4 OPTIMAL LINEAR
RECONSTRUCTION
OF THE STATE

41 INTRODUCTION

All the versions of the regulator and tracking problems solved in Chapter 3
have the following basic assumption in common: the complete state vector
can be measured accuratefy. This assumption is often unrealistic. The most
frequent situation is that for a given system

, @) = A=) + B(Ou(), 2ty = %, 41
only certain linear combinations of the state, denoted by y, can be measured:
y(1) = C{O=(N. 4-2

The quantity y, which is assumed to be an /-dimensional vector, with /
usually less than the dimension # of the state =, will be referred to as the
observed variable.

The purpose of this chapter is to present methods of reconstructing the
state vector, or finding approximations to the state vector, from the observed
variable. In particular, we wish to find a functional F,

()= Fly(r), s L 7 < 1], <, 4-3
such that 2'(f) ~ =(t), where ='(t) represents the reconstructed state. Here f,
is the initial {ime of the observations. Note that Fy(r), f, £ 7 < ], the
reconstructed x(r), is a function of the past observations y(7), f{, L7 < 1,
and does not depend upon future observations, y(r), = > t. Once the state
vector has been reconstructed, we shall be able to vse the control laws of
Chapter 3, which assume knowledge of the complete state vector, by re-
placing the acruaf state with the reconstructed state.

In Section 4.2 we introduce the observer, which is a dynamic system whose
output approaches, as time increases, the state that must be reconstructed.
Although this approach does not explicitly take into account the difficulties
that arise because of the presence of noise, it seeks methods of recon-
structing the state that jmplicitly invelve a certain degree of filtering of the
noise.

328
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In Section 4.3 we introduce all the stochastic phenomena associated with
the problem explicitly and quantitatively and find the optimal observer,
also referred to as the Kalman-Bucy filter. The derivation of the optimal
observer is based upon the fact that the optimal observer problem is “dual™
te the optimal regulator problem presented in Chapter 3.

Finally, in Section 4.4 the steady-state and asymptotic properties of the
Kalman-Bucy filter are studied. These results are easily obtained from
optimal regulator theory using the duality of the optimal regulator and
observer problems.

4.2 OBSERYERS

4.2.1 Full-Order Observers

In order to reconstruct the state 2 ol the system 4-1 from the observed
variable y as given by 4-2, we propose a linear differential system the output
of which is to be an approximation to the state a in a suitable sense. It will
be investigated what structure this sysiem should have and how it should
behave. We first introduce the following terminolegy (Luenberger, 1966).

Definition 4.1. The system
(1) = F(g(r) + GOy (1) + H(Nu(D),

2(1) = K(Dq(0) + Ly (®) + MDu(o), e
is an obsevver for the system
&(1) = A(x(r) + B(Ou(t), 45

y(1r) = C(N=x(1),

if for every initial state x(ty) of the system 4-5 there exists an initial state q, for
the system 4-4 such that
g{ty) = g 4-6
implies
2(8) = z(1), > ty, 4-7
Jorall u(f), t = #.

We note that the observer 4-4 has the system input « and the system observed
variable y as inputs, and as output the variable z. We are mainly interested in
observers of a special type where the state g(t) of the observer itself is to be
an approximation to the system state (f):

Definition 4.2. The n-dimensional system

#(1) = FINE(E) + GOV + HOu() 4-8
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is a _full-order pbserver for the n-dimensional sysiem

(1) = ANz() + B(Hu(), 4-9n
y(t) = C(t)=(1), 4-9h
if
8(t) = w{ty) 410
implies
(1) = =(1), P>ty 411

Jorallu(f), £ > 1.

The observer 4-8 is called a full-order observer since its state £ has the same
dimension as the state z of the system 4-9. In Section 4.2.3 we consider
observers of the type 4-4 whose dimension is less than that of the state .
Such observers will be called reduced-order observers.

We now investigate what conditions the matrices F, &, and H must
satisfy so that 4-8 qualifies as an observer. We first state the result.

Theorem 4.1. The system 4-8 is an observer for the system 4-9 if, and only if,
F(1) = A() — K()C(),
G(t) = K@), 4-12
H(t) = B(1),

where K(1) is an arbitrary time-varying matrix. As a result, full-order observers
have the following structure:

£(1) = AN + BOu(t) + Ky () — C)E()]. 4-13

This theorem can be proved as follows. By subtracting 4-8 from 4-9a and
using 4-9b, the lollowing differential equation for =(t) — £(¢) is obtained:
B() — 4(1) = [A()) — GOICH() — FOE) + [BE) — HO(r).

4-14

This immediately shows that z(t) = £(f) for t > #,, for all u(®), t > t,,

implies 4-12. Conversely, if 4-12 is satisfied, it follows that
() — £(1) = [A(1) — KOCOI() — £, 415

which shows that if =(7;) = £(z;) then =() = £(¢) for all t > ¢#,, for all
u(t), t > 1. This concludes the proof of the theorem.

The structure 4-13 follows by substituting 4-12 into 4-8. Therefore, a
full-order observer (see Fig. 4.1) consists simply of a model of the system
with as extra driving variable a term that is proportional to the difference
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Fig. 4.1. Block diagram of a full-order observer.

y(t) — (1), where
9 = C@E() 4-16

is the observed variable as reconstructed by the observer. We call the matrix
K(t) the gain matrix of the observer. Up to this point the choice of K(¢) for
t > 1, is still arbitrary,

From 4-13 we see that the observer can also be represented as

#(t) = [A(t) — KE)COIE) + B(u(r) + K@)y (@). 4-17

This shows that the stability of the observer is determined by the behavior of
A(t) — K(t)C(z). Of course stability of the observer is a desirable property
in itself, but the following result shows that stability of the observer has
further implications.

Theorem 4.2, Consider the observer
8(1) = AWEE) + BOu(r) + KO() — COO] 418
Jor the system
(1) = A@D=(t) + B(Ou(t),
y(t) = C(f)x(z).

Then the reconstruction error
e(t) = =z(t) — £() ' 420

4-19
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satisfies the differential equation

é(t) = [A{t) — K(H)C(O]e(D). 4-21
The reconstruction ervor lhas the property that
e(t)y— 0 as { — o, 4-22

Jor all e(ty), if, and only if, the observer is asymptotically stable.

That the reconstruction error, as defined by 4-20, satisfies the differential

equation 4-21 immediately follows from 4-15. Comparing 4-21 and 4-17, we

see that the stability of the observer and the asymptotic behavior of the

reconstruction error are both determined by the behavior of the matrix

A(t)y — K(H)C(f). This clearly shows that the reconstruction error e(#)

approaches zero, irrespective of its initial value, if and only if the observer is '
asymptotically stable. This is a very desirable result.

Observer design thus revolves about determining the gain matrix K(¢) for
t > 1, such that the reconstruction error differential equation 4-21 is asymp-
totically stable. In the time-invariant case, where all matrices occurring in
the problem formulation are constant, including the gain K, the stability of
the observer follows from the locations of the characteristic values of the
matrix 4 — KC. We refer to the characteristic values of 4 — KC as the
abserver poles. In the next section we prove that, under a mildly restrictive
condition (complete reconstructibility of the system), all observer poles can
be arbitrarily located in the complex plane by choosing K suitably (within
the restriction that complex poles occur in complex conjugate pairs).

At this point we can only offer seme intuitive guidelines for a choice of
K to obtain satisfactory performance of the observer. To obtain fast een-
vergence of the reconstruclion error to zero, K should be chosen so that the
obsetver poles are quite deep in the left-half complex pfane. This, however,
generally must be achieved by making the gain matrix K large, which in
turn makes the observer very sensitive to any observation noise that may be
present, added to the observed variable y(¢). A compromise must be found.
Section 4.3 is devoted to the problem of finding an optimal compromise,
taking into account all the staltistical aspects of the problem.

Example 4.1. Positianing system
In Example 2.4 (Section 2.3), we considered a positioning system described
by the state differential equation

0 1 0
#(1) = (0 ~ ):z:(t) + ( ),u(r). 4-23

Here (f) = col [£,(1), £x(7)], where &,(f) denotes the angular displacement
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and £,(f) the angular veiocity. Let us assume that the observed variable »(f)
is the angular displacement, that is,

) = (1, O=().

A time-invariant observer for this system is piven by

. 0 1 0 ey
&) = ( )i‘(!) + ( )#(f) + ( )[??(l‘) — (1, D)EB], 4-24
0 —« I k,

where the constant gains &, and k. are to be selected. The characteristic
polynomial of the observer is given by

s 0 g 1 Iy 5+ K —1
det ) — - (1, 0)} = det
0 s 0 —c ky ks 5+ a
=5+ (o ks + k. 4-25

With the numerical values of Example 2.4, the characteristic values of the
system 4-23 are located at U and —« = —4.657%. In order to make ihe
observer fast as compared to the system itself, let us select the gains /&, and k,
such that the observer poles are located at —50 4 j50s~% This yields for
the gains:

ky =95405", ky=4361s5" 4-26

In Fig. 4.2 we compare the ouiput of the observer to the actual response of
the system. The initial conditions of the positioning system are

() = 0.1 rad, £q(0) = 0.5 rad/s, 4-27
,. reconstructed
angutar f \<,
position

gin 8
octual

(rod)

0 01 0.2 \ 03 4 — o (5)

Fig. 4.2. Actual response of a positioning system and the response as reconstructed by a
full-order observer.
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while the input voltage is given by
u(y=—10V, >0 4-28

The observer has zero initial conditions. Figure 4.2 clearly shows the excellent
convergence of the reconstructed angular position to its actual behavior.

4.2.2* Conditions for Pole Assignment and Stabilization of Observers

In this section we state necessary and sufficient conditions for pole assign-
ment and stabilization of time-invariant full-order observers. We first have
the following result, which is dual to Theorem 3.1 (Section 3.2.2).

Theorem 4.3. Consider the time-invariant full-order observer
£(1) = A#(t) + K[y(t) ~ CE)] + Bu(t) 4-29
Jor the time-invariant systent
#&(t) = A=(t) + Bu(1),
y(t) = Cx(f).

Then the abserver poles, that is, the characteristic values of A — KC, can be
arbitrarily locafed in the complex plane (within the restriction that complex
characteristic values occur in complex conjugate pairs), by choosing the constant
matrix K suitably, if and only if the system 4-30 is completely reconsiructible.

4-30

To prove this theorem we note that
det [Ml — (A — KC)] = det [A] — (47 — CTKT)], 4-31

so that the characteristic values of A — KC are identical to those of AT —
CTKT. However, by Theorem 3.1 the characteristic values of 47 — CTKT
can be arbitrarily located by choosing K appropriately if and only if the pair
{47, €™} is completely controllable. From Theorem 1.41 (Section 1.8), we
know that {47, C™} is completely controllable if and only if {4, C} is
completely reconstructible. This completes the proof.

If {4, C} is not completely reconstructible, the following theorem, which
is dual to Theorem 3.2 (Section 3.2.2) gives conditions for the stability of the
observer.

Theorem 4.4, Consider the time-invariant observer
£(f) = AS(1) + K[y(t) — CH(1)] + Bu(f) 4-32

for the time-invariant system
(1) = A=(t) + Bu(t),

y(t) = Cx(t). 33
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Then a matrix K can be found such that the observer is asymptotically stable if
and only if the systen: 4-33 is detectable.

Detectability was defined in Section 1.7.4. The proof of this theorem follows
by duality from Theorem 3.2,

4.2.3* Reduced-Order Observers

In this section we show that it is possible to find observers of dimension Jess
than the dimension of the systemn to be observed. Such observers are called
reduced-order observers. For simplicity we discuss only the time-invariant
case. Let the system to be observed be described by

() = Ax(t) + Bu(r),

y(£) = Ca(2), 434

where the dimension of the state z(¢) is # and the dimension of the observed
variable y(f) is given by /. Since the observation equation y(f) = Cx(t)
provides us with / linear equations in the unknown state x(f), it is necessary
to reconstruct only # — /linear combinations of the components of the state.
This approach was first considered by Luenberger (1964, 1966), We follow
the derivation of Cumming (1969).
Assuming that C has full rank, we introduce an (n — /)-dimensional
vector p(f),
Py = C'z(), 4-35

C
) 4-36
Cf

4

sucl that

is nonsingular. By the relations
y(t) = Ca(1),

pt) = C'=(t), 37
it follows that
-] 1
o(6) = ( C) (J(‘)). 438
'/ o\p®
It is convenient to write
C' -1
( ) = (L, L), 4-39
CI
so that
z(t) = Lyy() + Lop(t). 4-40

Thus if we reconstruct p(f) and denote the reconstructed value by f(t), we
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can write the reconstructed state as
() = Liy(t) + Lyp(D). 441

An observer for p(f) can be found by noting that p(r) obeys the following
differential equation
Pty = C'Az(t) + C'Bu(1), 4-42

or

Pty = C'ALp(tY + C'ALy(t) + C'Bu(t). 4-43
Note that in this diflerential equation y(r} serves as a forcing variable.
If we now try to determine an observer for p by replacing p with 5 in 4-43
and adding a term of the form K(t}[y(¢} — C#(¢)], where K is a gain matrix,
this is unsuccessful since from 4-41 we havey — C8 =y — CLyy — CL,f =
% — v = 0; apparently, # does not carry any information about p. New
information must be laid bare by differentiating y(}:

#(t) = CAx(s) + CBu(?)
= CALp(t} + CALy(t) + CBu(t).
Equations 4-43 and 4-44 suggest the observer

4-44

A = CALp() + C'ALy() + C'Bu(r)
+ K[t} — CALy(t) — CBu(t} — CAL,p(1)]. 4-45
We leave it as an exercise to show that, if the pair {4, C} is completely
reconstructible, also the pair {C'AL,, CALy} is completely reconstructible,
so that by a suitable choice of K all the poles of 4-45 can be placed at arbitrary
positions {(Wonham, 1970a),
In the realization of the observer, there is no need to take the derivative
of (1}, To show this, define

q(t) = p(r} — Ky(r). 4-46
Tt is easily seen that
§() = [C'ALy ~ KCALJG(1)
+ [C'ALK + C'AL, — KCALy — KCALK]y(t)

+ [C'B — KCBu(?). 4-47
This equation does not contain g{¢). The reconstructed state follows fram
B(1) = Lyg() + (L, + LKy(0). 4-48

Together, 4-47 and 4-48 constitute an observer of the form 4-4.

Since the reduced-order observer has a direct link [rom the abserved
variable ¥{t} to the reconstrucied state &(r), the estimate #(¢) will be more
sensitive to measurement errors in y(¢) than the estimate generated by a
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full-order observer. The question of the effects of measurement errors and
system disturbances upon the observer is discussed in Section 4.3.

Example 4.2 Posfrimzing system

In this example we derive a one-dimensional observer for the positioning
system we considered in Example 4.1, For this system the observed variable
is given by

n(ty = (1, Ot 449
Understandably, we choose the variable p(#), which now is a scalar, as
pl) = (0, 1)), 4-50

so that p(t} is precisely the angular velocity. Tt is immediately seen that p(¢)
satisfies the differential equation

P = —ap(t)+ uo). 4-51
Our observation equation we cobtain by differentiation of %{r):
() = §,(0) = £,(1) = p(). 4-52
An observer [or p(¢) is therefore given by
A1) = —ap(t) + wu(t) + ABi() — p(0)], 4-53

where the scalar observer gain 1 is to be selected. The characteristic value of
the observer is —(x + 4). To make the present design comparable to the
full-order observer of Example 4.1, we choose the observer pole at the sarme
distance [rom the origin as the pair ol poles of Example 4.1. Thus we let

e+ 4 = 50v2 = 7071 571 With o = 4.6 s~ this yields for the gain

A =066.1151% 4-54
The reconstructed state of the original system is given by
1) = (1}(:‘)), t>0 4-55
16
To obtain a reduced-order observer without derivatives, we set
q(t) = p(t) — An(z). 4-56
By using 4-53 it follows that ¢(¢) satisfies the differential equation
g(t) = — (= + Dg() + wu(t) — (o + Din(). 4-57

In terms of ¢(t) the reconstructed state of the original system is given hy

' i-(r)=( ) ) 4-58
g(t) + 2n(r)
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Fig. 4.3. Actual response of a positioning system and the response as reconstructed by a
reduced-order observer, '

In Fig. 4.3 we compare the output of the reduced-order observer described by
4-57 and 4-58 to the actual behavior of the system. The initial conditions of
the system are, as in Example 4.1:

£,(0) = 0.1 rad, £4(0) = 0.5 rad/s, 4-59
while the input is given by
)= —10V, t > 0. 4-60
The observer initial condition is
g(0) = O rad/s. 4-61

Figure 4.3 shows that the angular position is of course faithfully reproduced
and that the estimated angular velocity quickly converges to the correct
value, although the initial estimate is not very good.
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4.3 THE OPTIMAL OBSERYER

431 A Stochastic Approach to the Observer Problem

In Section 4.2 we introduced observers. It has been seen, however, that in
the selection of an observer for a given system a certain arbitrariness remains
in the choice of the gain matrix K. In this section we present methods of
finding the optimal gain matrix. To this end we must make specific assump-
tions concerning the disturbances and observation errors that occur in the
system that is to be observed. We shall then be able to define the sense in
which the observer is to be optimal,
It is assumed that the actual system equations are

&) = A=) + B(u(t) + wi(1), 4-62a
y(r) = C(D=() + wa(D). 4-62b

Here w,(f) is termed the state excitation noise, while w,(f) is the observation
or measurement noise, It is assumed that the joint process col [ (¢}, walf)]
can be described as white noise with intensity

A0 Vm(t))

4-63
VED VD)

V() = (
that is,

wi(ty) 7 T
E [y (ta), wa™ (1)} = V(tD) 6(t; — 1), 4-64
wa(l)

If V() = 0, the state excitation noise and the observation noise are un-
correlated. Later (in Section 4.3.5) we consider the possibility that wy{f)
and wy(?} can not be represented as white noise processes. A case of special
interest occurs when

V() > 0, P> 1. 4-65

This assumption means in essence that all components of the observed
variable are corrupted by white noise and that it is impossible to extract from
y () information that does not contain white noise. If this condition is satisfied,
we call the problem of reconstructing the state of the system 4-62 non-
singular.

Finally, we denote

E{z(t))} = 7, E{[x(ty) ~ Zy][=(tg) — EIJ]T} = Oy 4-66
Suppose now that a full-order observer of the form

E() = ANEW) + B + KOy — COE()] 4-67



340 Optimal Reconsiruction of the Stafe
is connected to the system 4-62. Then the reconstruction error is given by
e(t) = z(t) — &(1). ' 4-68
The mean square recoustruction error
E{eT(nW(De()}, 4-69

with 7(¢) a given positive-definite symmetric weighting matrix, is a measure
of how well the observer reconstructs the state of the system at time ¢. The
mean square reconstruction error is determined by the choice of £(#,) and of
K(7), ty £ v < t. The problem of how to choose these quantities optimalty
is termed the optimal observer problen.

Definition 4.3. Consider the system

&(t) = AD() + B(u(t) + wi(D),
y(1) = COx(t) + walt),

Here col [wy(t), wa(t)] is a white noise process with intensity

) V()
) 12ty 4-71
Vis(t)  Valf)
Furthermore, the initial state x(t,) is uncorrelated with wy and wa,
E{a(ty)} = T, E{[=(t0) — my]a(ty) — -r_‘“u]T} = Oy, 4-72
and u(t), t 2 1y, is a given input tacige system. Consider the observer
:é(t) = ANEF) + (Bou@) + KO () — CHEMN] 4-73

Then the problem of finding the matrix function K(7), 1, < = < t, and the
initial condition &(1y), se as te minimize

E{e"(NW(ne(n)}, 4-74
wiere
e(t) = =(t) — &(1), 475

and where W(t) is a positive-definite symmetric weighting matrix, is termed
the eptimal observer problem. If

Va(t) > 0, 2 1y, 4-76
the optimal observer problem is called nonsingular.

In Section 4.3.2 we study the nonsingular optimal observer problem where
the state excitation noise and the cbservation noise are assumed moreover
to be uncorrelated. In Section 4.3.3 we relax the condition of uncorrelated-
ness, while in Section 4.3.4 the singular problem is considered.
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4.3.2 The Nonsingular Optimal Observer Problem with Uncorrelated
State Excitation and Observation Noises

In this section we consider the nonsingular optimal observer problem where
it is assumed that the state excitation noise and the observation noise are
uncorrelated. This very important problem was first solved by Kalman and
Bucy (Kalman and Bucy, 1961), and its solution has had a tremendous
impact on optimal filtering theory. A historical account of the derivation of
the so-called Kalman-Bucy filter is given by Sorenson (1970).

Somewhat surprisingly the derivation of the optimal observer can be
based on Lemma 3.1 (Section 3.3.3). Before proceeding to this derivation,
however, we introduce the following lemma, which shows how time can be
reversed in any differential equation.

Lemma 4.1.  Consider the differential equations

M =f[t! SU(I)], H 2 rUs
dt

4-17
'T(rﬂ) = T,
and
dy(t
Oty <
dt 4-78
where ty < t,, and
1=ty + 1. 479
Then if
:‘EU = ?J1= 4-80
the solutions of 4-T7 and 4-78 are related as follows:
D =90* — 1), >ty
a(t) = y( ) 21 481

WO = — 1), 1<h,
This lemma is easily proved by a change in variable from 7 to * — .

We now proceed with our derivation of the optimal observer. Subtracting
4-67 from 4-62a and using 4-62b, we obtain the following differential equation
for the reconstruction error e(f) = =(t) — £(1):

ll r
4(8) = [4() — KOCO® + U, —-K(r))(" ( )),
wa(f) 4-82
e(ty) = e,

where
ey = x(ty) — (1), 4-83
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and where,_“ as yet, K(¢), t > #y, i5 an arbitrary matrix function. Let us
denote by Q(¢) the variance matrix of e(t}, and by &(¢) the mean of e(¢#):

Efe(r}} = &(1),

- 4-84
E{[e(r} — &n)]le() — &7} = O(1).

Then we write
E{e(De”(n)} = e)e™ (1) + O(1). 4-85

With this, using 1-469, the mean square reconstruction error can be expressed
as

E{eT(DW(Ne(t}} = eT(OW(ED) + tr [O(OW(D). 4-86
The first term of this expression is obviously minimal when &(f) = 0. This

can be achieved by letting é(r,) = 0, since by Theorem 1.52 (Section 1.11.2}
&(t) obeys the homogeneous differential equation

é'(t) = [A(t) — K(HC(NO1E(), t> 1. 4-87
We can make &(t;) = 0 by choosing the initial condition of the observer as
ff:(tn) = Eu. 4"88

Since the second term of 4-86 does not depend upon (¢), it can be minimized
independently. From Theorem 1.52 (Section 1.11.2), we obtain the following
differential equation for J(1):

O(1) = [4() — K(HCMIGM + GIA® — KNI

+ V() + K(OV(DKT(1). 4-89
The corresponding initial condition is

J@t) = Qo 4-90

Let us now introduce a differential equation in a matrix function P(r),
which is derived from 4-89 by reversing time (Lemma 4.1):

—B(1) = [AT(t* — 1) — CT(t* — DKT(t* — 01TP)
+ POIAT(t* — 0 — CT(t* — HKI(* — )]
+ W(t* — ) + K(t* — OW(t* — DKTEF — ), t<t,. 491

Here
t* =ty + 1, 4-92
with f; > #,. We associate with 4-91 the terminal condition '
B(t) = 0, 4-93

It immediately follows from Lemma 4.1 that

O =P@*—1, 1<t 4-94°
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Let us now apply Lemma 3.1 (Section 3.3.3) to 4-91. This lemma shows that
the matrix P(¢) is minimized if K(t* - 7),t < 7 < f,, ischosen as KO(t* — ),
t < T < t, where

Kt* — 7) = V3t — DC{E* — 1)P(). 495

In this expression P() is the solution of 4-91 with X replaced by K@, that is,
—B(t) = W(t* — 1) — P(YCT(t* — V(™ — HCH* — HP(D)

+ P(AT(t* — ) + A(t* — DP(r), <1, 496

with the terminal condition
P(t)) = Q. 4-97

The minimal value of P(t) is P(f), where the minimization is in the sense that
P( < B, t<ut,. 4-98

By reversing time back again in 4-96, we see that the variance matrix Q(f) of
e(¢) is minimized in the sense that

Om >0, 121, 4-99
by choosing K(+) = K%7), #, < 7 £ t, where
K'(r) = 0@CT@VE' (),  t2 1, 4-100

and where the matrix Q() satisfies the matrix Riccati equation

(N = V(1) — OMOCTHVIHOCHOW + CNATE + AHO(L,

: 1>ty 4101
with the initial condition
O(te) = Qo 4-102
Since 4-99 implies that
tr [EOW(N] < tr [GEOW ()] 4-103

for any positive-definite symmetric matrix (¢}, we conclude that the gain
matrix 4-100 optimizes the observer. We moreover see from 4-86 that for the
optimal observer the mean square reconstruction error is given by

E{eT(t)W(t)e(D)} = tr [QOW(W)], 4-104

while the variance matrix of e(z) is Q(#).

We finally remark that the result we have obtained is independent of the
particular time ¢ at which we have chosen to minimize the mean square
reconstruction error. Thus if the gain is determined according to 4-100, the
mean square reconstruction error is simultanecusly minimized for all ¢ > t,.

Our findings can be summarized as follows.
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Theorem 4.5. Consider the optimal abserver problem of Definition 4.3.
Suppose that the problem is nonsingular and that the state excitation and
observation noise are uncorrelated. Then the solution of the optimal observer
problem is obtained by choosing for the gain matrix

K1) = QOCTOVID, 121, 4-105
where Q1) is the solution of the matrix Riccati equation

O = AN + OMOAT() + V(1) — OMCTHV I (HCHO(,

t> 1, 4-106
with the initial condition ‘
Q1) = Qo 4-107
The initial condition of the observer should be chosen as
#(ty) = Ty 4-108

If 4-105 and 4-108 are satisfied,
E{[=(1) — O W= — 2O} 4-109

is minimized for all t > t;. The variance matrix of the reconstruction ervor is
given by
E{[2(t) — &(0]l=(n) — £(D]"} = 2, 4-110

while the mean square reconstruction error is

E{{x(t) — £ WNx(1) — &(0]} = tr [0(OW(N)]. 4-111
It is noted that the solution of the optimal observer problem is, surprisingly,
independent of the weighting matrix #{s).

The optimal observer of Theorem 4.5 is known as the Ralman-Bucy filter.
In this section we have derived this filter by first assuming that it has the form
of an observer. In the original derivation of Kalman and Bucy (1961},
however, it is proved that this filter is the minfmun mean square linear
estimator, that is, we cannot find another linear functional of the observa-
tions ¥{(7) and the input u(7), t{; < 7 < ¢, that produces an estimate of the
state x(#) with a smaller mean square reconstruction error. It can also be
proved (see, e.g., Jazwinski, 1970) that if the initial state =(z,) is Gaussian,
and the state excitation noise w, and the observation noise w, are Gaussian
white noise processes, the Kalman-Bucy filter produces an estimate £{¢) of
x(#) that has minimal mean square reconstruction error among o/l estimates
that can be obtained by processing the data (7} and u(7), t, < 7 < 1.

The close relationship between the optimal regifator problem and the
optimal observer problem is evident from the fact that the matrix Riccati
equation for the observer variance matrix is just the time-reversed Riccati
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equation that holds for the regulator problem. In later sections we make
further use of this relationship, which will be referred to as the duality
property, in deriving facts about observers from facts about regulators.

The gain matrix KO(r) can be obtained by solving the matrix Riccati
equation 4-106 in real time and using 4-105. Alternatively, K°(t} can be
computed in advance, stored, and played back during the stale reconstruction
process. It is noted that in contrast to the optimal regulator described in
Chapter 3 the optimal observer can easily be implemented in real time,
since 4-106 is a differential equation with given initial conditions, whereas the
optimal regulator requires solution of a Riccati equation with given terminal
conditions that must be solved backward in time.

In Theorem 3.3 (Section 3.3.2), we saw that the regulator Riccati equation
can be obtained by solving a set of 2 x 2 differential equations (where #
is the dimension of the state). The same can be done with the observer
Riccati equation, as is outlined in Problem 4.3.

We now briefly discuss the steady-state properties of the optimal observer.
What we state here is proved in Section 4.4.3. It can be shown that under
mildly restrictive conditions the solution Q{¢) of the observer Riccati equa-
tion 4-106 converges to a sieady-siaie solution O(f} which is independent of
Q, as the initial time #, approaches — oo. In the time-invariant case, where all
the matrices occurring in Definition 4.3 are constant, the steady-siate sofution
@ is, in addition, a constant matrix and is, in general, the unique non-
negative-definite solution of the algebraic observer Riccaii equatian

0= AQ + QAT + ¥, — oCTVICO. 4-112

This equation is obtained from 4-106 by setting the time derivative equal to
ZEIQ.
Corresponding to the steady-state solution O of the observer Riccati

equation, we obtain the steady-state optimal observer gain matrix

Ry = aCT (3. 4-113

It is proved in Section 4.4.3, again under mildly restrictive conditions, that
the observer with K as pain malrix is, in general, asymptotically stable. We
refer to this observer as the steady-state optimal ebserver. Since in the time-
invariant case the steady-state observer is also iime-invariant, it is very
attractive to use the steady-state optimai observer since it is much easier to
implement. In the time-invariant case, the steady-stale optimal observer is
optimal in the sense that

lim E{e()We(1)} = 11m E{eT(1}We(n) 4-114

fp—+—co

is minimal with respect to all other time-invariant observers.
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We conclude this section with the following discussion which is restricted
to the time-invariant case. The optimal observer provides a compromise
between the speed of state reconstruction and the immunity to observation
noise. The balance between these two properties is determined by the mag-
nitudes of the white noise intensities ¥; and V,. This balance can be varied
by keeping ¥, constant and setting

V, = pM, 4115

where M is a constant positive-definite symmetric matrix and p is a positive
scalar that is varied. It is intuitively clear that decreasing p improves the
speed of state reconstruction, since less attention can be paid to filtering the
observation noise, This increase in reconstruction speed is accompanied by a
shift of the observer poles further into the left-half complex plane. In cases
where one is not sure of the exact values of V; or V,, a pood design pro-
cedure may be to assume that V, has the form 4-115 and vary p until a
satisfactory observer is obtained. The limiting properties of the optimal
observer as g | {0 or p — oo are reviewed in Section 4.4.4,

Example 4.3. The estimation of a “constant™

In many practical situations variables are encountered that stay constant
over relatively long periods of time and only occasionally change value. One
possible approach to model such a constant is to represent it as the state of an
undisturbed iniegrator with a stochastic initial condition. Thus let £()
represent the constant. Then we suppose that

En =10,
E(O) = £,

where &, is a scalar stochastic variable with mean &, and variance Q,. We
assume that we measure this constant with observation noise »,(¢), that is,
we observe

4-116

(1) = £(2) + »(2), 4-117

where () is assumed to be white noise with constant scalar intensity V.
The optimal observer for £(¢) is given by

£ty = k(Dm0 — £

. _ 4-118
£(0) = &,
where the scalar gain /&(z) is, from 4-105, given by
k() = g . 4-119
Va
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The error variance Q(¢) is the solution of the Riccati equation

o=--29 cv=a. 4120
Equation 4-120 can be solved explicitly:
o) = L R t >0, 4.121
Vo + Oyt :
so that
K)=—20 ;>0 4-122
Va + Qot

We note that as t — oo the error variance ({(t) approaches zero, which means
that eventually a completely accurate estimate of &£(r) becomes available. As
a result, also k() — 0, signifying that there is no point in processing any
new data.

This observer is not satisfactory when the constant occasionally changes
value, or in reality varies stowly. In such a case we can model the constant
as the output of an inteprator driven by white noise. The justification for
modeling the process in this way is that integrated white noise has a very
larpe low-frequency content. Thus we write

£ = m(o), $=3,
() = E(1) + »(8),
where », is white noise with constant intensity V; and », is white noise as

before, independent of »,. The steady-state optimal observer is now easily
found to be given by

4-123

E(n) = kln() — &), 4-124
where
E=~VyVe. 4-125
In transfer function form we have
LY V Ifn
X(s) = AL —— ¥Y(s), 4-126
s+ \/ Vi/Ve

where X(s) and Y(s) are the Laplace transforms of £(7) and #(f), respectively.
As can be seen, the observer is a first-order filter with unity gain at zero

frequency and break frequency Ve

Example 4.4. Positioning system
In Example 2.4 (Section 2.3), we considered a positioning system which is
described by the state differential equation

0 1 0
w{(t) = ( )a:(r) + ( ),u(r). 4-127
0 —u I
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Here =() = cal [£({r), £&(#)], where &,(7) denotes the angular displacement
G(t) and &.(t) the angular velocity 0(¢). Let us now assume, as in Example 2.4,
that a disturbing torque 7,(¢) acts upon the shaft of the motor. Accordingly,
the state differentidl equation must be modified as follows:

0 1 0 0
T(f) = (o )w(f) + ( ),u(r) + ( )'rd(t), 4-128
- ¥y

Ic

-

where 1y is the rotational moment of inertia of all the rotating parts. If
the fluctuations of the disturbing torque are fast as compared to the motion
of the system itself, the assumption might be justified that =) is white
noise. Let us therefore suppaose that 74(#) is white noise, with constant, scalar
intensity ¥,. Let us furthermore-assume that the observed variable is given by

7(#) = (1, 0)=(0) + »,(1), 4-129

where »,,(f) is white noise with constant, scalar intensity .
We compute the steady-state optimal observer for this system. The
variance Riccati equation takes the form

] 0 1 0 0
o)) = ( )Q(i) + Q(i)( )
0 —& 1 —o

(O 0 ) o( )(1) L (1,0H0(®. 4-130
+ —Qu — L, 0)EQ). 4-

0 91, 0/ ¥,

In terms of the entries g,;(¢), {, 7 = 1, 2, of (), we obtain the following set
of differential equations (using the fact that g12(1) = ¢,(0):

m

Gu() = 22(t) — —— gH(1),

m

Gra(t) = Gunlt) — (1) — ﬁ Gu(dsalD), 4-131

m

. a 1 n
Gou(1) = —2oqualt) + 7V ~— — gia(1).

m

It can be found that the steady-state solution of the equations as ¢ — <o is
given by

_V( —a 4 o + 2 o + f — a/od + 28 )
" ot f—ofat + 28 —od — 2of 4 (o + Ao + 28 ’
4-132

(]

where
B = ViV, 4-133
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It follows that the steady-state optimal gain matrix is given by
. ( —a + o2 + 28 )
T R = — |
o:g-[—ﬁ—rf.\/cr.“-[—Zﬁ
The characteristic polynomial of the matrix 4 — KC can be found to be
det((// — A+ KC)=s+ sV + 28+ 8, 4-135

from which it can be derived that the poles of the steady-state aptimal
observer are

4-134

M=o + 28 £ Vo2 — 28). 4-136
Let us adopf the following numerical values: '

w = 0.787 rad/(V s%),

o= 4.651,

y = 0.1 kg™t m=3, 4-137
V¥, =10 N*m"s,
¥, = 10-7 rad?s,

ki

It is supposed that the value of ¥, is derived from the knowledge that the

disturbing torque has an rms value of /1000 = 31.6 N m and that its power
spectral density is constant from about —350 to 50 Hz and zero outside this
frequency band. Similarly, we assume that the observation noise, which has
an rms value of 0.01 rad, has a flat power spectral density function from
about —500 to 500 Hz and is zero outside this frequency range. We carry
out the calculations as if the noises were white with intensities as indicated
in 4-137 and then see if this assumption is justified.

With the numerical values as given, the steady-state gain matrix-is found

to be
40.36
K= . 4-138
8143

The observer poles are —232.48 4 j22.24. These pole locations apparently
provide an optimal compromise between the speed of convergence of the
reconstruction error and the immunity against observation noise.

The break frequency of the optimal observer can be determined from the
pole locations. The observer characteristic polynomial is

52+ 5o F 28 + B 5 + 455 + 1000, 4-139
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which represents a second-order system with undamped natural frequency
wy = 31.6 radfs == 5 Hz and relative damping of about 0.71. The undamped
natural frequency is also the break frequency of the observer. Since this
frequency is quite small as compared to the observation noise bandwidth of
about 500 Hz and the disturbance bandwidth of about 50 Hz, we conjecture
that it is safe to approximate both processes as white noise. We must compare
both the disturbance bandwidth and the observation noise bandwidth to the
observer bandwidth, since as can be seen from the error differential equation
4-82 both processes directly influence the behavior of the reconstruction
error. In Example 4.5, at the end of Section 4.3.5, we compute the optimal
filter without approximating the observation noise as white noise and see
whether or not this approximation is justified.
The steady-state varfance matrix of the reconstruction error is given by

_ 0.000004036 0.00008143
0 =
- 0.00008143  0.003661

4-140

By taking the square rools of the diagonal elements, it follows that the rms
reconstruction error of the position is about 0.002 rad, while that of the
angular velocity is about 0.06 rad/s.

We conclude this example with a discussion of the optimal observer that
has been found. First, we note that the filter is completely determined by the
ratio V,/V,,, which can be seen as a sort of “signal-to-noise” ratio. The
expression 4-136 shows that as this ratio increases, which means that §
increases, the observer poles move further and further away. As a result, the
observer becomes Faster, but also more sensitive to observation noise. For
f = o we obtain a diflerentiating filter, which can be seen as follows. In
transfer matrix form the observer can be represented as

Xy = (sI — A+ KC)“l[KY(s) + BU(s)]
10
S sl 28+ 8

(A PO (e
. Y(s) + . Uis)y.
(o + f — oot + 26) s — o+ o' + 28

4-141

Here X(s), Y(s), and U(s) are the Laplace transforms of #(z), (1), and u(1),
respectively. As the observation noise becomes smaller and smaller, that is,
I — oo, 4-141 converges to
. 1
X(s) = ( )Y(s). 4-142
5
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This means that the observed variable is taken as the reconstructed angular
position and that the observed variable is differentiated to obtain the re-

constructed angular velocity.

4.3.3* The Noaosingular Optimal Observer Problem with Correlated
State Excitation and Observation Noises

In this section the results of the preceding section are extended to the case
where the state excitation noise and the measurement noise are correlated,
that is, Via(t) # 0, t > t;. To determine the optimal observer, we proceed
in a fashion similar to the correlated case. Again, let G(#) denote the variance
matrix of the reconstruction error when the observer is implemented with an
arbitrary gain matrix K(t), t > t,. Using Theorem 1.52 (Section 1.11.2), we
obtain the following differential equation for O(f), which is an extended
version of 4-89:

O(D) = [A(® — KMEMIO® + ODIAR) — KN
+ V() — Vu(DKT() — KOVAQ®) + KOV(OKT(@), 121,
4-143
with the imitial condition
Q(tu) = 0. 4-144

To convert the problem of finding the optimal gain matrix to a familiar
problem, we reverse time in this differential equation. It then turns out that
the present problem is dual to the “‘extended regulator problem’ discussed in
Problem 3.7 in which the integral criterion contains a cross-term in the state
@ and the input u. By using the results of Problem 3.7, it can easily be shown
that the solution of the present problem is as follows (see, e.g., Wonham,
1963).

Theorem 4.6. Consider the optimal observer problem of Definition 4.3
(Section 4.3.1). Suppose that the problem is nonsingular, that is, V(1) > 0,
t > ty. Then the solution af the optimal observer problem is achieved by
choosing the gain matrix K(t) of the observer 4-T3 as -

KD = [O(OCT(M) + ViuDIVIND, 12 1, 4-145

where Q) is the solution of the matrix Riccati equation

O(1) = [A(1) — Va(HVE(DC(H]0[0)
+ O([A(1) — Vau(OVZ(OCHT™
— 0(MCT(RVE(HC(HO)
+ Vi) — V(OVa OV ED, t > 1y, 4-146
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with the initial condition
aft,) = O, 4-147

The initial condition of the observer is
1) = =, 4-148
For the choices 4-145 and 4-148, the mean square reconstruction error

E{[=(t) — #OITW(D[=(1) — 2(D]} 4-149
is minimized for all t > ty. The variance matrix of the reconstruction error is
given by

E{[a() — &(0][=(1) — #(01F} = O1), 4-150
hence

E{[=(t) — #(DITWO[=() — £(0]} = tr [W(DQWN], >t 4-151

4,3.4* The Time-Invariant Singular Optimal Observer Problem

This section is devoted to the derivation of the optimal observer for the
singular case, namely, the case where the matrix V.(r) is not positive-definite.
To avoid the difficulties that occur when Vo{t) is positive-definite during
certain periods and singular during other periods, we restrict the derivation
of this section to the time-invariant case, where all the matrices occurring
in Definition 4.3 (Section 4.3.1) are constant. Singular observation problems
arise when some of the components of the observed variable are free of
observation noise, and also when the observation noise is not a white noise
process, as we see in the following section. The present derivation roughly
follows that of Bryson and Johansen (1965).

First, we note that when F, is singular the derivation of Section 4.3.2
breaks down; upon investigation it turns out that an infinite gain matrix
would be required for a full-order observer as proposed. As a result, the
problem formulation of Definition 4.3 is inadequate for the singular case.
‘What we do in this section is to reduce the singular problem to a nonsingular
problem (of lower dimension) and then apply the resuits of Sections 4.3.2
or 4.3.3.

Since V; is singular, we can always introduce another white noise process
walr), with nonsingular intensity V., such that

walt) = Hwa(t), 4-152

with dim (wz) < dim (w.), and where # has full rank. This means that the
observed variable is given by

y(t) = Ca(t) + Hwailr). 4-153
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With this assumption the intensity of w.(7} is given by
Vy= HV:HT. 4-154

Since V, is singular, it is possible to decompose the observed variable into
two parts: a part that is “completely noisy,”” and a part that is noise-free.
We shall see how this decomposition is performed.

Since dim () < dim (w.), it is always possible to find an/ x /nonsingular
matrix T (f is the dimension of the observed variable ) partitioned as

T
T= . 4-155
T,

T, H,
H= ) 4-156
T, 0

Here H, is square and nonsingular, and the partitioning of T has been chosen
corresponding to that in the right hand side of 4-156. Multiplying the output
equation

such that

_ y(t) = Ce(t) + Hwi(n) 4-157

by T we obtain
711} = Cyx{f) + Hpwi(), 4-158a
ya(t) = Cax(), 4-158b

where

(?h(f)) (T1 (Cl T !
¥u(1) Ta) Ca) (Tz)

We see that 4-158 represents the decomposition of the observed variable y(t)
into a “completely noisy” part (1)} (since 4,VsH,” is nonsingular), and a
noise-free part ya(#).

We now suppose that C, has full rank. If this is not the case, we can re-
define ».(f) by eliminating all components that are linear combinations of
other components, so that the redefined C, has full rank. We denote the
dimension of y.{f) by k.

Equation 4-158b will be used in two ways, First, we conclude that since
¥5(f) provides us with & linear equations for x(f) we must reconstruct only
n —k (n is the dimension of x) additional linear combinations of x(z).
Second, since y.(#) does not contain white noise it can be differentiated in
order to extract more data. Lel us thus define, as we did in Section 4.2.3, an
(#n — k)-dimensional vector variable

(1) = Cax(3), 4-160
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where C; is so chosen that the n x 1 matrix

Ce
( ) 4-161
cil

is nonsingular. From w,(f) and p(f) we can reconstruct x(t) exactly by the
relations

ya(1) = Caa(1), 4-162

(Q)‘l( ya(r))
(1) = . 4-163
Cs p(n

It is convenient to introduce the notation

o7

Cﬂ -1
c = (L,, L.), 4-164
so that
x(t) = Lyya(1) + Lap(1). 4-165

Our next step is to construct an observer for p(t). The reconstructed p(r) will
be denoted by §(¢). It follows from 4-165 that &(¢), the reconstructed state, is
given by

£(1) = Liya(t) + Lap (D). 4-166
The state differential equation for p(t) is obtained by differentiation of
4-160. It follows with 4-165

() = Coi(t) = Cada(t) + CiBu(t) + Cowy(f)

= CJA[Ly:(t) + Lap(t)] + CiBu(t) + Cowy(1), 4-167
or
p(1) = A'p(1) + B'u(t) + B'yu(t) + Cown(t), 4-168
where
A= CjAL,, B' = C;B, B = CjAL,. 4-169

Note that both u(t) and y,(t} are forcing variables for this equation. The
observations that are available are y,(¢), as well as g.(t), for which we find

1a(1) = Cai(t) = Codm(t) + CoBu(t) + Cowy(1)

= Cod[Lyyat) + Lap(1)] + CoBu(t) + Cawi(t). 4-170
For ,(r) we write
() = Cm(t) + Hywa(t)

= Cy[L1ya(t) + Lap(8)] 4 Hywi(D). 4-171
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Combining ¥, () and 3,(¢) we write for the observed variable of the system
4-168

#i(1) wa(2)
y'() = (_1 ) = C'p(1) + D'u(t) 4- D"yo(1) + H'( B aan
(1) wa(t)
where
C,L, 0 c,L 0 H
i SR R A
CaAL, C:B C,AL, C, O
4-173

Note that in the state differential equation 4-168 and in the output equation
4-172 we treat both «(t) and w.(f) as given data. To make the problem
formulation complete, we must compute the a priori statistical data of the
auxiliary variable p(ty):

P(t) = E{Cia(ty) | ¥:lte)} 4174
and

(1) = E{lp(ts) — plta)]lp(ts) — A(1)])” | #a(t)}- 4175

It is outlined in Problem 4.4 how these quantities can be found.

The observation problem that we now have obtained, and which is defined
by 4-168, 4-172, 4-174, and 4-175, is an observation problem with correlated
state excitation and observation noises. It is either singular or nonsingular.
If it is nonsingular it can be solved according to Section 4.3.3, and once j(f) is
available we can use 4-166 for the reconstruction of the state. If the observa-
tion problem is still singular, we repeat the entire procedure by choosing a
new transformation matrix T for 4-172 and continuing as outlined. This
process terminates in one of two fashions:

() A nonsingular observation problem is obtained.

(b) Since the dimension of the quantity to be estimated is reduced at each
step, eventually a stage can be reached where the matrix C, in 4-162 is square
and nonsingular. This means that we can solve for z(¢) directly and no
dynamic observer is required.

We conclude this section by pointing out that if 4-168 and 4-172 define a
nonsingular observer problem, in the actual realization of the optimal
observer it is not necessary to take the derivative of y.(¢), since later this
derivative is integrated by the observer. To show this consider the following
observer for p(#):

At = A'B(t) + B'u(®) + B'5al®)
+ K(O[y'() — D'u() — Dyut) — C'H()].  4-176
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Partitioning
K1) = [Ky(1), Ka(D)], 4-177
it follows for 4-176:
B(1) = [A4" — K(C'I5(1) + B'u(t) + Bys(1)
+ KiDn(0) + Kol al) — KOOID'u(t) + Dyul)]. 4-178
Now by defining
(1) = p() — Ka(1)ya(1), 4-179

a state differential equation for q(¢) can be obtained with ¥,(¢), ¥a(f), and
u(t), but not 4,4(¢), as inputs. Thus, by using 4-179, §(¢) can be found without

using 7 (f).
4.3.5 The Colored Noise Observation Problem

This section is devoted to the case where the state excitation noise w,(f) and
the observation noise wy(?) cannot be represented as white noise processes.
In this case we assume that these processes can be modeled as follows:

wi(t) = Cy(D (1) + wid),
walt) = Ca(t)a'(1) + wil),

4-180
with
(1) = A'(O=" (1) + wa(2). 4-181

Here wi(t), wa(), and wa(r) are white noise processes that in peneral need not
be uncorrelated. Combining 4-180 and 4-181 with the state differential and
output equations

(1) = A=) + Bl + wild,
y() = CO(t) + wil0),

we obtain the augmented state differential and output equations
( (1) ) (A(t) Cl(f)) ( w(1) ) (B(t)) (W_{(t))
= + u() + 3

(1) 0 A/ \2'(1) 0 wa(t)

z(t}
¥(1) = [C(n), Ca(t)](m, (t)) + wa(t).

4-182

To complete the problem formulation the mean and variance matrix of the
initial augmented state col {x(f), #'(£)] must be given. In many cases the white
noise wy(t) is absent, which makes the observation problem singular. If the
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problem is time-invariant, the techniques of Section 4.3.4 can then be applied.
This approach is essentially that of Bryson and Johansen (1965).
We illustrate this section by means of an example.

Example 4.5. Pasit:’anfng system with colared observation noise
In Example 4.4 we considered the positioning system with state difTerential
equation

0 1 0 0
E(t) = (0 )I(t) + ( ),u(t) + ( )Td(f) 4-184
—a K ¥

and the output equation
(1} = (1, 0}x(#) + »,,(r). 4-185

The measurement noise ,,(r) was approximated as white noise with intensity
V... Let us now suppose that a better approximation is to model »,,(z) as
exponentially correlated noise (see Example 1.30, Section 1.10.2) with power
spectral density function

2570

3 (w) = m . 4-186

This means that we can write (Example 1.36, Section 1.11.4)

v = &), 4-187
where

(N = — ; £ + wb). 4188

Here w(t) is white noise with scalar intensity 2¢%8. In Example 4.4 we
assumed that 7,(t) is also white noise with intensity V,. In order not to
complicate the problem too much, we stay with this hypothesis. The aug-
mented problem is now represented by the state differential and output
equations:

&) 0 1 0 E(D) 0 0
ENl=10 — Oo){&a® )+ [« a0+ | y0 ],
Ex(t) 0 0 —% E(D) 0 (D)
4-189
&(1)

¥(1) = (1,0, )] &) |,
&(1)
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where col [&(1), &(6)] = =(t). This is obviously a singular observation
problem, because the observation noise is absent. Following the argument of
Section 4.3.4, we note that the output equation is already in the form 4-158,
where C; and H, are zero matrices. It is natural to choose

p(t) = =(1), 4-190 -
so that _
(1 0 o)
Ch= . 4-191
010 :
Writing
p() = col [my(r), ma()], 4-192

it follows by matrix inversion from

n(t) 1 0 1\ /&0)

m@® | =1 0 O] &) 4-193
ma(t)) 0 1 0/ \&®
that
A6 0 1 0 3(f)
EM1=10 0 1 () 1. 4-194
Eq(1) 1 —1 0 s (1)

Since p(t) = x(?), it immediately follows that p(¢) satisfies the state differen-
tial equation -

0 1 0 0 :
piy= ( )P(f) + ( )#(t) + ( )Ta(r)- 4-195
. 0 —«a ¥

K
To obtain the output equation, we differentiate (#):
2(6) = (1, OF() + &(0). 4-196
Using 4-184, 4-188, and 4-194, it follows that we can write

) = (é ) 1) () — %n(t) + w(t). _ 4-197

Together, 4-195 and 4-197 constitute an observation problem for p(#) that
is nonsingular and where the state excitation and observation noises happen
to be uncorrelated. The optimal observer is of the form

: 0 1y | 0 ool s 1 (1 .
B(t) = (0 _m)p(t) + (K)P(f) + K (f)[??(f) + 5 (B’ l)P(I)],
4-198
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where the optimal gain matrix K°(¢) can be computed from the appropriate
Riccati equation. From 4-194 we see that the optimal estimates £(¢) of the
state of the plant and Ea(t) of the observation noise are given by

#(1) = (1), 159
£(0) = () + (=1, 06().

Let us assume the following numerical values:
x = 0.787 rad/(Vs®),
=465,

y=01kg7m™,

Y e 4-200
V; = 10N"m"s,
6 =35 x 10715,
o = 0.01 rad.

The numerical values for ¢ and ' imply that the observation noise has an rms
value of 0.01 rad and a break frequency of 1/6 = 2000 rad/s ~ 320 Hz.
With these values we find for the steady-state optimal gain matrix in 4-198

0.01998
R = . 4-201
0.4031
The variance matrix of the reconstruction error is
0.000003955 0.00007981
0.00007981 0.003628 |

4-202

Insertion of K° for K%¢) into 4-198 immediately gives us the optimal steady-
state observer for {¢). An implementation that does not require differentia-
tion of »(f) can easily be found.

The problem just solved differs from that of Example 4.4 by the assumption
that »,, is colored noise and not white noise. The present problem reduces to
that of Example 4.4 if we approximate v,, by white noise with an intensity
V,. which equals the power spectral density of the colored noise for low
frequencies, that is, we set

V,, = 20%. 4203

The numerical values in the present example and in Example 4.4 have been
chosen consistently. We are now in a position to answer a question raised in
Example 4.4: Are we justified in considering »,, white noise because it has a
-large bandwidth, and in computing the optimal observer accordingly? In
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order to deal with this question, let us compute the reconstruction error
variance matrix for the present problem by using the observer found in
Example 4.4. In Example 4.4 the reconstruction error obeys the differential

equation
—k, 1 0 ko,
é(t) = ( )E(f) + ( )Td(f) — ( )T’m(t), 4-204
—u V) ks

where we have set K = col (&, k). With the aid of 4-187 and 4-188, we
obtain the augmented differential equation

z

(1) —Jy 1 —ky (1) 0
a0 l=1 -k —a ~kllaO)+ O 4205
E(D) 0 0 hé X0 w(7)

where e(f) = col [g,(f), a(t)]. It follows from Theorem 1.52 (Section 1.11.2)
that the variance matrix Q(f) of col [g,(f), £4(t), £4(f)] satisfies the matrix
differential equation '

T R
—ky — —ka
o = ) Q1)

0 0 —=
0

—ky —ky O 0 0 o

—a 0 0 4, 0

+ W) i 77 T ) 406
1 20°
—kl _kﬂ - 0 _6_'

Numerical solution with the numerical values 4-200 and 4-138 yields for the
steady-state variance matrix of the reconstruction error e(t)

0.000003995 0.00008062
0.00008062  0.003645 |~

4-207

Comparison with 4-202 shows that the rms reconstruction errors that result
from the white noise approximation of Example 4.4 are only very slightly
greater than for the more accurate approach of the present example. This
confirms the conjecture of Example 4.4 where we argued that for the optimal
observer the observation noise »,,(t) to a good approximation is white noise,
so that a more refined filter designed on the assumption that »,,(#) is actually
exponentially correlated noise gives very little improvement,
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4,3.6* TInnovations

Consider the optimal observer problem of Definition 4.3 and its solution as
given in Sections 4327433 and 4.3.4. In thissection we discuss aninteresting
property of the process

y(t) — CO)E(), 12>t 4-208

where £(7) is the optimal reconstruction of the state at time f based upon-data
up to time f. In fact, we prove that this process, 4-208, is wihite noise with
intensity V,(¢), which is precisely the intensity of the observation noise wa(t).
This process is called the innovation process (Kailath, 1968), a term that can
be traced back to Wiener. The quantity #(t) — C(t)£(t) can be thought of as
carrying the new information contained in (), since y(¢) — C()I{r) is
the extra driving variable that topether with the model of the system con-
stitutes the optimal observer. The innovations concept is useful in under-
standing the separation theorem of linear stochastic optimal control theroy
(see Chapter 5). It also has applications in- state reconstruction problems
outside the scope of this book, in particular the so-called optimal smoothing
preblem (Kailath, 1968). :

We limit ourselves to the situation where the state excitation noise 1w, and
the observation noise v, are uncorrelated and have intensities ¥,(t) and ¥,(7),
respectively, where Va(t) > 0, t > t,. In order to prove that y(t) — C(¥)E(t)
is a white noise process with intensity Vu(t}, we compute the covariance
matrix of its intepral and show that this covariance matrix is identical to the
covariance matrix of the integral of a white noise process with intensity
A

Let us denote by s{¢} the integral of y{t) — C(¢)4(¢), so that

§(r) = y(1) — COEQ),
s(ty) = 0.

4-209

Furthermore,
e(t) = =(t) — (1) 4-210

is the reconstruction error. Referring hack to Section 4.3.2, we obtain from
4-209 and 4-82 the following joint state differential equation for s(#) and e(#):

§() (o BNG) s(f) 0 I wl(t))
(é(f)) BRCEPTOE K“(t)C’(f)) (e(f)) N (f —K“(f)) (Wa(f) ]
4-211

where K(¢) is the gain of the optimal observer. Using Theorem 1.52 (Section
1.11.2), we obtain the following matrix differential equation for the variance
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matrix G(r) of col [s(r), e()]:

é(r)~(0 0 )“(t)+Q"(r)( ° ’ )
0 A — KOCH) ¢ CT(1) AT() — CTWHK T(1)

(0 I ) ( Vi) © ) (0 I )
+ s 4-212
I —K"0/\ 0 WO/ —K°T(p)

with the initial condition

0 o
() = ( ) 4-213
0 O

where 0, is the variance matrix of =(¢,). Let us partition (¢ as follows:
On(t) Ot
g = (222 20)
0i2() Cul(®) _
Then we can rewrite the matrix differential equation 4-212 in the form
Ou(t) = COCEN) + Cu()CT(M) + Valt),  Oult) =0, 4-215
Ou(t) = C(N0m() + CuDIA(R) — K(OCHIT — Vo(HKT(1),
0u(t) =0, 4-216
On(t) = [A() — K{(NCOIQu(t) + Qual)[A(1) — K*DCHI |
+ V() + KOVaDK™ (),  Qua(ty) = Qp. 4217

As can be seen from 4-217, and as could also have been seen beforehand,
Ona(t) = Q(1), where O(1) is the variance matrix of the reconstruction error.
Tt follows with 4-105 that in 4-216 we have

4-214

C()Qua(t) — Vu(OK™M(#) = 0, 4-218
so that 4-216 reduces to . -
O1:() = Cra(D[A(D) — Ko, 0Q:(fy) =0, 4-219
which has the solution
0u®=0, t>1, 4-220

Consequently, 4-215 reduces to

Ou(t) = Ve(t),  Oulty) =0, 4-221
so that

t
Ou( EJ; Vel#) dr. 4-222
o
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By invoking Theorem 1.52 once again, the covariance matrix of col [s(¢), e(f)]
can be written as

Rty =1 4223

i Fmﬁ%wo for 1y >t
Y (1. t)0(t) for 4> t,

where ¥ (1,, £,) is the transition matrix of the system
s(t o C(t s(f
O\ ® ® . 4.224
6() 0 A(t) — KNOCH)) \e()
It is easily found that this transition matrix is given by

138
I J- COY (1, ty) dt
fu :

Py, 1) = 4-225
0 W(ty, t5)
where ¥'(1;, 1) is the transition matrix of the system
8() = [A() — BE(OCO)]e(t). 4226

The covariance matrix of s(f) is the (1, 1)-block of R(t,, t,), which can be
found to be given by

mintty.ta)
&MJQ=I Vilt) di. 4227
i

0

This is the covariance matrix of a process with uncorrelated increments (see
Example 1.29, Section 1.10.1). Since the process y() — C()&() is the
derivative of the process s(¢), it is white noise with intensity V,(#) (sce Example
1.33, Section 1.11.1). )

We summarize as follows.

~

Theorem 4.7, Consider the solution of the nonsingular optimal observer
problem with uncorrelated state excitation noise and observation noise as piven
in Theorem 4.5. Then the innovation process

y() — CEW,  t2> 1, 4-228
is a white naise process with intensity V,(£).

It can be proved that this theorem is also true for the singular optimal
observer problem with correlated state excitation and observation noises.
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4.4* THE DUALITY OF THE OPTIMAL OBSERVER
AND THE OPTIMAL REGULATOR; STEADY-STATE
PROPERTIES OF THE OPTIMAL OBSERVER

4.4.1* Intreduction

In this section we study the steady-state and stability properties of the optimal
observer. All of these resulis are based upon the properties of the optimal
regulator obtained in Chapter 3. These results dre derived through the
duality of the optimal regulator and the optimal observer problem (Kalman
and Bucy, 1961). Section 4.4.2 is devoted to setting forth this duality, while
in Section 4.4.3 the steady-state properties of the optimal observer are dis-
cussed. Finally, in Section 4.4.4 we study the asymptotic behavior of the
steady-state time-invariant optimal observer as the intensity of the observa-
tion noise poes to zero.

4.4.2* The Duality of the Optimal Regulator and the Optimal Observer
Problem

The main result of this section is summarized in the following theorem.

Theorem 4.8. Consider the optimal regulator problem (ORP) of Definition
3.2 (Section 3.3.1) and the nonsingular optimal observer problem (OOP)
with wncorrelated state excitation and observation noises of Definition 4.3
(Section 4.3.1). In the observer problem let the matrix V,(2) be given by .

V(D) = GG,  t> 1, 4-229
where

Vi(t) > 0, P>t 4-230

Let the various matrices occirring in the definitions of the ORP and the OOP
be related as folloyws:

A(t) of the ORP equals AT (t* — 1) of the OOP,
B(t) of the ORP equals CT(1* — 1) of the OOP,
D(t) of the ORP equals GT(t* — 1) of the OOP, 4-231
Ry(2) of the ORP equals Vy(t* — t) of the OOP,
Ru(t) of the ORP equals Vo(i* — t} af the OOP,
P, of the ORP equals O, of the OOP,

all far t < t,. Here
=ty + e 4-232

Under these conditions the salutions of the optimal regulator problem (Theorem



4.4 Dunlity and Steady-State Properties 365

3.4, Section 3.3.3) and the nonsingular optimal observer problem with un-
correlated stafe excitation and observation noises (Theorem 4.5, Section
4.3.2) are related as foilows:

(@) P(1) of the ORP equals Q(t* — 1) of the OOP for t < t,;

(b) F°(¢) of the ORP equals K™ (t* — 1) of the OOP for t < t,;
(c) The closed-loop regulator of the ORP:

#(1) = [4(1) — BEOF(O)]=(1), 4-233
aind the unforced reconstruction error equation of the OQP:
é(t) = [A{t) — KY(NC(N)]e(n), 4-234

are dual witl respect to t¥ in the sense of Definition 1.23 (Section 1.8).

The proof of this theorem easily follows by comparing the regulator Riccati
equation 3-130 and the observer Riccati equation 4-106, and using time
reversal (Lemma 4.1, Section 4.3.2),

In Section 4.4.3 we use the duality of the optimal regulator and the optimal
observer problem to obtain the steady-state properties of the optimal
ohserver from those of the optimal regulator. Moreover, this duality enables
us to use computer programs designed for optimal regulator problems for
optimal observer problems, and vice versa, by making the substitutions
4-231,

4.4.3*% Steady-State Properties of the Optimal Observer

Theorem 4.8 enables us to transfer from the regulator to the observer problem
the steady-state properties (Theorem 3.5, Section 3.4.2), the steady-state
stability properties (Theorem 3.6, Section 3.4.2), and various results for the
time-invariant case (Theorems 3.7, Section 3.4.3, and 3.8, Section 3.4.4).

In this section we state some of the more important steady-state and stability
properties. Theorem 3.5, concerning the steady-state behavior of the Riccati
equation, can be rephrased as follows (Kalman and Bucy, 1961).

Theorem 4.9. Consider the matrix Riccati equation
01 = AMQ() + 0(NAT() + GIOVA(HGT ()
— QICT(HVI(HC(HA(). 4-235

Suppose that A(t) is continuous and bounded, that C(t), G(t), Vy(t), and V,(t)
are piecewise contimious and bounded, and furthermore that

Vi > od, Vi) >PI  forallt, 4-236

where o and f are positive constants.
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(i) Then if the system

a(t) = ADx(t) + G(H)wa(1),

y(1)= COa(), 27

is either

(a) completely reconstructible, or

(b) exponentially stable,
the solution Q(f) of the Riccati equation 4-235 with the initial condition
Q(ty) = 0 converges to a nonnegative-definite matrix Q(t) as t,— — . g(1)
is a solution of the Riccati equation 4-235.
(i) Moreover, if the system 4-237 is either

(c) both uniformly completely reconstructible and wniformly completely
conirollable, or

(d) exponentially stable,
the solution Q(t) of the Riccati equation 4-235 with the initial condition

Q(ty) = O, converges 1o O(z) as ty— — o for any O, > 0.

The proof of this theorem immediately follows by applying the duality
relations of Theorem 4.8 to Theorem 3.5, and recalling that if a system is
completely reconstructible its dual is completely controllable (Theorem 1.41,
Section 1.8), and that if a system is exponentiaily stable its dual is also
exponentially stable (Theorem 1.42, Section 1.8).

We now state the dual of Theorem 3.6 (Section 3.4.2);

Theorem 4.10. Consider the nonsingular optimal observer problem with
uncorrelated state excitation and observation noises and let

V(1) = G(1) Vn(‘)GT(i); for all &, 4-238

where Vo(t) > Q, for all t. Suppose that the continuily, boundedness, and
pasitive-definiteness conditions of Theorem 4.9 concerning 4, C, G, V,, and
Va are satisfied. Then if the system 4-237 is either

(a) uniformly completely reconstructible and uniformly completely con-
trollable, or

(b) exponentially stable,
the following facts hold.
(i) The steady-state optimal observer

£1) = AW + RO — CON], 4-239

where
K(t) = 0(nCT(yvz(1), 4-240

is exponentially stable. Here O(t) is as defined in Theorem 4.9.
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(i) The steady-state optimal observer gain R(t) minimizes

lim E{eT()W(He(n)} 4-241

- ip~*—om

Jor every Qy > 0. The minimal value of 4-241, which is achieved by the steady-
state optimal observer, is given by
tr [B(OW (] 4242
We also state the counterpart of Theorem 3.7 (Section 3.4.3), which is
concerned with time-invariant systems.

Theorem 4.11. Consider the time-invariant nonsingular optimal observer
problem of Definition 4.3 with uncorrelated staté excitation and observation
noises for the system

£(t) = Az(t) + Gwy(1),
y(£) = Cz(t) + wa(t).

Here wy is white noise with intensity V5, and w, has intensity V. It is assumed
that V3 > 0, V. > 0, and Oy > 0. The associated Riccati equation is given by

4-243

0@ = AQ(1) + Q(HA™ + GV,GT — Q(CTVF'CO(), 4244

with the initial condition
Q(ru) = O 4-245

(a) Assume that Oy = 0. Then as ty— —w the solution of the Riccati
equation approaches a constant steady-state value @ if and only if the system
4-243 possesses no poles that are at the same time unstable, unreconstructible,
and controllable.
(b) If the system 4-243 is both detectable and stabilizable, the solution of the
Riceati equation approaches the value Qasty— — Jor every 0, 2 0.
() If @ exists, it is a nomegative-definite symmetric solution of the algebraic
Riceati equatian

0 = AQ + 047 + GVGT — aCTVTICO. 4-246
If the system 4-243 is detectable and stobilizable, Q is the unigue nonnegative-
definite solution of the algebraic Riccati equation.
(d) If O exists, it is positive-definite if and only if the system is completely
controllable,
(e) If @ exists, the steady-state optimal observer

#(f) = A%(t) + Rly() — CED), 4247

where
R = gcrvs, 4-248
is asymptotically stable if and only if the system is detectable and stabilizable.
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{f) If the system is detectable and stabilizable, the steady-state optimal
observer 4-247 minimizes
lim E{“()We()} 4-249

tp—~+—m

Jor all Oy > 0. For the steady-state optimal observer, 4-249 is given by
tr [OW]. 4-250
We note that the conditions (b} and (c) are sufficient but not necessary.

4.4.4% Asymptotic Properties of Time-Invariant Steady-State
Optimal Observers

In this section we consider the properties of the stcady-state optimal filter
for the time-invariant case, when the intensity of the observation noise
approaches zero. This section is quite short since we are able to obtain our
results immediately by *“‘dualizing™ the resunits of Section 3.8.

We first consider the case in which both the state excitation noise 1,(¢) (see
4-237) and the observed variable are scalar. From Theorem 3.11 {Section
3.8.1), the following result is obtained almost immediately.

Theorem 4.12, Consider the n-dimensional time-invariant system

&(t) = A=z(t) + Bu(l) + guwy(t),

7(t) = ex(t) + wa(0), 4-251

where wy is scalor white noise with constant intensity V,, w. scalor white noise
uncorrelated with w, with positive constant intensity Vy, g a column vector,
and ¢ a row vectar. Suppose that {A, g} is stabilizable and {A, ¢} detectable,
_Let H(s) be the scalar transfer function

ﬂSﬂ)=mt_1;{(s-~ )

HES =c(s] — Ay 'g = .

, 4-252

where ¢{s) is the characteristic polynomial of the system, and w, i=
1,2,---,n, its choracteristic values. Then the characteristic values of the
steady-stote optimal observer are the left-half plane zeroes of the palynomial

{(=1)"g(s)(—5) [1 + {-:-‘ H(—s)H(s)]. 4-253

As a result, the following statements hold.,
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() As Vo/Vy— 0, p of the n steady-state aptimal abserver poles approach the
numbers #,, i = 1,2, -, p, where

SRR ifRe (») <0,
#; = 4-254
—; if Re (») > 0.
(b) As VuofVy— 0, the remaining n — p abserver poles asymptotically approach
straight lines which intersect in the origin ond molkce angles with the negative
real axis of

T n—p—1

-1 . I=0,1,---,—/—, n — padd,

n—p 2

I+ Hnw n—p 4-255
&+, l1=0,1,---, ——1, i — p even.

n—p 2

These faraway observer poles asympiatically are at a distance
1/[2(n—p}]
0y = (nc2 Yﬂ) 4256
Va

Sfrom the origin.
(c) As VufVy— w0, the n abserver poles approach the numbers #; =
1,2, ,n, where

m  fRe(m) <0,
ﬁ,:{ fRe 4257

—T; {TRE (ﬂ'f) > 0.

It follows from (b) that the faraway poles approach a Butterworth con-
figuration. '

For the general case we have the following results, which follow from
Theorem 3.12 (Section 3.8.1).

Theorem 4.13. Consider the n-dimensional tine-invariont system
(1) = A=(t) + Bu(?) + Gwy(r),
¥(1) = Ca(t) + wa(t),

witere Wy is white noise with constant intensity Vg and w, is white noise un-
correlated with wy with constant intensity V, > 0. Suppose that {d, G} is
stabilizable and {A, C} detectable. Then the poles of the steady-state aptimal
observer are the left-half plone zeroes of the palynomiol

4-258

(—1)"$(s)#(—s) det [I + VT H(s)V,HT(—s)], 4-259
where H(s) is the transfer matrix

H(s) = C(sl — A)G, 4260
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and ¢(5) is the characteristic polynomial of the system 4-258. Suppose that
dim (i) = dim (y) = k, so that H(s) is a k X k transfer matrix. Let

n
g LG =)
s
]:]I; (s — )
and assume that o £ 0, Also,_szq)pase that
¥y = pN, 4-262

with N > 0 and p a positive scalar.
(@) Then as pl O, p of the optimal observer poles approach the numbers
P,i=1,2,--,p, where

¥y fRe(n) <0,
V=

—, if Re (v;) > 0.
The remaining observer poles go to infinity and group into several Butterwortl
cotifigurations of different orders and different radii. A rough estimate of the

distance of the faraway poles to the origin is
1/[2(n—2)]
( o2 C.let () ) .

p* det (N)

(b) As p— o, the n aptimal observer poles approach the munbers #,, i =
1,2, -+, n, where

4-263

4-264

x;,  ifRe(m) <0,
[ Re (m) 4265

—; if Re (m;) > 0.
Some information concerning the behavior of the observer poles when

dim () # dim (y) follows by dualizing the results of Problem 3.14.
We finally transcribe Theorem 3.14 (Section 3.8.3) as follows.

Theorem 4.14. Consider the time-invariant systen
() = Ax(t) + Gwy(t),
y(t) = Cx(t) + wa(2),

where G and C hove full rank, wy is white noise with constant intensity V, and
Wy is white noise uncorrelated with wy with constant nonsingular intensity
Vo= pN, p >0, N> 0. Suppose that {A, G} is stabilizable and {4, C}
detectable and let (O be the steady-state solution of the variance Riccati
equation 4-244 associated with the optimal observer problem. Then the following
Jacts hold.

4-266
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(a) The limit
lim § = Q, 4-267
. pl—ﬂ
exists. e
(b) Let e,(t) denate the contribution of the state excitation naise ta the re-
construction error e(f) = x(t) — &(1), and e, (t) the contribution of the observa-
tion noise to e(t). Then for the steady-state optimal observer the following limits

hold:
lifn E{eT(OWe()} = tr (O, W),
pri

lim E{e, ()W e (0} = tr (2, 4-268
a~0

lim E{e () We, (1)} = 0.

plo

(c) If dim (wy) > dim (), then O, # 0.
(d) If dim (wg) = dim (), and the mumerator polynomial y(s) of the square
transfer matrix

C(sl — 4G 4-269

is nonzero, then Q) =0 if and only if y(s) has zeroes with nonpositive real
parts only,

(e) If dim (wg) < dim (y), then a sufficient condition for @, to be the zero
mmatrix is that there exists a rectangular matrix M such that the numerator
polynomial of the square transfer matrix MC(sI — A)™G is nonzero and has
zeroes with nonpositive real parts only, '

This theorem shows that if no observation noise is present, completely
accurate reconstruction of the state of the system is possible only if the number
of components of the observed variable is at least as great as the number of
components of the state excitation noise w,(f). Even if this condition is
satisfied, completely faultless reconstruction is possible only if the transfer
matrix from the system noise-wy to the observed variable y possesses no
right-half plane zeroes.

The following question now comes to mind. For very small values of the
observation noise intensity 1, the optimal observer has some of its poles very
far away, but some other poles may remain in the neighborhood of the
origin. These nearby poles cause the reconstruction error to recover relatively
slowly from certain initial values. Nevertheless, Theorem 4.14 states that the
reconstruction error variance matrix can be quite small. This seems to be a
contradiction. The answer to this question must be that the structure of the
system to be observed is so exploited that the reconstruction error cannot be
driven into the subspace from which it can recover only slowly.
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We conclude this section by remarking that Q,, the limiting variance
matrix for p | 0, can be computed by solving the singular optimal observer
problem that results from setting w,(t) = 0. As it turns out, occasionally the
reduced-order obsérvation problem thus obtained involves a nondetectable
systern, which causes the appropriate algebraic Riccati equation to possess
more than one nennegative-definite solution. In such a case one of course has
to select that solution that makes the reduced-order observer stable (asymp-
totically or in the sense of Lyapunov), since the full-order observer that
approaches the reduced-order abserver as V; — 0 is always asymptotically
stable.

The problem that is dual to computing O, thatis, the problem of computing

Py=1limP 4-270
FHa—0
for the optimal deterministic regulator problem (Section 3.8.3), can be
solved by formulating the dual observer problem and attacking the resulting
singular optimal observer problem as outlined above. Butman (1968) gives a
direct approach to the “control-free costs™ linear regulator problem.

Example 4.6. Positioning system

In Example 4.4 (Section 4.3.2), we found that for the positioning system
under consideration the steady-state solution of the error variance matrix is
given by

_ ( ——nc-]—\/o‘.“-]—Zﬂ at“-]—ﬂ—nt\/m )
0= Vm o ——
D€2+ﬁ—m\/aﬂ+2ﬁ —nc“—-—2atﬁ+(ucz+ﬂ)\/uc“+2ﬂ ‘
4-271
where
B=yVilV, 4272

As ¥, [ 0, the variance matrix behaves as
178, /87,147,344 1/87,1/2
o (2 PR v )
YV&IBV#:E 21/2,,,3!2[;:,’4‘[/1:4

Obviously, Q0 approaches the zero matrix as V,, | 0. In Example 4.4 we
found that the optimal observer poles are

4-273

H—at + 28 4+ Va2 — 20). 4-274
Asymptotically, these poles behave as

paf

Vd 14 1/2 .
7 (=140, 4-275
ne

N
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which represents a second-order Butterworth configuration. All these facts
accord with what we might suppose, since the system transfer function is
given by . ‘

1
505 + w)

H(s) = c(sI — A) g = 4-276

which possesses no zeroes. As we have seen in Example 4.4, for ¥,, | 0 the
optimal filter approaches the differentiating reduced-order filter

(1) = (D),

. _ 4277
£a(t) = 7(1).
If no observation noise is present, this differentiating filter reconstructs the
state completely accurately, no matter how large the state excitation noise.

4,5 CONCLUSIONS

In this chapter we have solved the problem of reconstructing the state of a
linear differential system from incomplete and inaccurate measurements.
Several versions of this problem have been discussed. The steady-state and
asymptotic properties of optimal observers have been reviewed. It has been
seen that some of the results of this chapter are reminiscent of those obtained
in Chapter 3, and in fact we have derived several of the properties of optimal
observers from the corresponding properties of optimal regulators as
obtained in Chapter 3. '

With the results of this chapter, we are in a position to extend the results
of Chapter 3 where we considered linear state feedback control systems.
‘We can now remove the usually unacceptable assumption that all the com-
ponents of the state can always be accurately measured. This is done in
Chapter 5, where we show how owrput feedback control systems can be
designed by connecting the state feedback laws of Chapter 3 to the observers
of the present chapter.

4.6 PROBLEMS

4.1.  An observer for the inverted pendulum positioning system
Consider the inverted pendulum positioning system described in Example
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1.1 (Section 1.2.3). The state differential equation of this system is given by

6o 1 00 0
0o -L£ 00 L
#(f) = 0 oM o 1 |Fo+ %f u(). 4278
g g
-& £ 9
r % 0

Suppose we choose as the observed variable the angle ¢(¢) that the pendulum
makes with the vertical, that is, we let

1 1 '
771(0 = (— E 1 0: E 3 D) E(I). 4-279

Consider the problem of finding a time-invariant observer for this systern.
{(a) Show that it is impossible to find an asymptotically stable observer.
Explain this physically.
(b) Show that if in addition to the angle ¢(#) the displacement s() of the
carriage is also measured, that is, we add a component

na(8) = (1,0, 0, 0)(f) 4-280

to the observed variable, an asymptotically stable time-invariant observer
can be found.

4.2, Reconstruction of the angular velocity
Consider the angular velocity control system of Example 3.3 (Section 3.3.1), -
which is described by the state differential equation

E(t) = —ak(t) + xpu(?), 4.281

where &(1) is the angular velocity and u(¢) the driving voltage. Suppose that
the system is disturbed by a stochastically varying torque operating on the
shaft, so that we write

() = —ak(0) + ru(t) + wy (), 4-282

where w,(t) is exponentially correlated noise with rms value o, and time
constant ;. The observed variable is given by

7(t) = &) + ws(2), 4-283

where w, is exponentially correlated noise with rms value o, and time
constant #,. The processes w, and w, are uncorrelated.
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The following numerical values are assumed:
o =0.5s57,

TS ic = 150 rad/(v Sz)!
0, = 54.78 rad/s'*",

6, =0.1s, 4-284
op = Sradfs,
62 = 0.01 S.

(a) Since the state excitation noise and the observation noise have quite
large bandwidths as compared to the system bandwidth, we first attempt to
find an optimal observer for the angular velocity by approximating both the
state excitation noise and the observation noise as white noise processes, with
intensities equal to the power spectral densities of w; and w, at zero frequency.
Compute the steady-state optimal observer that results from this approach.

(b) To verify whether or not it is justified to represent e, and w, as white
noise processes, model w; and w, as exponentially correlated noise processes,
and find the augmented state differential equation that describes the angular
velocity control system. Using the observer differential equation obtained
under (a), obtain a three-dimensional augmented state differential equation
for the reconstruction error e(t) = £(t) — £(t) and the state variables of the
processes @y and w,. Next compute the steady-state variance of tbe recon-
struction error and compare this number to the value that has been pre-
dicted under (a). Comment on the difference and the reason that it exists.

(c) Attempt to reach a better agreement between the predicted and
the actual results by reformulating the observation problem as follows. The
state excitation noise is modeled as exponentially correlated noise, but the
approximation of the abservation noise by white noise is maintained, since
the observation noise bandwidth is very large. Compute the steady-state
optimal observer for this situation and compare its predicted steady-state
mean square reconstruction error with the actual value (taking into account
that the observation noise is exponentially correlated noise). Comment on
the results.

(d)* Determine the completely accurate solution of the optimal observer
problem by modeling the observation noise as exponentially correlated noise
also. Compare the performance of the resulting steady-state optimal observer
to that of the observer obtained under (c) and comment.

4.3. Solution of the observer Riccati equation
Consider the matrix Riccati equation =
O(t) = AMOM + 04T + Vi) — QNCTHVE(CHO() 4-285
with the initial condition
O(to) = Qo- 4-286
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Define W'(t, 1) as the (2r x 2n)-dimensional [Q(t) is n x »] solution of .

4T T —1
A7y CH (O (t)c(t))‘lf(t,r

Lp(r, 1) = (
dt 2O

4-287
LP‘(IDs t)y=1

Partition ¥z, ¢y} corresponding to the partitioning occurring in 4-287 as
follows. 7
Tt f) Taalt, ta)
Wi )= . ) 4-288
: Tar(t, 1) Weolt, 1)
Show that the solution of the Riccati eqﬁation can be written as

2 = [Yul, o) + Va(t, tn)Qu][LFu(Ia to) + Yialt, to) Q™ 4-289

4.4.% Determination of a priori data for the singular optimal observer
-When computmg an optimal observer for the singular observation problem
as descnbed in Section 4.3.4, we must determine the a priori data

| Blte) = E{caw(ru)l it} I 4-290
and
_ Q(to) = E{[p(to) — A(t)][p(ts) — P(fu)]T | va(to)}, 4-291
where
o ya(te) = Caa(ta). 4-292
We assume that
: Efz(t)}} = &, 4-293
and : - _
E{[x(ty) — Zo]l=(ty) — Eu]T} = 4-294
dare piven. Prove that if =(z;) is Gaussian then
E{a(to) | yalte)} = (1) = Bo + 0sC:7(Ca0oCa™) Myalts) — Cafs]  4-295
and
E{[m(tu)"" #(to)][=(te) — E(1)T" I #ta)} = Qo — QuCa® (CoQuCi™ ) Cale.

4-296

Determine from these results expressions for 4-290 and 4-291. Hint: Use the
vector formula for a multidimensional Gaussian density function (compare
1-434) and the expression for the inverse of a partitioned matrix as given by
Noble (1969, Exercise 1.59, p. 25).
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