
4 OPTIMAL LINEAR 
RECONSTRUCTION 
OF THE STATE 

4.1 INTRODUCTION 

AII the versions of the regulator and tracking problems solved in Chapter 3 
have the following basic assumption in common: the co~ilplete state vector 
car1 be measitred acc~rrately. This assumption is orten unrealistic. The most 
frequent situation is that for a given system 

x(t)  = A(t)x(t)  + B(t) i! ( f ) ,  x(t0) = xu, 4-1 

only certain linear combinations of the state, denoted by y, can be measured: 

y( t )  = C(t)x(t) .  4-2 

The quantity ?I, which is assumed to be an I-dimensional vector, with I 
usually less than the dimension r r  of the state x,  will be referred to as the 
obserued variable. 

The purpose of this chapter is to present methods of reconstructing the 
state vector, or finding approximations to the state vector, from the observed 
variable. In particular, we wish to find a functional F, 

xl ( t )  = F [ ~ / ( T ) ,  to < 7 < t ] ,  to < 1, 4-3 

such that x'(t) r x(t ) ,  where x'(t) represents the reconstrrrcted state. Here 1, 
is the initial time of the observations. Note that F[y(r ) ,  to 2 7 < t ] ,  the 
reconstructed x(t) ,  is a function of the past observations y ( ~ ) ,  to < T < t ,  
and does not depend upon future observations, ?/(T), T 2 t .  Once the state 
vector has been reconstructed, we sbaU be able to use the control laws of 
Chapter 3, which assume knowledge of the complete state vector, by re- 
placing the octiral state with the reconsirisiedstate. 

In Section 4.2 we introduce the observer, which is a dynamic system whose 
output approaches, as time increases, the state that musl be reconstructed. 
Although this approach does not explicitly take into account the difficulties 
that arise because of the presence of noise, it seeks methods of recon- 
structing the state that implicitly involve a certain degree of filtering of the 
noise. 

328 
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In Section 4.3 we introduce all the stochastic phenomena associated with 
the problem explicitly and quantitatively and find the optimal obseruer, 
also referred to as the Ka/nta11-Blrcj~ filter. The derivation of the optimal 
observer is based upin the fact that the optimal observer problem is "dual" 
to the optimal regulator problem presented in Chapter 3. 

Finally, in Section 4.4 the steady-state and asymptotic properties of the 
Kalman-Bucy filter are studied. These results are easily obtained from 
optimal regulator theory using the duality of the optimal regulator and 
observer problems. 

4 . 2  O B S E R V E R S  

4.2.1 Full-Order Observers 

In order to reconstruct the state x of the system 4-1 from the observed 
variable ?/ as given by 4-2, we propose a linear differential system the output 
of which is to be an approximation to the state x in a suitable sense. It  will 
be investigated what structure this system should have and how it should 
behave. We first introduce the following terminology (Luenberger, 1966). 

is arl obsevuer for rlre sjwtertz 

iffor euerj, initial state z ( t , )  of the SJ,steIt14-5 there exists an ii~itial state q, for. 
the system 4-4 slrch that 

d t o )  = Yo 4-6 
i~riplies 

z ( t )  = x(t) ,  t 2 t,, 4-7 
for all ir(f), t 2 tu. 

We note that the observer 4-4 has the system input 11 and the system observed 
variable y as inputs, and as output the variable z. We are mainly interested in 
observers of a special type where the state q ( t )  of the observer itself is to be 
an approximation to the system state x( t ) :  

Definition 4.2. Tlre 11-dimo~siorlal s j ~ ~ t o ? ~  
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is afrrdl-order observer for the 11-di~~~ensiolla~sJJsten1 

i ( t )  = A(t)x(t) + B(t)rr(t), 4-9s 

? / ( I )  = C(f)x(t), 4-9b 
i f  

&(to) = ~ ( t , )  4-10 
in~plies 

i ( t )  = x(t),  t 2 to, 4-11 
for all ~ ( t ) ,  t 2 to. 

The observer 4-8 is called a full-order observer since its state i has the same 
dimension as the state x of the system 4-9. In Section 4.2.3 we consider 
observers of the type 4-4 whose dimension is less than that of the state x. 
Such observers will be called reduced-order obseruers. 

We now investigate what conditions the matrices F, G,  and H must 
satisfy so that 4-8 qualifies as an observer. We first state the result. 

Theorem 4.1. The sjutem 4-8 is an obseruer for the system 4-9 if, and or~ly if, 
F(t) = A(t) - K(t)C(t), 

G(t) = N t h  4-12 

H(t)  = B(f) ,  

~lhere K(t)  is an arbitrarj~ time-unrying 1~latri.u. As a result,jirll-order observers 
haue t l~e fo l lo~~ ' i~~g  structure: 

i ( t )  = A(t).i(t) + B(t)u(t) + K(t)[y(t) - C(t)i(t)].  4-13 

This theorem can be proved as follows. By subtracting 4-8 from 4-9a and 
using 4-9b, the following differential equation for x(t)  - $(t) is obtained: 

i ( t )  - &(t) = [A(t)  - G(t)C(t)]s(t) - F(t) i( t )  + [B(t) - H(t)]lr(t). 

4-14 

This immediately shows that x( t )  = i ( t )  for t 2 to, for all I@), t 2 to, 
implies 4-12. Conversely, if 4-12 is satisfied, it follows that 

i ( t )  - &t) = [A(t) - K(t)C(t)][x(t) - i ( t ) ] ,  4-15 

which shows that if x(tJ = *(to) then x(t)  = i ( t )  for all t 2 to, for all 
tr(t), t 2 to. This concludes the proof of the theorem. 

The structure 4-13 follows by substituting 4-12 into 4-8. Therefore, a 
full-order observer (see Fig. 4.1) consists simply of a model of the system 
with as extra driving variable a term that is proportional to the difference 
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Fig. 4.1. Block diagram of a full-order observer. 

is the observed variable as reconstructed by the observer. We call the matrix 
K(t)  the gain matrix of the observer. Up to this point the choice of K(t)  for 
t 2 to is still arbitrary. 

From 4-13 we see that the observer can also be represented as 

This shows that the stabilitjl of the observer is determined by the behavior of 
A(t) - K(t)C(t).  Of course stability of the observer is a desirable property 
in itself, but the following result shows that stability of the observer has 
further implications. 

Theorem 4.2. Consider the obseruer 

for the system 
*( t )  = A(t)x(t)  + B(t)u(t), 

4-19 
y(t)  = C(t)x(t). 

Tim the rcconstrnction ewer 
e( t )  = z ( t )  - * ( t )  ' 4-20 
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satisfies the d~rerential eq~tation 

6(t)  = [A(t)  - K(t)C(t)]e(t) .  4-21 

The reco~~sfr~~ct ian error has theproperty that 

e( t )+O as t - m ,  4-22 

for aN e(tn), if, and o11l~1 if, the observer is asy~nptotical~ stable. 

That the reconstruction error, as defined by 4-20, satisfies the differential 
equation 4-21 immediately follows from 4-15. Comparing 4-21 and 4-17, we 
see tbat the stability of the observer and the asymptotic behavior of the 
reconstruction error are both determined by the behavior of the matrix 
A(t)  - K(t)C(t).  This clearly shows that the reconstruction error e( t )  
approaches zero, irrespective of its initial value, if and only if the observer is 
asymptotically stable. This is a very desirable result. 

Observer design thus revolves about determining the gain matrix K(t)  for 
t 2 tn such that the reconstruction error differential equation 4-21 is asymp- 
totically stable. In the time-invariant case, where all matrices occurring in 
the problem formulation are constant, including the gain K ,  the stability of 
the observer follows from the locations of the characteristic values of the 
matrix A - KC. We refer to the characteristic values of A - KC as the 
observer poles. In  the next section we prove that, under a mildly restrictive 
condition (complete reconstructibility of the system), all observer poles can 
be arbitrar~ly located in the complex plane by choosing K suitably (within 
the restriction that complex poles occur in complex conjugate pairs). 

At  this point we can only offer some intuitive guidelmes for a choice of 
K to obtain satisfactory performance of the observer. To obtain fast con- 
vergence of the reconstruction error to zero, K should be chosen so that the 
observer poles are quite deep in the left-half complex plane. This, however, 
generally must be achieved by making the gain matrix K large, which in 
turn makes the observer very sensitive to any observation noise tbat may be 
present, added to the observed variable y ( t )  A compromise must be found. 
Section 4.3 is devoted to the problem of finding an optimal compromise, 
taking into account all the statistical aspects of the problem. 

Example 4.1. Positionit~,y sjistenz 
In Example 2.4 (Section2.3), we considered a positioning system described 

by the state differential equation 

Here z ( t )  = col &(I), &( t ) ] ,  where denotes the angular displacement 
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and &(t) the angular velocity. Let us assume that the observed variable 71(f) 
is the angular displacement, that is, 

A time-invariant observer for this system is given by 

where the constant gains lcl and li2 are Lo be selected. The characteristic 
polynomial of the observer is given by 

det [(; 4 - (: + ( 1 o)] = det [[ :3i1 ;:)I 
With the numerical values of Example 2.4, the characteristic values of the 
syslem 4-23 are located at 0 and -a = -4.6 s-'. In order lo make the 
observer fast as compared to the system itself, let us select the gains lc, and k2 
such that the observer poles are located at -50 rt j50s-l. This yields for 
the gains: 

li, = 95.40 s-l, kc = 4561 s-?. 4-26 

In  Fig. 4.2 we compare the output of the observer to the actual response of 
the system. The initial conditions of the positioning system are 

&(0) = 0.1 rad, 13(0) = 0.5 rad/s, 4-27 

reconstructed 
angular  
posit ion 

E, I t )  

I 
( r o d 1  

Fig. 4.2. Actual response oC a positioning system and the response as reconstructed by a 
full-order observer. 
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while the input voltage is given by 

p ( t ) = - l O V ,  t 2 0 .  4-28 

The observer has zero initial conditions. Figure 4.2 clearly shows the excellent 
convergence of the reconstructed angular position to its actual behavior. 

4.22" Conditions for Pole Assignment and Stabilization of Observers 

In this section we state necessary and sufficient conditions for pole assign- 
ment and stabilization of time-invariant full-order observers. We first have 
the following result, which is dual to Theorem 3.1 (Section 3.2.2). 

Theorem 4.3. Consider the time-inuaria~~t fll-order observer 

i ( t )  = A$(t) + K[?/(t)  - C*(t)] + Bu(t) 4-29 

for the fi~ne-inuariant system 

Tlrerr the abseruerpoles, that is, the characteristic ua l~~es  of A - KC, can be 
arbitrarily located in the co~uplex plane (iviilrin rlre restriction that coinpiex 
cl~aracteristic values occur in cornplex co~ljl~gatepairs), ~ J J  clroosing the constant 
matrix K suitably, i f a r ~ d  only if the system 4-30 is con~pletely reco~~strrtctible. 

To prove this theorem we note that 

det [A1 - ( A  - KC)] = det [AI - (A" - CTK")I, 4-31 

so that the characteristic values of A - KC are identical to those of AT - 
CTKT. However, by Theorem 3.1 the characteristic values of AT - C " K ~  
can be arbitrarily located by choosing K appropriately if and only if the pair 
{AT,  C T }  is completely controllable. From Theorem 1.41 (Section 1.8), we 
know that {AT,  CT} is completely controllable if and only if { A ,  C }  is 
completely reconstructible. This completes the proof. 

If { A ,  C )  is not completely reconstructible, the following theorem, which 
is dual to Theorem 3.2 (Section 3.2.2) gives conditions for the stability of the 
observer. 

Theorem 4.4. Coruider the tin~e-it~variapt obseruer 

&) = A q f )  + K[y(t)  - C q t ) ]  + Bu(t) 4-32 

for the time-inuariant sj~stern 
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Then a r~iatrir K can be fomd such that the obseruer is asynlptotically stable if 
and only ifilze system 4-33 is detectable. 

Detectability was defined in Section 1.7.4. The proof of this theorem follows 
by duality from Theorem 3.2. 

4.2.3" Reduced-Order Observers 

In this section we show that it is possible to find observers of dimension less 
than the dimension of the system to be observed. Such observers are called 
reduced-order observers. For simplicity we discuss only the time-invariant 
case. Let the system to be observed be described by 

where the dimension of the state s(t) is 11 and the dimension of the observed 
variable ~ ( t )  is given by I. Since the observation equation ~ ( t )  = Cx(t) 
provides us with I linear equations in the unknown state s(t), it is necessary 
to reconstruct only 11 - I linear combinations of the components of the state. 
This approach was first considered by Luenberger (1964, 1966). We follow 
the derivation of Cumming (1969). 

Assuming that C has full rank, we introduce an (n - /)-dimensional 
vector p(t), 

p(t) = c ' m  4-35 
such that 

is nonsingular. By the relations 
2/@) = C 4 ,  

p(t) = C12(f), 
it follows that 

I t  is convenient to write 

Thus if we reconstruct p(t) and denote the reconstructed value by @(t), we 
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can write the reconstructed state as 

i ( t )  = L,y(t) + L&). 4-41 

An observer for p(t) can be found by noting that p(t) obeys the follow~ng 
differential equation 

p( t )  = CrAx(t) + C'Bu(t), 4-42 
or 

p(t)  = CIAL,p(t) + C'AL,y(t) + C'Bu(t). 4-43 

Note that in this differential equation y(t)  serves as a forcing variable. 
If we now try to determine an observer for p by replacing p with 8 in 4-43 
and adding a term of the form K(t)[y( t )  - C*(r)], where K is a gain matrix, 
this is unsuccessful since from 4-41 we have y - C* = y - CL,y - CL,@ = 
- y = 0;  apparently, y does not carry any information about p. New 

information must be laid bare by difkrent~ating y(t): 

$( t )  = CAx(r) + CBlr(r) 
4-44 

= CAL,p(r) + CAL,y(r) + CBu(t). 

Equations 4-43 and 4-44 suggest the observer 

j ( t )  = C ' A L , ~ ( ~ )  + C ' A L , ~ ( ~ )  + C'Bu(t) 

+ K[li(t) - C A L y ( t )  - CBu(t) - CAL,@(f)]. 4-45 

We leave it as an exercise to show that, if the pair {A ,  C )  is completely 
reconstructible, also the pair {C'AL,, CAL?} is completely reconstructible, 
so that by a suitable choice of Kall the poles of 4-45 can be placed at  arbitrary 
posit~ons (Wonham, 19700). 

In  the realization of the observer, there is no need to lake the derivative 
of y(r). To show this, define 

q(t) = fj(t) - K?l(tl/(t). 4-46 
I t  is easily seen that 

i ( t )  = [C'AL? - KCAL,]q(l) 

+ [C'AL,K + C'AL, - K A L ,  - KCAL,flu(t) 

+ [C'B - KCB]lr(r). 4-47 

T h ~ s  equatlon does not contain rj(t). The reconstructed state follows from 

?(t) = L,q(t) + (L ,  + L,K)y(t). 4-48 

Together, 4-47 and 4-48 constitute an observer of the form 4-4. 
Siuce the reduced-order observer has a direct link from the observed 

variable y(r) to the reconstructed state ?( t ) ,  (he estimate .t(t) will be more 
sensitive to measurement errors in y(1) than lhe estimate generated by a 



full-order observer. The question of the effects or  measurement errors and 
system disturbances upon the observer is discussed in Section 4.3. 

Example 4.2 ~ o s i t i o ~ ~ i n ~  q ~ s t e n ~  
In this example we derive a one-dimensional observer for the positioning 

system we considered in Example 4.1. For this system the observed variable 
is given by 

7 = 1 O)x(t). 4-49 

Understandably, we choose the variablep(t), which now is a scalar, as 

so thatp(1) is precisely the angular velocity. It is immediately seen that p(t) 
satisfies the differential equation 

Our observation equation we obtain by differentiation of ?](I): 

7j(t) = &(I) = t2(t) =p(1). 

An observer lor p(t) is therefore given by 

@(I) = -aP(f) + I C ~ L ( ~ )  + A[d(f) -@(I)], 4-53 

where the scalar observer gain A is to be selected. The characteristic value of 
the observer is -(a + A). To make the present design comparable to the 
full-order observer of Example 4.1, we choose the observer pole a t  the same 
distance from the origin as the pair of poles of Example 4.1. Thus we let 
o. + A = 5042 = 70.71 s-'. With a = 4.6 s-I this yields for the gain 

The reconstructed state of the original system is given by 

To obtain a reduced-order observer without derivatives, we set 

~ ( 1 )  = @(I) - All(0. 4-56 

By using 4-53 it follows that q(t) satisfies the differential equation 

j(t) = -(a + A)q(t) + xp(t) - (o! + A)A7l(f). 4-57 

In  terms of q(t) the reconstructed stale or  the original system is given by 
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Fig. 4.3. Actual response of a positioning system and the response as reconstructed by a 
reduced-order observer. 

In Fig. 4.3 we compare the output of the reduced-order observer described by 
4-57 and 4-58 to the actual behavior of the system. The initial conditions of 
the system are, as in Example 4.1: 

tl(0) = 0.1 rad, L(0) = 0.5 rad/s, 4-59 

while the input is given by 

p(t )  = -10 V, r 2 0. 4-60 

The observer initial condition is 

Figure 4.3 shows that the angular position is of course faithfully reproduced 
and that the estimated angular velocity quickly converges to the correct 
value, although the initial estimate is not very good. 
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4.3 T H E  O P T I M A L  OBSERVER 

4.3.1 A Stochastic Approach to the Observer Problem 

In Section 4.2 we introduced observers. I t  has been seen, however, that in 
the selection of an observer for a given system a certain arbitrariness remains 
in the choice of the gain matrix K. In this section we present methods of 
finding the optiinal gain matrix. To this end we must make specific assump- 
tions concerning the disturbances and observation errors that occur in the 
system that is to be observed. We shall then be able to define the sense in 
which the observer is to be optimal. 

It is assumed that the actual system equations are 

Here 11i(t) is termed the state excitation noise, while w,(t) is the observation 
or n~easttrenient noise. I t  is assumed that the joint process col [ ~ v ~ ( t ) ,  le,(t)] 
can be described as white noise with intensity 

4-63 

that is, 

E[(::::::) [ ~ I ~ ~ ~ I ~ , ) ,  bv2IP(tz)1 4-64 

If V,,(t) = 0 ,  the state excitation noise and the observation noise are zrn- 
correlated. Later (in Section 4.3.5) we consider the possibility that is1(t) 
and w,(f)  can not be represented as white noise processes. A case of special 
interest occurs when 

V d t )  > 0, t 2 to. 4-65 

This assumption means in essence that aU components of the observed 
variable are corrupted by white noise and that it is impossible to extract from 
~ ( t )  information that does not contain white noise. If this condition is satisfied, 
we call the problem of reconstructing the state of the system 4-62 non- 
siizgzrlar. 

Finally, we denote 



is connected to the system 4-62. Then the recoiistrrrctio~r error is given by 

The ~iiean spare  recofrstrrrction error 

with W ( t )  a given positive-definite symmetric weighting matrix, is a measure 
of how well the observer reconstructs the state of the system at  time t. The 
mean square reconstruction error is determined by the choice oT.i.(t,) and of 
K(T), tU 5 T <  t. The problem of how to choose these quantities optimally 
is termed the aptiriial obseruerproblei~~. 

Definition 4.3. Consider the sjwte~ii 

Here col [~v,(t), uh( t )] is  a id~i te  fioise process ivitli iitteiisitj, 

Frrrtheriiiore, the iiiitial slate %(to) is uncorrelated ivitl~ I V ,  and i l l2 ,  

E{x(t,)} = Zo,  E{[x(t,) - Z,][x(t,) - E J ~ ' }  = QU, 4-72 

and rr(t), t > to, is a given iiiprrt to tlie sj~steiii. Consider the observer 
get) 

i ( t )  = A(t1.i-(t) + (rnrr(t) + K(t)[!,(t) - C(t)?(t)]. 4-73 

Tlien the proble~n offiridiiig the riiotrisftriiction K ( r ) ,  to < T < t ,  arid the 
initial conditiorl &(to), so as to ~iii~iiriiize 

and idrere 1Tf(t) is a positive-dejiaite syiiinietric ~~'eiglrtifrg liiahix, is termed 
flre optimal obseruer problem. If 

the optiriial observer problem is called nonsirigirlar. 

In  Section 4.3.2 we study the nonsingular optimal observer problem where 
the state excitation noise and the observation noise are assumed moreover 
to be uncorrelated. In Section 4.3.3 we relax the condition of uncorrelated- 
ness, while in Section 4.3.4 the singular problem is considered. 
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4.3.2 Tbe Nonsingular Optimal Observer Problem wit11 Uncorrelated 
State Excitation and Observation Noises 

In this section we consider the nonsingular optimal observer problem where 
it is assumed that the state excitation noise and the observation noise are 
uncorrelated. This very important problem was first solved by Kalman and 
Bucy (Kalman and Bucy, 1961), and its solution has had a tremendous 
impact on optimal filtering theory. A historical account of the derivation of 
the so-called Kabnan-Bucj,filfer is given by Sorenson (1970). 

Somewhat surprisingly Lhe derivalion of the optimal observer can be 
based on Lemma 3.1 (Section 3.3.3). Before proceeding to Lhis derivation, 
however, we introduce the following lemma, which shows how time can be 
reversed in any differential equation. 

Lemma 4.1. Coirsider the d@~ei~ t ia l  eqoatiom 

"(I,) = mu, 
a i d  

dy(f) - f [I* - I, ?/(,)I, I I I,, 
dt 4-78 

?/(h) = Yl, 
where I, < t , ,  and 

I* = f"  + I,. 
Tlrelz if 

"0 = Yl, 

the soh~fiom of 4-77 and 4-78 are relafed as fol lo~~~s.  

x = ( 1  - I )  f 2 f", 4-81 
?/(I) = "(t* - I), f j I,. 

This lemma is easily proved by a change in variable from t to t'+ - i. 
We now proceed with our derivation of the optimal observer. Subtracting 

4-67 from4-62a and using4-62b, we obtain the followin~differential equation - 
for the reconstruction error e(f) = z(i) - *(t): 

where 
e" = "(to) - 2(i"), 4 4 3  
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and where, as yet, K( t ) ,  t  2 to, is an arbitrary matrix function. Let us 
denote by o ( t )  the variance matrix of e(& and by P(t) the mean of e(t):  

EIe(t)} = c( t ) ,  
4-84 

E{[e(t)  - P(t)][e(t) - c(t)lT} = o ( t ) .  
Then we write 

~ { e ( t ) e ~ ( t ) }  = P(t)PT(t) + o ( t ) .  4-85 

With this, using 1-469, the mean square reconstruction error can be expressed 
as 

W(t)e(f ) }  = : E{e ( t )  eT@)W(f )W + tr [ O ( t ) ~ ( t ) l .  4-86 

The first term of this expression 1s obviously minimal when P(t) = 0. This 
can be achieved by letting *(to) = 0, since by Theorem 1.52 (Section 1.11.2) 
P(t) obeys the homogeneous differential equation 

We can make P(to) = 0 by choosing the initial condition of the observer as 

Since the second term of 4-86 does not depend upon P(t), it can be minimized 
independently. From Theorem 1.52 (Section 1.1 1.2), we obtain the following 
differential equation for e ( t ) :  - 

Let us now introduce a differential equation in a matrix function P(t) ,  
which is derived from 4-89 by reversing time (Lemma 4.1): 

+ v~(t* - t )  + K( tC  - 1 ) T f 2 ( f C  - t)KZ'(t* - I ) ,  t 5 t l .  4-91 
Here 

with t ,  > to. We associate with 4-91 the terminal condition 

It immediately follows from Lemma 4.1 that 

act) = p(t* - t ) ,  t t,. 4-94 
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Let us now apply Lemma 3.1 (Section 3.3.3) to 4-91. This lemma shows that 
the matrixP(t) is minimized ifK(t* - T), t I T 5 tl. is chosen as Kn(t* - T), 
t < T 5 tl, where 

Kqf* - 7)  = ~;'(t* - T)c(~* - T)P(T). 4-95 

In this expression P(t) is the solution of 4-91 with Kreplaced by Kn, that is, 

-P(t) = V,(f* - t) - P(f)CT(f* - t)v;'(f* - f)C(tX - t)P(t) 

+ P(t)AT(t* - t) + A(f* - t)P(t), t 5 tl , 4-96 
with the terminal condition 

p ( t J  = Qn. 4-97 

The minimal value of P(t) is P(t), where the minimization is in the sense that 

By reversing time back again in 4-96, we see that the variance matrix o(t)  of 
e(t) is minimized in the sense that 

by choosing K(T) = KU(~)) ,  to 5 T 5 t, where 

and where the matrix Q(t) satisfies the matrix Riccati equation 

t 2 to, 4-101 
with the initial condition 

for any positive-definite symmetric matrix W(t), we conclude that the gain 
matrix 4-100 optimizes the observer. We moreover see from 4-86 that for the 
optimal observer the mean square reconstruction error is given by 

while the variance matrix of e(t) is Q(t). 
We finally remark that the result we have obtained is independent of the 

particular time t at which we have chosen to minimize the mean square 
reconstruction error. Thus if the gain is determined according to 4-100, the 
mean square reconstruction error is simultaneously minimized for all t 2 to. 

Our findings can be summarized as follows. 
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Theorem 4.5. Corlsirler the opti!nal observer probleni of De@ftion 4.3. 
Suppose that the problem is nonsingular ofid that the state excitation and 
obseruation noise are irncorrelated. Tlzen the sol~rtiori of the optirnal obseruer 
problem is obtained by cl~oosing for the gain matris 

KO(t) = Q(t)C"(~)l/;~(t). t 2 to, 4-105 

~ h r e  Q(I )  is the solution of the ~ ~ i a t r i x  Riccati ecpation 

12 I n ,  4-106 
~sitlt the initial co~idition 

Q( tJ  = Qn. 4-107 

The i~iitial colirlition of the observer slro111d be choseti as 

If4-105 and 4-108 are satirfied. 

is nlinirnized for all t 2 to. The uariarlce ~itoh.ix of the reconstr~rction error is 
giuen b j ~  

E{[x( t )  - 2(t)][x(t)  - :i.(t)lT'} = Q(t), 4-110 

11hi1e the mean spare  reconstruction error is 

E{[x(t)  - $(t)lTW(t)[x(r) - :i.(f)]} = tr [Q(t)W(t)]. 4-111 

I t  is noted that the solution of the optimal observer problem is, surprisingly, 
independent of the weighting matrix iV(t). 

The optimal observer of Theorem 4.5 is known as the filman-BucjjJilter. 
I n  this section we have derived this filter by first assuming that it has the form 
of an observer. In the original derivation of Kalman and Bucy (1961), 
however, it is proved that this filter is the rninhmrm meali sgltare linear 
estinmtor, that is, we cannot find another linear functional of the observa- 
tions Y ( T )  and the input u(r) ,  1, 5 T 5 t ,  that produces an estimate of the 
state z ( t )  with a smaller mean square reconstruction error. I t  can also be 
proved (see, e.g., Jazwinski, 1970) that if the initial state z(tO) is Gaussian, 
and the state excitation noise I(', and the observation noise w2 are Gaussian 
white noise processes, the Kalman-Bucy filter produces an estimate d ( t )  of 
x( t )  that has minimal mean square reconstruction error among all estimates 
that can be obtained by processing the data ?/(T) and u(r ) ,  to 5 T 2 t. 

The close relationship between the optimal reg~dator problem and the 
optimal obseruer problem is evident from the fact that the matrix Riccati 
equation for the observer variance matrix is just the time-reversed Riccati 
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equation that holds for the regulator problem. In later sections we make 
further use of this relationsh~p, which will be referred to as the dual it^, 
property, in deriving,facts about observers from facts about regulators. 

The gain matrix Ko(t) can be oblained by solving the matrix Riccati 
equation 4-106 in real time and using 4-105. Alternatively, Ko(t) can be 
computed in advance, stored, and played back during the state reconstruction 
process. I t  is noted that in contrast to the optimal regulator described in 
Chapter 3 the optimal observer can easily be implemented in real time, 
since 4-106 is a differential equation w ~ t h  given i~iitialconditions, whereas the 
optimal regulator requires solution of a Riccati equation with given ter?ninal 
conditions that must be solved backward in time. 

In  Theorem 3.3 (Section 3.3.2), we saw that the regulator Riccati equation 
can be obtained by solving a set of 211 x 211 differential equations (where n 
is the dimension of the state). The same can be done with the observer 
Riccati equation, as is outlined in Problem 4.3. 

We now briefly dlscuss the steady-state properties of the optimal observer. 
What we state here is proved in Section 4.4.3. I t  can be shown that under 
mildly restrictive conditions the solution Q(t) of the observer Riccati equa- 
tion 4-106 converges to a stea+state so l~~ t i o~ i  Q(t) which is independent of 
Q ,  as the initial time to approaches - m. In the time-invanant case, where all 
the matrices occurring in Definition 4.3 are constant, the steady-state solution 
Q is, in addition, a constanl matrix and is, in general, the unique non- 
negative-definite solut~on of the algebraic abseruer Riccati eguatia~i 

0 = AQ + QAT + V1 - QC2'1/~'CQ. 4-112 

This equation is obtained from 4-106 by setting the time derivative equal to 
zero. 

Corresponding to the steady-state solution Q of the observer Riccati 
equation, we obtain the steaflystate optimal observer gain niatrk 

K(t) = Q(t)CT(t)l/;l(t). 4-113 

I t  is proved in Section 4.4.3, again under mildly restrictive conditions, that 
the observer with X as gain matrix is, in general, asymptotically stable. We 
refer to this observer as the steady-state optimal observer. Since in the time- 
invariant case the steady-state observer is also time-invariant, it is very 
attractive to use the steady-state optimal observer since it is much easier to 
implement. In the time-invariant case, the steady-state optimal observer is 
optimal in the sense that 

lim E{el'(t)Clre(t)} = lim E{eT(l) We(t)} 4-114 
lo--m I + r n  

is mmimal with respect to all other time-invariant observers. 
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We conclude this section with the following discussion which is restricted 
to the time-invariant case. The optimal observer provides a compromise 
between the speed of state reco~isfr~iction and the i~zznztinify fo obseruatiolz 
noise. The balance between these two properties is determined by the mag- 
nitudes of the white noise intensities V, and V?. This balance can be varied 
by keeping V, constant and setting 

where fif is a constant positive-definite symmetric matrix and p is a positive 
scalar that is varied. It  is intuitively clear that decreasing p improves the 
speed of state reconstruction, since less attention can he paid to filtering the 
observation noise. This increase in reconstruction speed is accompanied by a 
shift of the observer poles further into the left-half complex plane. In cases 
where one is not sure of the exact values of V, or V2, a good design pro- 
cedure may be to assume that Vz has the form 4-115 and vary p until a 
satisfactory observer is obtained. The limiting properties of the optimal 
observer as p 1 0 or p -+ m are reviewed in Section 4.4.4. 

Example 4.3. The esfiniation of a "co~isfa~it" 
In many practical situations variables are encountered that stay constant 

over relatively long periods of time and only occasionally change value. One 
possible approach to model such a constant is to represent it as the state of an 
undisturbed integrator with a stochastic initial condition. Thus let [ ( f )  
represent the constant. Then we suppose that 

where 6, is a scalar stochastic variable with mean go and variance Q,. We 
assume that we measure this constant with observation noise v, ( f ) ,  that is, 
we observe 

? I @ )  = [ ( t )  + % ( f ) ,  4-117 

where vz(r) is assumed to be white noise with constant scalar intensity Vz. 
The optimal observer for t ( t )  is given by 

&t) = k(f)tV(f) - &)I 
E(0) = to, 

where the scalar gain k( t )  is, from 4-105, given by 
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The error variance Q(t )  is the solution of the Riccati equation 

Q(t) = - 0_2(f), Q(0) = Q,. 
vz 

Equation 4-120 can be solved explicitly: 

so that 

k(1) = Qo , 1 2 0 .  4-122 
v 3  + Qot 

We note that as i  + co the error variance Q(t )  approaches zero, which means 
that eventually a completely accurate estimate of c( t )  becomes available. As 
a result, also k ( t )  - 0 ,  signifying that there is no point in processing any 
new data. 

This observer is not satisfactory when the constant occasionally changes 
value, or in reality varies slowly. In such a case we can model the constant 
as the output of an integrator driven by white noise. The justification for 
modeling the process in this way is that integrated white noise has a very 
large low-frequency content. Thus we write 

& ( f )  = d f ) .  g [ ~ ) = $ ~  
4-123 

~ ( t )  = K t )  + d t ) ,  
where 1 1  is white noise with constant intensity Vl and v, is white noise as 
before, independent of 1 1 ~ .  The steady-state optimal observer is now easily 
found to be given by 

4-124 
where 

In transfer function form we have 

where X(s) and Y ( s )  are the Laplace transforms of & I )  and ?l(f), respectively. 
As can be seen, the observer is a first-order filter with unity gain at zero 
frequency and break frequency JV,/V,. 
Example 4.4. Posifiorzillg systenl 

In Example 2.4 (Section 2.3), we considered a positioning system which is 
described by the state differential equation 
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Here x(t)  = col [El(t), &(t)],  where E1(t) denotes the angular displacement 
O(t) and L ( t )  Uie angular velocity O(t). Let us now assume, as in Example 2.4, 
that a disturbing torque ~,,(t) acts upon the shaft of the motor. Accordingly, 
the state differential equation must be modified as follows: 

where 1/71 is the rotational moment of inertia or all the rotating parts. If 
the fluctuations of the disturbing torque are fast as compared to the motion 
of the system itself, the assumption might be justified that ~ ( t )  is white 
noise. Let us therefore suppose that r,,(t) is white noise, with constant, scalar 
intensity I f a .  Let us furthermore-assume that the observed variable is given by 

where v,,,(t) is white noise with constant, scalar intensity I f , , , .  
We compute the steady-state optimal observer for this system. The 

variance Riccati equation takes the form 

In terms of the entries qlj( t ) ,  i, j = 1,2, of Q(t) ,  we obtain the following set 
of diiferential equations (using the fact that qlz(t) = q2,(t)): 

It can be found that the steady-state solution of the equations as t  -+ m is 
given by 

-a + Jm 

4-132 
where 

P = Y,/- 4-133 
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I t  follows that the steady-state optimal gain matrix is given by 

The characteristic polynomial of the matrix A - KC can be found to be 

from which it can be derived that the poles of tlie steady-state optimal 
observer are 

&(- 4." + 28-). 4-136 

Let us adopt the following numerical values: 

I t  is supposed that the value of V, is derived from the knowledge that the 
disturbing torque lias an rms value of ,/%c 31.6 N m and that its power 
spectral density is constant from about -50 to 50 Hz and zero outside this 
frequency hand. Similarly, we assume that the observation noise, which lias 
an rms value of 0.01 rad, has a flat power spectral density function from 
about -500 to 500 Hz and is zero outside this frequency range. We carry 
out tlie calculations as if the noises were white with intensities as indicated 
in 4-137 and then see if this assumption is justified. 

With the numerical values as given, the steady-slate gain matr ixh found 
to be 

The observer poles arc -22.48 & j22.24. These pole locations apparently 
provide an optimal compromise between the speed of convergence of the 
reconstruction error and the immunity against observation noise. 

The break frequency of the optimal observer can be determined from the 
pole locations. The observer characteristic polynomial is 
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which represents a second-order system with undamped natural frequency 
w, = 31.6 rad/s r 5 Hz and relative damping of about 0.71. The undamped 
natural frequency is also the break frequency of the observer. Since this 
frequency is quite small as compared to the observation noise bandwidth of 
about 500 Hz and the disturbance bandwidth of about 50 Hz, we conjecture 
that it is safe to approximate both processes as white noise. We must compare 
both the disturbance bandwidth and the observation noise bandwidth to the 
obseruer bandwidth, since as can be seen from the error differential equation 
4-82 both processes directly influence the behavior of the reconstruction 
error. In Example 4.5, at the end of Section 4.3.5, we compute the optimal 
filter without approximating the observation noise as white noise and see 
whether or not this approximation is justified. 

The steady-state variance matrix of the reconstruction error is given by 

By taking the square roots of the diagonal elements, it follows that the rms 
reconstruction error of the position is about 0.002 rad, while that of the 
angular velocity is about 0.06 rad/s. 

We conclude this example with a discussion of the optimal observer that 
has been found. First, we note that the filter is completely determined by the 
ratio VJV,,,, which can be seen as a sort of "signal-to-noise" ratio. The 
expression 4-136 shows that as this ratio increases, which means that ,9 
increases, the observer poles move further and further away. As a result, the 
observer becomes faster, but also more sensitive to observation noise. For 

= m we obtain a direrentiating filter, which can be seen as follows. In 
transfer matrix form the observer can be represented as 

4-141 
Here x(s) ,  Y(s ) ,  and U(s)  are the Laplace transforms of 2(t), ~ ( t ) ,  and z1(f), 

respectively. As the observation noise becomes smaller and smaller, that is, 
,9 -t m, 4-141 converges to 
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This means that the observed variable is taken as the reconstructed angular 
position and that the observed variable is differentiated to obtain the re- 
constructed angular velocity. 

4.3.3* The Nonsingular Optimal Observer Problem with Correlated 
State Excitation and Observation Noises 

In  this section the results of the preceding section are extended to the case 
where the state excitation noise and the measurement noise are correlated, 
that is, V12(t) # 0, t 2 to. To determine the optimal observer, we proceed 
in a fashion similar to the correlated case. Again, let &(t) denote the variance 
matrix of the reconstruction error when the observer is implemented with an 
arbitrary gain matrix K(t) ,  t 2 to. Using Theorem 1.52 (Section 1.11.2), we 
obtain the following differential equation for o ( t ) ,  which is an extended 
version of 4-89 : 

g(1) = [A(t) - K(t)C(t)]o(t) + o(l)[A(t)  - K(l)C(t)lz' 

+ Vdt)  - V,dr)KT(1) - K(f)V$(t) + K(t)Vdl)KT(l), 1 2 to, 
4-143 

with the initial condition 
&(to) = -ow 4-144 

To convert the problem of finding the optimal gain matrix to a familiar 
problem, we reverse time in this differential equation. I t  then turns out that 
the present problem is dual to the "extended regulator problem" discussed in 
Problem 3.7 in which the integral criterion contains a cross-term in the state 
x and the input u. By using the results of Problem 3.7, it can easily be shown 
that the solution of the present problem is as follows (see, e.g., Wonham, 
1963). 

Theorem 4.6. Consider the optinial obseruer problem of Defrlitior~ 4.3 
(Sectiori 4.3.1). Srrppose that the problerii is notisitigrrlar, that is, V,(t) > 0,  
t 2 to. Tllerr the solrrtiorr of the optirml obseruer problem is aclrieued by 
clioosing the gait1 niatrix R ( t )  of the obseruer 4-73 as 

where Q(t)  is the solrrtiorl of the niatrix Riccati eqttotion 
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with the initial condition 
Cxfo) = oo. 4-147 

The initial condition of flie obseruer is 

For the choices 4-145 and 4-148, the meall square reco~wtr~~ctiorl error 

is n~irzimized for all t 2 t,. Tire variarlce matrix of the reconstr~~ction error is 
given b j ~  

4.3.4''' The Time-Invariant Singular Optimal Observer Problem 

This section is devoted to the derivation of the optimal observer for the 
singular case, namely, the case where the matrix V?(t) is not positive-definite. 
To avoid the difficulties that occur when IfE(t) is positive-definite during 
certain periods and singular during other periods, we restrict the derivation 
of this section to the time-invariant case, where all the matrices occurring 
in Definition 4.3 (Section 4.3.1) are constant. Singular observation problems 
arise when some of the components of the observed variable are free of 
observation noise, and also when the observation noise is not a white noise 
process, as we see in the following section. The present derivation roughly 
follows that of Bryson and Johansen (1965). 

First, we note that when V, is singular the derivation of Section 4.3.2 
breaks down; upon investigation il turns out that an infinite gain matrix 
would be required for a full-order observer as proposed. As a result, the 
problem formulation of Definition 4.3 is inadequate for the singular case. 
What we do  in this section is to reduce the singular problem to a nonsingular 
problem (of lower dimension) and then apply the results of Sections 4.3.2 
or 4.3.3. 

Since I/, is singular, we can always introduce another white noise process 
iv~(t), with r~onsingular intensity If;, such that 

with dim (III;) < dim (iv,), and where H has full rank. This means that the 
observed variable is given by 
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With this assumption the intensity of lll2(f) is given by 

Since IT, is singular, i t  is possible to decompose the observed variable into 
two parts: a part that is "complelely noisy," and a part that is noise-free. 
We shall see how this decomposition is performed. 

Since dim (IvI) < dim (WJ, i t  is always possible to find an I x Inonsingular 
matrix T (I is the dimension of the observed variable y) partitioned as 

such that 

Here HI is square and nonsingular, and the partitioning of Thas been chosen 
corresponding to that in the right hand side of 4-156. Multiplying the oulput 
equation 

y(f) = Cx(f) + Hlv;(t) 4-157 
by T we obtain 

y3(t) = C2x(f), 4-158b 
where 

We see that 4-155 represents the decomposition of the observed variable y ( t )  
into a "completely noisy" part yl(t) (since H , T ~ ; H , ~  is nonsingular), and a 
noise-free part !/.(t). 

We now suppose that C, has full rank. If this is not the case, we can re- 
define ~ , ( t )  by eliminating all components that are linear combinations of 
other components, so that the redefined C2 has full rank. We denote the 
dimension of y?(f) by k. 

Equation 4-158b will be used in two ways. First, we conclude that since 
y,(t) provides us with lc linear equations for x(t) we must reconstruct only 
n - lc (n is the dimension OF x) additional linear combinations of x(t). 
Second, since y,(t) does not contain white noise i t  can be differentiated in 
order to extract more dala. Let us thus define, as we did in Section 4.2.3, an 
(n - /;)-dimensional vector variable 
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where C6 is so chosen that then  x 11 matrix 

is nonsingular. From ?/,(t) and p(t) we can reconstruct x(t) exactly by the 
relations 

2/2(f) = c,m 
4-162 

~ ( 1 )  = C6x(t). 
or 

It is convenient to introduce the notation 

so that 

Our next step is to construct an observer forp(t). The reconstructedp(t) will 
be denoted by p(t). It follows from 4-165 that 2(t), the reconstructed state, is 
given by 

2(t) = L,y,(t) + L,@(t). 4-166 

The state differential equation for p(t) is obtained by differentiation of 
4-160. I t  follows with 4-165 

where 
~ ( 1 )  = A'p(f) + B'a(f) + B"&(t) + c;w,(~), 

A' = CiAL,, B' = CkB, B" = CAAL,. 4-169 

Note that both ~ ( t )  and ?/,(t) are forcing variables for this equation. The 
observations that are available are ?/,(t), as well as &(t), for which we find 
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Combining yl(t)  and $,(t) we write for the observed variable of the system 
4-168 

where 

4-173 

Note that in the state differential equation 4-168 and in the output equation 
4-172 we treat both ~ ( t )  and y,(t) as given data. To make the problem 
formulation compIete, we must compute the a priori statistical data of the 
auxiliary variable p(r,): 

i?fo) = E I C h ( f u )  I 2/2(fu)} 4-174 
and 

w 0 )  = EIW, )  - B ( ~ u ) I [ P ( ~ o )  - P ( ~ ~ ) F I  Y , ( ~ J I .  4-175 

It is outlined in Problem 4.4 how these quantities can be found. 
The observation problem that we now have obtained, and which is defined 

by 4-168, 4-172, 4-174, and 4-175, is an observation problem with correlated 
state excitation and observation noises. I t  is either singular or nonsingular. 
If it is nonsingular it can be solved according to Section 4.3.3, and once j ( t )  is 
available we can use 4-166 for the reconstruction of the state. If the observa- 
tion problem is still singular, we repeat the entire procedure by choosing a 
new transformation matrix T for 4-172 and continuing as outlined. This 
process terminates in one of two fashions: 

(a) A nonsingular observation problem is obtained. 
(b) Since the dimension of the quantity to be estimated is reduced at each 

step, eventually a stage can be reached where the matrix C, in 4-162 is square 
and nonsingular. This means that we can solve for x( t )  directly and no 
dynamic observer is required. 

We conclude this section by pointing out that if 4-168 and 4-172 define a 
nonsingular observer problem, in the actual realization of the optimal 
observer it is not necessary to take the derivative of y,(t), since later this 
derivative is integrated by the observer. To show this consider the following 
observer for p(t):  

i ( t )  = A y ( t )  + Bflr(t) + B"%(t) 

+ K(t)[y l ( t )  - D1u(t) - Dny2(t) - C1B(f)].  4-176 



356 Optimal Reconstruction of the State 

Partitioning 

K ( 0  = [ K d t ) ,  K,(t)l,  
it follows for 4-1'76: 

b ( t )  = [A' - K( t )Ct ]@(f )  + B1lr(f) + Br'?/?(I) 

+ K,(t)lll(t) + K,(f)?h(f) - K(f)[D1lr(t)  + D"?h(t)]. 4-178 

Now by defining 
q( t )  = @(I) - K d f ) ! / d l ) ,  4-179 

a state differential equation for q( t )  can be obtained with &(t),  ?/?(I) ,  and 
u(t) ,  but not $,(t), as inputs. Thus, by using4-179,$(t) can be found without 
using &(t).  

4.3.5 The Colored Noise Observation Problem 

This section is devoted to the case where the state excitation noise ivl(t) and 
the observation noise w,(t) cannot be represented as white noise processes. 
In this case we assume that these processes can be modeled as follows: 

1v1(t) = Cl(f)5'(1) + lv;(l), 
4-180 

lvz(1) = Cz(l)x'(t) + 1v6(t), 
with 

Here ii((t), I V ; ( ~ ) ,  and w,(f )  are white noise processes that in general need not 
be uncorrelated. Combining 4-180 and 4-181 with the state differential and 
output equations 

x( t )  = A(t)x(t)  + B(t)u(t) + wl(t) ,  
4-182 

? / ( t )  = C ( t ) ~ ( f )  + 1i1,(f), 

we obtain the augmented state differential and output equations 

To complete the problem formulation the mean and variance matrix of the 
initial augmented state col [x(t), x'(t)] must be given. In many cases the white 
noise s&(t) is absent, which makes the observation problem singular. If the 
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problem is time-invariant, the techniques of Section 4.3.4 can then be applied. 
This approach is essentially that of Bryson and Johansen (1965). 

We illustrate this section by means of an example. 

Example 4.5. Positioni~ig S J W ~ ~ I I I  with coiorerl obseruatio~t noise 
In  Example 4.4 we considered the positioning system with state differential 

equation 

and the output equation 

~ ( t )  = (1, O M )  + v,,,(t). 4-185 

The measurement noise v,,,(t) was approximated as white noise with intensity 
V,,,. Let us now suppose that a better approximation is to model I),,,(!) as 
exponentially correlated noise (see Example 1.30, Section 1.10.2) with power 
spectral density function 

This means that we can write (Example 1.36, Section 1.11.4) 

Here w(t) is white noise with scalar intensily 2u3/0. In Example 4.4 we 
assumed that ~ , ( t )  is also white noise with intensity V,. In  order not to 
complicale the problem too much, we stay with this hypothesis. The aug- 
mented problem is now represented by the state differential and output 
equations: 
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where col [h(t),  &(t)] = x(t). This is obviously a singular observation 
problem, because the observation noise is absent. Following the argument of 
Section 4.3.4, we note that the output equation is already in the form 4-158, 
where Cl and Hl are zero matrices. I t  is natural to choose 

1 0 0  
4-191 

0 1 0  
Writing 

p(t) = col [ d t ) ,  ?r,(t)l, 4-l92 

it follows by matrix inversion from 

4-193 

0 1 0  
that 

4-194 

1 -1 

Sincep(t) = z(t), it immediately follows thatp(t) satisfies the state differen- 
tial eouation 

To obtain the output equation, we differentiate il(t): 

$t) = (l,O)*(t) + m. 4-196 

Using 4-184, 4-188, and 4-194, it follows that we can write 

Together, 4-195 and 4-197 constitute an observation problem for p(t) that 
is nonsingular and where the state excitation and observation noises happen 
to he uncorrelated. The optimal observer is of the form 
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where the optimal gain matrix Kn(t)  can be computed from the appropriate 
Riccati equation. From 4-194 we see that the optimal estimates G(t) of the 
state of the plant and &(t) of the observation noise are given by 

Let us assume the following numerical values: 

o = 0.01 rad. 

The numerical values for u and3 imply that the observation noise has an rms 
value of 0.01 rad and a break frequency of 118 = 2000 rad/s r 320 Hz. 
With these values we find for the steady-state optimal gain matrix in 4-198 

The variance matrix of the reconstruction error is 

Insertion of Ro for Kn(t) into 4-198 immediately gives us the optimal steady- 
state observer for x(t). An implementation that does not require differentia- 
tion of q(t)  can easily be found. 

The problem just solved differs from that of Example 4.4 by the assumption 
that v, is colored noise and not white noise. The present problem reduces to 
that of Example 4.4 if we approximate v, by white noise with an intensity 
V, which equals the power spectral density of the colored noise for low 
frequencies, that is, we set 

V, = 2un8. 4-203 

The numerical values in the present example and in Example 4.4 have been 
chosen consistently. We are now in a position to answer a question raised in 
Example 4.4: Are we justified in considering v, white noise because it has a 
large bandwidth, and in computing the optimal observer accordingly? In 
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order to deal with this question, let us compute the reconstruction error 
variance matrix for the present problem by using the observer found in 
Example 4.4. In  Example 4.4 the reconstruction error obeys the differential 
equation 

where we have set X = col (k,, &). With the aid of 4-187 and 4-188, we 
obtain the augmented differential equation 

where e(t) = col [&,(t), eZ(t)]. I t  follo\vs from Theorem 1.52 (Section 1.11.2) 
that the variance matrix Q(t )  of col [ ~ ~ ( t ) .  €?(I), &,(t)] satisfies the matrix 
differential equation 

Numerical solution with the numerical values 4-200 and 4-138 yields for the 
steady-state variance matrix of the reconstruction error e(t) 

Comparison with 4-202 shows that Ule rms reconstruction errors that result 
from the white noise approximation of Example 4.4 are only very slightly 
greater than for the more accurate approach of the present example. Tlus 
confirms the conjecture of Example 4.4 where we argued that for the optimal 
observer the observation noise v,,(t) to a good approximation is white noise, 
so that a more refined filter designed on the assumption that v,,,(t) is actually 
exponentially correlated noise gives very little improvement. 
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4.3.6' Innovations 

Consider the optimal observer problem of Definition 4.3 and its solution as 
given in Sections 4.3.2; 4.3.3, and 4.3.4. In thissectionwe discuss aninteresting 
property of the process 

( t )  - ( ) ( )  t 2 to, 4-208 

where * ( t )  is the optimal reconstruction of the state at time t based upon data 
up to time t .  In fact, we prove that this process, 4-208, is white noise with 
intensity K1(t), which is precisely the intensity of the observation noise I I L ( ~ ) .  

This process is called the ir7riouatiorrpr.ocess (Kailath, 19-58), a term that can 
be traced back to Wiener. The quantity ~ ( t )  - C(t)S(t)  can be thought of as 
carrying the new information contained in ~ ( t ) ,  since y( t )  - C(t)*(t) is 
the extra driving variable that together with the model of the system con- 
stitutes the optimal observer. The innovations concept is useful in under- ' 
standing the separation theorem of linear stochastic optimal control theroy , 
(see Chapter 5). It  also has applications in state reconstruction problems 
outside the scope of this book, in particular the so-called optimal smoothing 
problem (Kailath, 1968). 

We limit ourselves to the situation where the state excitation noise IV, and 
the observation noise II,? are uncorrelated and have intensities Vl( t )  and V,(t), 
respectively, where Vz(t)  > 0 ,  t 2 to. In order to prove that y(t)  - C(t).i.(t) 
is a white noise process with intensity V?(t), we compute the covariance 
matrix of its integral and show that this covariance matrix is identical to the 
covariance matrix of the integral of a white noise process with intensity 
V,(t) .  

Let us denote by s ( t )  the integral of y(t)  - C(t)S(t) ,  so that 

s(to) = 0. 
Furthermore, 

e( t )  = a(!)  - S(t) 

is the reconstruction error. Referring back to Section 4.3.2, we obtain from 
4-209 and 4-82 the following joint state differential equation for s( t )  and e( t ) :  

where K y t )  is the gain of the optimal observer. Using Theorem 1.52 (Section 
1.1 1 4 ,  we obtain the rollowing matrix differential equation for the variance 
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matrix o ( t )  of col [s(t), e( t )]:  

with the initial condition 

where Qo is the variance matrix of x(t,,). Let us partition o ( t )  as follows: 

Then we can rewrite the matrix differential equation 4-212 in the form 

Q d t )  = C ( t ) G ( t )  f Q1dt)CT(t) + v&), ell(fO) = 0, 4-215 

Q d t )  = C(t)Qzr(t) + Qiz(t)[A(t) - KO(t)C(t)lT - Vdt)KoT(t), 

Qls(to) = 0, 4-216 

Q r d Q  = [A(t) - KO(f)C(OIQdt) + Q d f ) [ A ( t )  - KO(t)C(l)IT 

+ K(t) O+ K0(t)&(t)KoT(t), Q2%(t0) = Qo. 4-217 

As can be seen from 4-217, and as could also have been seen beforehand, 
Q,,(t) = Q(t),  where Q(t)  is the variance matrix of the reconstruction error. 
I t  follows with 4-105 that in 4-216 we have 

C(f)Q2,(t) - &(t)KOT(t) = 0, 

so that 4-216 reduces to 

Consequently, 4-215 reduces to 
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By invoking Theorem 1.52 once again, the covariance matrix of col [s(t), e(t)] 
can be written as 

t 3  for t, 2 tl, 
4-223 

t,)&(tJ for fl 2 t,, 

where 'E'(t,, to) is the transition matrix of the system 

I t  is easily found that this transition matrix is given by 

whereY(t,, to) is the transition matrix of the system 

The covariance matrix of s(t) is the (1, 1)-block of &I,, t,), which can be 
found to be given by 

This is the covariance matrix of a process with uncorrelated increments (see 
Example 1.29, Section 1.10.1). Since the process y(t) - C(t)2(t) is the 
derivative of the process $(I), it is white noise with intensity V,(t) (see Example 
1.33, Section 1.11.1). 

We summarize as follows. 

Theorem 4.7. Consider the solution of the norrsi~rgular opthnal obseruer 
problen~ ivitlr to~correloted state excitation noise and observation noise os given 
ill Tlreorenl 4.5. Tl~en the i ~ a ~ o u a t i o ~ ~  procew 

is o white rroiseprocess witlr irltensity V,(t). 

I t  can be proved that this theorem is also true for the singular optimal 
observer problem with correlated state excitation and observation noises. 
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4.4* T H E  DUALITY O F  T H E  O P T I M A L  OBSERVER 
AND T H E  O P T I M A L  REGULATOR;  STEADY-STATE 
P R O P E R T I E S  O F  T H E  O P T I M A L  OBSERVER 

4.4.1* Introduction 

In  this section we study the steady-state and stability properties of the optimal 
observer. All of these results are based upon the properties of the optimal 
regulator obtained in Chapter 3. These results are derived through the 
d ~ l a l i t ~ ~  of the optimal regulator and the optimal observer problem (Kalman 
and Bucy, 1961). Section 4.4.2 is devoted to setting forth this duality, while 
in Section 4.4.3 the steady-state properties of the optimal observer are dis- 
cussed. Finally, in Section 4.4.4 we study the asymptotic behavior of the 
steady-state time-invariant optimal observer as the intensity of the observa- 
tion noise goes to zero. 

4.4.2" The Duality of the Optimal Regulator and the Optimnl Observer 
Problem 

The main result of this section is summarized in the following theorem. 

Theorem 4.8. Consider the optirl~al regfdotor problent (ORP) of Dejinitiorr 
3.2 (Section 3.3.1) and the nonsing~rlar optimal obseruer problenl (OOP) 
i~~itlr ~~ncorrelated state excitation and obseruation noises of Dejuition 4.3 
(Section 4.3.1). In the observerproblem let the ~natrix V,(t) be giuen ~ J J  

Let the various n~atrices occwring ill the defirlitions of the ORP and the OOP 
be related as folloi~~s: 

A( t )  of the ORP equals AT(t* - 1) of the OOP, 
B ( t )  of the ORP eqlrals CT(t* - 1) of tlfe OOP, 
D( t )  of the ORP e q ~ ~ a l s  ~ ~ ( t *  - 1) of the OOP, 4-231 
R,(t) of the ORP eqtrals V,(t* - t )  of  the OOP, 
R?(t) of the ORP eqllals V2(tX - 1) of the OOP, 
P, of the ORP eqllals Qo of tlre OOP, 

aN for t t,. Here 
1" = to + 1,. 4-232 

Under these corlditioris tlie solutions of the optimal reg~rlatorproblen~ (Tl~eorern 
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3.4, Sectiorl 3.3.3) arld the nonsingrrlar optiiiial observer problem witlr 1111- 

correlated state excitatior~ and observation noises (Tlleorem 4.5, Section 
4.3.2) are related as f o l l o i ~ ~ :  

(a) P( t )  of the ORP eqrtals Q(t* - t )  of the OOP for 1 5 t,; 
(b) FO(t) of the ORP equals KoZ'(t' - t )  of the OOP for t 5 1,; 
(c) The closed-loop regrtlator of the ORP: 

arfd the iazforced recorlstrrrctio~i error equation of the OOP: 

are dual isith respect to t* in the sense of Defnition 1.23 (Section 1.8). 

The proof of this theorem easily follows by comparing the regulator Riccati 
equation 3-130 and the observer Riccati equation 4-106, and using time 
reversal (Lemma 4.1, Section 4.3.2). 

In  Section 4.4.3 we use the duality of the optimal regulator and the optimal 
observer problem to obtain the steady-state properties of the optimal 
observer from those of the optimal regulator. Moreover, this duality enables 
us to use computer programs designed for optimal regulator problems for 
optimal observer problems, and vice versa, by making the substitutions 
4-231. 

4.4.3" Steady-State Properties of the Optimal Observer 

Theorem 4.8 enables us to transfer from the regulator to the observer problem 
the steady-state properties (Theorem 3.5, Section 3.4.2), the steady-state 
stability properties (Theorem 3.6, Section 3.4.2), and various results for the 
time-invariant case (Theorems 3.7, Section 3.4.3, and 3.8, Section 3.4.4). 

In  this section we statesome of the more important steady-state and stability 
properties. Theorem 3.5, concerning the steady-state behavior of the Riccati 
equation, can be rephrased as follows (Kalman and Bucy, 1961). 

Theorem 4.9. Consider the matrix Riccati eqtratiort 

Suppose that A( t )  is contintrotis and botrnded, that C ( f ) ,  G(t) ,  V,(t), and V2(t)  
are piecewise cor~tirtrtam and bota~ded, andfitrtherriiore that 

V J t )  2 d, V d t )  2 PI for all t ,  4-236 

where a a11d p are positive constants. 
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(i)  Tlten if the system 

x( t )  = A ( f ) x ( f )  + G(t)w,(f), 

? l ( f ) =  C ( f )d f ) .  
is either 

(a) coniplefely reconstrrrcfible, or 
@) exponentially stable, 

the solrttior~ Q(t)  of the Riccati equotion 4-235 with the initial condition 
Q(t,) = 0 converges to a nonnegative-definite matrix Q(t)  as t ,  -t - m. &t) 
is a sol~tfion of the Riccati eyuation 4-235. 
(ii) Moreover, i f t l ~ e  systcnl 4-237 is either 

(c) bat11 uniformly cornplefely reconsfr~rcfible and itniforn~ly co~ilpletely 
co~~trollable, or 

(d )  exponentially stable, 
the solr~tion Q(t)  of the Riccati equation 4-235 isif11 the initial condition 
Q(t,) = Q, converges to Q( t )  as to -t -m for any Q, 2 0. 

The  proof o f  this theorem immediately follows by applying the duality 
relations o f  Theorem 4.8 to  Theorem 3.5, and recalling that i f  a system is 
completely reconstructible its dual is completely controllable (Theorem 1.41, 
Section 1.8), and that i f  a system is exponentially stable its dual is also 
exponentially stable (Theorem 1.42, Section 1.8). 

We now state the dual o f  Theorem 3.6 (Section 3.4.2): 

Theorem 4.10. Consider the not~singulor opfirnol observer problen~ with 
w~correlafed state excitation and observation noises and let 

wlrere V,(t) > 0,  for all t. Suppose that the confinuify, boundedness, and 
positive-defi~riteness conditions of Tlieoren~ 4.9 concerning A, C ,  G, V,, and 
V,  are satisfied. Then i f f h e  system 4-237 is either 

(a) uniformly cony~lefely reconsfr~tctible and miforrnly completely con- 
trollable, or 

(b )  expoponentially stable, 
the following facts hold. 
(i)  The steady-stale optirnal obserue~. 

is exponentially stable. Here Q(t)  is as defined it1 Tlreoreln 4.9. 
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(ii) T l ~ e  steody-state optiniol observer goin R ( t )  n~iriinii~es 

lim E{eT(t)W(t)e(t)} 4-241 
i r - m  

far euerji Q ,  2 0. TIE iiiii~inial value of 4-241, 11hic11 is aclrieued by the steody- 
stote optimal observer, is giueli b j ~  

tr [Q@)w( t ) l .  4-242 

W e  also state the counterpart o f  Theorem 3.7 (Section 3.4.3), which is 
concerned with time-invariant systems. 

Theorem 4.11. Consider the time-inuoriont nonsingular optinzal obseruer 
probleni of Defillition 4.3 with iincorrelated stote excitation oud obseruation 
noises for the system 

x(t)  = Ax@) + GtvB(t), 
4-243 

y(t)  = Cx(t) + ,v,(t). 

Here ls, is wl~ite noise ivitli intensity V,, ond iv, has intensity V,. It is asstailed 
that V B  > 0, V3 > 0, and Q, 2 0. The associated Riccoti eqrration is giuen by 

e ( t )  = AQ(t) + Q(t)AT + GV3GT - Q(t)CTV;lCQ(t), 4-244 

with the initial condition 
Q(to) = 0,. 4-245 

(a) Assume that Q, = 0. Then as to -t - m the solutian of tlie Riccati 
eqsatioit approaches o constant steadj1-state value 0 if mid only if the sjutent 
4-243possesses no poles that ore at the some time unstable, i~nreconstr~tctible, 
ond controllable. 
(b) If the system 4-243 is both detectable and stobilizoble, the solrrtion of the 
Riccati equation opproacl~es the value 0 as to - - m for every Q, 2 0. 
(c)  If 0 exists, it is a ~lon~~egatiue-defittite synimetric soltitian of the algebraic 
Riccati equatiori 

0 = AQ + QAT + G V ~ G ~  - Q C ~ V Y ~ C Q .  4-246 

I f the  systeni 4-243 is detectoble arid stabilizoble, Q is the unique normegatiue- 
definite solution of the algebraic Riccati equation. 
( d )  If exists, it is positive-definite if and only if the sjnteii~ is conlp/ete[y 
controllable. 
(e)  I f  0 exists, the steady-state optiiiiol observer 

q t )  = A q t )  + X[g( t )  - C q t ) ] ,  4-247 
11here 

X = QCTVY1, 4-248 

is asyiiiptoticolly stable iforid only if the systeni is detectable and stabilizoble. 



368 Optimal Reconstruction of the State 

( f )  I f  the system is detectable and stabilizable, the steadj~-state aptirna2 
observer 4-247 nlinimizes 

for a/[ Q, 2 0. Far the steady-state optin~al observer, 4-249 is giuen bjr 

We note that the conditions (b) and (c) are sufficient but not necessary. 

4.4.4* Asymptotic Properties of Time-Invariant Steady-State 
Optimal Observers 

In this section we consider the properties of the steady-state optimal filter 
for the time-invariant case, when the intensity of the observation noise 
approaches zero. This section is quite short since we are able to obtain our 
results immediately by "dualizing" the results of Section 3.8. 

We iirst consider the case in which both the state excitation noise iv&) (see 
4-237) and the observed variable are scalar. From Theorem 3.11 (Section 
3.8.1), the following result is obtained almost immediately. 

Theorem 4.12. Corrsider the n-dirirensiorral time-irruariant systenl 

ivlrere w,  is scalar idrite noise with co~rstont intensitj, I f , ,  w2 scalar ivl~ite noise 
 arco or related with w, wit11 positiue coristarrt irrtensity V,, g a c o l ~ m n  vector, 
and c a row vector. Suppose that { A ,  g} is stabilizable and { A ,  c} detectable. 
Let H(s)  be the scalar hansfer$aictior~ 

where ' ( s )  is the clraracteristic pol~vion~ial of the system, arid ri, i = 
1 ,  2,  . . . , 11, its characteristic ualrres. Then the characteristic ual~res of the 
steady-state optirital abseruer are the left-halfplane zeroes of tltepolyrromial 

As  a resrrlt, the fotlai~~ing staternerits hold. 
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(a) As V J V ,  - 0 , p  of the n steady-state optimal observerpoles approach the 
~lltmbers lli, i = 1 ,  2, . . . , p,  ithere 

(b) As V,/V3 - 0 ,  the remaining I I  - p observerpoles asymptotically approach 
straight lines ivhic11 intersect in the origirl and make a~igles 11'itlr the negative 
real axis of 

71 1 7 - p - 1  
+ I -  l = O , l ; . . ,  , n - p odd, 71-p ' 2 

n - p  
4-255 

(1  + 4171 +-, I = O , l ; . . , - -  1, n - p eue!~. 
n - p  2 

These faraway observer poles osyri~ptotically are at a distance 

. .... 
from the origin. 
(c)  As V,/V, - m, the n observer poles approach the iian~bers i?i, i = 
1 ,  2,  . . . , 11, ishere 

I t  follows from @) that the faraway poles approach a Butterworth con- 
figuration. 

For the general case we have the following results, which follow from 
Theorem 3.12 (Section 3.8.1). 

Theorem 4.13. Consider the n-di!~~ensio~ml ti111e-inuario~tt sj~sfetn 

i1'11ere 111, is ivhite noise ivith coi~stont intensity I f ,  and 1 1 ' ~  is white rtoise u11- 
correlated wifh iv, ivitl~ c o ~ t s t o ~ ~ t  i~~ teru i t j~  V ,  > 0. Suppose that { A ,  G )  is 
stabilirable and {A ,  C )  detectable. Tllen the poles of the steady-state optimal 
observer are the left-l~alfplone zeroes of tl~epolyr~ainial 

(-l)"$(s)$(-s) det [I + V;'H(s)V3HT(-s)], 4-259 

11'11ere H(s)  is the transfer matrix 

H(s) = C(s1- A)-lG, 4-260 
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and $(s) is flre clrorocterisfic po[y~ronria/ of the system 4-258. S~ppose tlrat 
dim (w3) = dim ( y )  = li, so tlrat H(s) is a k X I< trarlsfer matrix. Let 

and assrrme that a # 0. Also, szppose tlrat 

with N > 0 and p apositiue scalar. 
(a) Tlren as p 10, p of tlrz optirnal observer poles approach the ~rrrrnbers 
g j ,  i - 1,2, . . . , p ,  wlrere 

ifRe ( 1 1 0  2 0 ,  

-v ,  if Re (v,) > 0. 

The re~~raining obseruerpoles go to i~lfrrrifj~ and group info seueral B~~fter~vorf lr  
corzjigfigurations of dr@ere~rt orders and clijjkmt radii. A ratiglr estirirote of the 
distarrce of the farawaj~ pales to tlre origin is 

(., det (VJ )VCIY-YII 
p" det (N) 

(b) As p + m, flre I I  opfir~iol obseruer poles approach the nwrrbers +;, i = 
1 ,2 ,  . . . , n, where 

Some information concerning the behavior of the observer poles when 
dim (w3) # dim (1~) follows by dualizing the results of Problem 3.14. 

We finally transcribe Theorem 3.14 (Section 3.8.3) as follows. 

Theorem 4.14. Consider the finre-inuariant sJrstel71 

ivlrere G and C hauefrrN rank, I!', is nhite noise ~vitlr co~zstant irrterrsity V, and 
I V ,  is 1v11ite noise uncorrelated with I I~ ,  with consta17t nansi~g~rlar infe~lsity 
V, = pN,  p > 0, N > 0. S~ppose  tlrat { A ,  G )  is stabilizable and { A ,  C }  
detectable and let Q be the steady-state solufia~r of tlre variance Riccoti 
eyrration 4-244 associated ivitlr tlre optirnal obseruerproblenr. T l~en  the follo~~lirrg 
facts hold. 
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(a) The limit 
lim 0 = Q, 4-267 
~ $ 0  

exists. 
(b) Let e,(t) denote the co~itribution of the state excitation noise to tlre re- 
construction error e( t )  = x( t )  - 3(t) ,  ande.(t) tlre coritribrrtiorl of the observa- 
ti011 noise to e(t). Tlren for the steady-state optitiral obseruer the follo~ving li!?iits 
hold: 

lim E{eT(t)We(t)} = tr (Q,W), 
1'10 

lim E{eoT(t) We,(t)} = 0. 
d o  

(c) Ifdim (w,) > dim (y) ,  tlrerr Q, # 0. 
(d) If dim ( I I ~  = dim (y ) ,  arrd the rrrwrerator polynon~ial yr(s) of the square 
transfer niatrix 

C(sI - A)-lG 4-269 

is nonzero, then Q, = 0 if and o1ib if y(s )  has zeroes ivitlr rlorlpositiue real 
parts onb.  
(e) If dim (IV,) < dim (y) .  tlren a srtfj7cient corrditiorr for Q, to be the zero 
rnatrix is that there exists a rectargrtlar matrix 1I.f such that tlre nmiierator 
polynomial of the square trarisfer riiatrix MC(sI - A)-IG is nonzero and has 
zeroes with rioiyositive realparts otrI~~. 

This theorem shows that if no observation noise is present, completely 
accurate reconstruction of the state of the system is possible only if the number 
of components of the observed variable is at least as great as the number of 
components of the state excitation noise w1(t). Even if this condition is 
satisfied, completely faultless reconstruction is possible only if the transfer 
matrix from the system noise- w3 to the observed variable y possesses no 
right-half plane zeroes. 

The following question now comes to mind. For very small values of the 
observation noise intensity 15, the optimal observer has some of its poles very 
far away, but some other poles may remain in the neighborhood of the 
origin. These nearby poles cause the reconstruction error to recover relatively 
slowly from certain initial values. Nevertheless, Theorem 4.14 states that the 
reconstruction error variance matrix can he quite small. This seems to he a 
contradiction. The answer to this question must be that the structure of the 
system to be observed is so exploited that the reconstruction error cannot be 
driven into the subspace from which it can recover only slowly. 
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We conclude this section by remarking that Q,, the limiting variance 
matrix for p 1 0 ,  can be computed by solving the singular optimal observer 
problem that results from setting is&) = 0. As it turns out, occasionally the 
reduced-order observation problem thus obtained involves a nondetectable 
system, which causes the appropriate algebraic Riccati equation to possess 
more than one nonnegative-definite solution. In such a case one of course has 
to select that solution that makes the reduced-order observer stable (asymp- 
totically or in the sense of Lyapunov), since the full-order observer that 
approaches the reduced-order observer as V3 - 0 is always asymptotically 
stable. 

The problem that is dual to computing Q,,  thatis, the problem of computing 

Po = l i m p  4-270 
RE-0 

for the optimal deterministic regulator problem (Section 3.8.3), can be 
solved by formulating the dual observer problem and attacking the resulting 
singular optimal observer problem as outlined above. Butman (1968) gives a 
direct approach to  the "control-free costs" linear regulator problem. 

Example 4.6. Positior~ing sjwtent 
In Example 4.4 (Section 4.3.2), we found that for the positioning system 

under consideration the steady-state solution of the error variance matrix is 
given by 

e = v ,  

where 

B = Y J ~ .  
As I/, L 0, the variance matrix behaves as 

Obviously, 0 approaches the zero matrix as V, 1 0 .  In Example 4.4 we 
found that the optimal observer poles are 

&(- J." + ,/a). 4-274 

Asymptotically, these poles behave as 

4 JI 7 (zr - y112(-1 + j ) ,  
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which represents a second-order Butterworth configuration. AU these facts 
accord with what we might suppose, since the system transfer function is 
given by 

which possesses no zeroes. As we have seen in Example 4.4, for V,,, J 0 the 
optimal filter approaches the differentiating reduced-order filter 

If no observation noise is present, this differentiating filter reconstructs the 
state completely accurately, no matter how large the state excitation noise. 

4.5 CONCLUSIONS 

In this chapter we have solved the problem of reconstructing the state of a 
linear differential system from incomplete and inaccurate measurements. 
Several versions of this problem have been discussed. The steady-state and 
asymptotic properties of optimal observers have been reviewed. I t  has been 
seen that some of the results of this chapter are reminiscent of those obtained 
in Chapter 3, and in fact we have derived several of the properties of optimal 
observers from the corresponding properties of optimal regulators as 
obtained in Chapter 3. 

With the results of this chapter, we are in a position to extend the results 
of Chapter 3 where we cansidered linear state feedback control systems. 
We can now remove the usually unacceptable assumption that all the com- 
ponents of the state can always be accurately measured. This is done in 
Chapter 5, where we show how ozirput feedback control systenis can he 
designed by connecting the state feedback laws of Chapter 3 to the observers 
of the present chapter. 

4.6 PROBLEMS 

4.1. An obseruer for the h~uerted pe~id~iltinz positioning systern 
Consider the inverted pendulum positioning system described in Example 
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1.1 (Section 1.2.3). The state differential equation of this system is given by 

Suppose we choose as the observed variable the angle +(t) that the pendulum 
makes with the vertical, that is, we let 

~ ~ ( t )  = - - , 0, - , 0 x(t). it. 1 )  
Consider the problem of finding a time-invariant observer for this system. 

(a) Show that it is impossible to find an asymptotically stable observer. 
Explain this physically. 

(b) Show that if in addition to the angle +(t) the displacement s(t) of the 
carriage is also measured, that is, we add a component 

to the observed variable, an asymptotically stable time-invariant observer 
can he found. 

4.2. Reco~tstntctiort of the ar~gular velocitj~ 
Consider the angular velocity control system of Example 3.3 (Section 3.3.1), 

which is described by the state differential equation 

where E(t) is the angular velocity and p(t) the driving voltage. Suppose that 
the system is disturbed by a stochastically varying torque operating on the 
shaft, so that we write 

where w,(t) is exponentially correlated noise with rms value u, and time 
constant 0,. The observed variable is given by 

where w, is exponentially correlated noise with rms value u, and time 
constant 0,. The processes w, and w, are uncorrelated. 
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The following numerical values are assumed: 

u, = 5 rad/s, 
0, = 0.01 s. 

(a) Since the state excitation noise and the observation noise have quite 
large bandwidths as compared to the system bandwidth, we first attempt to 
find an optimal observer for the angular velocity by approximating both the 
state excitation noise and the observation noise as white noise processes, with 
intensities equal to the power spectral densities of w, and w, at zerofrequency. 
Compute the steady-state optimal observer that results from this approach. 

(b) To verify whether or not it is j u s s e d  to represent w, and w, as white 
noise processes, model w, and w, as exponentially correlated noise processes, 
and find the augmented state differential equation that describes the angular 
velocity control system. Using the observer differential equation obtained 
under (a), obtain a three-dimensional augmented state differential equation 
for the reconstruction error ~ ( t )  = c(t) - &) and the state variables of the 
processes w, and w,. Next compute the steady-state variance of the recon- 
struction error and compare this number to the value that has been pre- 
dicted under (a). Comment on the difference and the reason that it exists. 

(c) Attempt to reach a better' agreement between the predicted and 
the actual results by reformulating the observation problem as follows. The 
state excitation noise is modeled as exponentially correlated noise, but the 
approximation of the observation noise by white noise is maintained, since 
the observation noise bandwidth is very large. Compute the steady-state 
optimal observer for this situation and compare its predicted steady-state 
mean square reconstruction error with the actual value (taking into account 
that the observation noise is exponentially correlated noise). Comment on 
the results. 

(d)* Determine the completely accurate solution of the optimal observer 
problem by modeling the observation noise as exponentially correlated noise 
also. Compare the performance of the resulting steady-state optimal observer 
to that of the observer obtained under (c) and comment. 

4.3. Sohlriorl of the obseruer Riccati eqi~atiori 
Consider the matrix Riccati equation 

e(t) = A(t)Q(t) + Q(t)AT(t) + Vl(f) - Q(t)CT(t)Vd(t)C(t)Q(t) 4-285 
with the initial condition 

Q@o) = Qo. 4-286 
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Define Y(t, to) as the (217 x 2n)-dimensional [Q(t) is 11 x 171 solution of 

Y(to, to) = I. 

Partition Y(t, to) corresponding to the partitioning occurring in 4-287 as 
follows. 

Show that the solution of the Riccati equation can he written as 

4.4.e Deterrt7i11atio11 of a priori data for the sii~gdar opti~iml observer 
When computing an optimal observer for the singular observation problem 

as described in Section 4.3.4, we must determine the a priori data 

4-292 
We assume that 

are given. Prove that ifx(to) is Gaussian then 

E{x(to) I yz(t0)} = $(to) = Zo + QoC~'(C,QoC,T)-l[y,(to) - C,Eo] 4-295 

and 

Determine from these results expressions for 4-290 and 4-291. Hint: Use the 
vector formula for a multidimensional Gaussian density function (compare 
1-434) and the expression for the inverse of a partitioned matrix as given by 
Noble (1969, Exercise 1.59, p. 25). 
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