) = col (0.1, O ) ,  8(0) = 0 .  For comparison we give in Fig. 5.4 
the response of the corresponding state feedback system, where the control 
law 5-21 is directly connected to the state. We note that in the system with 
an observer, the observer very quickly catches up with the actual behavior 
of the state. Because of the slight time lag introduced by the observer, how- 
ever, a greater input is required and the response is somewhat different from 
that of the system without an observer. 

Example 5.2. The peizdzrlzmz positioriirrg system. 
In this example we discuss the pendulum positioning system of Example 1.1 

(Section 1.2.3). The state differential equation of this system is given by 
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Fig. 5.3. The response and the input of 
the position control system with observer 
for m(0) = col(O.l, 0); i(0) = col(0,O). 

The components of the state are 

Fig. 5.4. The response and the input 
of the position control system wilh state 
feedb& (without observer) for ~ ( 0 )  = 
col(0.l. 0). 

h ( t )  = S(t) + L'&. 
Here s(t) is the displacement of the carriage and + ( f )  the angle the pendulum 
makes with the vertical. We assume that both these quantities can be meas- 
ured. This yields for the observed variable 
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The main function of the control system is to stabilize the system. We 
therefore choose as the controlled variable the position of the pendulum 

We first select the regulator poles by solving the regulator problem with the 
criterion 

5-32 

To determine an appropriate value of p, we select it such that the estimated 
radius w, of the faraway poles suc11 as given in Theorem 3.11 (Section 3.8.1) 
is 10 s-I. This yields a settling time of roughly 10/w, = 1 s. It follows from 
the numerical values of Example 1.1 that the oscillation period of the 
pendulum is 2 4 - r  1.84s, so that we have chosen the settling time 
somewhat less than the oscillation period. 

To compute p from w,,, we must know the transfer function H(s) of the 
system from the input force /L to the controlled variable 5. This transfer 
function is given by 

H(s) = 
L'M 

I t  follows with 3-486 that 

With the numerical values of Example 1.1, it can be found that we must 
choose 

= 10-0 mZ/N" 5-35 

to make w, approximately 10 s-'. I t  can be computed that the resulting 
steady-state gain matrix is given by 

while (he closed-loop poles are -9.870 Aj3.861 and -4.085 & j9.329 s-l. 
Figure 5.5 gives the response of the stale feedback control syslem to the 
initial state s(0) = 0, $(0) = 0, $(0) = 0.1 rad (C 69 ,  &(o) = 0. I t  is seen 
that the input force assumes values up to aboul 100 N, the carriage displace- 
ment undergoes an excursion of about 0.3 m, and the maximal pendulum 
displacement is about 0.08 m. 

Assuming that this performance is acceptable, we now proceed to deter- 
mine an observer for the system. Since we have two observed variables, there 
is considerable freedom i n  choosing the observer gain matrix in order to 
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attain a given set of observer poles. To simplify the problem we impose the 
restriction tha_t.the first component of the observed variable (the displace- 
ment) is used only to reconstruct the state of the carriage (i.e., fl and f,), 
and the second component of the observed variable is used only to recon- 
struct the motion of the pendulum (i.e., f, and f4). Thus we assume the 
following structure of the observer: 

Here the gains li,, lc,, k,, and lc, are to be determined. It is easily found that 
with the structure of 5-37 the observer characteristic polynomial is given by 

It is clearly seen that one pair of poles governs the speed of reconstruction 
of the motion of the carriage, and the other that of the pendulum. We now 
choose the gains k, to k, such that both pairs of poles are somewhat further 
away from the origin than the regulator poles obtained above. There is no 
point in choosing the observer poles very far away, since the resulting high 
observer gains will give difficulties in the implementation without improving 
the control system response very much. We thus select both pairs of observer 
poles as 

212-1 & j) s-l. 

The distance of these poles tb the origin is 30 s-l. I t  can be found with the 
numerical values of Example 1.1 that to achieve these observer poles the 
gains must he chosen as 

k, = 41.4, lc, = 35.6, 
5-39 

k, = 859, /en = 767. 
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Figure 5.5 also gives the response of the interconnection of the resulting 
observer with the control law and the pendulum positioning system to 
the same initial conditions as before, with 2(O) = 0. The estimate $(t) of the 
carriage displacement is not shown in the figure since it coincides with the 
actual carriage displacement right from the beginning owing to the special 
set of initial conditions. I t  is seen that the estimate J' + L'$ of the pendulum 
displacements + L'$ very quickly catches up with the correct value. Never- 
theless, because of the slight time lag in the reconstruction process, the 
motion of the output feedback pendulum balancing system is more violent 
than in the state feedback case. From a practical point of view, this control 
system is probably not acceptable because the motion is too violent and the 
system moves well out of the range where the linearization is valid; very 
lilcely the pendulum will topple. A solution can be sought in decreasing p 
so as to damp the motion of the system. An alternative solution is to make 
the observer faster, but this may cause difficulties with noise in the system. 

5.2.2* Conditions for Pole Assignment and Stabilization of Output 
Feedback Control Systems 

I n  this section we state the precise conditions on  the system described by 
5-3 and 5-4 such that there exist an observer 5-6 and a control law 5-7 
that make the closed-loop control system 5-9 asymptotically stable (G. W. 
Johnson, 1969; Potter and VanderVelde, 1969): 

Theorem 5.2. Consider the interconnection of the system 

the observer 

and the control law 
I@)  = -F(t)$(t). 5-42 

Tim s~ificient conditions for the existence of gain nratrices K(t)  and F(t) ,  
t 2 to ,  srfch that the interconnected s ~ ~ s t e m  is exponentiallJJ stable, are that 
the systenr 5-40 be nnijar~n!l, cantpletelJJ controllable and ro~i fDrm~ conrplefe~ 
recor~strztutible or that it be exponenfiallJJ stable. In the tinre-invariant sifrtatian 
(i.e., all rllatrices occuwing in 5-40, 5-41, and 5-42 are constant), necessary 
and sugicient conditions for the existence of stabilizing gain matrices R a n d  F 
are that tlre system 5-40 be bat11 stabilizable and detectable. In the tinre- 
invariant case, necessarji and s~rgicient conditions far arbitrarj, assig~anent of 
both the regrrlafor and the observer poles (within the restriction that cantplex 
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poles occr~r in coniplex conjugate pairs) are flrat the sj!stem be co~~rplefely 
co11tro1Iable and cori1pletel~1 reconstrrtctible. 

The proof of this theorem is based upon Tbeorems 3.1 (Section 3.2.2), 3.2 
(Section 3.2.2), 3.6 (Section 3.4.2), 4.3 (Section 4.2.2), 4.4 (Section 4.2.2), 
and 4.10 (Section 4.4.3). 

5.3 OPTIMAL LINEAR REGULATORS WITH 
INCOMPLETE AND NOISY MEASUREMENTS 

5.3.1 Problem Formulation and Solution 

In this section we formulate the optimal linear regulator problem when the 
observations of the system are irico~nplete and inaccurate, that is, the 
complete state vector cannot be measured, and the measurements that are 
available are noisy. In addition, we assume that the system is subject to 
stochastically varying disturbances. The precise formulation of this problem 
is as follows. 

Definition 5.1. Consider the systeni 

*(I) = A(t)x(t) + B(t)u(f) + II,,(I), f 2 to, 
5-43 

"(fo) = Xo, 

nhere xo is a stochastic vector witlr 1i~a11 Zo and uariance matrix Q,. Tlie 
obserued uariable is give11 by 

y(t) = C(t)x(t) + 11,~(t), 1 2 to. 5-44 

The joint stochastic process col (w,, w,) is a white noise process lcrith inte~isity 

Tlie coritralled variable can be expressed as  

z(t) = D(t)x(t), 12 to. 5-46 

Then the stoclrastic linear aptirnal outpat feedback regulator problenr is the 
proble~i~ ofjinding thefia~ctior~al 

~ ( 0  =f[u(& to I 7 I tl, f o  I f I fl, 5-47 

sr~ch that the criteriori 
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is niininiized. Here R,(t), R2(t) ,  and P, are sy~iinietric i~'eigllting matrices 
s~rclz that R?( f )  > 0, R,(t) > 0, to 2 t t,, and PI 2 0. 

The solution of this problem is, as expected, the combination of the solutions 
of the stochastic optimal regulator problem of Chapter 3 (Theorem 3.9, 
Section 3.6.3) and the optimal reconslruction problem of Chapter 4. This 
rather deep result is known as the separation principle and is stated in the 
following theorem. 

Theorem 5.3. Tlie optimal linear sol~rtiori of the stochastic liriear optimal 
outpr~t feedback regtrlator probleni is the same as the soliition of tlie corre- 
sponding stochastic optimal state feedback reg~rlator proble~i~ (Tlieore~ii 3.9, 
Section 3.6.3) except tlrat in the control lalv the state x( t )  is  replaced ivitlt 
its nii~ii~iiwn iiieari square li~iear estiniator %(t), that is, the inpi,! is choseri as 

rr(t) = -F"(t)%(t), 5-49 

~~dlere Fu(t)  is !lie gain ~iiatrixgiven 611 3-344 and%(!) is the oi~tpirt of the apti~iial 
abseruer deriued in Sectiaris 4.3.2, 4.3.3, a d  4.3.4 for the iiorisingular un- 
correlated, nonsi/igular correlated, arid the si~igrrlar cases, respectively. 

An outline of the proof of this theorem for the nonsingular uncorrelated 
case is given in Section 5.3.3. We remark that the solution as indicated is the 
best liriear solution. It can be proved (Wonham, 1968b, 1970b; Fleming, 1969; 
Kushner, 1967, 1971) that, if the processes I I ~ ~  and I ~ J ,  are Gaussian white 
noise processes and the initial state x, is Gaussian, the optimal linear solution 
is the optimal solution (without qualification). 

Restricting ourselves to the case where the problem of estimating the state 
is noosingular and the state excitationand observationnoises are uncorrelated, 
we now write out in detail the solution to the stochastic linear output feed- 
back regulator problem. For the input we have 

n(t)  = -FU(t).t(t), 5-50 
with 

~ " 1 )  = ~ : ~ ( t ) ~ ~ ' ( t ) ~ ( t ) .  5-51 

Here P(t)  is the solution of the Riccati equation 

-P(t) = o T ( t ) ~ , ( t ) o ( t )  - ~(t)n(t)~;;'(t)n~(t)~(i) 
+ AZ'(t)P(t) + P(t)A(t), 5-52 

P(t,) = PI. 

The estimate *(t)  is obtained as the solution of 

2(t)  = A(t)%(t) + B(t)rr(t) + I(O(t)[y(t) - C(t)%(t)],  
5-53 

?(to) = i tu,  
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where 
KO(t) = Q(t)cT(t)v;l(t). 5-54 

The variance matrix Q(t )  is the solution of the Riccati equation 

a t )  = K(t )  - Q(t)C"(t)r/;'(t)C(t)e(t) + A(oQ(t) + e(r)Az'(t), 
5-55 

ect,) = en. 
Figure 5.6 gives a block diagram of this stochastic optimal output feedback 
control system. 

5.3.2 Evaluation of the Performance of Optimal Output Feedback 
Regulators 

We proceed by analyzing the performance of optimal output feedback 
control systems, still limiting ourselves to the nonsingular case with nu- 
correlated state excitation and observation noises. The interconnection of the 
system 5-43, the optimal observer 5-53, and the control law 5-50 forms a 
system of dimension 2n, where n is the dimension OF the slate z. Let us 
define, as before, the reconstruction error 

It is easily obtained from Eqs. 5-43,5-53, and 5-50 that the augmented vector 
col [e(t), t ( t ) ]  satisfies the differential equation 

with the initial condition 

The reason that we consider col (e ,  t )  is that the variance matrix of this 
augmented vector is relatively easily found, as we shall see. All mean square 
quantities of interest can Uien be obtained from this variance matrix. Let us 
denote the variance matrix of col [e(t), ?(!)I as 
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The differenlid equations for the matrices Q,,, Q,?, and Q,? can be obtained 
by application of Theorem 1.52 (Section 1.11.2). 11 easily follows tliat these 
matrices satisfy the equations: 

Qll(t) = [ 4 t )  - Ku(t)C(t)lQii(t) + Qii(O[A(t) - Kn(t)C(t)lT 

+ VLt) + Ko(f)Vdt)KuT(f), 

Qlz(t) = Qll(t)~Z'(t)KuZ'(t)  + Qlz(t)[A(t) - B ( t ) ~ " t ) ] ~ '  

+ [A(t) - K"(t)C(t)lQ,z(t) - Ku(f)V3(t)ICUT(f). 5-60 

Q,,(t) = @(t)CT(t)KUT(f) + Q?z(I)[A(t) - B(t)F0(t)lZ' + Kn(t)C(t)Qlz(t) 

+ [ ~ ( t )  - B ( O F ~ ( ~ ) I Q ~ , ( ~ )  + K ~ ( ~ ) V L ~ ) K O ~ ( ~ ) ,  

with the initial conditions 

Qil(tu) = Q u ,  oi,(tu) = 0, Qtdtu) = 0. 5-61 

When considering these equations, we immediately note that of course 

Q d t )  = Q(t),  t 2 to. 5-62 

As a result, in the differential equation for Qlz(t) tlie terms Qll ( t )CT( t )~"T( t )  
and -KU(t)Vz(t)KUT(t) cancel because Ko(t) = Q(f)cT(t)V;l(t) .  What is left 
of the equation for Q,,(t) is a homogeneous differential equation in & ( I )  
with the initial condition Qlz(tu) = 0, which of course has the solution 

Q1&) = 0,  t > to. 5-63 

Apparently, e(t)  and fi(t) are uncorrelated stochastic processes. This is why 
we have chosen to work with the joint process col (e, f i) .  Note that e(t) and 
d( t )  are uncorrelated no matter how the input to the plant is chosen. The 
reason for this is that the behavior of the reconstruction error e is independent 
of that of the input u, and the contribution of tlie input I ~ ( T ) ,  to I T I t ,  
to the reconstructed state fi(t) is a known quantity which is subtracted to 
compute the covariance of r ( t )  and fi(t). We use this fact in the proof of the 
separation principle in Section 5.3.3. 

The differential equation for Q2,(f) now simplifies to 

Q z z W  = [Act) - B(t)Fu(t)lQ~z(t) + Qzz(t)IA(t) - B(OFU(OIT 
+ K"t)V2(t)KnT(t), 5-64 

with the initial condition 
Qm(fu) = 0. 5-65 

Once we have computed Q,,(t), the variance matrix of the joint process 
col (e ,  2) is known, and all mean square quantities or integrated mean square 
quantities of interest can be obtained, since 

x( t )  = e(t)  + fi(t). 5-66 
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Thus we can compute the mean square regulation error as 

E { z ~ ( ~ )  w&(t)} = ~{~~(t)D~'(t)~v~(t)D(~)~(t) 
= tr [DT(t)W0(t)D(t)E{z(t)xT(t)}] 5-67 

= tr {DT(t))~(t)D(f)[z(t)zT(f) + Q,,(t) + Q d f I l } ,  
where W,(t) is tlie weighting matrix and Z(t) is the mean of z(t) .  Similarly, 
we can compute the mean square input as 

~{u"( t )W, , ( t )u( t )}  = ~ { 2 ~ ( t ) ~ ~ " ( t ) ~ , , ( t ) ~ ~ ( t ) 2 ( t ) ]  

= tr [~~~(t)l~,(t)F~(t)E{i(t)i~'(t)]] 

= tr { F " ( t , ~ , , ( t ) F ~ ( t ) [ ? t ( t ) ~ ~ ' ( t )  + Q,,(t)]}, 5-68 

where H',,(t) is the weighting matrix of Lhe mean square input. 
I t  follows that in order to compute the optimal regulator gain matrix 

Fo(t),  the optimal filter gain matrix K T ( ) ,  the mean square regulation error, 
and the mean square input one must solve three n x n matrix differential 
equations: the Riccati equation 5-52 to obtain P( t )  and from this FU(t) ,  
the Riccati equation 5-55 to determine Q(t)  and from this Kn(t) ,  and finally 
tlie linear matrix differential equation 5-64 to obtain tlie variance matrix 
Qz3(t) of .^u(t). In the next theorem, however, we state that if the mean square 
regulation error and the mean square input are not required separately, but 
only the value of the criterion a as given by 5-48 is required, then merely the 
basic Riccati equations for P(t)  and Q(t)  need be solved. 

Theorem 5.4. Consider the stochastic regrrlator problem of De$riitiori 5.1. 
Suppose that 

rf2(t) > 0,  T/,,(t) = 0 for aN I .  5-69 

Then tire follo~sir~g facts hold: 
(a) All mean square quantities of interest car1 be obtainedfioni the variance 
matrix diag [Q(t),  Q3?(t)] of col [e(t), t ( t ) ] ,  ~vlrere e(t)  = x( t )  - 3(t) ,  Q(t)  
is tlre variance matrix of e( t ) ,  a d  Q,,(t) can be obtained as tlre solrrtion of tlre 
matrix drflerentiol equation 

&(t) = [A(t)  - B(t)Fu(t)lQ,,(f) + &(t)[A(t)  - B(t)Fn(t)lT 
+ Ko(t)V,(t)Ko2'(t), t 1 ,  5-70 

Q Z & )  = 0. 

(b) The n~inirnal value of the criterion 5-48 can be expresser1 ill the follo~~~irrg 
two alternaliue forills 
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$ = zuZ'~(t ,)z, ,  + tr ~ ( t &  + [ P ( ~ ) T G ( ~ )  + Q ( ~ ) F ~ ~ ( L ) R ? ( ~ ) F ~ ( ~ ) ]  dt . 1 6 '  5-72 1 
Here we have abbreuiated 

x1(t)  = o2 ' ( t )~ , ( t )o ( i ) ,  5-73 

and P(t)  and Q(t)  are the solr~tioris of the Riccali eqttatiolis 5-52 and 5-55, 
respectiuely. 
(c) F~trlhermore, if the optimal obseruer aid  regulator Riccati equations have 
the stead~wtate soliitions Q(t)  aildP(1) as to  -* - co and tl - m, respectively, 
the17 the time-averaged criterion 

a = ~ i m  - ~ [ l : ' p ' ( t ) ~ ~ ( t b ( i )  + ~ i ~ ( t ) ~ ~ ( t ) ~ ~ ( t ) ]  dt , 5-74 
10--m t1 - f a  
11-m 

if it exists, can be expressed in the alternative fouits 

I 

5 = lim - ' t [ [ ( ) ( )  + ( t ) T ( t ) ~ ( l ) ( t ) ]  I .  5-76 
to--m 1, - 1" - " 
1 - m  

Here R ( t )  and E( t )  are the gains corresponding to the stead),-slate solr~tians 
Q(t)  andP(t),  respectiue/y. 
(d) Fiitally, iiz the time-inuariant case, ivliere Q( t )  aild P( t )  and thlrs also 
F(t)  a id  X(t )  are constant matrices, the follo~ving expressions hold: 

c? = E { z ~ ( ~ ) R , z ( ~ )  + tlT(t)R,l~(t)} 

= tr [FXV2RT + QR,] 5-77a 

= tr [FV, + Q F T ~ . J q .  5-77b 
This theorem can be proved as follows. Setting Wo(t)  = R,(t) and M',,(t) = 
R,(t) in 5-67 and 5-68, we write for the criterion 
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Let us separately consider the expression 

where, as we know, Q,,(f)is the solution of the matrix differential equation 

~ , , ( t )  = [A(t) - ~(t)F ' ( f)]Qdt)  + Q=(t)[A(t) - B(t)FU(t)lT 
+ ICU(t)V,(t)KuT(t), 5-80 

Q,,(tu) = 0. 

I t  is not difficult to show (Problem 5.5) that 5-79 can be written in the form 

where S(t) is the solution of the matrix dilferential equation 

Obviously, the solution of this differential equation is 

S(t) = P(t), t I t,. 5-83 

Combining these results, and using the fact that the first two terms of the 
right-hand side of 5-78 can be replaced with ZuT~(to)Zu, we obtain the desired 
expression 5-71 from 5-78. 

The alternative expression 5-72 for the criterion can be obtained by 
substituting 

into 5-71 and integrating by parts. The proofs of parts (c) and (d) of Theorem 
5.4 follow from 5-71 and 5-72 by letting to + - m and tl - m. 

Of course in any practical situation in which t, - to is large, we use the 
steady-state gain matrices X(t) and F(t) even when t, - to is not infinite. 
Particularly, we do so in the time-invariant case, where Xand Fa re  constant. 
From optimal regulator and observer theory and in view of Section 5.2, we 
know that the resulting steady-state ot~tprrt feedback control system is asymp- 
totically stable whenever the corresponding state feedback regulator and 
observer are asymptotically stable. 

Before concluding this section with an example, two remarks are made. 
First, we note that in the time-invariant steady-state case the following lower 
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bounds follow from 5-77a and 5-77b: 

These inequalities can be interpreted as follows. Even if we do not at all 
weight the input z r ,  and thus do not constrain the input amplitude, the 
criterion 5 still cannot be less than tr (QRJ according to 5-85a. This minimum 
contribution to the criterion is caused by the unavoidable inaccuracy in 
reconstructing the state. Similarly, even when no measurement noise is 
present, that is, V ,  approaches zero, the criterion 5 cannot be less then 
t r  (PVJ.  This value is not surprising since it is exactly the value of the criterion 
for the state feedback stochastic regulator (see Theorem 3.9, Section 3.6.3). 

The second remark concerns the locations of the control system poles in 
the time-invariant steady-state case. In Section 5.2 we saw that the control 
system poles consist of the regulator poles and the observer poles. It seems a 
good rule of thumb that the weighting matrices R, and V, be chosen so that 
the regulator poles and the observer poles have distances to the origin of 
roughly the same order of magnitude. I t  seems to be wasteful to have very 
fast regulation when the reconstruction process is slow, and vice versa. In 
particular, when there is a great deal of observation noise as compared to the 
state excitation noise, the observer poles are relatively close to the origin 
and the reconstruction process is slow. When we now make the regulator 
just a little faster than the observer, it is to be expected that the regulator can 
keep up with the observer. A further increase in the speed of the regulator will 
merely increase the mean square input without decreasing the mean square 
regulation error appreciably. On the other hand, when there is very little 
observation noise, the limiting factor in the design will be the permissible 
mean square input. This will constrain the speed of the regulator, and there 
will be very little point in choosing an observer that is very much faster, even 
though the noise conditions would permit it. 

Example 5.3. Position control systeni. 
Let us consider the position control system discussed in many previous 

examples. Its state differential equation is 

Here % ( I )  = col [C1(t), C,(t)], with t l ( t )  the angular position and t,(t) the 
angular velocity of the system. The input variable p(t) is the input voltage. 
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The controlled variable is the position, hence is given by 

((1) = (1, (MI). 5-87 

In Example 3.8 (Section 3.4.1), we solved the deterministic regulator problem 
with the criterion 

I[(f 1) + p i m  i t .  5-88 

With the numerical values 
K = 0.787 rad/(V sP), 

a = 4.6 s-l, 5-89 

p = 0.00002 rad3/V2, 

we found the steady-state feedback gain matrix 

P = (223.6, 18.69). 5-90 

The steady-state solution of the regulator Riccati equation is given by 

The closed-loop 'regulalor poles are -9.66 & j9.09 s-l. From Fig. 3.9 
(Section 3.4.1), we know that the settling time of the system is of the order 
of 0.3 s, while an initial deviation in the position of 0.1 rad causes an input 
voltage with an initial peak value of 25 V. 

In  Example 4.4 (Section 4.3.2), we assumed that the system is disturbed 
by anexternaltorque on the shaft T, (I). This results in the following modifica- 
tion of the state differential equation: 

where l/y is the rotational moment of inertia of the rotating parts. I t  was 
furthermore assumed that the observed variable is given by 

where v,,,(f) represents the observation noise. This expression implies that the 
angular displacement is measured. Under the assumption that r,,(f) and 
?j,,,(t) are adequately represented as uncorrelated white noise processes with 
intensities 

Y, = 10NPm" 5-94 
and 

V,,, = 10-7 radP s, 5-95 
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respectively, we found in Example 4.4 that with 1, = 0.1 kg-' m-9 the steady- 
state optimal observer is given by 

where Lbe steady-state gain matrix is 

The observer poles are -22.48 % $22.24 s-', while the steady-state variance 
matrix is eiven bv 

With 
p(t) = -E<(t), 

the steady-state optimal output feedback controller is described by 

p(t) = -R(t) .  

It follows that 

lim E{i2(t) + pp2(t)} = tr (pRv2Rz' + QR,) = 0.00009080 radz. 5-101 
lo+-m 

From this result we find the following bounds on the steady-state rms tracking 
error and rms input voltage: 

lim Jm < ,/0.00009080 r 0.0095 rad, 5-10% 
lo--m 

lim E{pp2(1)} < 0.00009080 rad', 5-102b 
lo*-m 

so that 

lim < /Te 2.13 V. 5-103 
in--m 

The exact values of the steady-state rms tracking error and rms input voltage 
must be obtained by solving for the steady-state variance matrix of the 
augmented state col [x(t), $(/)I. As outlined in the text (Section 5.3.2), this 
is most efficiently done by first computing the steady-state variance matrix - 
diag (Q,,, &) of col [e ( r ) ,  t ( r ) ] ,  which requires only the solution of an 
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additional 2 x 2 linear matrix equation. I t  can be found that the steady 
state variance matrix fl of col [x(t),  2(t)] is given by 

0.00004562 0 0.00004158 -0.00008145 

= i 0 0.006119 -0.00008145 0.002458 

0.00004158 -0.00008145 0.00004158 -0.00008145 

-0.00008145 0.002458 -0.00008145 0.002458 
5-104 

This yields for the steady-slate mean square tracking error 

so that the rms tracking error is J0.00004562 u 0.00674 rad. We see that 
this is somewhat less than the bound 5-102. Similarly, we obtain for the 
mean square input voltage 

lim E{p5(t)}  = tr [ii (0, F)] = 2.258 Vz, 5-106 
10--m 

so that the rms input voltage is about 1.5 V. I t  depends, of course, on the 
specifications of the system whether or  not this performance is satisfactory. 

I t  is noted that the regulator poles (-9.66 zk j9.09) and the observer 
poles (-22.48 f j22.24) are of the same order of magnitude, which is a 
desirable situation. Had we found that, for example, the observer poles are 
very far away as compared to the regulator poles, we could have moved the 
observer poles closer to the origin without appreciable loss in performance. 

5.3.3* Proof of the Separation Principle 

I n  this section we prove the separation principle as stated in Theorem 5.3 
for the nonsingular uncorrelated case, that is, we assume that the intensity 
V2( t )  of the observation noise is positive-definite and that V,,(t) = 0 on 
[to, t,]. I t  is relatively straightforward to prove that the solution as given is 
the best linear solution of the stochastic linear output feedback regulator 
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Here d( t )  is the minimum mean square linear estimator of x( t )  operating on 
y ( ~ )  and u(T), to < r t .  From optimal observer theory we know that 

E{[x(t)  - d(t)]TRl(t)[x(t)  - d(t)]} = tr [Rl(t)Q(t)l, 5-109 

where Q(t )  is the variance matrix of the reconstruction error x ( f )  - d(t). 
Furthermore, 

E{[x(t)  - S(f)lTR1(t)*(f)} = tr [E{[x( t )  - d(t)]ST(t)}Rl(t)] = 0, 5-110 

since as we have seen in Section 5.3.2 the quantities e( t )  = x( t )  - S(t)  and 
d( t )  are uncorrelated. Thus we find that we can write 

E { x ~ ( ~ ) R I ( ~ ) x ( ~ ) }  = tr [Rl(t)Q(t)l + E{dT(t)Rl(f)2(l)}, 
5-111 

E { X ~ ( ~ I ) P I ~ ~ ~ }  = t r  [PIQ(tl)l + E{jT(tl)Ppi.(fl)}. 

Using 5-111, we write for the criterion 5-48: 

E[J" : ' [~~ i t )n l ( t ) r (a  + ~ ~ ( o n a t ) ~ ~ , , r o l  s + i ~ ~ f i ( t ~ j  

t l  + f r  [ L M t ) Q ( O  + P ~ o ( ~ ~ ) ] .  5-112 

We observe that the last two terms in this expression are independent of the 
control applied to the system. Also from optimal observer theory, we know 
that we can write (since by assumption the reconstruction problem is non- 
singular) 

&) = ~ ( t ) ~ ( t )  + B(t)u(t) + p ( t ) [ y ( t )  - ~ ( t ) f ( t ) ] ,  5-113 

where Ko(t)  is the optimal gain matrix. However, in Section 4.3.6 we found 
that the innovation process y(t)  - C(t)d(t)  is a white noise process with . .  . .  . . 
intensity V,(t). T ? i A h  
th- uT 
p-4- 
M I t  follows from Theorem 3.9 that the optimal linear solution of 
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this state feedback stochastic regulator problem is the linear control law 

where Fo(t) is given by 5-51. 
This terminates the proof of Theorem 5.3 for the case where the recon- 

struction problem is nonsingular and the state excitation and observation 
noises are uncorrelated. The proof can be extended to the singular correlated 
case. 

5.4 LINEAR O P T I M A L  TRACKING S Y S T E M S  W I T H  
I N C O M P L Z T E  A N D  N O I S Y  M E A S U R E M E N T S  

In Section 3.6.2 we considered traclungproblems as special cases of stochastic 
state feedback regulator problems. Necessarily, we found control laws that 
require that both the state of the plant and the state of the reference variable 
are available. In this section we consider a similar problem, but it is assumed 
that only certain linear combinations of the components of the state can be 
measured, which moreover are contaminated with additive noise. We 
furthermore assume that only the reference variable itself can be measured, 
also contaminated with white noise. 

We thus adopt the following model for the reference variable -,(I): 

In this expression II',, is white noise with intensity V,,(r). I t  is furthermore 
assumed that we observe 

%(f) = + ~v,df). 5-117 

Here w,? is wbite noise with intensity VJt). 
The system to be controlled is described by the state differential equation 

where iv, is white noise with intensity Vl(t). The system has the controlled 
variable 

z(t) = D(t)z(r) 5-119 
and the observed variable 

!/(I) = C(t)x(f) + w&). 5-120 

Here IV, is wbite noise with intensity V,(t). We assume that VJf) > 0, 
Vdf) > 0, to I t j tl. 
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To obtain an optimization problem, we consider the criterion 

Here R,(t) > 0, R,(t) > 0, t, 2 t I 1,. The first term of the integrand serves 
to force the controlled variable z(1) to follow the reference variable z,(t), 
while the second term constrains the amplitudes of the input. 

We now phrase the stocliastic optimal tracking problem with incomplete 
and noisy observations as follows. 

Definition 5.2. Consider the sj1ste171 

~ ( f )  = A(t)x(t)  $- B(t)rr(t) + i1',(1), 1 2 to,  5-122 

iihere x(1,) is a stoclrastic variilble ivith mean Z, and variance rnalrir Q,, 
and ill, is isltite noise ivitli inte~lsit~t I',(t). Tlre controllerl variable is 

z(t) = D(t)x(t) ,  5-123 
and the obserued variable is 

?1(t) C(f)x(t)  + I I J , ( ~ ) ,  5-124 

wl~ere I I J ~  is ivliite mise  ivitl~ il~temity & ( I ) ,  IIWI V2(t) > 0, to 2 1 5 tl. 
Corrsiderfiirfher~~~ore the reference uariable 

Here x,(t,) is 0 stocl~astic variable wit11 ?neon if,, and variance matrix Q,,, 
aud II:, is idlite mise ivitlr intensilj~ Vr,(t). Tlre obserued variable for tlre x, 
process is 

?/,(I) = C,(f)~,(f) + l l ' ,m,  5-127 

where lib2 is ivlrite noise isit11 intensitj~ V,,(t) > 0, t ,  5 t < 1,. Tlroi tlrc 
optimal linear tvaeking problenr wit11 incon~plefe and noisj, obsouniions is the 
problem of choosi17g /Ire i ~ p l t  lo /he sj~ste171 5-122 as a f i m t i o ~ ~  of y(r) and 
?I~(T) .  1, I r I 1,  sl~clr that the crilerion 

is inii~in~ized, i1d7er.e R,(t) > 0 and R,(t) > 0 for to t 5 1,. 

To solve the problem we combine tlie reference model and the plant in an 
augmented system. In terms of tlie augmented state ? ( I )  = col [x(t) ,  z,(t)], 
we write 

?(I) = 5-129 
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The observed variable for the augmented system is 

5-130 

For the criterion we write 

E ( ~ > 7 0 d 1 ' ( t ) ~ . ( l ) ~ ( f ) ~ ( t )  + ul'(t)R&)u(/)] 1 , 5-131 

where 
b(t) = [D(f), -D7(l)]. 5-132 

The tracking problem is now in the form of a standard stochastic regulator 
problem and can be solved by application of Theorem 5.3. It follows that we 
can write 

~ ( 1 )  = -Fo(f) (:::). 5-133 

If we assume that all the white noise processes and initial values associated 
with the plant and the reference process are uncorrelated, two separate 
observers can be constructed, one for the state of the plant and one for the 
state of the reference process. Furthermore, we know from Section 3.6.3 
that because of the special structure of the tracking problem we can write 

FYO = [FI(~), -&(l)l, 5-134 
where the partitioning is consistent with the other parlitionings, and where 
the feedback gain matrix F,(f) is completely independent of the properties 
of the reference process. 

Figure 5.7 gives the block diagram of the optimal tracking system, still 
under the assumption that two separate observers can be used. It is seen that 

Pig. 5.7. The slruclure of the optimal tracking system. 
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the feedback link of the controller is completely independent of the properties 
of the reference variable. 

We conclude this section with an examination of the transmission T(s)  
of the system in the steady-state time-invariant case. A simple way to find 
this transfer matrix is as follows. Set x(0) = *(O) = 0,  and assume that the 
system is free of noise. I t  follows that x(t) = * ( I )  for t 2 0. We can thus 
completely omit the plant observer in the computation of T(s) and substitute 
x(t) wherever we find *(I). We thus have the following relations: 

*(t)  = A,*,(t) + X,[y,(t) - C,*Jt)]. 

It  easily follows that 
z ( s )  = T(s)Y,(s), 5-136 

where Z(s)  and Y,(s) are the Laplace transforms of z(t) and y,(t), and where 

T(s) = D(sI - A + Bf,)-'Bf2(sI - A, + R,C,)-l&. 5-137 

In general T(0) does not equal the unit matrix, so that step changes in the 
reference cause a steady-state error. The reason for this is that the present 
control system has not been designed for steps in the reference variable. 
If it is important that the control system have a zero steady-state error to 
constant references, the design method suggested in the next section should 
be adopted. We finally note that in the transmission only the regulator poles 
and the reference observer poles occur, while the plant observer poles have 
been canceled. 

Example 5.4. Position servo 
We return to the by now familiar positioning system. Consider the problem 

of designing a control system such that the angular position tracks a reference 
variable. For the system itselr, the disturbances, and the observation noise 
we use the equations and numerical data of Example 5.3 (Section 5.3.2). We 
model the reference variable as exponentially correlated noise: 

Ut) = E,(t), 5-138 
with 

I 
&(t) = - - E r ( f )  + %~(f) .  t 2 to. 5-139 

0 

Here n;, is scalar white noise with constant intensity V,,. I t  is assumed that 
the reference variable is observed with additive white noise, so that we 
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measure 

vr(o = tr@) + 11~;~(t), 5-140 

where 11:~ has constant intensity V,? and is uncorrelated with wr,. The steady- 
state optimal observer for the reference process is easily computed. It is 
described by 

where 

The optimization criterion is expressed as 

The resulting steady-state control law is given by 

pll and PI have been computed in Example 3.8 (Section 3.4.1), in which we 
obtained the following results: 

Using the results of Section 3.6.3, it can be found that 

Since we now have the reference observer and the regulator gains available, 
we can use 5-137 to calculate the transmission T(s) of the closed-loop tracking 
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system. We obtain 
K - 

We note that the break frequency of the transmission is the least of the break 
frequency of the closed-loop plant and the break frequency of the reference 
observer. The break frequency of the closed-loop plant is w,, where w," = 
K/ &, while the break frequency of the reference observer is 

Which break frequency is the lowest depends upon the "signal-to-noise" 
ratio Vrl/I',, of the reference variable and the value of p,  which in turn is 
determined by the allowable input amplitudes to the plant. Let us first 
consider the erect of T',,/V,?. If the reference variable is accurately measured, 
(i.e., V,? is small) the reference observer break frequency is high and the 
closed-loop feedback system break frequency will prevail. On the other 
hand, if the reference variable is inaccurately measured, the reference 
observer limits the total bandwidth of the system. 

When we next consider the effect of the weighting factor p,  we see that if 
p is small, that is, large input amplitudes are allowed, the closed-loop system 
break frequency is high and the reference observer determines the break 
frequency. Conversely, if p is large, the break frequency is limited by the 
closed-loop plant. 

Let us assume the following numerical values for the reference process: 

This makes the reference variable break frequency 0.2 rad/s, while the 
reference variable rms value is 1 rad. Let us furthermore assume that the 
reference variable measurement noise it;? is exponentially correlated noise 
with rms value 0.181 rad and time constant 0.025 s. This makes the break 
frequency of the reference variable measurement noise 40 rad/s. Since this 
break frequency is quite high as compared Lo 0.2 rad/s, we approximate the 
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measurement noise as white noise with density 

V,, = 2(0.1)30.081G = 0.001636 rad2/s. 5-150 

With the numericalvalues 5-149 and 5-150, we find for the reference observer 
break frequency the value 

Since the break frequency of the reference observer is less than the break 
frequency of 40 rad/s of the reference measurement noise, we conclude that it 
is justified to approximate this measurement noise as white noise. 

We finally must determine the most suitable value of the weighting factor 
p. In order to do this, we evaluate the control law for various values of p 
and compute the corresponding rms tracking errors and rms input voltages. 
Omitting the disturbing torque T, and the system measurement noise r ,  
we write for the system equations 

7 7 J O  = Uf) + 1v,,(t). 
Combining all these relations we obtain the augmented differential equation 

+ X,w,,(t) . 5-153 \ 1vrdt) 
From this equation we can set up and solve the steady-state variance matrix 
of the augmented state col [x(f), &(f), &(t ) ] ,  and from this the steady-state 
rms tracking error and rms input voltage can be computed. Of course we can 
also use the technique of Section 5.3.2. Table 5.1 lists the results for de- 
creasing values of the weighting coefficient p. Note that the contributions 
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of the reference excitation noise II,, and the reference measurement noise 
II:, are given separately, together with their total contribution. 

If the maximally allowable input voltage is about 100 V, the weighting 
coefficient p should certainly not be chosen less than 0.00001; for this value 
the rms input voltage is nearly 50 V. The corresponding rms tracking error is 
about 0.27 rad, which is still quite a large value as compared to the rms value 
of the reference variable of 1 rad. If this rms value is too large, the require- 
ments on the reference variable bandwidth must be lowered. I t  should be 
remarked, however, that the values obtained for the rms tracking error and 
the rms Input are probably larger than the actual values encountered, since 
modelling stochastic processes by exponentially correlated noise usually leads 
to power spectral density functions that decrease much slower with increasing 
frequency than actual density functions. 

For p = 0.00001 it can be computed from 5-152 that the zero-frequency 
transmission is given by T(0)  = 0.8338. This means that the proposed 
control system shows a considerable steady-state error when subjected to a 
constant reference variable. This phenomenon occurs, first, because exponen- 
tially correlated noise has relatively much of its power at high frequencies 
and, second, because the term that weights the input in the optimization 
criterion tends to keep the input small, at  the expense of the tracking accu- 
racy. In the following section we discuss how tracking systems with a zero 
steady-state error can be obtained. 

The rms values given in Table 5.1 do not include the contributions of the 
system disturbances and observation errors. Our findings in Example 5.3 
suggest, however, that these contributions are negligible as compared to  
those of the reference variable. 

5.5 REGULATORS AND TRACKING S Y S T E M S  
W I T H  N O N Z E R O  S E T  P O I N T S  AND 
C O N S T A N T  DISTURBANCES 

5.5.1 Nonzero Set Points 

As we saw in Chapter 2, sometimes it is important to design tracking systems 
that show a zero steady-state error response to constant values of the reference 
variable. The design method of the preceding section can never produce such 
tracking systems, since the term in the optimization criterion that weights 
the input always forces the input to a smaller value, at the expense of a 
nonzero tracking error. For small weights on the input, the steady-state 
tracking error decreases, but it never disappears completely. In  this section 
we approach the problem of obtaining a zero steady-state tracking error, 



Table 5.1 The Effect of the Weighting Factor p on the Performnnce of the Position Servo System 

Contribution 
of reference 
variable to 

rms tracking 
error 

P (tad) 

0.1 0.8720 
0.01 0.6884 
0.001 0.4942 
0.0001 0.3524 
0.00001 0.2596 

Contribution 
of reference 

measurement 
noise to rms 

tracking error 
( 1 4  

0.0038 
0.0125 
0.0280 
0.0472 
0.0664 

Total rms 
tracking error 

(Tad) 

0.8720 
0,6885 
0.4950 
0.3556 
0.2680 

Contribution 
of reference 
variable to 
rms input 

voltage 
(v) 

Contribution 
of reference 

measurement 
noise to rms 
input voltage 
0 

Total rms 
input voltage 

(v) 
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as in Section 3.7.1, from the point of view of a variable set point. Consider 
the system 

with tlie controlled variable 
z( t )  = o x ( / ) .  5-155 

In Section 3.7.1 we derived the nonzero set point optimal control law 

F is the steady-state gain matrix for the criterion 

1; [zT(t)R3z(/) + ~ ! ~ ( t ) R + ( l ) ]  dt, 5-157 

while H,(s) is the closed-loop transfer matrix 

I t  is assumed that tlie dimension of 11 equals that of z, and that the open-loop 
transfer matrix H(s)  = D(sI - A)-lB has no zeroes at the origin. These 
assumptions guarantee the existence of H,-'(O). Finally, z, is the set point 
for the controlled variable. The control law 5-156 causes tlie control system 
to reach the set point optimally from any initial state, and to make an optimal 
transition to tlie new set point whenever z, changes. 

Let us now consider a stocliastic version of the nonzero set point regulator 
problem. We assume that the plant is described by 

where II', is white noise. The controlled variable again is 

but we introduce an observed variable 

where I!,, is also white noise. Suppose that tlie set point z, for tlie controlled 
variable of this system is accurately known. Then the nonzero set point 
steady-state optimal controller for this system obviously is 

where X i s  the steady-state optimal observer gain and where F and HJs)  
are as given before. If no state excitation noise and observation noise are 
present, tlie controlled variable will eventually approach z, as t increases. 
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The control law is optimal in the sense that (lie steady-stale value of 

~{z'(t)R,z(t) + n1'(t)R2tr(t)} 5-163 

is minimized, where z and ir are talcen relalive to their set points. When the 
set point changes, an optimal transition lo the new set point is made. 

The controller described by 5-162 may give quite good results when the 
set point z,, is a slowly varying quantity. Unsatisfactory results may be 
oblamed when the set point occasionally undergoes step changes. This may 
result in the input having too large a transient, necessitating reduction in the 
loop gain of the system. This in turn deteriorates the disturbance suppression 
properties of the system. This difficulty can be remedied by interpreting quick 
changes in the set point as "noise." Thus we write the control law 5-162 
in the form 

tr(t) =: -l%(t) + Hd(O)i,(t), 5-164 

where i,(t) is the estimated set point. The observed set point, r(t), is rep- 
resented as 

l i t )  = zn(t) + ll'dt), 5-165 

where 11: is white nose and e, is the actual set point. In order to determine 
I,(t) (compare Example 4.3, Section 4.3.2, on the estimation of a constant), 
we model z, as 

i&) = w&), 5-166 

where I!,, is another white noise process. The steady-state optimal observer 
for the set point will be of the form 

id0 = R O W  - ;o(t)l, 5-167 

where R, is the appropriate steady-state observer gain matrix. 
The controller defined by 5-164 and 5-167 has the property that, i fno noise 

is present and the observed set point r(t) is constant, the controlled variable 
will in the steady state precisely equal r(t). This follows from 5-167, since in 
the steady state i,(t) = r(t) so that in 5-164 So@) is replaced with r(t), which 
in turn causes t(t) to assume the value r(t). It  is seen that in the case where 
r, z,, u, and z are scalar theprefilter (see Rg. 5.8) defined by 5-164 and El67 
is nothing but a first-order filter. I n  the multidimensional case a generaliza- 
tion of this first-order filter is obtained. When the components of the un- 
correlated white noise processes iv, and 118, are assumed to be uncorrelated 
as well, it is easily seen that I?, is diagonal, so that the prefilter consists 
simply of a parallel bank of scalar first-order filters. It  is suggested that the 
time constants of these filters be determined on the basis of the desired 
response to steps in the components of the reference variable and in relation 
to likely step sizes and permissible input amplitudes. 



5.5 Nonzero Set Points and Constant Disturbnnccs 413 
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Fig. 5.8. Nonzero set point optimal controller wilh set point observer. 

Example 5.5. The positioni~tg system 
In Example 5.3 (Section 5.3.2), we found a zero set point optimal controller 

for the positioning system. Let us determine the corresponding nonzero set 
point control system. We first determine the nonzero set point optimal 
control law. I t  follows from Example 3.8 (Section 3.4.1) that the closed-loop 
transfer function H&) is given by 

Consequently, the nonzero set point control law 5-164 is 

where $( t )  is the estimated set point. Let us design for step changes in the 
observed set point. The observer 5-167 for the set point is of the form 

where r ( t )  is the reference variable and k, a scalar gain factor. Using the 
numerical values of Example 5.3, we give in Fig. 5.9 the responses of the 
nonzero set point control system defined by 5-169 and 5-170 to a step of 1 
rad in the reference variable r ( t )  for various values of the gain lc,. Assuming 
that an input voltage of up to 100 V is tolerable, we see that a suitable value 
of li, is about 20 s-l. The corresponding time constant of the prefilter is 
llk, = 0.05 s. 
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input 
v o 1 t o t  

Fig. 5.9. Responses of the position control system as nonzero set point control system 
to a step in the set point of 1 rod for various values of the prefilter gain ko. 

5.5.2* Constant Disturbances 

In the preceding section we discussed nonzero set point regulators. In the 
present section the question of constant disturbances is investigated, which is 
somewhat similar to the nonzero set point problem. The approach presented 
in this section is somewhat different from that in Section 3.7.2. As in Section 
3.7.2, however, controllers with integrating action will be obtained. 

Constant disturbances frequently occur in control problems. Often they 
are caused by inaccuracies in determining consistent nominal values of the 
input, the state, and the controlled variable. These disturbances can usually 
be represented through an additional constant forcing term v, in the state 
differential equation as follows: 

5(f) = Ax(f) + Bu(t) + u,. 5-171 

As in the preceding section, we limit our discussion to the time-invariant 
case. For the controlled variable we write 

Let us assume, for the time being, that the complete state x(t) can be 
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observed at  all times. Then we can consider the control law 

a(/) = -I'.z(t) + tc,, 5-173 

where I' is a gain matrix selected according to some quadratic optimization 
criterion of the usual form and where the constant vector rc, is to be chosen 
such that in steady-state conditions the contribution of the constant dis- 
turbance v, to the controlled variable : is canceled. 

With the control law 5-173. the closed-loop system equations are 

i ( t )  = (A - BE)x(t) + Bu, + u,, 
5-174 

z(t) = Dx(t). 

Since the closed-loop system will be assumed to be asymptotically stable, the 
controlled variable eventually approaches a constant value, which is easily 
seen to be given by 

Here we have abbreviated 

X = A - B F .  

Does there exist a rr, such that the steady-slate value of z(t) as given by 
5-175 is zero? As in the nonzero set point problem, three cases must be 
distinguished: 

(a) The di~imlsion of z is greater t l ~a r~  that of 11: In this case the vector 
equation 

represents more equations than there are variables, wl~icll means that in 
general no solution exists. This is the case where it  is attempted to control 
the variable z(r) with an input u ( t )  of smaller dimension and too few degrees 
of freedom are available. 

(b) Tlre dimensions of u and z are the same: In this case 5-177 can be solved 
for u, as follows: 

Here HJs) is the closed-loop transfer matrix 

As we know from Theorem 3.10 (Section 3.7), the inverse of H,(O) exists if 
the open-loop system transfer matrix D(sI - A)-'B has no zeroes a t  the 
origin. 
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(c) Tlre rliriierisiori of z is less than that of 11: In this case there are too many 
degrees of freedom and the dimension of z can be increased by adding com- 
ponents to the controlled variable. 

In case (b), where dim (z) = dim (u), the control law 

I I (~)  = - ~ x ( t )  - H;~(o)D(-x)-)-'u, 5-180 
has the property tbat constant disturbances are compensated in an optimal 
manner. This control law, which has been given by Eltlund (1969), will be 
referred to as the zero-stea+-state-error optirrml control lam. As we have 
seen, it exists when dim (z) = dim (u) and the open-loop system has no 
zeroes at the origin. 

Let us now suppose that in addition to u, fluctuating disturbances act upon 
the system as well, and tbat the system state can only be incompletely and 
inaccurately observed. We thus replace the state dimerential equation with 

i ( t )  = Ax(t) + Bu(f) + u, + iv,(t), 5-181 

where u, is the constant disturbance and iv, white noise with intensity V1. 
Furthermore, we assume that we have for the observed variable 

y(t) = Cx(t) + iv3(t), 5-182 

where iv2 is white noise with intensity K2. 
In this situation the control law 5-180 must be replaced by 

a(t) = -Ft(t) - Hd(0)D(-A)-l&l, 5-183 

where &(t) and 8, are the minimum mean square estimates of x(t) and u,. 
An optimal observer can be obtained by modeling the constant disturbance 
through 

do(/) = 0. 5-184 

The resulting steadj~-stale optimal observer, however, will have a zero gain 
matrix for updating the estimate of u,, since according to the model 5-184 
the value of u, never changes (compare Example 4.3, Section 4.3.2, concern- 
ing the estimation of a constant). Since in practice u, varies slowly, or 
occasionally changes value, it is better to model u, through 

g l )  = I!,,,@), 5-185 

where the intensity V ,  of the white noise i~, ,  is so chosen that the increase in 
the fluctuations of u, reflects the likely variations in the slowly varying 
disturbance. When this model is used, the resulting steady-state optimal 
observer continues to track u,(t) and is of the form 
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The control system that results from combining this observer with the 
control law 5-183 has the property that in the absence of other disturbances 
and observation noise the constant disturbance is always compensated so 
that a zero steady-state regulation or tracking error results (Eklund, 1969). 
As expected, this is achieved by "integrating action" of the controller (see 
Problem 2.3). The procedure of this section enables us to introduce this 
integrating action and at the same time improve the transient response of the 
control system and the suppression of fluctuating disturbances. The procedure 
is equally easily applied to multivariable as to single-input single-output 
systems. 

It is not difficult to see that the procedure of this section can he combined 
with that of Section 5.5.1 when encountering tracking or regulating systems 
subject to nonzero set points as well as constant disturbances, by choosing 
the input as 

a(/) = -&(t) - Hd(0)D(-x)-lilo + H2(0)4,. 5-187 

Here &, is either the estimated set point and can be obtained as described in 
Section 5.5.1, or is the actual set point. 

We remark that often is it is possible to trace hack the constant disturb- 
ances to one or two sources. In such a case we can replace u, with 

where G is a given matrix and ul a constant disturbance of a smaller dimen- 
sion than v,. By modeling ul as integrated white noise, the dimension of the 
observer can be considerably decreased in this manner. 

Example 5.6. Integral corttr.ol of the positiorlirlg sjlsteni 
In this example we devise an integral control system for the positioning 

system. We assume that a constant disturbance can enter into the system in 
the form of a constant torque T, on the shaft in addition to a disturbing 
torquer, which varies quickly. Thus we modify the state di5erential equation 
5-92 of Example 5.3 (Section 5.3.2) to 

As in Example 5.3, we represent the variable part of the disturbing torque 
as white noise with intensity V,i. 

It is easily seen from 5-189 that the zero-steady-state-error optimal control 
law is given by 
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where P i s  an appropriate steady-state optimal feedback gain matrix, and +,, 
is an estimate of T,,, 

To obtain an observer we model the constant part of the disturbance as 

where the white noise is, has intensity T',. As in Example 5.3, the observed 
variable is given by 

~ ( 1 )  = ( 1 , O ) m  + %@)a 5-192 

where v,, is white noise with intensity V,,,. The steady-state optimal observer 
thus has the form 

where the scalar gains h,, h,, and I?, follow from the steady-state solution of 
the appropriate observer Riccati equation. With the numerical values of 
Example 5.3, and with the additional numerical value 

V, = GO N" ms s-l, 5-194 

it follows that these gains are given by 

h, = 42.74, h, = 913.2, h, = 24495. 5-195 

The assumption 5-194 implies that the rms value of the increment of T, 

during a period of 1 s is Jzri 7.75 Nm. This torque is equivalent to an 

ongulor  
displacement 

I 0.005 

I 
Irodl 

0 
0 1 2 
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U 

Pig. 5.10. Response o l  the zero steady-state error position control system to a constant 
torque of 10 N m on the shafl. 



input voltage of nearly 1 V. The observer poles corresponding to  the gains 
5-195 are -22.44 & j22.27 and -2.450 s-l. 

By substituting the control law 5-190 into the observer equations 5-193, 
it is easily found that the controller has a pole at the origin, hence exhibit 
integrating action, as expected. For Fwe choose the steady-state optimal gain 
matrix 5-90 derived in Example 5.3. The corresponding regulator poles are 
-9.66 f j9.09 s-l. In  Fig. 5.10 we give the response of the control system 
from zero initial conditions to a constant disturbance T, = 10 Nm. It is 
seen that the maximum deviation of the angular displacement caused by this 
constant torque is not more than about 0.008 sad. 

5.6' SENSITIVITY OF TIME-INVARIANT OPTIMAL 
LINEAR OUTPUT FEEDBACK CONTROL 
SYSTEMS 

In  Chapter 3, Section 3.9, we saw that time-invariant linear optimal state 
feedback systems are insensitive to disturbances and parameter variations 
in the sense that the return difference matrix J(s), obtained by opening the 
feedback loop at the state, satisfies an inequality of the form 

JT(-jw)WJ(jo) 2 C V ,  for all real o ,  5-196 

where W is the weighting matrix F T ~ ? F .  
In this section we see that optimal output feedback systems generally do 

not possess such a property, although il can be closely approximated. 
Consider the time-invariant system 

where 111, is white noise with constant intensity Vl. The observed variable is 
given by 

y(t) = Cx(t) + w?(t), 5-198 

where 1v2 is white noise uncorrelated with 115 with constant intensity V,. 
The controlled variable is 

z(t) = Dx(/), 5-199 

while the optimization criterion is specified as 

with R, and R? symmelric, constant, positive-definite weighting matrices. 
To simplify the analysis, we assume that the controlled variable is also the 

observed variable (apart from the observation noise), that is, C = D. Then 
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Fig. 5.11. Simplified output feedback control configuration. 

t 

we can schematically represent the control configuration as in Fig. 5.11, 
where observer and control law have been combined into the controller. 
Let us now considerthe steady-state controller that results by letting 1, - - m 
and I ,  -> m. Then the steady-state observer is described by 

U l t i  - 

where R is the steady-state observer g$n matrix. Laplace transrormation of 
5-201 and solution for the transform X(s) of $(I) yields 

pton t  

where U(s)  and Y ( s )  are the Laplace transforms of u ( f )  and ~ ( f ) ,  respectively. 
All initial conditions are assumed to be zero. For the input we have in terms 
of Laplace transforms 

A 

U(s )  = -EX(s), 5-203 

contro l ler  

where E is the steady-state feedback gain matrix. Substitution of 5-203 into 
5-202 and solution for U(s )  yields 

U(s)  = - G(s)Y (s),  5-204 
where 

G(s) = [I + F(sI - A + KD)-lB]-lE(sI - A + RD)-IR. 5-205 

We now consider the return difference matrix 

for the control system, where 
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is the plant transfer matrix. Generally, there does not exist a nonnegative- 
definite weighting matrix PY such that an inequality of the form 

is satisfied for all real frequencies w .  Indeed, it can easily be proved (see 
Problem 5.6) that in the single-input single-output case 5-208 is neuer satisfied 
for all w when W > 0. Of course the inequality 5-208 must hold in some useful 
frequency range, adapted to the frequency band of the disturbances acting 
upon the plant, since it follows from the optimality of the controller that the 
specific disturbances for which the control system has been designed are 
attenuated. 

We now prove, however, that under certain conditions satisfaction of 
5-208 for all frequencies can be obtained asymptotically. Consider the 
algebraic Riccati equation 

which must he solved to obtain the regulation gain F = RFIBTF. Suppose 
that 

R2 = pN, 5-210 

where p is a positive scalar and N a positive-definite matrix. Then it follows 
from Theorem 3.14 (Section 3.8.3) that if dim (2)  = dim ( t t ) ,  and the open- 
loop transfer matrix H(s) = D(sI - A)-'B has zeroes with nonpositive 
real parts only, as p 1 0 the desired solution P of 5-209 approaches the zero 
matrix. This implies that 

lim p F T ~ F  = D ~ R , D .  
,>I0 

Now the general solution of the matrix equation xTA' = MrM, where X 
and M have equal dimensions, can be written in the form X = UM, where U 
is an arbitrary unitary matrix, that is, U satisfies UTU = I. We therefore 
conclude from 5-212 that as p 1 0 the gain matrix Fasymptotically behaves as 

As a result, 



422 Optimal Linenr Output Fccdbnck Control Systems 

as p 1 0.  It  is not difficult to prove that 

With this it follows for the return difference matrix J(s) of the configuration 
of Fig. 5.11 that as R3 -> 0 

J(s)  -+ J&), 5-216 
where 

Jo(s) = I + D(sI - A)-'I?. 5-217 

We now derive an inequality for the asymptotic return difference matrix J,(s). 
The steady-state variance matrix Q satisfies the algebraic Riccati equation 

0 = IT, - Q D ~ V Y ' D Q  + AD + OAT, 5-218 

assuming that the state excitation noise and observation noise are un- 
correlated, that K2 > 0, and that the Riccati differential equation possesses a 
steady-state solution. We can now go through manipulations very similar to 
those in Section 3.9, where we dealt with the sensitivity of the state 
feedback regulator. Addition and subtraction of SO and rearrangement yield 

Premultiplication by D(sI - A)+ and postmultiplication by (-ST - A ~ ) - ' D ~  
give 

By adding and subtracting an extra term V2,  this expression can be rearranged 
into the form 

[I + D(sI - A)-1QDTIf;']V2[I + V;'DD(-sI - AT)-IDT] 
= If3 + D(sI - A ) - l ~ l ( - s ~  - A',)-'DT. 5-221 

Since QD~v,-' = R we immediately recognize that this expression implies 
the equality 

J, (s)v~J,~(-s)  = V, + D(SI - A)"I:(-SI - A ~ ) - ' D ~ .  5-222 

Substituting s = jw we see that the second term on the right-hand side is a 
nonnegative-definite Hermitian matrix; thus we have 

J,(jr~)T/lJ,~(-jcu) 2 V2 for all real w. 5-223 

It  follows from Theorem 2.2 (Section 2.10) that 

S , T ( - j o ) ~ f ; l ~ , ( j w )  < V2-' for a real w, 5-224 



where S,,(s) is the asymptotic sensitivity matrix: 

S,(s) = J;'(s). 
We also have 

JoT(-jw)V;l~,,(jw) 2 I/;'. 

We thus have tlie following result (Kwakernaak, 1969). 
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5-225 

Theorem 5.5. Consider the steadptate time-intiariarut stochastic opti~ural 
o~itput feedback regullator. Suppose that the observed variable is also the 
controlled variable, that is, 

y ( t )  = Dx(t)  + ~s,(t), 
5-226 

z(t)  = Dx(t). 

Also a s s m e  that the state excitation noise ~v,(t) and the observation noise 
w2(t) are iaucorrelated, that the obseruation problem is nonsirugltlar, that is, 
V ,  > 0,  and that the steadjwtote output feedback regudator is osjrnptoticolly 
stable. Tl~eru if dim (u) = &it (z), arud the open-loop trar~sfer niotrix H(s)  = 
D(s1- A)-'B possesses no right-half plane zeroes, the return difjrence 
matrix of the closed-loop system asy~iiptaticalljr approaclues .I&) as R, --t 0 ,  
wl~ere 

Jll(s) = I + D(s1 - A)-lX. 5-227 

R is the stead],-state obseruer gait: malris. Tlie asyntptotic return d$ererice 
matrix satisfes the relation 

Jo(s)~',J,T(-s) = V, + D(sI - A)-'V,(-sl - Ax')-IDT. 5-228 

The asjtnptotic return d~%ference morris J,(s) and its i~uuerse, the asyrulptotic 
serrsitiuitjr niotrix S,,(s) = J,-'(s), s a t i f i  the i~~egu~alities 

J e ( j o ) ~ J n p ( - j o )  2 I/? for all real w, 

~ ~ ~ ' ( - j w ) V ; ~ S , ( j w )  5 V;' for all real w, 5-229 

JOT(-jw)V;'J,(jw) 2 V;' for all real w. 

This theorem shows that asymptotically the sensitivity matrix of the output 
feedback regulator system satisfies an inequality of the form 5-196, which 
means that in the asymptotic control system disturbances are always reduced 
as compared to the open-loop steady-state equivalent control system no 
matter whal the power spectral density matrix of the disturbances. I t  also 
means that the asymptotic control syslem reduces the effect of all (sufficiently 
small) plant variations as compared to the open-loop steady-state equivalent 
The following points are worth noting: 

(i) The weighting malrix in the sensilivity criterion is 15-I. This is not 
surprising. Let us assume for simplicity that V z  is diagonal. Then if one of the 
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diagonal elements of VE is small, the corresponding component of the 
observed variable can be accurately measured, which means that the gain in 
the corresponding feedback loop can be allowed to be large. This will have a 
favorable effect on the suppression of disturbances and plant variations at 
this output, which in turn is reflected by a large weighting coefficient in the 
sensitivity criterion. 

(ii) The theorem is not valid for systems that possess open-loop zeroes 
in the right-half plane. 

(iii) In  practical cases i t  is never possible to choose R? very small. This 
means that the sensitivity criterion is violated over a certain frequency range. 
Examples show that this is usually the case in the high-frequency region. I t  is 
to be expected that the sensitivity reduction is not spoiled too badly when 
R? is chosen so small that the faraway regulator poles are much further away 
from the origin than the observer poles. 

(iv) The right-hand side of 5-228 can be evaluated directly without 
solving Riccati equations. I t  can be used to determine the behavior of the 
return difference matrix, in particular in the single-input single-output case. 

(v) I t  can be shown (Kwakernaak, 1969), that a result similar to Theorem 
5.5 holds when 

that is, y(t) ir~clzrcfes the controlled variable z(t). 

Example 5.7. Positiorz corihol syslerii 
Again we consider the positioning system described by the state direrential 

Here ~ , ~ ( t )  is white noise with intensity Vd.  The observed variable is 

where ~ j , , , ( f )  is white noise with intensity V,,,. The controlled variable is 

The system satisfies the assumptions of Theorem 5.5, since the controlled 
variable is the observed variable, the slate excitation and observation noise 
are assumed to be uncorrelated, and the open-loop transfer function, 
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possesses no right-half plane zeroes. To compute the asymptotic return 
difference J&), we evaluate 5-228, which easily yields 

Substitution of s = jw provides us with the relation 

which shows that ISo(jw)l < 1 for all real w.  

Fig. 5.12. Asymptotic Bode plots of the sensitivity function of the position control system 
for p = 0 and p = 0.5 x lo-'. 

Figure 5.12 gives an asymptotic Bode plot of lS(jw)l which shows that the 
limiting controller provides protection against all disturbances and param- 
etervariations up to a frequency of about (yV,JV,,,)"< With the numerical 
values 

y = 0.1 kg1 m-2, 
V,  = 10N3m3s,  5-238 

V ,  = 10-7 radg s, 

this break frequency is about 31.6 rad/s. 
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The frequency range over which disturbance protection is obtained is 
reduced when the weighting factor p in the criterion 

is chosen greater than zero. It is reasonable to assume that the disturbance 
reduction is not affected so long as the regulator break frequency is much 
larger than the observer break frequency. Since the regulator break frequency 
(Example 5.3, Section 5.3.2) is (K/&)"", we conclude that with K = 0.787 
rad/(Vs2) the value of p should be 0.5 x 10-a or less (for this value of p 
the regulator break frequency is 33.4 rad/s). I t  can be computed, using 
Theorem 5.4 (Section 5.3.2), that with this value of p we have 

lim E{Cz(t) + pt?(t)} = 0.00001906 rad'. 5-240 
1-m 

I t  follows that the rms input voltage is bounded by 

wliich is quite an acceptable value when input amplitudes of up to 100 V are 
permissible. It can be calculated that the sensitivity function of the steady- 
state controller for this value of p is given by 

The asymptotic Bode plot of IS(jo)( is given in Fig. 5.12 as well and is 
compared to the plot for p = 0. I t  is seen that the disturbance attenuation 
cutofffrequency is shined from about 30 lo about20 rad/s, while disturbances 
in the frequency range near 30 rad/s are slightly amplified instead of atten- 
uated. By making p smaller than 0.5 x the asymptotic sensitivity 
function can be more closely approximated. 

Using the methods of Section 5.5.1, it is easy to determine the nonzero set 
point optimal controller for this system. Figure 5.13 gives the response of the 
resulting nonzero set point output feedback control system to a step of 
0.1 rad in the set point of the angular position, from zero initial conditions, 
for the nominal parameter values, and for two sets of off-nominal values. 
As in Example 3.25 (Section 3.9), the off-nominal values of the plant con- 
stants a and K are assumed to be caused by changes in the inertial load of Uie 
dc motor. I t  is seen that the effect of the parameter changes is moderate. 
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Fig. 5.13. The eKecl of parameter variations on the response of the output reedback 
control system. (0)  Nominal load; ( b )  inertial load 3 of nominal; (c) inertial lood 

% - of nominal. 

5.7* LINEAR O P T I M A L  OUTPUT FEEDBACK 
C O N T R O L L E R S  O F  R E D U C E D  D I M E N S I O N S  

In Section 5.3.1 we obtained the solution of the stochastic linear optimal 
output feedback regulator problem. It  is immediately clear thal the dimension 
of the controller by itself equals the dimension of the plant, since the optimal 
observer has the dimension of the plant. This may be a severe drawhackof the 
design methods suggested, since in some cases a controller of much lower 
dimension would render quite satisfactory, although not optimal, perfor- 
mance. Moreover, the dimension of the mathematical model of a system is a 
number that very much depends on the accuracy of the model. The model 
may incorporate some marginal effects that drastically increase the dimension 
of the model without much improvement in the accuracy of the model. 
When this is the case, there seems to be no reason why the dimension of the 
controller should also be increased. 

Motivated by the fact that the complexity and cost of the controller 
increase with its dimension, we inlend to investigate in this section methods 
for obtaining controllers of lower dimensions lhan those prescribed by the 
methods of Section 5.3. One obvious way to approach the problem of 
designing controllers of low dimension is to describe the plant by a cruder 
mathematical model, of lower dimension. Methods are available (see e.g., 
Mitra, 1967; Chenand Shieh, 1968b; Davison, 1968a; Aoki, 1968; Kuppura- 
julu and Elangovan, 1970; Fossard, 1970; Cliidanibara and Schainker, 1971) 
for reducing the dimension of the model while retaining only the "significant 
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modes" of the model. In this case the methods of Section 5.3 result in con- 
trollers of lower dimension. There are instances, however, in which it is 
not easy to achieve a reduction of the dimension of the plant. There are also 
situations where dimension reduction by neglecting the "parasitic" effects 
leads to the design of a controller that makes the actual control system un- 
stable (Sannuti and KokotoviC, 1969). 

Our approach to the problem of designing low-dimensional controllers is 
therefore as follows. We use mathematical models for the systems which are 
as accurate as possible, without hesitating to include marginal effects that 
may or may not have significance. However we limit the dimension of the 
controller to some fixed number nl, less than n, where rl is the dimension of 
the plant model. In fact, we attempt to select the smallest 111 that still produces 
a satisfactory control system. We feel that this method is more dependable 
than that of reducing the dimension of the plant. This approach was origin- 
ally suggested by Newton, Gould, and Kaiser (1957), and was further 
pursued by Sage and Eisenherg (1966), Sims and Melsa (1970), Johnson 
and Athans (1970), and others. 

5.7.2* Controllers of Reduced Dimensions 

Consider the system described by the equations 

where, as usual, x(t) is an n-dimensional state vector, u(t) is a k-dimensional 
input variable, ?/(I) is an [-dimensional observed variable, and iv, and la, 

are white noise processes. The joint process col (ivl, w,) has the intensity V(t). 
I t  is furthermore assumed that the initial state xu is a stochastic vector, 
uncorrelated with iv, and it8,, with mean Z, and variance matrix Q,. 

We now consider a controller for the system given above described by 

where q is the m-dimensional state vector of the controller. The observed 
variable y serves as input to the controller, and the input to the plant rr is the 
output of the controller. I t  is noted that we do not allow a direct link in the 
controller. The reason is that a direct link causes the white observation noise 
w, to penetrate directly into the input variable ir, which results in indnite 
input amplitudes since white noise has infinite amplitudes. 

We are now in a position to formulate the linear optimal output feedback 
control problem for controllers of reduced dimensions (Kwakernaak and 
Sivan, 1971a): 
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Definition 5.3. Consider the sjwtem 5-243 with the statistical data giuen. 
Then the optimal orrtprrt feedback control problem for a controller of reduced 
dimension is tofirtd, for a giuen integer m, with 1 < nl < n, and a giuenjnal 
time t,, matrix ftrnctions L(t) ,  K(t),  and F(t), to < t < t,, and tl~eprobabilify 
distribution of go, so as to mi~limize u,,,, wllere 

11 

a", = 611 [xT(t)R1(t)x(t) + ~ ~ ( t ) R i 0 1 1 ( 0 1  111 I 5-245 

Here R,(t) and R,(t), t ,  < t < t,, are giuelin nlatrices, nominegative-defirlite 
ondpositiue-definite, respectiuely, for all t .  

In  the special case in which nr = 11, the solution to this prohlem follows from 
Theorem 5.3 which states that F(t) and K(t) in 5-244 are the optimal regulator 
and observer gains, respectively, and 

L(t)  = A(t)  - B(t)F(t) - K(t)C(t). 5-246 

I t  is easy to recognize that u,,, m = I , ? , .  . . , forms a monotonically 
nonincreasing sequence of numbers, that is, 

since an in-dimensional controller is a special case of an (nr + 1)-dimensional 
controller. Also, for m 2 n the value of u,,, no longer decreases, since we 
know from Theorem 5.3 that the optimal controller (without restriction on 
its dimension) has the dimension n; thus we have 

One way to approach the prohlem of Definition 5.3 is to convert it to a 
deterministic dynamic optimization prohlem. This can be done as follows. 
Let us combine the plant equation 5-243 with the controller equation 5-244. 
The control system is then described by the augmented state differential 
equation 

We now introduce the second-order joint moment matrix 



130 Optimal Linear Output Pccdbnelc Control Systems 

I t  follows from Theorem 1.52 (Section 1.1 1.2) that S(t) is the solution of the 
matrix differential equation 

Using thematrix function S(t), the criterion 5-245 can be rewritten in the form 

where S,,(t) and S,,(t) are the n x 11 and 111 x III diagonal blocks of S(t), 
respectively. 

The problem of delermining the optimal behaviors of the matrix functions 
L(t), F(t), and K(t) and the probability distribution of go has now been 
reduced to the problem of choosing these matrix functions and So such that 
a,,, as given by 5-253 is minimized, where the matrix function S(t) follows 
from 5-251. Application of dynamic optimization techniques to this problem 
(Sims and Melsa, 1970) results in a two-point boundary value problem for 
nonlinear matrix differenlial equations; this problem can be quite formidable 
from a computational point of view. 

In order to simplify the problem, we now confine ourselves to time- 
invariant systems and formulate a steady-state version of the problem that 
is numerically more tractable and, moreover, is more easily implemented. 
Let us thus assume that the matrices A ,  5, C, I/, R,, and R, are constant. 
Furthermore, we also restrict the choice of controller to time-invariant 
controllers with constant matrices L, K, and F. Assuming that the inter- 
connection of plant and controller is asymptotically stable, the limit 

5," = lim E{xT(t)R,x(f) + rrT(f)R,tr(f)} 5-254 
I,,--m 

will exist. As before, the subscript 111 refers to the dimension of the controller. 
We now consider the problem of choosing the constant matrices L, K. and F 
(of prescribed dimensions) such that ri,,, is minimized. 

As before, we can argue that 

The minimal value that can ever be obtained is achieved for 111 = 11, since 
as we know from Theorem 5.4 (Section 5.3.2) the criterion 5-254 is minimized 
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by the interconnection of the steady-state optimal observer with the steady- 
state oplimal control law. 

The problem of minimizing 5-254 with respect to L, K, and F can be 
converted into a mathematical programming problem as follows. Since by 
assumption the closed-loop control system is asymptotically stable, that is, 
the constant matrix M has all its characteristic values strictly within the left- 
half complex plane, as to  - - m the variance matrix S(1) of the augmented 
state approaches a constant steady-state value S that is the unique solution 
of the linear matrix equation 

Also, 5," can be expressed as 

where S,, and S2? are the 11 x 11 and 111 x 111 diagonal blocks of 3, respectively. 
Tlius the problem of solving the steady-slate version of the linear time- 

invariant optimal feedback control problem for controllers of reduced 
dimension is reduced to determining conslant matrices L, K, and F of 
prescribed dimensions that minimize 

and satisfy the constraints 

(ii) Re [Ai(M)] < 0, i = 1 , 7 , . . . , 11 + 111. 5-259b 

Here the A,(M), i = I,', . . . ,it + in, denote the characteristic values of the 
matrix M, and Re stands for "the real part of." 

I t  is noted that the problem of finding time-varying matrices L(f), K(r), 
and F(t), t ,  < f 2 t,, that minimize the criterion u,, always has a solution as 
long as the matrix A(() is continuous, and all other matrices occurring in the 
problem formulation are piecewise continuous. The steady-state version of 
the problem, however, thal is, the problem of minimizing 5", wit11 respect 
to the constant matrices L. K, and F, has a solution only if for the given 
dimension in of the controller there exist matrices L, K, and F such that the 
compound matrix M is asymplotically stable. For nl = n necessary and 
suficient conditions on the matrices A, B, and C so that there exist matrices 
L, K, and Fthalrender M asymptotically stable are that {A, B) be stabilizable 
and {A, C} detectable (Section 5.2.2). For in < 11 such conditions are not 
known, although it is known what is the leas1 dimension of the controller 
such that all closed-loop poles can be arbitrarily assigned (see, e.g., Brash 
and Pearson, 1970). 
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In the following subsection some guidelines for the numerical determina- 
tion of the matrices L, K, and F a r e  given. We conclude this section with a 
note on the selection of the proper dimension of the controller. Assume that 
for given R, and R? the optimization problem has been solved for nl = 
1,2, . . . , n, and that ii,, C,, . . . , s,, have been computed. Is it really mean- 
ingful to compare the values of s,, s,, . . . , &, and thus decide upon the 
most desirable of nl as the number that gives a sufficiently small value of 
ii,,? The answer is that this is probably not meaningful since the designs 
all have ditTerent mean square inputs. The maximally allowable mean square 
input, however, is aprescribed number, which is not related to the complexity 
of the controller selected. Therefore, a more meaningful comparison results 
when for each nl the weighting matrix R, is so adjusted that the maximally 
allowable mean square input is obtained. This can be achieved by letting 

where p,,, is a positive scalar and R,, a positive-definite weighting matrix 
which determines the relative importance of the components of the input. 
Then we rephrase our problem as follows. For given 171, R,, and R?,, minimize 
the criterion 

a,, = tr (S,R, + p , , ,S2 ,~T~ , ,~ ) ,  5-261 

with respect to the constant matrices L, K,  and F, subject to the constraints 
(i) and (ii), where p,,, is so chosen that 

equals the given maximally allowable mean square input. 

5.7.3' Numerical Determination of Optimal Controllers of 
Reduced Dimensions 

In this section some results are given that are useful in obtaining an efficient 
computer program for the solution of the steady-state version of the linear 
time-invariant optimal output feedback control problem for a controller of 
reduced dimension as outlined in the preceding subsection. In particular, we 
describe a method for computing the gradient of the objective function 
(in this case 5,") with respect to the unknown parameters (in this case the 
entries of the matrices L, K, and F). This gradient can be used in any standard 
function minimization algorithm employing gradients, such as the conjugate 
gradient method or the Powell-Fletcher technique [see, e.g., Pierre (1969) 
or Beveridge and Schechter (1970) for extensive reviews of unconstrained 
optimization methods]. 

Gradient methods are particularly useful for solving the present function 
minimization problem, since the gradient can easily be computed, as we 
shall see. Moreover, meeting constraint (ii), which expresses that the control 
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system be asymptotically stable, is quite simple when care is taken to choose 
the starting values of L, K, and F such that (ii) is satisfied, and we move with 
sufficiently small steps along the searchdirectionsprescribed. This is because as 
the boundary of the region where the control system is stable is approached, 
the criterion becomes infinite, and this provides a natural barrier against 
moving out of the stability region. 

A remark on the representation of the controller is in order a t  this point. 
Clearly, the value of the criterion Z,, is determined only by the external 
representation of the controller, that is, its transfer matrix F(sl- L)-'K, or, 
equivalently, its impulse response matrix F exp [ L ( t  - T)]K. I t  is well-known 
that for a given external representation many inrer~ial representations (in the 
form of a state diRerential equation together with an output equation) 
are possible. Therefore, when the optimization problem is set up starting 
from an internal representation of the controller, as we prefer to do, and all 
the entries of the matrices L, K, and F a r e  taken as free parameters, the 
minimizing values of L, K, and Fare  not at all unique. This may give numer- 
ical difficulties. Moreover, the dimension of the function minimization prob- 
lem is unnecessarily increased. These difficulties can be overcome by choosing 
a canonical representation of the controller equations. For example, when the 
controller is a single-input system, the phase canonical form of the state 
equations (see Section 1.9) has the minimal number of free parameters. 
Similarly, when the controller is a single-output system, the dual phase 
canonical form (see also Section 1.9) has the minimal number of free param- 
eters. For multiinput multioutput systems related canonical forms can be 
used (Bucy and Ackermann, 1970). I t  is noted, however, that considerable 
reduction in the number of free parameters can often be achieved by imposing 
structural constraints on the controller, for example, by blocking certain 
feedback paths that can be expected to be of minor significance. 

We discuss finally the evaluation of the gradient of 5 ,  with respect to the 
entries of L, K, and F. Let y be one of the free parameters. Then introducing 
the matrix 

the gradient of Z,,, with respect to y can be written as 

Furthermore, taking the partial derivative of 5-259n with respect to the 
same parameter we find that 
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At this point it is convenient to introduce a linear matrix equation which is 
adjoint to 5-259a and is given by 

Using the fact that for any matrices A ,  B, and C of compatible dimensions 
tr (AB) = tr (BA) and tr (C) = tr (Cz'), we write with the aid of 5-265 
and 5-266 for 5-264 

Thus in order to compute the gradient of the objective function a,,, with 
respect to y ,  one of the free parameters, the two linear matrix equations 
5-259a and 2-266 must be solved for Sand  0, respectively, and the resulting 
values must be inserted into 5-267. When a diKerent parameter is considered, 
the bulk of the computational effort, which consists of solving the two 
matrix equations, need not be repeated. In Section 1.11.3 we discussed 
numerical methods for solving linear matrix equations of the type at hand. 

Example 5.8. Position control system 
In this example we design a position control system with a constraint on 

the dimension of the controller. The system to be controlled is the dc motor 
of Example 5.3 (Section 5.3.2), which is described by the state differential 
and observed variable equations 

?Kt) = (1, O)x(t) + ?~"L(f), 
where T,, and v,,, are described as white noise processes with intensities Vd 
and V,,,, respectively. As in Example 5.3, we choose the criterion to be 
minimized as 

where c(t) = (I, O)x(t) is the controlled variable. As we saw in Example 5.3, 
the optimal controller without limitations on its dimension is of dimension 
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two. The only possible controller without a direct link of smaller dimension 
is a first-order controller, described by the scalar equations 

Here we have taken the coefficient of q( t )  equal lo 1 ,  without loss of generalily. 
The problem to be solved thus is: Find the constants 8 and E that minimize 
the criterion 5-269. 

In  Example 5.3 we used the following numerical values: 

For p = 0.00002 rad3/V2 we found an optimal controller characterized by 
the data in the first column of Table 5.2. 

Table 5.2 A Comparison of the Performances of the Position Control System 
with Controllers of Dimensions One and Two 

Second-order First-order First-order 
optimal controller optimal controllcr optimal controller 
with p = 0.00002 with p = 0.00002 with rms input 1.5 V 

Rms input voltage 
w) 1.5 1.77 1.5 

Rms regulating 
error (rad) 0.00674 0.00947 0.0106 

Closed-loop poles -9.66 f j9.09 -400 -350 
w l )  -22.48 ij22.24 -2.13 i j 1 1 . 3  -2.15 f j9.91 

I t  is noL difficult to find the parameters of the first-order controller 5-270 
that minimize the criterion 5-269. In the present case explicit expressions for 
the rms regulating error and input voltage can be found. Numerical or 
analytical evaluation of the optimal parameter values for p = 0.00002 
rad3/V leads to 

6 = -400 s-', E = 6.75 x 10" V/(rad s). 5-272 

The performance of the resulting controller is listed in the second column of 
Table 5.2. I t  is observed that this controller results in an rms input voltage 
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that is larger than that for the second-order optimal controller. By slightly 
increasing p a first-order controller is obtained with the same rms input 
voltage as the second-order controller. The third column of Table 5.2 gives 
the performance of this controller. I t  is characterized by the parameters 

S = -350 s-', E = 4.65 X 10' V/(rad s). 5-273 

A comparison of the data of Table 5.2 shows that the first-order optimal 
controller has an rms regulating error that is about 1.5 times that of the 
second-order controller. Whether or not this is acceptable depends on the 
system specifications. We note that the locations of the dominating closed- 
loop poles at -2.15 + j9.92 of the reduced-order control system are not at 
all close to the locations of the dominant poles at -9.66 + j9.09 of the 
second-order system. Finally, we observe that the first-order controller 
transfer function is 

This controller has a very large bandwidth. Unless the bandwidth of the 
observation noise (which we approximated as white noise hut in practice 
has a limited bandwidth) is larger than the bandwidth of the controller, the 
controller may as well be replaced with a constant gain of 

This suggests, however, that the optimization procedure probably should he 
repeated, representing the observation noise with its proper bandwidth, and 
searching for a zero-order controller (consisting of a constant gain). 

5.8 CONCLUSIONS 

In  this final chapter on the design of continuous-time optimal linear feedback 
systems, we have seen how the results of the preceding chapters can be 
combined to yield optimal output feedback control systems. We have also 
analyzed the properties of such systems. Table 5.3 summarizes the main 
properties and characteristics of linear optimal output feedback control 
system designs of full order. Almost all o r  the items listed can be considered 
favorable features except the last two. 

We first discuss the aspects of digital computation. Linear optimal control 
system design usually requires the use of a digital computer, but this hardly 
constitutes an objection because of the widespread availability of computing 
facilities. In  fact, the need for digital computation can be converted into an 
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Table 5.3 Characteristics of Linear Optimal Output Feedback Control System 
Designs 

Design characteristic 

Characteristic judged 
favorable (+), 

indifferent (n), or 
unfavorable (-) 

Stability is guaranteed 

A good response from initial conditions and to a 
reference variable can be obtained 

Information about the closed-loop poles is available 
The input amplitude or, equivalently, the loop gain, is 

easily controlled 

Good protection against disturbances can be obtained 

Adequate protection against observation noise can be 
obtained 

The control system offers protection against plant 
variations 

Digital computation is usually necessary for control 
system design 

The control system may turn out to be rather complex 

advantage, since it is possible to develop computer programs that largely 
automate the control system design procedure and at  the same time produce 
a great deal of detailed information about the proposed design. Table 5.4 
lists several subroutines that could be contained in a computer program 
package for the design and analysis of time-invariant, continuous-time linear 
optimal control systems. Apart from the subroutines listed, such a package 
should contain programs for coordinating the subroutines and handling 
the data. 

The last item in the list of Table 5.3, concerning the complexity of linear 
output feedback controllers, raises a substantial objection. I n  Section 5.7 
we discussed methods for obtaining controllers of reduced complexity. A t  
present, too little experience with such design methods is available, however, 
to conclude that this approach solves the complexity problem. 

Altogether, the perspective that linear optimal control theory offers for 
the solution of real, everyday, complex linear control problems is very 
favorable. I t  truly appears that this theory is a worthy successor to tradi- 
tional control theory. 
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Table 5.4 Computer Subroutines for a Linear Optimal Control System Design 
and Analysis Package 

For discussion and 
Subroutine task references see 

Computation of the exponential of a matrix Section 1.3.2 

Simulation of a time-invariant linear system Section 1.3.2 

Computation of the transfer matrix and characteristic 
values of a linear time-invariant system Section 1.5.1 

Computation of the zeroes of a square transfer matrix Section 1.5.3 

Simulation of a linear time-invariant system driven by 
white noise Section 1.11.2 

Solution of the linear matrix equation 
MIX + XM? = M, Section 1.1 1.3 

Solution of the algebraic Riccati equation and 
computation of the corresponding closed-loop 
regulator or observer poles Section 3.5 

Numerical determination of an optimal controller of 
reduced dimension Section 5.7.3 

5.9 PROBLEMS 

5.1. Angular velocity regulafiorl system 
Consider the angular velocity system described by the state differential 
equation 

&(t) = -aE(t)  + rcp(t) + ii~,(t). 5-276 

Here 5 is the angular velocity, 16 the driving voltage, and the disturbance iv, 
is represented as white noise with intensity N. The controlled variable is the 
angular velocity: 

5 ( t )  = 5( t ) .  5-277 

The observed variable is also the angular velocity: 

q ( t )  = Rf) + ilk(t), 5-278 

where iv, is represented as  white noise with intensity M. The  following 
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numerical values are assumed: 

a. = 0.5 s-l, 

K = 150 rad/(Vs3), 
N = 600 ra@/ss, 

5-279 

M = 0.5 ra@/s. 

Suppose that the angular velocity system is to be made into a regulator 
system, which keeps the angular velocity at a constant value. Determine the 
optimal output feedback regulator such that the rms input is 10 V. Compute 
the rms regulating error and compare this to the rms regulating error when 
no control is applied. 

5.2. A~~gular  uelocity tracking systeni 
Suppose that the system of Problem 5.1 is to be made into an angular 

velocity tracking system. For the reference variable we assume exponentially 
correlated noise with time constant 0 and rms value u. Furthermore, we 
assume that the reference variable is measured with additive white noise with 
intensity M,. Compute the optimal tracking system. Assume the numerical 
values 

O = l s ,  

a = 30 rad/s, 5-280 

M,  = 0.8 rad3/sx 

Determine the optimal tracking system such that the total rms input is 10 V. 
Compute the total rms tracking error and compare this to the rms value of 
the reference variable. 

5.3. Nonzero set pohlt a~igt~lar uelocity co1trro1 system 
The tracking system of Problem 5.2 does not have the property that a 

constant value of the reference variable causes a zero steady-state tracking 
error. To obtain such a controller, design a nonzero set point controller as 
suggested in Section 5.5.1. For the state feedbacklaw, choose the one obtained 
in Problem 5.1. Choose the prefilter such that a step of 30 rad/s in the 
reference variable causes a peak input voltage of 10 V or less. Compare the 
resulting design to that of Problem 5.2. 

5.4.* Integral co~~trol  of the angular velocity regt~lating syste~n 
Consider the angular velocity control system as described in Problem 5.1. 

Suppose that in addit~on to the time-varying disturbance represented by 
118~(t) there is also a constant disturbance u,(t) operating upon the dc motor, 
so that the state differential equation takes the form 

$(I) = -v.t(t) + ~ p ( 1 )  + Wl(t) + uO(f). 5-281 
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The observed variable is given by 5-278, while the numerical values 5-279 are 
assumed. The controlled variable is given by 5-277. Design for the present 
situation a zero-steady-state-error controller as described in Section 5.5.2. 
To this end, assume that u,(t) is represented as integrated white noise and 
choose the intensity of this white noise as 250 rad2/sn. Compute the response 
of the resulting integral control system to a step of 50 rad/s3 in the constant 
disturbance u, from steady-state conditions and comment on this response. 
What is the effect of increasing or decreasing the assumed white noise intensity 
of 250 rad2/s3? 

5.5.* Adjoint matrix dr~erentiol equatiorts 
Consider the matrix differential equation 

ew = ~ ( t ) ~ ( t )  + Q(~)A=I~) + Rw,  at,,) = Q,, 5-282 

together with the linear functional 

Prove that 5-283 equals 

tr [L)(t)~(t) dt + p(b)~n] ,  5-284 

where P(t) is the solution of &e adjoint matrix difkential equation 

5.6.* A property of scalar se~lsitiuityfrrr~ctio~~s 
In Section 5.6 we remarked that optimal linear output feedback systems 

generally do not possess the property that disturbances are attenuated at all 
frequencies as compared to the equivalent open-loop system. For single- 
input single-output systems this follows from the following theorem (Bode, 
1945; Westcott, 1952). 

Consider a single-input single-output linear time-invariant system with 
transfer function H(s). Let the controller transfer function (see Fig. 5.14) 
be given by G(s) so that the control system loop gain function is 

and the sensitivity function is 

Let v denote the difference of the degree of the denominator of L(s) and that 
of its numerator. Assume that the control system is asymptotically stable. 
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u 
Fig. 5.14. A time-invariant linear feedback syslem. 

f m for v = 0, 
m S. In [IS(jw)l] do = 5-288 

for v 2 2, 
where 

71 = lim sL(s). 5-289 
8-m 

Prove this result. Conclude that for plants and controllers without direct 
links the inequality 

Is(jw)l I1 5-290 

cannot hold for all w. Hint: Integrate In[S(s)] along a contour that consists 
of part of the imaginary axis closed with a semicircle in the right-half complex 
s-plane and let the radius of the semicircle go to infinity. 


	Title
	Preface
	Acknowledgements
	Contents
	Notation and Symbols
	Chapter 1: Elements of Linear System Theory
	Chapter 2: Analysis of Linear Control Systems
	Chapter 3: Linear Optimal State Feedback Control Systems
	Chapter 4: Optimal Linear Reconstruction of the State
	Chapter 5 - Optimal Linear Output Feedback Control Systems

	5.1 Introduction

	5.2 The Regulation of Linear Systems with Incomplete Measurements

	5.3 Optimal Linear Regulators with Incomplete and Noisy Measurements

	5.4 Linear Optimal Tracking Systems with Incomplete and Noisy Measurements

	5.5 Regulators and Tracking Systems with Nonzero Set Points and Constant Disturbances

	5.6 Sensitivity of Time-Invariant Optimal Linear Output Feedback Control Systems

	5.7 Linear Optimal Output Feedback Controllers of Reduced Dimensions

	5.8 Conclusions

	5.9 Problems


	Chapter 6: Linear Optimal Control Theory of Discrete-Time Systems
	References
	Author Index
	Subject Index

