
3 OPTIMAL LINEAR STATE 
FEEDBACK CONTROL SYSTEMS 

3.1 I N T R O D U C T I O N  

In Chapter 2 we gave an exposition of the problems of linear control theory. 
In this chapter we begin to build a theory that can be used to solve the prob- 
lems outlined in Chapter 2. The main restriction of this chapter is that we 
assume that the complete state x(t) of the plant can be accurately measured 
at all times and is available for feedback. Although this is an unrealistic 
assumption for many practical control systems, the theory of this chapter will 
prove to be an important foundation for the more general case where we do 
not assume that x( t )  is completely accessible. 

Much attention of this chapter is focused upon regulator problems, that 
is, problems where the goal is to maintain the state of the system a t  a desired 
value. We shall see that linear control theory provides powerful tools for 
solving such problems. Both the deterministic and the stochastic versions of 
the optimal linear regulator problem are studied in detail. Important ex- 
tensions of the regulator problem-the nonzero set point regulator and the 
optimal linear tracking problem-also receive considerable attention. 

Other topics dealt with are the numerical solution of Riccati equations, 
asymptotic properties of optimal control laws, and the sensitivity of linear 
optimal state feedback systems. 

3.2 STABILITY I M P R O V E M E N T  O F  LINEAR 
S Y S T E M S  BY S T A T E  FEEDBACK 

3.2.1 Linear State Feedback Control 

In Chapter 2 we saw that an important aspect of feedback system design is 
the stability of the control system. Whatever we want to achieve with the 
control system, its stability must be assured. Sometimes the main goal of a 
feedback design is actually to stabilize a system if it is initially unstable, or 
to improve its stability if transient phenomena do not die out sufficiently fast. 
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The purpose of this section is to investigate how the stability properties of 
linear systems can be improved by state feedback. 

Consider the linear time-varying system with state differential equalion 

If we suppose that the complete state can be accurately measured at  all times, 
it is possible to implement a li~iear co~itrol law of the form 

where F(t) is a time-varying feedbacli gain niabis and d ( t )  a new input. If 
this control law is connected to the system 3-1, the closed-loop system is 
described by the state differential equation 

The stability of this system depends of course on the behavior of A(t) and 
B(t) but also on that of the gain matrix F(t). It is convenient to introduce 
the following terminology. 

Definition 3.1. The linear control law 

is called an asyniptotically stable control law for the sj~sterii 

*(t) = A(t)x(t) + B(t)u(f) 3-5 
if the closed-loop SJUtenl 

is asyn~ptotical[y stable. 

If the system 3-5 is ti~iie-i~iuariant, and we choose a constant matrix F, the 
stability of the control law 3-4 is determined by the characteristic values of 
the matrix A - BF. In the next section we find that under a mildly re- 
strictive condition (namely, the system must be completely controllable), all 
closed-loop characteristic values can be arbitrarily located in the complex 
plane by choosing F suitably (with the restriction of course that complex 
poles occur in complex conjugate pairs). If all the closed-loop poles are placed 
in the left-half plane, the system is of course asymptotically stable. 

We also see in the next section that for single-input systems, that is, 
systems with a scalar input u, usually a unique gain matrix F is found for a 
given set of closed-loop poles. Melsa (1970) lists a FORTRAN computer 
program to determine this matrix. In  the multiinput case, however, a given 
set of poles can usually be achieved with many diKerent choices of F. 
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Exnmple 3.1. Sfabilizafio~l ofthe i~zuerfedpe~idzrl~rm 
The state differential equation of the inverted pendulum positioning system 

of Example 1.1 (Section 1.2.3) is given by 

Let us consider the time-invariant control law 

A t )  = - ( $ I ,  $2, $83 $4)~@) .  3-8 

I t  follows that for the system 3-7 and control law 3-8 we have 

0 1 0 0 

F + $ 2  $3 

A - B F =  (! -7 -!). 3-9 

L! C 
The characteristic polynomial of this matrix is 

Now suppose that we wish to assign all closed-loop poles to the location -a .  
Then the closed-loop characteristic polynomial should be given by 

(s + a)4 = s4 + 4m" 66a2s2 + 4a3s + a4. 3-11 
Equating the coefficients of 3-10 and 3-11, we fmd the following equations 
in $%. $3, and 74,: 

F +  $2 -- - 4a, 
M 
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With the numerical values of Example 1.1 and with a = 3 s-l, we find from 
these linear equations the following control law: 

Example 3.2. Stirred tar~k 
The stirred tank of Example 1.2 (Section 1.2.3) is an example of a multi- 

input system. With the numerical values of Example 1.2, the linearized state 
differential equation of the system is 

Let us consider the time-invariant control law 

I t  follows from 3-14 and 3-15 that the closed-loop characteristic polynomial 
is given by 

det (sl- A + BF) = s+ s(0.03 + $, - 0.25$,, + $, + 0.75$,) 

+ (0.0002 + 0.02411 - 0.002541, + 0.02$P1+ 0.0075422 + $11$22 - $11$2J. 

3-16 

We can see at a glance that a given closed-loop characteristic polynomial 
can be achieved for many different values of the gain factors $i,. For example, 
the three following feedback gain matrices 

all yield the closed-loop characteristic polynomial s2 + 0.2050s + 0.01295, 
so that the closed-loop characteristic values are -0.1025 & jO.04944. We 
note that in the control law corresponding to the first gain matrix the second 
component of the input is not used, the second feedback matrix leaves the 
fust component untouched, while in the third control law both inputs con- 
trol the system. 

In Fig. 3.1 are sketched the responses of the three corresponding closed- 
loop systems to the initial conditions 

Note that even though the closed-loop poles are the same the differences in 
the three responses are very marked. 
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3.2.2* Conditions for Pole Assignment and Stabilization 

In this section we state precisely (1) under what conditions the closed-loop 
poles of a time-invariant linear system can be arbitrarily assigned to any 
location in the complex plane by linear state feedback, and (2) under what 
conditions the system can he stabilized. First, we have the following result. 

Theorem 3.1. Corzsider the li~zear tinre-invariant system 

Then the closed-loop cltaracteristic ualrtes, that is, the clroracteristic ualrres of 
A - BF, car1 be arbitrarily located in the conlplexpla~te (with the restrictio~z 
that conlplex characteristic ualrzes occur in corz~plex conjugate pairs) by 
choosing Fsrtitably ifand ortly iftlre system 3-19 is co~rtpletely controllable. 

A complete proof of this theorem is given by Wonham (1967a), Davison 
(1968b), Chen (1968h), and Heymann (1968). Wolovich (1968) considers 
the time-varying case. We restrict our proof to single-input systems. Suppose 
that the system with the state differential equation 

where p(t) is a scalar input, is completely controllable. Then we know from 
Section 1.9 that there exists a state transformation x'(t) = T-'x(t), where T 
is a nonsingular transformation matrix, which transforms the system 3-19 
into its phase-variable canonical form: 

Here the numbers xi, i = 0, 1, . . . .  11 - 1 are the coefficients of the char- 
acteristicpolynomial of the system3-21, that is, det (sI - A) = s" + =,,-,s"-l 
. . + a,s + a,. Let us write 3-22 more compactly as 

xl(t) = A'xl(t) + blp(t). 3-23 

Consider now the linear control law 

p(t) = -f'x'(t) + p'(t), 



3.2 StnbiliOi Improvement by Stnte Feedbnck 199 

where f' is the row vector 
f' = (413 421 . . . 94"). 3-25 

If this control law is connected to the system, the closed-loop system is 
described by the state differential equation 

j'(t) = (A' - b")xt(t) + blp1(t). 3-26 

It  is easily seen that the matrix A' - byis  given by 

This clearly shows that the characteristic polynomial of the matrix A' - b'j"' 
has the coefficients (ai f $,+,), i = 0, I ,  . . . , n - 1. Since the $;, i = 1, 
2, . . . , TI, are arbitrarily chosen real numbers, the coefficients of the closed- 
loop characteristic polynomial can be given any desired values, which means 
that the closed-loop poles can be assigned to arbitrary locations in the com- 
plex plane (provided complex poles occur in complex conjugate pairs). 

Once the feedback law in terms of the transformed state variable has been 
chosen, it can immediately be expressed in terms of the original state variable 
x(t) as follows: 

This proves that if 3-19 is completely controllable, the closed-loop charac- 
teristic values may be arbitrarily assigned. For the proof of the converse of 
this statement, see the end of the proof of Theorem 3.2. Since the proof 
for multiinput systems is somewhat more involved we omit it. As we have 
seen in Example 3.2, for multiinput systems there usually are many solutions 
for the feedback gain matrix F for a given set of closed-loop characteristic 
values. 

Through Theorem 3.1 it is always possible to stabilize a completely con- 
trollable system by state feedback, or to improve its stability, by assigning 
the closed-loop poles to locations in the left-half complex plane. The theorem 
gives no guidance, however, as to where in the left-half complex plane the 
closed-loop poles should be located. Even more uncertainty occurs in the 
multiinput case where the same closed-loop pole configuration can be 
achieved by various control laws. This uncertainty is removed by optimal 
linear regulator theory, which is discussed in the remainder of this chapter. 
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Theorem 3.1 implies that i t  is always possible to stabilize a completely 
controllable linear system. Suppose, however, that we are confronted with 
a time-invariant system that is not completely controllable. From the dis- 
cussion of stabilizability in Section 1.6.4, i t  can be shown that stabilizability, 
as the name expresses, is precisely the condition that allows us to stabilize 
a not completely controllable time-invariant system by a time-invariant 
linear control law (Wonham, 1967a): 

Theorem 3.2. Consider the linear time-inuoriant system 

with the time-inuariant coritrol 1a1v 

Tlten it is possible f o f i ~ i d  a constant illahis Fsuch that the closecl-loop system 
is asjmpotically stable ifand only ifthe system 3-29 is stabili~ahle. 

The proof of this theorem is quite simple. From Theorem 1.26 (Section 
1.6.3), we know that the system can be transformed into the controllability 
canonical form 

where the pair {A;,, B:} is completely controllable. Consider the linear con- 
trol law 

I I ( ~ )  = -(Pi,  Fk)x'(t) + d(1) .  3-32 

For the closed-loop system we find 

The characteristic values of the compound matrix in this expression are the 
characteristic values of A;, - B;F; together with those of A;?. Now if the 
system 3-29 is stabilizable, A;, is asymptotically stable, and since the pair 
{A:,, B 3  is completely controllable, i t  is always possible to find an F; such 
that A;, - B;F; is stable. This proves that if 3-29 is stabilizable i t  is always 
possible to find a feedback law that stabilizes the system. Conversely, if one 
can find a feedback law that stabilizes the system, A;, must be asymptotically 
stable, hence the system is stabilizable. This proves the other direction of the 
theorem. 
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The proof of the theorem shows that, if the system is stabilizable but not 
completely controllable, only some of the closed-loop poles can be arbitrarily 
located since the characteristic values of A;: are not affected by the control 
law. This proves one klirection of Theorem 3.1. 

3.3 THE DETERMINISTIC LINEAR OPTIMAL 
REGULATOR PROBLEM 

3.3.1 Introduction 

In  Section 3.2 we saw that under a certain condition (complete control- 
lability) a time-invariant linear system can always be stabilized by a linear 
feedback law. In fact, more can be done. Because the closed-loop poles can 
be located anywhere in the complex plane, the system can he stabilized; 
but, moreover, by choosing the closed-loop poles far to the left in the com- 
plex plane, the convergence to the zero state can be made arbitrarily fast. 
To make the system move fast, however, large input amplitudes are required. 
In any practical problem the input amplitudes must be bounded; this imposes 
a limit on the distance over which the closed-loop poles can be moved to the 
left. These considerations lead quite naturally to the formulation of an 
optimization problem, where we take into account both the speed of con- 
vergence of the state to zero and the magnitude of the input amplitudes. 

To introduce this optimization problem, we temporarily divert our atten- 
tion from the question of the pole locations, to return to it in Section 3.8. 

Consider the linear time-varying system with state differential equation 

and let us study the problem of bringing this system from an arbitrary initial 
state to the zero state as quickly as possible (in Section 3.7 we consider the 
case where the desired state is not the zero state). There are many criteria 
that express how fast an initial state is reduced to the zero state; a very useful 
one is the quadratic integral criterion 

J ; ~ r ( a ~ , ( t ) a e  e. 3-35 

Here R,(t) is a nonnegative-definite symmetric matrix. The quantity 
xZ'(t)~,(t)x(t) is a measure of the extent to which the state at time t deviates 
from the zero state; the weighting matrix R,(t) determines how much weight 
is attached to each of the components of the state. The integral 3-35 is a 
criterion for the cumulative deviation of z(f) from the zero state during the 
interval [to, t,]. 
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As we saw in Chapter 2, in many control problems it is possible to identify 
a controlled variable z(t) .  In  the linear models we employ, we usually have 

z( t )  = D(t)x(t) .  3-36 

If the actual problem is to reduce the controlled variable z( t )  to zero as 
fast as possible, the criterion 3-35 can be modified to 

wh& R,(t) is a positive-definite symmetric weighting matrix. I t  is easily seen 
that 3-37 is equivalent Lo 3-35, since with 3-36 we can write 

j ; ~ z T ( t ) ~ 3 ( t ) z ( t )  dl = g( t )Rl ( t )x ( t )  d t ,  1: 3-38 

where 

~ , ( t )  = ~ * ( t ) ~ , ( t ) ~ ( t ) .  3-39 
If we now attempt to find an optimal input to the system by minimizing 

the quantity 3-35 or 3-37, we generally run into the difficulty that indefinitely 
large input amplitudes result. To prevent this we include the input in the 
criterion; we thus consider 

where R,(t) is a positive-definite symmetric weighting matrix. The inclusion 
of the second term in the criterion reduces the input amplitudes Ewe attempt 
to make the total value of 3-40 as small as possible. The relative importance 
of the two terms in the criterion is determined by the matrices R, and R,. 

I f  it is very important that the terminal state x(t,) is as close as possible to 
the zero state, it is sometimes useful to extend 3-40 with a third term as follows 

where PI is a nonnegative-definite symmetric matrix. 
We are now in a position to introduce the deterministic linear optimal 

regulator problem: 

Definition 3.2. Consider the linear time-uarybg system 

x( t )  = A(t)x(t) + B(t)u(t), 
where 

"(to) = so, 
isith the controlled uariable 

z ( t )  = D(t)x(t) .  
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Consider also the criterion 

J : b z 7 ( t ) ~ a ( t ) ~ ( t ~  + I ~ ~ ( ~ ) R ~ ( ~ ) I I ( ~ ) I  dl + g ( t ~ p ~ x ( t ~ ) ,  3-45 

114iere P, is a no~i~iegatiue-defi~~ite syntnletric matrix- and R3(t)  and RZ(t)  are 
positive-dejnite synmetric matrices for to < t t,. Tim the problem of 
detemdning an input uO(t), to 2 t < t,, for ~ ~ h i c h  tlre criterion is niinhnal 
is called the deterministic linear optimal regulator problem. 

Throughout this chapter, and indeed throughout this book, it is understood 
that A( t )  is a continuous function o f t  and that B(t) ,  D(t) ,  R,(t), and R,(t) 
are piecewise continuous functions o f t ,  and that all these matrix functions 
are bounded. 

A special case of the regulator problem is the time-invariant regulator 
problem: 

Definition 3.3. I f  all matrices occ~rrring in the fornndatio~~ of the deterriiinistic 
linear opti~nal regulator problenl are co~~stant,  ive refer to it as the time- 
invariant deternrinistic linear optimal regnlator problem. 

We continue this section with a further discussion of the formulation of 
the regulator problem. First, we note that in the regulator problem, as it 
stands in Definition 3.2, we consider only the traiisierit situation where an 
arbitrary initial state must he reduced to the zero state. The problem formula- 
tion does not include disturbances or a reference variable that should be 
tracked; these more complicated situations are discussed in Section 3.6. 

A difficulty of considerable interest is how to choose the weighting matrices 
R,, R,, and PI in the criterion 3-45. This must be done in the following 
manner. Usually it is possible to define three quantities, the integrated square 
reg~rlating error, the integrated square input, and the iveigl~ted square ter- 
minal error. The integrated square regulating error is given by 

where W,(t), t ,  < t < t,, is a weighting matrix such that zT(t)W,(t)z(t) 
is properly dimensioned and has physical significance. We discussed the 
selection of such weighting matrices in Chapter 2. Furthermore, the integrated 
square input is given by 

where the weighting matrix lV,,(t), to < t < t,, is similarly selected. Finally, 
the weighted square terminal error is given by 
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where also W, is a suitable weighting matrix. We now consider various prob- 
lems, such as: 

1. Minimize the integrated square regulating error with the integrated 
square input and the weighted square terminal error constrained to certain 
maximal values. 

2. Minimize the weighted square terminal error with the integrated square 
input and the integrated square regulating error constrained to certain 
maximal values. 

3. Minimize the integrated square input with the integrated square 
regulating error and the weighted square terminal error constrained to 
certain maximal values. 

All these versions of the problem can be studied by considering the mini- 
mization of the criterion 

pl I ~ z T ( t ) w o ( t ) z ( t )  d t  + p, ~ ~ ( t ) ! T , , ( t ) t t ( t )  d t  + p 3 ~ T ( t J ~ ~ ( t l ) ,  3-49 I:' 
where the constants pl, p,, and p, are suitably chosen. The expression 3-45 
is exactly ofthis form. Lelus, Tor example, consider the important case where 
the terminal error is unimportant and where we wish to minimize the inte- 
grated square regulating error with the integrated square input constrained 
to a certain maximal value. Since the terminal error is of no concern, we set 
p, = 0. Since we are minimizing the integrated square regulating error, we 
take pl = 1. We thus consider the minimization of the quantity 

The scalar p? now plays the role of a Lagrange multiplier. To determine the 
appropriate value of p, we solve the problem for many different values of pz. 
This provides us with a graph as indicated in Fig. 3.2, where the integrated 
square regulating error is plotted versus the integrated square input with 
f i  as a parameter. As p, decreases, the integrated square regulating error 
decreases but the integrated square input increases. From this plot we can 
determine the value of p,  that gives a sufficiently small regulating error with- 
out excessively large inputs. 

From the same plot we can solve the problem where we must minimize the 
integrated square input with a constrained integrated square regulating error. 
Other versions of the problem formulation can be solved in a similar manner. 
We thus see that the regulator problem, as formulated in Definition 3.2, is 
quite versatile and can be adapted to various purposes. 
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Rig. 3.2. Inlegrated square regulating error versus integrated square input, with pl = 1 
and p. = 0. 

We see in later sections that the solution of the regulator problem can be 
given in the form of a linear control law which has several useful prop- 
erties. This makes the study of the regulator problem an interesting and 
practical proposition. 

Example 3.3. Augzrlar uelocity stabi1i;atiorz prableni 
As a first example, we consider an angular velocity stabilization problem. 

The plant consists of a dc motor Ule shaft of which has the angular velocity 
&(t) and which is driven by the input voltage ~ ( 1 ) .  The system is described by 
the scalar state differential equation 

where a and IC are given constants. We consider the problem of stabilizing 
the angular velocity &(t) at a desired value w,. In the formulation of the 
general regulator problem we have chosen the origin of state space as the 
equilibrium point. Since in the present problem the desired equilibrium 
position is &(t)  = w,,  we shift the origin. Let p, be the constant input voltage 
to which w,  corresponds as the steady-state angular velocity. Then p, and 
w,  are related by 

0 = -aw o + K ~ o .  3-52 

Introduce now the new state variable 

Then with the aid of 3-52, it follows from 3-51 that P ( t )  satisfies the state 
differential equation 

p ( t )  = - 4 ( t )  + K P ' ( ~ ,  3-54 
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where 
= p ( 0  - Po. 3-55 

This shows that the problem of bringing the system 3-51 from an arbitrary 
initial state [(to) = wl to the state t = o, is equivalent to bringing the system 
3-51 from the initial state [(to) = o, - w, to the equilibrium state 5 = 0. 
Thus, without restricting the generality of the example, we consider the 
problem of regulating the system 3-51 about the zero state. The controlled 
variable 5 in this problem obviously is the state 5 :  

As the optimization criterion, we choose 

with p > 0, rrl 2 0. This criterion ensures that the deviations of [(t) from 
zero are restricted [or, equivalently, that [(t) stays close to w,], that p(f) 
does not assume too large values [or, equivalently, p(t) does not deviate too 
much from pol, and that the terminal state [(f,) will be close to zero [or, 
equivalently, that [(t,) will be close to o,]. The values of p and rr, must be 
determined by trial and error. For a. and K we use the following numerical 
values: 

a = 0.5 s-l, 
3-58 

K = 150 rad/(V sy. 

Example 3.4. Position control 
In Example 2.4 (Section 2.3), we discussed position control by a dc motor. 

The system is described by the state differential equation 

where s(t) has as components the angular position [,(t) and the angular 
velocity [?(t) and where the input variable p(t) is the input voltage to the dc 
amplifier that drives the motor. We suppose that it is desired to bring the 
angularposition to a constant value [,,.As in the preceding example, we make 
a shift in the origin of the state space to obtain a standard regulator problem. 
Let us define the new state variable x1( t )  with components 
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A simple substitution shows that xl( t )  satisfies the state differential equation 

Note that in contrast to the preceding example we need not define a new 
input variable. This results from the fact that the angular position can be 
maintained at any constant value with a zero input. Since the system 3-61 
is identical to 3-59, we omit the primes and consider the problem of regulating 
3-59 about the zero state. 

For the controlled variable we choose the angular position: 

m )  = U t )  = ( l ,O)x( t ) .  3-62 

An appropriate optimization criterion is 

J;;ma + P ~ I  dl .  3-63 

The positive scalar weighting coefficient p determines the relative importance 
of each term of the integrand. The following numerical values are used for 
a and K :  

3.3.2 Solution of the Regulator Problem 

In this section we solve the deterministic optimal regulator problem using 
elementary methods of the calculus of variations. I t  is convenient to rewrite 
the criterion 3-45 in the form 

where Rl(t)  is the nonnegative-definite symmetric matrix 

~ , ( t )  = ~ ~ ( i ) ~ , ( t ) ~ ( t ) .  3-66 

Suppose that the input that minimizes this criterion exists and let it he de- 
noted by uU(t),  to  I t  I t,. Consider now the input 

~ ( t )  = 1lU(t) + ~ i i ( t ) ,  to 2 t  I tl ,  3-67 

where ii(t) is an arbitrary function of time and E is an arbitrary number. 
We shall check how this change in the input affects the criterion 3-65. Owing 
to the change in the input, the state will change, say from xU(t) (the optimal 
behavior) to 
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This d e h e s  ?(t), which we now delermine. The solution x(t)  as given by 
3-68 must satisfy the state differential equation 3-42 with rr(t) chosen accord- 
ing to 3-67. This yields 

Since the optimal solution must also satisfy the state differential equation, 
we have 

i n ( t )  = A(t)xO(t)  + B(t)rr"(f). 3-70 

Subtraction of 3-69 and 3-70 and cancellation of E yields 

Since the initial state does not change if the input changes from so ( t )  to 
"'(I) + &li(t), lo l t 5 tl,  we have Z(tJ = 0, and the solution of 3-71 
using 1-61 can be wriLLen as 

where @ ( t ,  to) is the transition matrix of the system 3-71. We note that Z(t) 
does not depend upon E .  We now consider the criterion 3-65. With 3-67 
and 3-68 we can wrile 

Since rrO(t) is the optimal input, changing the input from uU(t) to the input 
3-67 can only increase the value of the criterion. This implies that, as a func- 
tion of e ,  3-73 must have a minimum at E = 0. Since 3-73 is a quadratic ex- 
pression in &, it can assume a minimum for E = 0 only if its first derivative 
with respect to E is zero at E = 0. Thus we must have 

( t)xU(t)  + liT(t)Rz(t)rrO(f)] dt + ?T(tl)P1xO(tJ = 0. 3-74 

Substitution of 3-72 into 3-74 yields after an interchange of the order of 
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integration and a change of variables 

l ) R 1 ( ~ ) x o ( ~ )  d~ + R?(t)rlo(t) 

+ B?1)QT(tl, l ) P 1 l ( t ~ )  dl = 0. 3-75 
Let us now abbreviate, 

Witb this abbreviation 3-75 can be written more compactly as 

This can be true for every G(t), to < t 5 t,, only if 

BT(t)p(t) + R,(f)trO(t) = 0, to 5 t < t,. 3-78 
By the assumption that R,(t) is nonsingular for to 2 t 2 I,, we can write 

uO(~) = -R;'(~)B'(~)JJ(~), to I t 5 1,. 3-79 
If p(t) were known, this relation would give us the optimal input at time t. 

We convert the relation 3-76 for p(t) into a differential equation. First, 
we see by setting i = t ,  that 

p@l) = P~xO(td. 3-80 
By differentiating 3-76 with respect to I ,  we find 

p(t) = -R,(t)x"t) - A1'(t)p(t), 3-81 
where we have employed the relationship [Theorem 1.2(d), Section 1.3.1] 

d - 'DT(to, t)  = -AZ'(t)QT(to, t). 
dt 

We are now in a position to state the uariatio~tal equations. Substitution 
of 3-79 into the state differential equation yields 

x O ( ~ )  = ~( t )xO(t )  - ~ ( i ) ~ ; ~ ( l ) ~ ~ ( t ) p ( t ) .  3-83 

Together with 3-81 this forms a set of 211 simultaneous linear differential 
equations in the rt components of xo(t) and the it components of p(t). We 
termp(t) the adjohlt uariable. The 211 boundary conditions for the differential 
equations are 

xn(tO) = x, 3-84 
and 
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We see that the boundary conditions hold at opposite ends of the interval 
[to, ill, which means that we are faced with a two-point boundary value 
problem. To solve this boundary value problem, let us write the simultaneous 
differential equations 3-83 and 3-81 in the form 

Consider this the state differential equation of an 2n-dimensional linear 
system with the transition matrix @(t , . to ) .  We partition this transition matrix 
corresponding to 3-86 as 

With this partitioning we can express the state at an intermediate time t  in 
terms of the state and adjoint variable at the terminal time t ,  as follows: 

With the terminal condition 3-85, it follows 

Similarly, we can write for the adjoint variable 

Elimination of xO(tl) from 3-89 and 3-90 yields 

The expression 3-91 shows that there exists a linear relation between p(t )  
and xO(t) as follows 

p(t )  = p(t)x"(t), 3-92 
where 

p(t )  = [@m(t, t i )  + @ ~ ( t ,  t ~ ) P ~ 1 [ @ ~ ~ ( t ,  tJ + Ol,(t, tl)Pl]-l. 3-93 

With 3-79 we obtain for the optimal input to the system 

lrO(t) = -F(t)zO(t) ,  
where 

~ ( t )  = ~ ; ~ ( t ) ~ ~ ( t ) p ( t ) .  

This is the solution of the regulator problem, which has been derived under 
the assumption that an optimal solution exists. We summarize our findings as 
follows. 
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Theorem 3.3. Consider the detertnirtistic h e a r  opti~nal regulator problem. 
Then tlre optimal input curl be generated thro~rgll a linear corlfrol law of the 

form 
u"(t) = -F(t)zO(t), 3-96 

~vlrere 
F(t) = R,'(t)BT(r)P(t). 3-97 

The matrix P(t )  is given by 

i~here @,,(I, to), O12(t, to),  @,,(t, I,), and @,,(t, to) are obtai~~edbyparfitioiling 
the trar~sitiorl rnntrix @(t ,  to) of the state diferential equation 

~ , ( t )  = ~ ~ ( t ) ~ , ( t ) ~ ( t ) .  3-100 

This theorem gives us the solution of the regulator problem in the form of a 
linear cot~trol 1a11t. The control law automatically generates the optimal input 
for any initial state. A block diagram interpretation is given in Fig. 3.3 which 
very clearly illustrates the closed-loop nature of the solution. 

feedbock 
g o i n  

matrix 

u 
Fig. 3.3. The feedback structure of the optimal lincnr regulator. 

The formulation of the regulator problem as given in Definition 3.2 of 
course does not impose this closed-loop form of the solution. We can just as 
easily derive an open-loop representation of the solution. At time to the 
expression 3-89 reduces to 
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Solving 3-101 for xo(tJ and substituting the result into 3-90, we obtain 

~ ( 9  = [@& t 3  + O d t ,  t , ) ~ , l [ @ , ~ ( t ~ ,  t,) + @,,(to, t , )~, l - l~, .  3-102 

This gives us from 3-79 

u V )  = - ~ ; l ( t ) ~ ~ ( t ) [ @ , , ( t ,  tl) + O d t ,  t1)~,i[0,,(t,, t 3  + @,,(to, ~,)P,I-'x~, 

to < t < tl. 3-103 
For a given xo this yields the prescribed behavior of the input. The corre- 
sponding behavior of the state follows by substituting x(tl) as obtained from 
3-101 into 3-89: 

~ " ( t )  = 1@11(f, ti) + @12(f l  h P J I @ n ( ~ o ,  (3 + Qldto, t3P11-1~o. 3-104 
In view of what we learned in Chapter 2 about the many advantages of 

closed-loop control, for practical implementation we prefer of course the 
closed-loop form of the solution 3-96 to the open-loop form 3-103. In Section 
3.6, where we deal with the stochastic regulator problem, it is seen that state 
feedback is not only preferable but in fact imperative. 

Example 3.5. Angular uelocity stobilizatior~ 
The angular velocity stabilization problem of Example 3.3 (Section 3.3.1) is 

the simplest possible nontrivial application of the theory of this section. The 
combined state and adjoint variable equations 3-99 are now given by 

The transition matrix corresponding to this system of differential equations 
can be found to be 

[eYIl-lol - e - ~ l l - I ~ l  

~ P Y  
@(t, to) = 

eurl-lol Y - a e-"rl-lol +- 
2y 27' 

3-106 
where 

3-107 

To simplify the notation we write the transition matrix as 

& ~ ( t ,  to) k ( t 2  to) 
@( t ,  t") = 

'&i(t, to) ' L ( t 2  to) 
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It follows from 3-103 and 3-104 that in open-loop form the optimal input 
and state are given by 

input for different values of the weighting factor p. The following numerical 
values have been used: 

a = 0.5 s-', 

K = 150 rad/(V s3), 3-111 

I, = 0 s, f, = 1 s. 

The weighting coefficient TI has in this case been set to zero. The figure clearly 
shows that as p decreases the input amplitude grows, whereas the settling 
time becomes smaller. 

Figure 3.5 depicts the influence of the weighting coefficient T,; the factor 
p is kept constant. It is seen that as rr, increases the terminal state tends to be 
closer to the zero state at the expense of a slightly larger input amplitude 
toward the end of the interval. 

Suppose now that it is known that the deviations in the initial state are 
usually not larger than &I00 rad/s and that the input amplitudes should be 
limited to f 3 V. Then we see from the figures that a suitable choice for p 
is about 1000. The value of 71, affects the behavior only near the terminal 
time. 

Let us now consider the feedback form of the solution. I t  follows from 
Theorem 3.3 that the optimal trajectories of Figs. 3 .4  and 3.5 can be generated 
by the control law 

P O @ )  = -F(t)f(t), 3-112 

where the time-varying scalar gain F(t) is given by 

Figure 3.6 shows the behavior of the gain F(1) corresponding to the various 
numerical values used in Figs. 3.4 and 3.5. Figure 3.6 exhibits quite clearly 
that in most cases the gain factor F(t) is constant during almost the whole 
interval [to, I,]. Only near the end do deviations occur. We also see that 
T~ = 0.19 gives a constant gain factor over the entire interval. Such a gain 
factor would be very desirable from a practical point of view since the im- 
plementation of a time-varying gain is complicated and costly. Comparison 



ongulor  
v e l o c i t y  

5 

I 
lrod/sl 

Fig. 3.4. The behavior of state and input for the angular velocity stabilization problem 
for different values of p. 



angular 
velocity 

5 

Fig. 3.5. The behavior or slate and input for the angular \elocity stabilimtion problem 
for diflerenl %dues of*,. Note the changes in the \crtical rnles near the end of the inlerval 

Fig. 3.6. The behavior of the optimal feedback gain factor for the angular velocity 
stabilization problem for various values of p and w,. 
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of the curves for T, = 0.19 in Fig. 3.5 with the other curves shows that there 
is little point in letting Fvary with time unless the terminal state is very heavily 
weighted. 

3.3.3 Derivation of the Riccati Equation 

We proceed with establishing a few more facts about the matrix P(t) 
as given by 3-98. In our further analysis, P(t) plays a crucial role. It  is possible 
to derive a differential equation for P(t). To achieve this we differentiate 
P(t) as given by 3-98 with respect to t. Using the rule for differentiating the 
inverse of a time-dependent matrix M(t) ,  

which can be proved by differentiating the identity M(t)M-l(t) =I, we 
obtain 

m = [O,l(t, tl) + @ d t ,  tl)Pl][Bll(t, t,) + GI&, tJPl]-l 
- [@,l(t, t l)  + M t ,  t,)P,l[B,l(t, t,) + Ol,(t, tJPl]-l 

[@,A t,) + Ol&, t l ) ~ l ~ [ ~ l l ( t ,  tl) + @,?(t, ~ J P ~ I - ~ ,  3-115 

where a dot denotes differentiation with respect to t. Since Q(t,  to) is the 
transition matrix of 3-99, we have 

Oll(t, tl) = ~ ( t ) B ~ ~ ( t ,  tl) - ~ ( i ) ~ ; ~ ( i ) ~ ~ ( t ) @ , ~ ( t ,  t,), 

Q1dt, t,) = ~ ( t ) @ ~ ~ ( t ,  1,) - ~ ( t ) ~ d ( t ) ~ * ( t ) @ , , ( t .  t,), 
3-116 

&(t, tJ = -R,(t)@,,(t, t,) - Az'(t)B,,(t, t,), 

@,,(t, 1,) = -~,(t)B,,(t, t,) - ~ ~ ( t ) O , , ( t ,  13. 
Substituting all this into 3-115, we find after rearrangement the following 
differential equation for P(t): 

-P(t) = R,(t) - ~( i )B( i )R , ' ( t )B~( t )~ ( t )  + P(t)A(I) + AT(t)P(t). 3-117 
The boundary condition for this differential equation is found by setting 
t = t ,  in 3-98. I t  follows that 

P(tl) = PI. 3-118 

The matrix differential equation thus derived resembles the well-known 
scalar differential equation 

where x is the independent and y the dependent variable, and a@), P(x), 
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and ?I (%)  are known functions of x. This equation is known as the Riccati 
equation (Davis, 1962). Consequently, we refer to 3-117 as a matrix Riccati 
equation (Kalman, 1960). 

We note that since the matrix PI that occurs in the terminal condition for 
P(t) is symmetric, and since the matrix differential equation for P(t) is also 
symmetric, the solution P(t) must be symmetric for all to < t t,. This 
symmetry will often be used, especially when computing P. 

We now find an interpretation for the matrix P(t). The optimal closed- 
loop system is described by the state differential equation 

x(t) = [A(t)  - B(t)F(t)]x(t). 3-120 

Let us consider the optimization criterion 3-65 computed over the interval 
[t,  t,]. We write 

since 

From the results of Section 1.11.5 (Theorem 1.54), we know that 3-121 can 
be written as 

xZ'(r)P(t)x(t), 3-123 

where p(t)  is the solution of the matrix differential equation 

-$(I) = ~ ~ ( t )  + ~ ~ ' ( i ) ~ , ( t ) ~ ( t )  

+ p(t)[A(t) - B(t)F(t)] + [A(t) - B(t)F(t)lTP(t), 3-124 
with 

P(1,) = PI. 

Substituting F(t) = R ; l ( t ) ~ ~ ( t ) P ( t )  into 3-124 yields 

-?(t) = ~ , ( t )  + ~ ( t ) ~ ( t ) ~ ; ' ( t ) ~ ~ ( t ) ~ ( t )  + I ' ( t ) ~ ( t )  

- P ( t ) ~ ( t ) ~ ; l ( t ) ~ ~ ' ( t ) p ( t )  + ~ ~ ( t ) P ( t )  

- P(t)B(t)R;'(t)BT(t)P(f). 3-125 

We claim that the solution of this matrix differential equation is precisely 
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This is easily seen since substitution of P(i)  for 'l'(t) reduces the differential 
equation 3-125 to 

This is the matrix Riccati equation 3-117 which is indeed satisfied by P( t ) ;  
also, the terminal condition is correct. This derivation also shows that P(t)  
must be nonnegative-definite since 3-121 is a nonnegative expression because 
Rl, R,, and Ps are nonnegative-definite. 

We summarize our conclusions as follows. 

Theorem 3.4. The optiriial input for the deterministic optiriial liitear regulator 
is geiterated by the linear conrrol low 

n"(t) = -F"(t)xo(t), 3-128 
~vlrere 

P ( t )  = R ; ~ ( I ) B ~ ( ~ ) P ( ~ ) .  3-129 

Here the syniriietric norliiegotiue-defitite iiiatrix P( t )  satisfies the inotrix 
Riccati egrraiion 

-P(t) = ~ , ( t )  - ~ ( t ) ~ ( t ) ~ d ( t ) ~ ~ ( t ) ~ ( t )  + ~ ( t ) ~ ( t )  + ~ ~ ( t ) ~ ( t ) ,  3-130 

leitll the teriiiinal corzdition 

For the optiri~al solution we haue 

= xoT(t)P(t)xo(t), t t,. 3-132 

We see that the matrix P( t )  not only gives us the optimal feedback law but 
also allows us to evaluate the value of the criterion for any given initial state 
and initial time. 

From the derivation of this section, we extract the following result 
(Wonham, 1968a), which will be useful when we consider the stochastic 
linear optimal regulator problem and the optimal observer problem. 

Lemmn 3.1. Consider the iiiatrix rl~ferential eguation 
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~sitlt the ternlilzal coltdition 

&I) = PI, 3-134 

lvltere R,(t), R,(t), A(t)  and B( t )  are giuert tirrre-uarying nlatrices of appropriate 
dimensions, ivitlt Rl( t )  nonnegative-definite and R,(t) positiue-dejrlite for 
to t t,, a d  PI ~tortrtegative-dejrlife. Let F( t )  be an arbitrary contirluo~rs 
rnatrixjirr~ction far to j f j I,. Tlrerz for to I t I t, 

wlrere P(t )  is the solution of the matrix Riccati equation 

P(tJ = P,. 3-137 

The lemma asserts that B( t )  is "minimized" in the sense stated in 3-135 by 
choosing F a s  indicated in 3-138. The proof is simple. The quantity 

is the value of the criterion 3-121 if the system is controlled with the arbitrary 
linear control law 

U(T)  = -F(T)x(T), t j T j tl. 3-140 

The optimal control law, which happens to be linear and is therefore also 
the best linear control law, yields x z ' ( t ) ~ ( t ) z ( t )  for the criterion (Theorem 
3.4), so that 

xT(t)F(t)x(t) 2 xl'(t)P(t)x(t) for all x(t). 3-141 

This proves 3-135. 

We conclude this section with a remark about the existence of the solution 
of the regulator problem. I t  can he proved that under the conditions formu- 
lated in Definition 3.2 the deterministic linear optimal regulator problem 
always has a unique solution. The existence of the solution of the regulator 
problem also guarantees (1) the existence of the inverse matrix in 3-98, and 
(2) the fact that the matrix Riccati equation 3-130 with the terminal condition 
3-131 has the unique solution 3-98. Some references on the existence of the 
solutions of the regulator problem and Riccati equations are Kalman 
(1960), Athans and Falh (1966), Kalman and Englar (1966), Wonham 
(1968a), Bucy (1967a, b), Moore and Anderson (1968), Bucy and Joseph 
(1968), and Schumitzky (1968). 
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Example 3.6. Arlgrrlar velocity stabilizatiart 
Let us continue Example 3.5. P(t) is in this case a scalar function and 

satislies the scalar Riccati equation 

with the terminal condition 
P ( t 3  = rr,. 3-143 

In this scalar situation the Riccati equation 3-142 can be solved directly. 
I n  view of the results obtained in Example 3.5, however, we prefer to use 
3-98, and we write 

with the 8, defined as in Example 3.5. Figure 3.7 shows the behavior of P(t) 
for some of the cases previously considered. We note that P(t), just as the 
gain factor F(t), has the property that it is constant during almost the entire 
interval except near the end. (This is not surprising since P(t) and F(t) differ 
by a constant factor.) 

Fig. 3.7. The behavior of P ( t )  for the angular velocity stabilization problem for various 
values of p and a,. 

3.4 STEADY-STATE SOLUTION OF THE 
DETERMINISTIC LINEAR OPTIMAL 
REGULATOR PROBLEM 

3.4.1 Introduction and Summary of Main Results 

In the preceding section we considered the problem of minimizing the criterion 
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for the system 
x ( t )  = A(t)x( t )  + B ( f ) r ~ ( t ) ,  

3-146 
40 = D(t)x( t ) ,  

where the terminal time t ,  is finite. From a practical point of view, it is often 
natural to consider very long control periods [to, t,]. In this section we there- 
fore extensively study the asymptotic behavior of the solution of the deter- 
ministic regulator problem as t, -+ m. 

The main results of this section can be summarized as follows. 

1. As  the tern~inal time t, approacl~es iry%ziiy, tlre sohrtiorz P(t )  of the 
rrratrix Riccati eqrtatiart 

with the terrr~i~~al co~xlition 
P(t1) = PI, 

gerrerally approaclres a steady-state solrriion P( t )  tlrat is iudepepolde~~f of P,. 

The conditions under which this result holds are precisely stated in Section 
3.4.2. We shall also see that in the time-invariant case, that is, when the 
matrices A ,  B ,  D, R,, and R, are constant, the steady-state solution P, not 
surprisingly, is also constant and is a solution of the algebraic Riccati eqrra- 
tion 

0 = D ~ R , D  - FBR;~B"F + A ~ F  + FA, 3-149 
I t  is easily recognized that P i s  nonnegative-definite. We prove that in general 
(the precise conditions are given) the steady-state solution P is the only solu- 
tion of the algebraic Riccati equation that is nonnegative-definite, so that it 
can be uniquely determined. 

Corresponding to the steady-state solution of the Riccati equation, we 
obtain of course the steadystate corrfrol la~v 

1 0 )  = -F(t)x(t), 
where 

3-150 

p(t) = ~ ; ~ ( t ) ~ ~ ' ( t ) P ( t ) .  3-151 
I t  will be proved that this steady-state control law minimizes the criterion 
3-145 with t ,  replaced with a. Of great importance is the following: 

2. Tlre steady-state coutrol law is in general asyrrtptatically stable, 

Again, precise conditions will be given. Intuitively, it is not difficult to 
understand this fact. Since 
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exists for the steady-state control law, it follows that in the closed-loop 
system a(t)  -0 and z(t) -0 as t + m. In general, this can be true only if 
x( t )  0, which means that the closed-loop system is asymptotically stable. 

Fact 2 is very important since we now have the means to devise linear 
feedback systems that are asymptotically stable and at the same time possess 
optimal transient properties in the sense that any nonzero initial state is 
reduced to the zero state in an optimal fashion. For time-invariant systems 
this is a welcome addition to the theory of stabilization outlined in Section 
3.2. There we saw that any time-invariant system in general can be stabilized 
by a linear feedback law, and that the closed-loop poles can be arbitrarily 
assigned. The solution of the regulator problem gives us a prescription to 
assign these poles in a rational manner. We return to the question of the 
optimal closed-loop pole distribution in Section 3.8. 

Example 3.7. Atzgular uelocity stabilization 
For the angular velocity stabilization problem of Examples 3.3, 3.5, and 

3.6, the solution of the Riccati equation is given by 3-144. It  is easily found 
with the aid of 3-106 that as t, 4 m, 

!- 

Pcan  also be found by solving the algebraic equation 3-149 which in this case 
reduces to 

K- - 0 = 1 - - p t - 2 s .  3-154 
P 

This equation has the solutions 

Since P must be nonnegative, it follows immediately that 3-153 is the correct 
solution. 

The corresponding steady-state gain is given by 

K 

By substituting 

p(t) = -F&) 3-157 
into the system state differential equation, it follows that the closed-loop 
system is described by the state differential equation 
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Obviously, this system is asymptotically stable. 

Example 3.8. Position control 
As a more complicated Gxample, we consider the position control problem 

of Example 3.4 (Section 3.3.1). The steady-state solution P of the Riccati 
equation 3-147 must now satisfy the equation 

Let Ff,, i, j = 1,2, denote the elements of F. Then using the fact that PI, = 
p21, the following algebraic equations are obtained from 3-159 

K" - - 
0 = - - P& + 2&, - 2a.P2,. 

P 
These equations have several solutions, but it is easy to verify that the only 
nonnegative-definite solution is given by 

p - q- 
l1 - I< 

.- 
JP '  

The corresponding steady-state feedback gain matrix can be found to be 

Thus the input is given by 

p(t) = -Fx(t). 3-163 

I t  is easily found that the optimal closed-loop system is described by the 
state differential equation 

0 1 

i ( t )  = ~ ( t ) .  3-164 
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The closed-loop characteristic polynomial can be computed to be 
I- 

The closed-loop characteristic values are 

Figure 3.8 gives the loci of the closed-loop characteristic values as p varies. 
I t  is interesting to see that as p decreases the closed-loop poles go to infinity 
along two straight lines that make an angle of 7r/4 with the negative real axis. 
Asymptotically, the closed-loop poles are given by 

Figure 3.9 shows the response of the steady-state optimal closed-loop system 

Fig. 3.8. Loci o r  the closed-loop roots or the position control system as a runction of p. 
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Fig. 3.9. Response of the oplimal position control system to the initial state L(0) = 
0.1 rad, f..(O) = 0 rad/s. 

corresponding to the following numerical values: 

The corresponding gain matrix is 

while the closed-loop poles can be computed to be -9.658 f j9.094. We 
observe that the present design is equivalent to the position and velocity 
feedback design of Example 2.4 (Section 2.3). The gain matrix 3-169 is 
optimal from the point of view of transient response. It  is interesting to note 
that the present design method results in a second-order system with relative - 
damping of nearly Q J ~ ,  which is exactly what we found in Example 2.7 
(Section 2.5.2) to be the most favorable design. 

To conclude the discussion we remark that it follows from Example 3.4 
that if x(t) is actually the deviation of the state from a certain equilibrium 
state x, which is not the zero state, x(t) in the control law 3-163 should be re- 
placed with ~ ' ( t ) ,  where 
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Here R3 is the desired angular position. This results in the control law 

where I'= (PI, &). The block diagram corresponding to this control law 
is given in Fig. 3.10. 

Example 3.9. Stirred tank 
As another example, we consider the stirred tank of Example 1.2 (Section 

1.2.3). Suppose that it is desired to stabilize the outgoing flow F(t) and the 
outgoing concentration c(t). We therefore choose as the controlled variable 

where we use the numerical values of Example 1.2. To determine the weight- 
ing matrix R,, we follow the same argument as in Example 2.8 (Section 
2.5.3). The nominal value of the outgoing flow is 0.02 mys. A 10% change 
corresponds to 0.002 m3/s. The nominal value of the outgoing concentration 
is 1.25 kmol/m3. Here a 10% change corresponds to about 0.1 kmol/m3. 
Suppose that we choose R, diagonal with diagonal elements ul and oz. 
Then 

zT(t)R3z(t) = ~ ~ < ~ ~ ( f )  + u2<22(t), 3-173 

where z(t) = col (C,(t), l2(t)). Then if a 10% change in the outgoing flow is 
to make about the same contribution to the criterion as a 10% change in the 
outgoing concentration, we must have 

c 2  
Let us therefore select 

0; = 50, o, = A, 3-176 
or 

To choose R, we follow a similar approach. A 10 % change in the feed Fl 
corresponds to 0.0015 mys, while a 10% change in the feed F, corresponds to 
0.0005 m3/s. Let us choose R, = diag (p,, p,). Then the 10% changes in Fl 
and F, contribute an amount of 







230 Optimal Linear Stntc Feedbnck Control Systems 

to the criterion. Both terms contribute equally if 

We therefore select 

where p is a scalar constant to be determined. 
Figure 3.11 depicts the behavior of the optimal steady-state closed-loop 

system for p = m, 10, I,  and 0.1. The case p = m corresponds to the open- 
loop system (no control at all). We see that as p decreases a faster and faster 
response is obtained at the cost of larger and larger input amplitudes. Table 
3.1 gives the closed-loop characteristic values as a function of p. We see that 
in all cases a system is obtained with closed-loop poles that are well inside the 
left-half complex plane. 

Table 3.1 Locations of the Steady-State 
Optimal Closed-Loop Poles as a Function 
of p for the Regulated Stirred Tank 

Optimal closed-loop poles 
P (s-~) 

We do not list here the gain matrices F found for each value of p, but it 
turns out that they are not diagonal, as opposed to what we considered in 
Example 2.8. The feedback schemes obtained in the present example are 
optimal in the sense that they are the best compromises between the require- 
ment of maximal speed of response and the limitations on the input ampli- 
tudes. 

Finally, we observe from the plots of Fig. 3.11 that the closed-loop system 
shows relatively little interaction, that is, the response to an initial disturb- 
ance in the concentration hardly affects the tank volume, and vice versa. 

3.4.2* Steady-State Properties of Optimal Regulators 

In this subsection and the next we give precise results concerning the steady- 
state properties of optimal regulators. This section is devoted to the general, 
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time-varying case; in the next section the time-invariant case is investigated 
in much more detail. Most of the results in the present section are due 
to Kalman (1960). We more or less follow his exposition. 

We first state the following result. 

Theorem 3.5. Consider the rnatrix Riccati eqlration 

-P(t) = o T ( t ) ~ , ( t ) o ( t )  - ~ ( t ) ~ ( t ) ~ : ~ ( t ) ~ ~ ( t ) ~ ( t )  + ~ ~ ( t ) ~ ( t )  + ~ ( t ) ~ ( t ) .  

3-181 
S~ppose that A( t )  is contin~ra~rs and bolutded, that B( t ) ,  D(t) ,  R,(t), and R,(t) 
are piecewise contintro~~s and bomded on [to, m ) ,  andfrrrtherrnore that 

R3(t)  2 d, R d t )  2 81, for all t ,  3-182 
llhere a and p are positive constants. 
(i) Then i f the  system 

*(t)  = A(t)x(t)  + B(t)rr(t), 

~ ( t )  = D ( t ) ~ ( t ) ,  3-183 
is either 

(a) completely contro1lable, or 
(b) exponenfial!y stable, 

the sol~rtion P(t)  of the Riccati equation 3-181 with the terniinal condition 
P(tJ = 0 converges to a c~oitnegatiue-dej~~ite mafrixfilnction F(t)  as t, - m. 
F(t)  is a sol~rtion of tlte Riccati equation 3-181. 
(ii) Moreover, i f  the system 3-183 is either 

(c) both mzformly conlplete!y controllable and irniforntly contpletely re- 
constr~rctible, or 

( d )  exponential!y stable, 
the solrrtion P( t )  of the Riccati eqt~ation 3-181 ~si th  the terntir~al condition 
P(tJ  = P, corluerges to p ( t )  as 1 ,  + m for any P, 2 0. 

The proof of the first part of this theorem is not very difficult. From Theorem 
3.4 (Section 3.3.3), we know that for finite t ,  

x T ( t ) ~ ( t ) x ( t )  = min [z*(T)R,(T)z(T) + tiT(.r)R2(~)tl(r)] d~ . 3-184 
,'id. 

tSiStl 
1 

Of course this expression is a function of the terminal time t,. We first 
establish that as a function of t ,  this expression has an upper hound. If the 
system is completely controllable [assumption (a)],  there exists an input that 
transfers the state x( t )  to the zero state at some time ti. For this input we can 
compute the criterion 
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This number is an upper bound for 3-184, since obviously we can take u(t) = 
0 for t 2 t;. 

If the system is exponentially stable (Section 1.4.1), x(t) converges ex- 
ponentially to zero if we let tr(t) = 0. Then 

converges to a finite number as t, -t m, since D(t) and R,(t) are assumed to 
be bounded. This number is an upper bound for 3-184. 

Thus we have shown that as a function oft,  the expression 3-184 has an 
upper bound under either assumption (a) or (b). Furthermore, i t  is reasonably 
obvious that as a function of t, this expression is monotonically nonde- 
creasing. Suppose that this were not true. Then there must exist a ti and t; 
with t; > ti such that for t, = t;' the criterion is smaller than for t, = t;. 
Now apply the input that is optimal for 1; over the interval [to, t;]. Since the 
integrand of the criterion is nonnegative, the criterion for this smaller interval 
must give a value that is less than or equal to the criterion for the larger 
interval [I,, I;]. This is a contradiction, hence 3-184 must be a monotonically 
nondecreasing function of t,. 

Since as a function oft ,  the expression 3-184 is bounded from above and 
monotonically nondecreasing, it must have a limit as t,- m. Since x(t) 
is arbitrary, each of the elements of P(t) has a limit, hence P(r) has a limit 
that we denote as P(t). That P(t) is nonnegative-definite and symmetric is 
obvious. That P(t) is a solution of the matrix Riccati equation follows by the 
continuity of the solutions of the Riccati equation with respect to initial 
conditions. Following Kalman (1960), let n ( t ;  PI, t3 denote the solution of 
the matrix Riccati equation with the terminal condition P,(t,) =PI. Then 

F(t) = lim n(t ;  0, tJ = lim n[t; II(t,; 0, t3, t,] 
I?+- 1%-m 

= II[t; lim IJ(t,; 0, t,), t,] 
tz+m 

= n ~ t ,  ~ ( t , ) ,  tll, 3-187 

which shows that Fl(t) is indeed a solution of the Riccati equation. ~ h t ?  
proof of the remainder of Theorem 3.5 will be deferred for a moment. 

We refer to P(t) as the steady-state solution of the Riccati equation. To 
this steady-state solution corresponds the steady-state optirnal control law 

11(t) = -F(t)x(t), 3-188 
where 

F(t) = ~;'(t)~l'(t)2+). 3-189 
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Concerning the stability of the steady-state control law, we have the following 
result. 

Theorem 3.6. Consider the determirristic liriear opti~nal regulator problenz 
and srppose that tire ossunlptions of Theoreril 3.5 coiicerning A, B, D, R, and 
R, are satisfied. Theit if the system 

is either 
(a) both uniformly completely coritrollable otrd mtiforrrrly connpletely re- 

constructible, or 
(b) exponentially stoble, 

the follo~vin~g facts hold: 
(i) The steady-state opti~nol control law 

u(t) = -R;'(t)BT(t)p(t)x(t) 
is exporre?rtiolly stoble. 
(ii) The steady-state coritrol low 3-191 mirrirnizrs 

lim (~~[zT(t)&(t)z(t) + irT(t)R2(t)u(t)l df + x ~ t J ~ , z ( t ~ ]  3-192 
11-m 

for allP, 2 0. The n~irrbnol uolue of the criterion 3-192, which is ochieved by the 
steadystate control law, is giuerr by 

~ ~ ( t o m o ) x ( t o ) .  3-193 
A rigorous proof of these results is given by Kalman (1960). We only make 
the theorem plausible. If condition (a) or (b) of Theorem 3.6 is satisfied, also 
condition (a) or (b) of Theorem 3.5 holds. It  follows that the solution of the 
Riccati equation 3-181 with P(tl) = 0 converges to P(t) as t, - m. For the 
corresponding steady-state control law, we have 

J r ~ . ~ ( t ) ~ ~ t ) ~ ( t )  + uZ*( t )~ iq i l ( t )~  dr = Z?~.)F(~JZ(~~). 3-194 

Since the integral converges and R,(t) and R3(t) satisfy the conditions 
3-182, both z(t) and tr(t) must converge to zero as t - m. Suppose now that 
the closed-loop system is not asymptotically stable. Then there exists an 
initial state such that x(t) does not approach zero while z(t) -+ 0 and u(t) - 0. 
This is clearly in conflict with the complete reconstructibility of the system if 
(a) holds, or with the assumption of exponential stability of the system if 
(b) holds. Hence the closed-loop system must be asymptotically stable. That 
it moreover is exponentially stable follows from the uniformity properties. 

This settles part (i) of the theorem. Part (ii) can be shown as follows. Sup- 
pose that there exists another control law that yields a smaller value for 
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3-192. Because the criterion 3-192 yields a h i t e  value when the steady-state 
optimal control law is used, this other control law must also yield a finite 
value. Then, by the same argument as for the steady-state control law, 
this other control law must be asymptotically stable. This means that for 
this control law 

lim [[[z'(t)~n(t)l(t) + ~~'(t)R~(t)il(t)] dt + x ' ( ~ ~ ~ x ( t ~ ) ]  
f l - m  

= ~ ~ [ z ~ ( t ) ~ d t ) i ( t )  + IC(I)R~(~)CI(~)I  dt. 3-195 

But since the right-hand side of this expression is minimized by the steady- 
state control law, there cannot be another control law that yields a smaller 
value for the left-hand side. This proves part (ii) of Theorem 3.6. This more- 
over proves the second part of Theorem 3.5, since under assumptions (c) 
or (d) of this theorem the steady-state feedback law minimizes the criterion 
3-192 for all P, 2 0, which implies that the Riccati equation converges to 
P(t) for all PI 2 0. 

We illustrate the results of this section as follows. 

Example 3.10. Reel-ivindifg r~iecl~ai~isni 
As an example of a simple time-varying system, consider the reel-winding 

mechanism of Fig. 3.12. A dc motor drives a reel on which a wire is being 

Fig. 3.12. Schemntic representation of a reel-winding mechanism. 

wound. The speed at which the wire runs on to the reel is to be kept constant. 
Because of the increasing diameter of the reel, the moment of inertia in- 
creases; moreover, to keep the wire speed constant, the angular velocity must 
decrease. Let w(t) be the angular velocity of the reel, J(t) the moment of 
inertia of reel and motor armature, and p(t) the input voltage to the power 
amplifier that drives the dc motor. Then we have 



3.4 StendyStnte Solution o i  the Reylntor Problem 235 

where I< is a constant which expresses the proportionality of the torque of 
the motor and the input voltage, and where C$ is a friction coefficient. Further- 
more, let R( t )  denote the radius of the reel; then the speed 5(t) at which the 
wire is wound is given by 

5 ( 0  = R(t)w(t) .  3-197 

Let us introduce the state variable 

t ( t )  = J(t)w(t) .  

The system is then described by the equations 

We assume that the reel speed is so controlled that the wire speed is kept 
constant at the value 5,. The time dependence of 3 and R can then be esta- 
blished as follows. Suppose that during a short time dt the radius increases 
from R to R + dR. The increase in the volume of wire wound upon the reel 
is proportional to R dR. The volume is also proportional to dt ,  since the wire 
is wound with a supposedly constant speed. Thus we have 

R d R  = c d t ,  
where c is a constant. This yields after integration 

R( t )  = JRZ(O) + ht,  

where h is another constant. However, if the radius increases from R to 
R + dR, the moment of inertia increases with an amount that is proportional 
to R d R  Re = R8 dR. Thus we have 

where c' is a constant. This yields after integration 

where h' is another constant. 
Let us now consider the problem of regulating the system such that the 

wire speed is kept at the constant value 5,. The nominal solution 5&), 
p0(t)  that corresponds to this situation can be found as follows. If <,(t) = [,, 
we have 
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The nominal input is found from the state differential equation: 

Let us now define the shifted state, input, and controlled variables: 

F ( t )  = 4w - 5u(f). 

$ ( t )  = 14 - pu(f). 3-206 

5'(t)  = 5(t)  - <o(t). 

These variables satisfy the equations 

Let us choose the criterion 

Then the Riccati equation takes the form 

with the terminal condition 
P(t , )  = 0. 

P ( t )  is in this case a scalar function. The scalar feedback gain factor is given 

by 

We choose the following numerical values: 

Figure 3.13 shows the behavior of the optimal gain factor F ( t )  for the terminal 
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s t e o d y - . t o t e  port ion 
O f  cu rve5  

Fig. 3.13. Behavior of the optimal gain factor for the reel-winding problem for various 
values or the terminal time t,. 

times 1 ,  = 10, 15, and 20 s. We note that for each value of f ,  the gain ex- 
hibits an identical steady-state behavior; only near the terminal time do 
deviations occur. I t  is clearly shown that the steady-state gain is time- 
varying. I1 is not convenient to implement such a time-varying gain. In 
the present case a practically adequate performance might probably just as 
well be obtained through a time-invariant feedback gain. 

3.4.3* Steady-State Properties of the Time-Invariant Optimal 
Regulator 

In this section we study the steady-state properties of the time- 
invariant oplimal linear regulator. We are able to state sufficient and neces- 
sary conditions under which the Riccati equation has a steady-state solution 
and under which the steady-state optimal closed-loop system is stable. Most 
of these facts have been given by Wonham (1968a), Lukes (1968), and 
Mittensson (1971). 

Our results can he summarized as follows. 

Theorem 3.7. Consider the time-hzuariant reglhfor problem for the systern 

x(t)  = Ax(t)  + B I I ( ~ ) ,  

z ( t )  = Dx(t) ,  
or~d the criterion 
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with R ,  > 0, R ,  > 0, PI 2 0. The associated Riccati equation is giuerl by 

with the terminal condition 
P(tl)  = P,. 

(a) Asslulle that PI = 0. Then as t 1 4  m tile soll~tian of the Riccati eqrration 
oppraaches a constant steady-state vahre P if and anly if the systern possesses 
napoles that are at the same time teistable, zmcontrallable, and reconstructible. 
( b )  If  the systeni 3-213 is  botlr stabilizable and detectable, the salution of the 
Riccati eg~ration 3-215 approaches the unique ualire P as t, - m far euery 
P ,  2 0. 
(c)  I f P  exists, it is a na~lnegatiue-defi~~ite synni~etric sal~rtion of the algebraic 
Riccati egnation 

I f  the systeni 3-213 is stabilizable arid detectable, P is the unique nonnegatiue- 
definite synnnetric soltctian of the algebraic Riccati eguotiarl 3-217. 
( d )  I f  P exists, it is strictly positive-definite if and anly if the systeni 3-213 
is  completely reconsfr~~ctible. 
(e) I f P  exists, the steady-state control law 

cc(t) = -Fx(t), 3-218 
where 

F = R Y ~ B ~ P ,  3-219 

is asy~iiptoticolly stable if and only if the systeni 3-213 is stabilimble and 
detectable. 
(f) If the systeni 3-213 is stabilizable and detectable, the steady-state control 
laiv mininiizes 

for aN PI 2 0. Far the steadjwtate control law, the criterion 3-220 takes the 
ualue 

xT(to)Px(tn). 3-221 
W e  first prove part (a) o f  this theorem. Suppose that the system is not com- 
pletely reconstructible. Then it  can be transformed into reconstructibility 
canonical form as follows. 
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where the pair {A,,, DJ is completely reconstructible. Partitioning the solu- 
tion P(t) of the Riccati equation 3-215 according to the partitioning in 3-222 
as 

i t  is easily found that the Riccati equation 3-215 reduces to the following three 
matrix equations 

-Pw(t) = - [PK(t)B, + P , , ( ~ ) B J R ; ~ [ B I ~ , ( ~ )  + B,Z'P,2(t)] 

+ A$P,&) + P,,(~)A,,. 3-226 

I t  is easily seen that with the terminal conditions P,,(t,) = 0, PI,(:,) = 0, 
and P,,(t,) = 0 Eqs. 3-225 and 3-226 are satisfied by 

With these identities 3-224 reduces to 

-Pl,(t) = D I ~ R , D I  - Pu(t)B,R;'Bi'PPu(1) + A6'Pn(f) + Pii(t)A,,, 

PI&) = 0. 3-228 
It follows from this that the unreconstructihle poles of the system, that is, 
the characteristic values of A,,, do not affect the convergence of PI,@) as 
t, + m, hence that the convergence of P(t)  is also not affected by the un- 
reconstructible poles. To investigate the convergence of P(t),  we can therefore 
as well assume for the time being that the system 3-213 is completely re- 
constructible. 

Let us now transform the system 3-213 into controllability canonical 
form and thus represent it as follows: 

i ( t )  = (All 4 )  .(t) + (:) ~ ( f ) ,  

0 A,, 

4 t )  = (Dl, DJ4 f ) .  
where the pair {A,,, B,} is completely controllable. Suppose now that the 
system is not stabilizable so that A?, is not asymptotically stable. Then 
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obviously there exist initial states of the form col (0, x2,) such that x(t) -+ m 
no matter how u(1) is chosen. By the assumed complete reconstructibility, 
for such initial states 

will never converge to a finite number as t, -+ m. This proves that P(f) also 
will not converge to a finite value as t, -r- m if the system 3-213 is not stabiliz- 
able. However, if 3-213 is stabilizable, we can always find a feedback law 
that makes the closed-loop system stable. For this feedback law 3-230 con- 
verges to a finite number as t, -+ m; this number is an upper bound for the 
minimal value of the criterion. As in Section 3.4.2, we can argue that the 
minimal value of 3-230 is a monotonically nondecreasing function of I,. 
This proves that the minimal value of 3-230 has a limit as t ,  - m, hence that 
P(t) as solved from 3-215 with P(t,) = 0 has a limit P as 1, -> m. This 
terminates the proof of part (a) of the theorem. 

We defer the proof of parts (b) and (c) for a moment. Part (d) is easily 
recognized to be valid. Suppose that the system is not completely recon- 
structible. Then, as we have seen in the beginning of the proof of (a), when 
the system is represented in reconstructibility canonical form, and PI = 0, 
P(t) can be represented in the form 

which very clearly shows that P, if it exists, is singular. This proves that if 
P i s  strictly positive-definite the system must be completely reconstructible. 
To prove the converse assume that the system is completely reconstructible 
and that P is singular. Then there exists a nonzero initial state such that 

Since R, > 0 and R, > 0, this implies that 

u(t) = 0 and z(t) = 0 for t 2 1,. 3-233 

But this would mean that there is a nonzero initial state that causes a zero 
input response of z(t) that is zero for all t. This is in contradiction to the 
assumption of complete reconstructibility, and therefore the assumption 
that P is singular is false. This terminates the proor of part (d). 

We now consider the proof of part (e). We assume thatPexists. This means 
that the system has no unstable, uncontrollable poles that are reconstructible. 
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We saw in the proof of (a) thIat in the reconstructibility canonical representa- 
tion of the system P is given in the form 

This shows that the steady-state feedback gain matrix is of the form 

This in turn means that the steady-state feedback gain matrix leaves the un- 
reconstructible part of the system completely untouched, which implies that 
if the steady-state control law is to make the closed-loop system asymptotic- 
ally stable, the unrecons~ructible part of the system must be asymptotically 
stable, that is, the open-loop system must be detectable. Moreover, if the 
closed-loop system is to be asymptotically stable, the open-loop system 
must be stabilizable, otherwise no control law, hence not the steady-state 
control law either, can make the closed-loop system stable. Thus we see 
that stabilizability and detectability are necessary conditions for the steady- 
state control law to be asymptotically stable. 

Stabilizability and detectability are also sufficient to guarantee asymptotic 
stability. We have already seen that the steady-state control law does not 
affect and is not affected by the unreconstructible part of the system; there- 
fore, if the system is detectable, we may as well omit the unreconstructible 
part and assume that the system is completely reconstructible. Let us repre- 
sent the system in controllability canonical form as in 3-229. Partitioning the 
matrix P(t) according to the partitioning of 3-229, we write: 

I t  is not difficult to find from the Riccati equation 3-215 that P,,(t) is the 
solution of 

We see that this is the usual Riccati-type equation. Now since the pair 
{A,,, B,} is completely controllable, we know from Theorem 3.5 that P,,(t) 
has an asymptotic solution E',, as t ,+  m such that A,, - B,&, where 

= R.-l~,TPl,, is asymptotically stable. The control law for the whole 
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With this control law the closed-loop system is described by 

Clearly, if the open-loop system is stabilizable, the closed-loop system is 
asymptotically stable since both A,, - B,F~ and A,, are asymptotically 
stable. This proves that detectability and stabilizability are sufficient con- 
ditions to guarantee that the closed-loop steady-state control law will he 
asymptotically stable. This terminates the proof of (e). 

Consider now part (f) of the theorem. Obviously, the steady-state control 
law minimizes 

and the minimal value of this criterion is given by xT(t,)Fx(t,). Let us now 
consider the criterion 

[z ( t )  3z t)  + uT(i)R,cf(t)] dt f xT(il)Plx(tl) i m  1 R ( t,-+m 

with P, 2 0. If the system is stabilizable and detectable, for the steady-state 
control law the criterion 3-241 is equal to 

R f(t) + ET(t)R,17(t)] dt = xT(tO)Fx(to), ly 1 0 )  3 3-242 

where 2 and 17 are the controlled variable and input generated by the steady- 
state control law. We claim that the steady-state control law not only 
minimizes 3-240, hut also 3-241. Suppose that there exists another control 
law that gives a smaller value of 3-241, so that for this control law 

[[zT(t)R3z(t) + uT(t)R,i~(t)] dt + lim xT(tJPlx(iJ < xT(io)Pr(t& 3-243 
t t - m  

Because PI 2 0 this would imply that for this feedback law 

J;PT(~)R+(!) + I I ~ ( ~ ) R ~ I ( ~ ) ]  d i  (( xO1'(tJFx(fJ. 3-244 

But since we know that the left-hand side of this expression is minimized by 
the steady-state control law, and no value of the criterion less than 



3.4 Steady-Stnte Solution of the Regulntor Problem 243 

z(t,)Px(t,) can be achieved, this is a contradiction, which means that 
3-241 is also minimized by the steady-state control law. This terminates the 
proof of part (f). 

We now return to part (b) of the theorem. The fact stated in (b) immedi- 
ately follows from (f). Consider now part (c). In  general, the algebraic 
Riccati equation has many solutions (see Problem 3.8). If P exists, it is a 
nonnegative-definite solution of the algebraic Riccati equation because 
P must be a solution of the Riccati differential equation 3-215. Suppose 
that the system 3-213 is stabilizable and detectable, and let P' be any non- 
negative-definite solution of the algebraic Riccati equation. Consider the 
Riccati diKerential equation 3-215 with the terminal condition PI = P'. 
Obviously, the solution of the Riccati equation is P(t) = P', t 5 t. Then the 
steady-state solution P must also be given by P'. This proves that any 
nonnegative-definite solution PC of the algebraic Riccati equation is the steady- 
state solutionP, hence that the steady-state valuePis the unique nonnegative- 
definite solution of the algebraic Riccati equation. This terminates the proof 
of (c), and also the proof of the whole theorem. 

Coiitntents. We conclude this section with the following comments. Parts 
(b) and (c) state that stabilizahility and detectability are sufficient conditions 
for the Riccati equation to converge to a unique P f o r  all PI 2 0 and for the 
algebraic Riccati equation to have a unique nonnegative-definite solution. 
That these conditions are not necessary can be seen from simple examples. 

Furthermore, it may very well happen that although P does not exist, 

E = lim R;'BTP(t) 3-245 
1,-m 

does exist. 
It is not difficult to conclude that the steady-state control law u(t) = 

-Ex(t), if it exists, changes only the locations of those open-loop poles 
that are both controllable and reconstructible. Therefore an unfavorable 
situation may arise when a system possesses uncontrollable or nnrecon- 
structible poles, in particular if these poles are unstable. Unfortunately, 
it is usually impossible to change the structure of the system so as to make un- 
controllable poles controllable. If a system possesses unreconstructible 
poles with undesirable locations, it is often possible, however, to redefine 
the controlled variable such that the system no longer has unreconstructible 
poles. 

3.4.4* Solution of the Time-Invariant Regulator Problem by 
Diagonalization 

In this section we furtber investigate the steady-state solution of the time- 
invariant regulator problem. This first of all provides us with a method for 
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computing the steady-state solution P of the Riccati equation, and moreover 
puts us into a position to derive information about the closed-loop regulator 
poles and the closed-loop behavior of the regulator. Throughout the section 
we assume that the open-loop system is both stabilizahle and detectable. 

In Section 3.3.2 we saw that the regulator problem can he solved by con- 
sidering the linear differefltial equation 

where Z is the constant matrix F 
A 

A 

Here Rl = D ~ R , D .  we have the boundary conditions 

From Sections 3.3.2 and 3.3.3 (Eq. 3-92), we know that p(t) and x(r) are 
related by 

PQ) = f'(t)~(t)~ 3-249 

where P(t) is the solution of the matrix Riccati equation with the terminal 
condition P(1,) =PI. Suppose now that we choose 

where P is the steady-state solution of the Riccati equation. Then the Riccati 
equation obviously has the solution 

This shows that the steady-state solution can he obtained by replacing the 
ferminal condition 3-248b with the initial condition 

Solving the direrential equation 3-246 with the initial conditions 3-248a and 
3-252 gives us the steady-state behavior of the state and adjoint variable. 

We study the solution of this initial value problem by diagondization 
of the matrix Z. It  can be shown by elementary determinant manipulations 
that 

det (-sl - Z) = det (s l  - Z). 3-253 

Consequently, det (s l -  Z) is a poly~ornial in s%hich shows that, if 2. is a 
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characteristic value of Z, -2. is also a characteristic value. Let us for simplic- 
ity assume that the characteristic values of Z are all distinct (for the more 
general case, see Problem 3.9). This allows us to diagonalize Z as follows: 

Here A is a diagonal matrix which is constructed as follows. If a characteristic 
value A of Z has a strictly positive real part, it is a diagonal element of A; 
- A  is automatically placed in -A. If A has zero real part, one of the pair A, 
-A is arbitrarily assigned to A and the other to -A. The matrix Wis com- 
posed of the characteristic vectors of Z; the ith column vector of W is the 
characteristic vector of Z corresponding to the characteristic value in the 
ith diagonal position of diag (A, -A). 

Let us now consider the differential equation 

where 

We uartition W-I as follows: 

We know that the steady-state solution is stable, that is, x(t) -+ 0 as t -t- m. 
This also implies that zl(t) + 0 as t + m. From 3-255, however, we see that 

zl(t) = eA"to'zl(to). 3-259 

Since the characteristic values of A all have zero or positive real parts, 
zl(t) can converge to zero only if zl(t,,) = 0. According to 3-258, this can be 
the case for all xu if and only if P satisfies the relation 

If Vl? is nonsingular, we can solve for P as follows: 
- 
p = -v-'v 12 11' 3-261 

In any case P must satisfy 3-260. Let us suppose that 3-260 does not have a 
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unique nonnegative-definite solution for P and let P' be any nonnegative- 
definite solution. Consider now the differential equation 3-246 with the 
terminal condition 

p(f3 = ~ ' x ( t 3 .  3-262 

We can write the solution in the form 

where M f  has also been partitioned. Substitution of 3-262 gives 

. 3-264 

By using the fact that P' is a solution of 3-260, this can be further worked 
out; we obtain 

x(f) = ~~,e-"('-"' (V,, + V,,P')x(tJ, 3-265a 

p(t) = ~, ,e-""-~"(~,  + V,,P1)z(tJ. 3-265b 

For t = r, the first of these equations reduces to 

- w -AVo-111 
U - ~~e (VSl + V,,P1)x(tJ. 3-266 

Since the two-point boundary value probIem must have a solution for a11 
x,, the matrix that relates xu and x(tl) must be nonsingular (otherwise this 
equation would not have a solution if x, is not in the range of this matrix). 
In fact, since any t 2 t, can be considered as the initial time for the interval 
[ t ,  t,], the matrix 

w -""-"I 
I@ (Vzl + v d ' )  3-267 

must be nonsingular for all t < t,. Solving 3-265a for x(t,) and substituting 
this into 3-26513 yields 

Apparently, solving the two-point boundary value problem with the ter- 
minal condition P(t,) 3 P' yields a solution of the form 

where P is constant. Since this solution is independent of the terminal time t,, 
P is also the steady-state solution P of the Riccati equation as tl- m. 
Since, as we know from Theorem 3.7, this steady-state solution is unique, we 
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cannot but conclude that 
P = W,,W;,'. 3-271 

This argument shows that Rfl3 is nonsingular and that P can be represented 
in the form 3-271. Since the partitioned blocks of V and W have a special 
relationship, it can also be shown that Vl, is nonsingular, hence also that 
3-261 is a valid expression (Problem 3.12). 

In addition to these results, we can obtain the following interesting con- 
clusion. By solving 3-266 for x( tJ  and substituting the result into 3-265n, we 
find 

This shows very explicitly that the characteristic values of the steady-state 
closed-loop system are precisely the diagonal elements of -A (O'Donnell, 
1966). Since the closed-loop system is known to be asymptotically stable, it 
follows that the diagonal elements of -A have strictly negative real parts. 
Since these characteristic values are obtained from the characteristic values 
of Z, this means that Z cannot have any characteristic values with zero real 
parts, and that the steady-state closed-loop characteristic values are precisely 
those characteristic values of Z that have negative real parts (Lelov, 1960). 

We summarize these conclusions as follows. 

Theorern3.8. Consider the time-invariant deterministic linear optinral 
regulatorproblen~ and slypose that thepair { A ,  B) is stobilizoble and the pair 
{ A ,  D) detectable. Define the 2n x 211 matrix 

and asstrme that Z has 211 distinct cl~aracteristic ualues. T11en 
(a) Ij'rl is a cl~aracteristic ualtre of 2, -1 also is a cl~aracteristic ualne. Z has no 
cl~aracteristic uallres ivit11 zero realparts. 
(b) The clzaracteristic values of the steady-state closed-loop optintal regldator 
are those chorocteristic values of Z that haue negative realparts. 
(c) I f  Z is diogonolized in the form 

~vl~ere the diagonal matrix A has as diagonal elentents the c/rarocteristic uoltres 
of Z with positiue realparts, the steady-state sol~rtion of the Riccati eqt~ation 
3-215 can be isritten as 

P = W,,W$ = -VzVll, 3-275 
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shere the Wi, and Vi,, i ,  j = 1, 2, are obtained by portitionirlg Wand V = 
W-l, respectively. The inverse n~atrix in both expressions exists. 
(d) The response of the stea+state closed-loop optiinal regrtlator can be 
anitten as 

s(t) = W , , ~ - " ' ~ - ' ~ ' W ~ X ~ , .  3-276 

The diagonalization approach discussed in this section is furlher pursued in 
Problems 3.8 through 3.12. 

3.5 NUMERICAL SOLUTION OF THE RICCATI 
EQUATION 

3.5.1 Direct Integration 

In this section we discuss various methods for the numerical solution of the 
Riccati equation, which is of fundamental importance for the regulator 
problem and, as we see in Chapler 4, also for state reconstruction problems. 
The matrix Riccati equation is given by 

-P(r) = R,(t) - ~ ( t ) ~ ( t ) ~ ; ~ ( t ) ~ ~ ( t ) ~ ( t )  + AT(t)p(t) + P(t)A(t), 3-277 
with the terminal condition 

P(t,)  = P,. 

A direct approach results from considering 3-277 a set of n%imultaneous 
nonlinear first-order differential equations (assuming that P( t )  is an 11 x n 
matrix) and using any standard numerical technique to integrate these 
equations backward from t,. The most elementary method is Euler's method, 
where we write 

P(t - At) cz P( t )  - P ( t )  At, 3-278 

and compute P ( f )  for t = t ,  - At, t, - 2At, . . . . If the solution converges 
to a constant value, such as usually occurs in the time-invariant case, some 
stopping rule is needed. A disadvantage of this approach is that for sufficient 
accuracy usually a quite small value of At is required, which results in a large 
number of steps. Also, the symmetry o f P ( t )  tends to be destroyed because of 
numerical errors. This can be remedied by symmetrizing after each step, that 
is, replacing P(r) with $[P(t) f PT(t)] .  Alternatively, the symmetry of P(t) 
can be exploited by reducing 3-277 to a set of $n(n + 1) simultaneous fist- 
order differential equations, which results in an appreciable saving of com- 
puter time. A further discussion of the method of direct integration may be 
found in Bucy and Joseph (1968). 

The method of direct integration is applicable to both the time-varying 
and the time-invariant case. If only steady-state solutions for time-invariant 
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problems are required, the methods presented in Sections 3.5.3 and 3.5.4 are 
more effective. 

We finally point ouf the following. In order to realize a time-varying con- 
trol law, the entire behavior of F(t) for to < t < t, must he stored. I t  seems 
attractive to circumvent this as follows. By off-line integration P(t,) can be 
computed. Then the Riccati equation 3-277 is integrated on-line, with the 
correct initial value P(t,), and the feedback gain matrix is obtained, on-line, 
from F(t) = R;l(t)BT(t)P(t). This method usually leads to unsatisfactory 
results, however, since in the forward direction the Riccati equation 3-277 is 
unstable, which causes computational inaccuracies that increase with 1 
(Kalman, 1960). 

3.5.2 The Kalman-Englar Method 

When a complete solution is required of the time-invariant Riccati equation, a 
convenient approach (Kalman and Englar, 1966) is based upon the following 
expression, which derives from 3-98: 

p ( t w 3  = [@z,(ti+,, ti) + @zz(t~+i,  tOP(tJl[@ii(t+,, d + @iB(t+,, tJP(tj)l", 
3-279 

where 
ti+, = ti - At. 3-280 

The matrices Oi,(t, to) are obtained by partitioning the transition matrix 
@ ( t ,  to) of the system 

where 

We can compute @(ti+,, t i )  once and for all as 

@(t,,, tJ = e-zA', 3-283 
which can be evaluated according to the power series method of Section 
1.3.2. The solution of the Riccati equation is then found by repeated appli- 
cation of 3-279. It is advantageous to symmetrize after each step. 

Numerical difficulties occur when At is chosen too large. Vaughan (1969) 
discusses these difficulties in some detail. They manifest themselves in near- 
singularity of the matrix to be inverted in 3-279. I t  has been shown by Vaughan 
that a very small At is required when the real parts of the characteristic 
values of Z have a large spread. For most problems there exists a At small 
enough to obtain accurate results. Long computing times may result, how- 
ever, especially when the main interest is in the steady-state solution. 
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3.5.3* Solution by Diagonalization 

In order to obtain the steady-state solution of the time-invariant Riccati 
equation, the results derived in Section 3.4.4 by diagonalizing the 211 x 2n 
matrix Z are useful. Here the asymptotic solution is expressed as 

where W,? and W,, are obtained by partitioning a matrix Was follows: 

The matrix Wconsists of the characteristic vectors of the matrixZ so arranged 
that the first n columns of W correspond to the cbaracteristic values of Z 
with positive real parts, and the last n columns of W to the characteristic 
values of Z with negative real parts. 

Generally, some or all of the characteristic vectors of Z may be complex 
so that WzZ and W,, may be complex matrices. Complex arithmetic can be 
avoided as follows. Since if e is a characteristic vector o f Z  corresponding to a 
characteristic value A with negative real part, its complex conjugate e? is also 
a characteristic vector corresponding to a characteristic value 1 with a 
negative real part, the last 11 columns of W will contain besides real column 
vectors only complex conjugate pairs of column vectors. Then it is always 
possible to perform a nonsingular linear transformation 

such that every pair of complex conjugate column vectors e and i in 
col (W;?, WE?) is replaced with two real vectors Re (e) and Im (e) in 
col (W;,, W&). Then 

1 - w w-1 W:,Wi;l = (W,,U)(Wl,U)- - ,, ,,, 3-287 
which shows that W& and Win can be used to compute Pinstead of W,, and 
WE. 

Let us summarize this method of obtaining P: 

(a) Form the matrix Z and use any standard numerical technique to com- 
pute those characteristic vectors that correspond to characteristic values with 
negative real parts. 

(b) Form from these n characteristic vectors a 2n x n matrix 
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where W;, and Wig are 11 x I I  submatrices, as follows. If e is a real character- 
istic vector, let e be one of the columns of 3-288. If e and e' form a complex 
conjugate pair, let Re (e) be one column of 3-288 and Im (e) another. 

(c) Compute P as a 

P = W& W g .  3-289 

The efficiency of this method depends upon the efficiency of the subprogram 
that computes the characteristic vectors of Z. Van Ness (1969) has suggested 
a characteristic vector algorithm that is especially suitable for problems of 
this type. The algorithm as outlined above has been successfully applied for 
solving high-order Riccati equations (Freestedt, Webber, and Bass, 1968; 
Blackburn and Bidwell, 1968; Hendricks and Haynes, 1968). Fath (1969) 
presents a useful modification of the method. 

The diagonalization approach can also be employed to obtain not only 
the asymptotic solution of the Riccati equation but the complete behavior of 
P(i )  by the formulas of Problem 3.11. 

A different method for computing the asymptotic solution P i s  to use the 
identity (see Problem 3.10) 

where $(s) is obtained by factoring 

det (sI - Z) = $(s)$(-s), 3-291 

such that the roots of $(s) are precisely the characteristic values of Z with 
negative real parts. Clearly, $(s) is the characteristic polynomial of the steady- 
state closed-loop optimal system. Here det (sI - Z) can be obtained by the 
Leverrier algorithm of Section 1.5.1, or by any standard technique for 
obtaining characteristic values of matrices. Both favorable (Freestedt, 
Webber, and Bass, 1968) and unfavorable (Blackburn and Bidwell, 1968; 
Hendricks and Haynes, 1968) experiences with this method have been 
reported. 

3.5.4" Solution by the Newton-Raphson Method 

In  this subsection a method is discussed for computing the steady-state 
solution of the time-invariant Riccati equation, which is quite different from 
the previous methods. I t  is based upon repeated solution of a linear matrix 
equation of the type 

which has been discussed in Section 1.11.3. 
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The steady-state solutionP of the Riccali equation must satisfy the algebraic 
Riccati equation 

0 = Rl - PSP + ATP + PA, 3-293 
where 

s = B R ~ B ~ .  3-294 
Consider the matrix function 

F(P) = R, - PSP + ATP + PA. 3-295 

The problem is to find the nonnegative-definite symmetric matrix P that 
satisfies 

F(P) = 0. 3-296 

We derive an iterative procedure. Suppose that at  the lc-th stage a solution 
P, has been obtained, which is not much different from the desired solution P ,  
and let us write 

P = P, + P. 3-297 

IFF is small we can approximate F(P) by omitting quadratic terms in P and 
we obtain 

F(P) r R, - P,SP, - P,SP - PSP, - AT(P, + P)  + (P, + P)A. 3-298 

The basic idea of the Newton-Raphson method is to estimate P by setting 
the right-hand side of 3-298 equal to zero. If the estimate of 13 so obtained is 
denoted as 13, and we let 

Px+l = P, + PIC, 3-299 

then we find by setting the right-hand side of 3-298 equal to zero: 

0 = R, + P,SP, + P,+,A, + AkTP,+,, 3-300 
where 

Equation 3-300 is of the type 3-292, for which efficient methods of solution 
exist (see Section 1.11.3). We have thus obtained the following algorithm. 

(a) Choose a suitable Po and set the iteration index k equal to 0. 
(b) Solve P,,, from 3-300. 
(c) If convergence is obtained, stop; otherwise, increase k by one and 

return to (b). 

Kleinman (1968) and McClamroch (1969) have shown that if the algebraic 
Riccati equation has a unique, nonnegative-definite solution, P, and P,,, 
satisfy 

P,+l<P,c, l c=O,1 ,2  , . . . ,  3-302 



3.6 Stochnstie Regulntor nnd Tracking Problems 253 

and 
lim P ,  = p, 3-303 
1.-m 

provided P, is so chosen that 
A , = A - S P ,  3-304 

is asymptotically stable. This means that the convergence of the scheme is 
assured if the initial estimate is suitably chosen. If the initial estimate is 
incorrectly selected, however, convergence to a different solution of the 
algebraic Riccati equation may occur, or no convergence at all may result. 
If A is asymptotically stable, a safe choice is P,  = 0. If A  is not asymptotically 
stable, the initial choice may present difficulties. Wonham and Cashman 
(1968), Man and Smith (1969), and Kleinman (1970h) give methods for 
selecting Po when A is not asymptotically stable. 

The main problem with this approach is 3-292, which must be solved 
many times over. Although it is linear, the numerical effort may still he 
rather formidable, since the number of linear equations that must be solved 
a t  each iteration increases rapidly with the dimension of the problem (for 
11 = 15 this number is 120). In Section 1.11.3 several numerical approaches 
to solving 3-292 are referenced. In the literature favorable experiences 
using the Newton-Raphson method lo solve Riccati equations has been 
reported with up to 15-dimensional problems (Blackburn, 1968; Kleinman, 
1968, 1970a). 

3.6 S T O C H A S T I C  LINEAR O P T I M A L  REGULATOR 
AND TRACKING P R O B L E M S  

3.6.1 Regulator Problems with DisturbancesThe Stochastic Regulator 
Problem 

In the preceding sections we discussed the deterministic linear optimal 
regulator problem. The solution of this problem allows us to tackle purely 
transient problems where a linear system has a disturbed initial state, and it is 
required to return the system to the zero state as quickly as possible while 
limiting the input amplitude. There exist practical problems that can be 
formulated in this manner, hut much more common are problems where 
there are disturbances that act uninterruptedly upon the system, and that 
tend to drive the state away from the zero state. The problem is then to design 
a feedback configuration through which initial offsets are reduced as quickly 
as possible, but which also counteracts the effects of disturbances as much as 
possible in the steady-state situation. The solution of this problem will bring 
us into a position to synthesize the controllers that have been asked for in 
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Chapter 2. For the time being we maintain the assumption that the complete 
state of the system can be accurately observed at each instant of time. 

The effect of the disturbances can be accounted for by suitably extending 
the system description. We consider systems described by 

where ~ ( t )  is the input variable, z(t) is the controlled variable, and v(t) 
representsdisturbances that act upon the system. We mathematically repre- 
sent the disturbances as a stochastic process, which we model as the output 
of a linear system driven by white noise. Thus we assume that u(t) is given by 

where w(t) is white noise. We furthermore assume that both z(to) and zd(t,) 
are stochastic variables. 

We combine the description of the system and the disturbances by defining 
an augmented state vector ? ( I )  = col [z( t) ,  x,(t)], which from 3-305, 3-306, 
and 3-307 can be seen to satisfy 

In terms of the augmented state, the controlled variable is given by 

We note in passing that 3-308 represents a system that is not completely 
controllable (from 11). 

We now turn our attention to the optimization criterion. In  the determi- 
nistic regulator problem, we considered the quadratic integral criterion 

For a given input n(t), to 2 t  2 t,, and a given realization of the disturbances 
u(t), to 5 t  2 t l ,  this criterion is a measure for the deviations z(t) and ~ ( t )  
from zero. A priori, however, this criterion cannot be evaluated because of 
the stochastic nature of the disturbances. We therefore average over all 
possible realizations of the disturbances and consider the criterion 
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In terms of the'augmented state E(t) = col [x( t ) ,  z,(t)], this criterion can be 
expressed as 

I + T ( i ) ~ 2 ( i ) ( t )  d + ( t 1 ( ) ,  3-312 

where 

I t  is obvious that the problem of minimizing 3-312 for the system 3-308 is 
nothing but a special case of the general problem of minimizing 

for the system 
x( t )  = A(t)z( t )  + B(t)u(t) + ~ ( t ) ,  3-315 

where ~ ( t )  is white noise and where x(t,) is a stochastic variable. We refer to 
this problem as the stochastic linear optimal regulator problem: 

Definition 3.4. Consider the s ~ ~ s t e m  described by the state differential eqna- 
tion 

x( t )  = A(t)x( t )  + B(t)u(t) + ~ ( 1 )  3-316 
with initial state 

4 t 0 )  = % 3-317 
and controlled variable 

~ ( t )  = D(t)x(t). 3-318 

61 3-316 ~ ( t )  is i~hi te  noise iaith intensity V(t ) .  The initiolstate xu is a stochastic 
uoriable, independent of the ililrite noise w ,  with 

E{x,xOT} = Qo. 
Consider the criterion 

where R,(t) and R,(t) are positive-definite sy~innetric matrices for to < t < tl 
and Pl is ~tomregative-defirzite synnnetric. Then the problem of deiern~ining for 
each t ,  to < t < tl. the irtplrt u(t)as a$rnction of all informationfr.on~ thepast 
such that the criterion is minbnized is called the stochastic linear optioral 
regrrlator problem. If all matrices in the problem fornndation are constant, 
we refer to it as the tinre-irruariant stochastic linear optirnal regrrlator problem. 

The solution of this problem is discussed in Section 3.6.3. 
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Example 3.11. Stirred tmili 
In Example 1.37 (Section 1.11.4), we considered an extension of the model 

of the stirred tank where disturbances in the form of fluctuations-in the 
concentrations of the feeds are incorporated. The extended system model is 
given by 

where ~ ( t )  is white noise with intensity 

Here the components of the state are, respectively, the incrementalvolume of 
fluid, the incremental concentration in the tank, the incremental concentra- 
tion of the feed &, and the incremental concentration of the feed F3. Let us 
consider as previously the incremental outgoing flow and the incremental 
outgoing concentration as the components of the controlled variable. Thus 
we have 

The stochastic optimal regulator problem now consists in determining the 
input ~ ( t )  such that a criterion of the form 
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is minimized. We select the weighting matrices R, and Rz in exactly tbe same 
manner as in Example 3.9 (Section 3.4.1), while we choose P, to be the zero 
matrix. 

3.6.2 Stochastic Tracking Problems 

We have introduced the stochastic optimal regulator problem by considering 
regulator problems with disturbances. Stochastic regulator problems also 
arise when we formulate stocl~astic optiriial trackirrgprobteri~s. Consider the 
linear system 

x(t) = A(t)x(t) + B(f)lr(f), 3-325 

with the controlled variable 
z(t) = D(t)x(t). 3-326 

Suppose we wish the controlled variable to follow as closely as possible a 
refirerice uariable z,(t) which we model as the output of a linear differential 
system driven by white noise: 

Here ~ ( t )  is white noise with given intensity V(t). The system equations and 
the reference model equations can be combined by defining the augmented 
state Z(t) = col [x(t), x,(t)], which satisfies 

In passing, we note that this system (just as that of 3-308) is not completely 
controllable from 11. 

TO obtain an optiriial tracking system, we consider the criterion 

where R,(t) and R,(t) are suitable weighting matrices. This criterion expresses 
that the controlled variable should be close to the reference variable, while 
the input amplitudes should be restricted. In fact, for R,(t) = WJt) and 
R,(t) = pW,,(t), the criterion reduces to 

J:[cO(i) + PC,~(~)] & 3-331 

where C,(t) and C,,(i) denote the mean square tracking error and the mean 
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square input, respectively, as defined in Chapter 2 (Section 2.3): 

C,(t) = ~{rr'(t) ~~(t)rr(t)}. 
Here e( t )  is the tracking error 

e(t) = z(t) - z,(t). 3-333 
The weighting coefficient p must be adjusted so as to obtain the smallest 
possible mean square tracking error for a given value of the mean square 
input. 

The criterion 3-330 can be expressed in terms of the augmented state x(t) 
as follows: 

~ [ J ; > ~ o ~ d t ) z ( t )  + u r ( t ) ~ i t ) ~ w  d], 3-334 
where 

i(t) = (D(t), -D,(t))Z(t). 3-335 - 
Obviously, the problem of minimizing the criterion 3-334 for the system 
3-329 is a special case of the stochastic linear optimal regulator problem of 
Definition 3.4. 

Without going into detail we point out that tracking problems with disturb- 
ances also can be converted into stochastic regulator problems by the state 
augmentation technique. 

In conclusion, we note that the approach of this subsection is entirely 
in line with the approach of Chapter 2, where we represented reference 
variables as having a variable part and a constant part. In  the present section 
we have set the constant part equal to zero; in Section 3.7.1 we deal with 
nonzero constant references. 

Example 3.12. A~zgrclnr velocity tracking system 
Consider the angular velocity control system of Example 3.3 (Section 3.3.1). 

Suppose we wish that the angular velocity, which is the controlled variable 
5(t). follows as accurately as possible a reference variable t,(t), which may be 
described as exponentially correlated noise with time constant 0 and rms 
value o. Then we can model the reference process as (see Example 1.36, 
Section 1.1 1.4) 

t&) = Mt), 3-336 
where CJt) is the solution of 

The white noise ~ ( t )  has intensity 2u2/0. Since the system state differential 
equation is 
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the augmented state differential equation is given by 

with .?(I) = col I&), C,(t)]. For the optimization criterion we choose 

where p is a suitable weighting factor. This criterion can be rewritten as 

where 

The problem of minimizing 3-341 for the system described by 3-339 and 3-342 
constitutes a stochastic optimal regulator problem. 

3.6.3 Solution of the Stochastic Linear Optimal Regulator Problem 

In Section 3.6.1 we formulated the stochastic linear optimal regulator prob- 
lem. This problem (Definition 3.4)  exhibits an  essential difference from the 
deterministic regulator problem because the white noise makes it impossible 
to predict exactly how the system is going to behave. Because of this, the best 
policy is obviously not to determine the input tr(t) over the control period 
[ to ,  t l ]  apriori, but to reconsider the situation at each intermediate instant t  
on the basis of all available information. 

At  the instant t  the further behavior of the system is entirely determined by 
the present state x ( t ) ,  the input U(T)  for T 2 t ,  and the white noise W(T)  for 
T 2 t .  All the information from the past that is relevant for the future is 
contained in the state x ( t ) .  Therefore we consider control laws of the form 

which prescribe an input corresponding to each possible value of the state at 
time t .  

The use of such control laws presupposes that each component of the state 
can be accurately measured at all times. As we have pointed out before, this 
is an unrealistic assumption. This is even more so in the stochastic case 
where the state in general includes components that describe the disturbances 
or the reference variable; it is very unlikely that these components can be 
easily measured. We postpone the solution of this difficulty until after 
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Chapter 4, however, where the reconstruction of the state from incomplete 
and inaccurate measurements is discussed. 

In preceding sections we have obtained the solution of the deterministic 
regulator problem in the feedback form 3-343. For the stochastic version of 
the problem, we have the surprising result that the presence of the white 
noise term w(t) in the system equation 3-316 does not alter the solution 
except to increase the minimal value of the criterion. We first state this fact 
and then discuss its proof: 

Theorem 3.9. The opti~nal linear sol~rtion of the stochastic linear optir~lal 
regulatorprobler~i is to choose the input accorrlirlg to the linear control law 

Here P( t )  is the solution of the niatrix Riccati equatiocl 

with the ternnir~al conditiorl 
P ( t 3  = Pp 

Here we abbreviate as t~s t~a l  
R,(t) = D T ( t ) ~ , ( r ) ~ ( t ) .  

The ni~ir~irnal ual~te of the criterion is giuerl by 

I t  is observed that this theorem gives only the best li~zear solution of the 
stochastic regulator problem. Since we limit ourselves to linear systems, this 
is quite satisfactory. It can be proved, however, that the linear feedback law 
is optimal (without qualification) when the white noise is(t) is Gaussian 
(Kushner, 1967, 1971; Astrom, 1970). 

To prove the theorem let us suppose that the system is controlled through 
the linear control law 

lr(t) = -F(t)x(t). 3-350 

Then the closed-loop system is described by the differential equation 

and we can write for the criterion 3-320 
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We know from Theorem 1.54 (Section 1.11.5) that the criterion can be ex- 
messed as 

where P(t) is the solution of the matrix differential equation 

-P(t) = [ ~ ( t )  - ~ ( t ) ~ ( f ) ] ~ F ( t )  

+ &)[4f )  - B(t )~( f ) l  + R,(O + P ( t ) ~ d t ) ~ ( t ) ,  3-354 
with the terminal condition 

P(tJ =PI. 3-355 

Now Lemma 3.1 (Section 3.3.3) states that P(t) satisfies the inequality 

for all to j t j f,, where P(t) is the solution of the Riccati equation 3-346 
with the terminal condition 3-347. The inequality 3-356 converts into an 
equality if F i s  chosen as 

F"(-r) = R;'(T)B~(T)P(T), f j T j tp 3-357 
The inequality 3-356 implies that 

tr [ ~ ( t ) r ]  2 tr [ ~ ( t ) r ]  3-358 

for any nonnegative-definite matrix r. This shows very clearly that 3-353 is 
minimized by choosing Faccording to 3-357. For this choice of F, the criterion 
3-353 is given by 3-349. This terminates the proof that the control law 3-345 
is the optimal linear control law. 

Theorem 3.9 puts us into a position to solve various types of problems. 
In Sections 3.6.1 and 3.6.2, we showed that the stochastic linear optimal 
regulator problem may originate from regulator problems for disturbed 
systems, or from optimal tracking prohlems. In both cases the problem has a 
special structure. We now briefly discuss the properties of the solutions that 
result from these special structures. 

In the case of a regulator with disturbances, the system state differential 
and output equations take the partitioned form 3-308, 3-309. Suppose that 
we partition the solution P(t) of the Riccati equation 3-346 according to 
the partitioning E(t) = col [x(t), x,(t)] as 

If, accordingly, the optimal feedback gain matrix is partitioned as 
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it is not difficult to see that 

FLt) = ~ ? ( t ) ~ ~ ( t ) P ~ i ( t ) ,  3-361 
~ , ( t )  = ~ ; ~ ( t ) ~ ~ ( t ) ~ ~ , ( t ) .  

Furthermore, it can be found by partitioning the Riccati equation that P,,, 
PI%, and PC% are the solutions of the matrix differential equations 

.-. . 

- P,,(t) = - ~ $ ( t ) ~ ( t ) ~ ; ~ ( t ) ~ ~ ( t ) ~ , ? ( t )  + D,~(~)P,,(I) + ~ $ ( ( f ) ~ , ( i )  

+ A,,'(t)P.,(t) + P,,(t)A,(t), 3-364 
P,,(t,) = 0. 

We observe that P,,, and therefore also fi, is completely independent of the 
properties of the disturbances, and is in fact obtained by solving the determi- 
nistic regulator problem with the disturbances omitted. Once Pll and Fl have 
been found, 3-363 can be solved to determine PI ,  and from this F,. The 
control system structure is given in Fig. 3.14. Apparently, the feedhack link, 

w h i t e  noise 

L 
dynornics 

feedforword 
Link 

feedbock Link 

Pig. 3.14. Structure of the optimal state feedback regulator with disturbances, 
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that is, the link from the state x to the input rr is co~q~lete!y independent of the 
properties of the disturbances. The feedforward link, that is, the link from the 
state of the disturbances x,, to the input u, is of course dependent upon 
the properties of the disturbances. 

A similar conclusion can be reached for optimal tracking problems. Here 
it turns out that with the structures 3-329 and 3-335 of the state differential 
and output equations the feedback gain matrix can be partitioned as 

(note the minus sign that has been introduced), where 

Here the matrices PI,, PI,, and P,, are obtained by partitioning the matrix P 
according to the partitioning Z(t) = col [x(t), x,(r)]; they satisfy the matrix 
differential equations 

We conclude that for the optimal tracking system as well the feedback link 
is ii~depei~denf of tlreproperties of the reference variable, while the feedforward 
link is of course influenced by the properties of the reference variable. A 
schematic representation of the optimal tracking system is given in Fig. 3.15. 

Let us now return to the general stochastic optimal regulator problem. 
In practice we are usually confronted with control periods that are very 
long, which means that we are interested in the case where ti- m. In the 
deterministic regulator problem, we saw that normally the Riccati equation 
3-346 has a steady-state solution P(t) as ti- m, and that the corresponding 
steady-state control law P(t) is optimal for half-infinite control periods. I t  is 
not difficult to conjecture (Kushner, 1971) that the steady-state control law 
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white f eedforword 

U 
feedbock Link 

Rig. 3.15. Structure of the optimal state feedback tracking system. 

is optimal for the stochastic regulator in the sense that it minimizes 

if this expression exists for the steady-state control law, with respect to all 
other control laws for which 3-370 exists. For the steady-state optimal 
control law, the criterion 3-370 is given by 

if it exists (compare 3349). Moreover, it is recognized that for a time- 
invariant stochastic regulator problem and an asymptotically stable time- 
invariant control law the expression 3-370 is equal to 

lim E{zT(t)n,z(t) + uT(t)~,u(t)}. 3-372 
t - m  

From this it immediately follows that the steady-state optimal control law 
minimizes 3-372 with respect to all other time-invariant control laws. We see 
from 3-371 that the minimal value of 3-372 is given by 

We observe that if R, = Wo and R, = p W,,, where W, and PV,, are the 
weighting matrices in the mean square tracking error and the mean square 
input (as introduced in Section 2.5.1), the expression 3-372 is precisely 

Here C., is the steady-state mean square tracking error and C,, the steady- 
state mean square input. To compute C., and C,, separafe[y, as usually is 
required, it is necessary to set up the complete closed-loop system equations 
and derive from these the differential equation for the variance matrix of the 
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state. From this variance matrix all mean square quantities of interest can be 
obtained. 

Example 3.13. Stirred rank regttlator 
In Example 3.11 we described a stochastic regulator problem arising from 

the stirred tank problem. Let us, in addition to the numerical values of 
Example 1.2 (Section 1.2.3), assume the following values: 

Just as in Example 3.9 (Section 3.4.1), we choose the weighting matrices R, 
and R, as follows. 

where p is to be selected. The optimal control law has been computed for 
p = 10, 1, and 0.1, as in Example 3.9, but the results are not listed here. I t  
turns out, of course, that the feedback gains from the plant state variables 
are not affected by the inclusion of the disturbances in the system model. 
This means that the closed-loop poles are precisely those listed in Table 3.1. 

In order to evaluate the detailed performance of the system, the steady- 
state variance matrix 

has been computed from the matrix equation 

0 = (A - BE@ + O(A - B F ) ~ '  + if. 3-378 

The steady-state variance matrix of the input can be found as follows: 

lim E{a(t)uT(t)} = lim ~ { F z ( t ) x ~ ( t ) F q  = FOPT. 3-379 
1-m t-m 

From these variance matrices the rms values of the components of the con- 
trolled variable and the input variable are easily obtained. Table 3.2 lists the 
results. The table shows very clearly that as p decreases the fluctuations in 
the outgoing concentration become more and more reduced. The fluctuations 
in the outgoing flow caused by the control mechanism also eventually 
decrease with p. All this happens of course at the expense of an increase in the 
fluctuations in the incoming feeds. Practical considerations must decide which 
value of p is most suitable. 
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Table 3.2 Rms Values for Stirred-Tank Regulator 

Steady-state nns values of 

Incremental Incremental feed 
outgoing Incremental 

flow concentration No. 1 No. 2 
P (m%) (kmol/m3) (m3/s) ( d s )  

Example 3.14. Angrrlar velocity trackiug system 
Let us consider the angular velocity trackingproblem as outlined in Example 

3.12. To solve this problem we exploit the special structure of the tracking 
problem. I t  follows from 3-365 that the optimal tracking law is given by 

The feedback gain Fl(t)  is independent of the properties of the reference 
variable and in fact has already been computed in previous examples where 
we considered the angular velocity regulation problem. From Example 3.7 
(Section 3.4.1), i t  follows that the steady-state value of the feedback gain is 
given by - 

while the steady-state value of Pll is 

By using 3368, it follows that the steady-state value of PI, can be solved from 

3-383 

Solution yields 
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so that 
IC - 

Finally, solution of 3-369 for p2, gives 

Let us choose the following numerical values: 

This yields the following numerical results: 

From 3-373 it follows that 

lim [E{%?(t)} + pE{pZ(t)}] = t r  (PV) ,  3-390 
t-m 

where <(I)  = [(I )  - 5,(t). Since in the present problem 

we find that 
lim [E{?(I)} + pE{ti2(t)}] = 291.8 rad2/s2. 3-392 
1-m 

We can use 3-392 to obtain rough estimates of the rms tracking error and rms 
input voltage as follows. First, we have from 3-392 

lim E{f3 ( t ) }  < 291.8 radZ/s'. 3-393 
t- m 
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I t  follows that 

steady-state rms tracking error < 17.08 rad/s. 3-394 

Similarly, it follows from 3-392 

791.8 lim E{,u'(!)} < = 0.2918 V2.  3-395 
t - m  P 

We conclude that 

steady-state rms input voltage < 0.5402 V. 3-396 

Exact values for the rms tracking error and rms input voltage can be found by 
computing the steady-state variance matrix of the state Z(t)  of the closed- 
loop augmented system. This system is described by the equation 

As a result, the steady-state variance matrix 0 of Z ( t ) ,  is the solution of the 
matrix equation 

3-399 
Numerical solution yields 

The steady-state mean square tracking error can be expressed as 

lim E { [ & f )  - C,(!)]" = Qe,, - 2Q,, + &,, 
t - m  

= 180.7 rad3/s', 3-401 
where the 0 ,  are the entries of 0. Similarly, the mean square input is given 
by 
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In  Table 3.3 the estimated and actual rms values are compared. Also given are 
the open-loop rms values, that is, the rms values without any control at  all. 
I t  is seen that the estimated rms tracking error and input voltage are a little 
on the large side, but that they give a very good indication of the orders of 
magnitude. We moreover see that the control is not very good since the rms 
tracking error of 13.44 rad/s is not small as compared to the rms value of the 

Table 3.3 Numerical Results for the Angular Velocity 
Tracking System 

Steady-state Steady-state 
m s  rms 

tracking error input voltage 
(radls) (v) 

Open-loop 30 0 
Estimated closed-loop 117.08 <0.5402 
Actual closed-loop 13.44 0.3333 

reference variable of 30 rad/s. Since the rms input is quite small, however, 
there seems to be room for considerable improvement. This can be achieved 
by choosing the weighting coe5cient p much smaller (see Problem 3.5). 

Let us check the reference variable and closed-loop system bandwidths 
for the present example. The reference variable break frequency is 118 = 
1 rad/s. Substituting the control law into the system equation, we find for the 
closed-loop system equation 

This is a first-order system with break frequency 

Since the power spectral density of the reference variable, which is exponen- 
tially correlated noise, decreases relatively slowly with increasing frequency, 
the difference in break frequencies of the reference variable and the closed- 
loop system is not large enough to obtain a sufficiently small tracking error. 
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3.7 REGULATORS AND TRACKING SYSTEMS WITH 
N O N Z E R O  S E T  P O I N T S  A N D  C O N S T A N T  
DISTURBANCES 

3.7.1 Nonzero Set Points 

In our discussion of regulator and tracking problems, we have assumed up 
to this point that the zero state is always the desired equilibrium state of the 
system. In practice, it is nearly always true, however, that the desired 
equilibrium state, which we call the set poiilt of the state, is a constant point 
in state space, different from the origin. This kind of discrepancy can be 
removed by shifting the origin of thz state space to this point, and this is 
what we have always done in our examples. This section, however, is devoted 
to the case where the set point may he variable; that is, we assume thal the 
set point is constant over long periods of time but that from time to time it is 
shifted. This is a common situation in practice. 

We limit our discussion to the time-invariant case. Consider the linear 
time-invariant system with state differential equation 

where the controlled variable is given by 

Let us suppose that the set point of the controlled variable is given by 2,. 

Then in order to maintain the system at this set point, a constant input u, 
must be found (dicaprio and Wang, 1969) that holds the state at a point x, 
such that 

z, = Dx,. 3-407 

It  follows from the state differential equation that x, and u, must be related 

0 = Ax, + BII,. 

Whether or not the system can be maintained at the given set point depends on 
whether 3-407 and 3-408 can be solved for u, for the given value of z,. 
We return to this question, but let us suppose for the moment that a solution 
exists. Then we define the shifted input, the shifted state, and the slrifted 
co~itrolled variable, respectively, as 
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I t  is not d~fficult to find, by solvingthese equations for 11,  x, and 2 ,  substituting 
the result into the state differential equation 3-405 and the output equation 
3-406, and using 3-407 and 3-408, that the shifted variables satisfy the 
eauations 

Suppose now that at  a given time the set point is suddenly shifted from one 
value to another. Then in terms of the shifted system equations 3-410, the 
system suddenly acquires a nonzero initial state. I n  order to let the system 
achieve the new set point in an orderly fashion we propose to effect the trans- 
ition such that an optimization criterion of the form 

[z"'(t)R,zl(t) + L I ' ~ ( ~ ) R ~ L I ' ( ~ ) ]  dt + ~ ' ~ ( t ~ ) ~ ~ x ' ( t J  3-411 

is minimized. Let us assume that this shifted regulator problem possesses a 
steady-state solution in the form of the time-invariant asymptotically stable 
steady-state control law 

d ( t )  = -Pxl(t). 3-412 

Application of this control law ensures that, in terms of the original system 
variables, the system is transferred to the new set point as quickly as possible 
without excessively large transient input amplitudes. 

Let us see what form the control law takes in terms of the original system 
variables. We write from 3-412 and 3-409: 

This shows that the control law is of the form 

u(t)  = -Fx(t) + I!;, 3-414 

where the constant vector u; is to be determined such that in the steady- 
state situation the controlled variable z( t )  assumes the given value 2,. We now 
study the question under what conditions u; can be found. 

Substitution of 3-414 into the system state differential equation yields 

Since the closed-loop system is asymplotically stable, as t  - m the state 
reaches a steady-state values x, that satisfies 

0 = Ai, + BII;. 
Here we have abbreviated 

K = A - B E  
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Since the closed-loop system is asymptotically stable, Khas all of its character- 
istic values in the left-half complex plane and is therefore nonsingular; 
consequently, we can solve 3-416 for z,: 

z, = (-A)"Ba;. 3-418 
If the set point z, of the controlled variable is to be achieved, we must there- 
fore have 

z, = D(-K)-'BU;. 3-419 
When considering the problem of solving this equation for 11; for a given value 
of z,, three cases must be distinguished: 

(a) The di~rte~tsiort of z is greater tho11 that of 11: Then 3-419 has a solution 
for special values of z, only; in general, no solution exists. In this case we 
attempt to control the variable z(t) with an input u(t) of smaller dimension; 
since we have too few degrees of freedom, it is not surprising that no solution 
can generally be found. 

(b) The dime~tsiorts of tr  and z are the sortie, that is, a sufficient number of 
degrees of freedom is available to control the system. In this case 3-419 can 
be solved for 11; provided D(-X)-lB is nonsingular; assuming this to be the 
case (we shall return to this), we find 

11; = [D(-K)-'B]-lz,,, 3-420 

which yields for the optimal input to the tracking system 

u(t)  = -&t) + [D(-2)-lB]-'2,. 3-421 

(c) Tlre diir~ensio~t of z is less than that of u: In this case there are too many 
degrees of freedom and 3-419 has many solutions. We can choose one of 
these solutions, but it is more advisable to reformulate the traclting problem 
by adding components to the controlled variable. 

On the basis of these considerations, we henceforth assume that 

dim@) = dim (n),  3-422 

so that case (b) applies. We see that 

D(-A)-'B = flC(0), 3-423 
where 

H&) = D(SI - K1-l~. 3-424 

We call H,(s) the closecl-loop transfer ~rrotrix, since it is the transfer matrix 
from rr1(t) to z(t) for the system 

i ( t )  = Ax([) + Bu(t), 

z(t) = Dx(t), 3-425 

u(t) = -Fz(t) + ll'(t). 
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In terms of HJO) the optimal control law 3-421 can be written as 

As we have seen, this control law has the property that after a step change in 
the set point z, the system is transferred to the new set point as quickly a s  
possible without excessively large transient input amplitudes. Moreover, this 
control law of course makes the system return to the set point from any 
initial state in an optimal manner. We call 3-426 the nonzero set point 
optimal con lml la~ t~ .  I t  has the property that it statically decouples the control 
system, that is, the transmission T(s )  of the control system (the transfer 
matrix from the set point z ,  to the controlled variable z)  has the property 
that T ( 0 )  =I. 

We now study the question under what conditions HJO) has an inverse. 
I t  will be proved that this property can be directly ascertained from the open- 
loop system equations 

Consider the following string of equalities 

det [H,(s)] = det [D(sI - A + BF)-'B] 

= det [D(sI - A)-'{I + B F ( d  - A)-'1-'B] 

= det [ D ( d  - A)-'B] det [I - E(s1 - A + BE)-'B] 

= det [D(sI - A)"B] det [I - ( s l  - A + BF)-'BF] 

= det [D(s l  - A)-'B] det [(sI - A + BE)-'] det (sI - A) 

- - det [D(sl  - A)-'B] det (sI - A )  

det (sI - A + BF)  

Here we have used Lemma 1.1 (Section 1.5.3) twice. The polynomial y(s)  is 
defined by 

where H(s )  is the open-loop transfer matrix 
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and $(s) the open-loop characteristic polynomial 

$(s) = det (sI - A). 3-431 

Finally, &(s) is ilk closed-loop characteristic polynomial 

$,(x) = det (sI - A + BF). 3-432 

We see from 3-428 that the zeroes of the closed-loop transfer matrix are the 
same as those of the open-loop transfer matrix. We also see that 

Y J ( ~ )  det [D(-Z)-'B] = det [H,(O)] = - 3-433 
$O(O) 

is zero if and only if y~(0) = 0. Thus the condition y(0) # 0 guarantees that 
D(-ii)-'B is nonsingular, hence that the nonzero set point control law 
exists. These results can be summarized as follows. 

Theorem 3.10. Consider the time-inuariant system 

wlrere z arid u have the same rlinlensions. Consider any asynytatically stable 
tili?e-i?~uaria~lt control laiv 

~ i ( t )  = -Fx(t) + ul(t). 3-435 

Let H(s) be the open-loop transfer n1atri.x 

H(s) = D(sI - A)-lB, 

and H,(s) the closed-loop transfer niatrix 

HJs) = D(sI - A + BF)-'B. 

T11ei1 HJO) is na~~s iqy l a r  am/ the controlled variable z(t) con under steody- 
state cor~clitioiis be ~ilaintained at any constant va111e z, by choosing 

if and only if H(s) lras a nonzero nwnerator polynon~ial that has no zeroes 
a t  the origin. 

I t  is noted that the theorem is stated for any asymptotically stable control 
law and not only for the steady-state optimal control law. 

The discussion of this section has been conhed  to deterministic regulators. 
Of course stochastic regulators (including tracking problems) can also have 
nonzero set points. The theory of this section applies to stochastic regulators 
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without modification; the nonzero set point optimal control law for the 
stochastic regulator is also given by 

Example 3.15. Positiori control sj~stenl 
Let us consider the position control system of Example 3.4 (Section 3.3.1). 

In Example 3.8 (Section 3.4.1), we found the optimal steady-state control law. 
I t  is not &cult to find from the results of Example 3.8 that the closed-loop 
transfer function is given by 

If follows from 3-435 and 3-438 that the nonzero set point optimal control 
law is given by 

where I, is the set point for the angular position. This is precisely the control 
law 3-171 that we found in Example 3.8 from elementary considerations. 

Example 3.16. Stirred tank 
As an example of a multivariable system, we consider the stirred-tank 

regulator problem of Example 3.9 (Section 3.4.1). For p = 1 (where p is 
defined as in Example 3.9), the regulator problem yields the steady-state 
feedback gain matrix 

It is easily found that the corresponding closed-loop transfer matrix is given 

'JY 
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From this the nonzero set point optimal control law can be found to be 

i 10.84 -0.1171 
n(t) = -Fz(t)  + ).. 3-444 

1.931 0.07475 

Figure 3.16 gives the response of the closed-loop system lo step changes in 
the components of the set point 2,. Here the set point of the outgoing flow is 

incremental 
outgoing 

concentrotion 

Fig. 3.16. Thcresponses of the stirred lank as a nonzero set point regulating system. Left 
column: Responses of the incremental outgoing flow and concentration to a step of 
0.002m0/s in the set point of the flow. Right column: Responses of the incremental 
outgoing Row and concentration to a step of 0.1 kmol/ma in the set point of the 
concentration. 

changed by 0.002 d / s ,  which amounts to 10 % of the nominal value, while the 
set point of the outgoing concentration is changed by 0.1 kmol/m3, which is 
8% of the nominal value. We note that the control system exhibits a certain 
amount of dynamic corrpling or irzteroction, that is, a change in the set point 
of one of the components of the controlled variable transiently affects the 
other component. The effect is small, however. 
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3.7.2* Constant Disturbances 

In  this subsection we discuss a method for counteracting the effect of constant 
disturbances in time-invariant regulator systems. As we saw in Chapter 2, 
in regulators and tracking systems where high precision is required, it is 
important to eliminate the effect of constant disturbances completely. 
This can be done by the application of integrating action. We introduce 
integrating action in the context of state feedback control by first extending 
the usual regulator problem, and then consider the effect of constant disturb- 
ances in the corresponding modified closed-loop control system configuration. 

Consider the time-invariant system with state differential equation 

with x(t,) given and with the controlled variable 

We add to the system variables the "integral state" q(t) (Newell and Fisher, 
1971; Shih, 1970; Porter, 1971), defined by 

with ~(1,) given. One can now consider the problem of minimizing a criterion 
of the form 

where R,, Rj, and R, are suitably chosen weighting matrices. The first term 
of the integrand forces the controlled variable to zero, while the second term 
forces the integral state, that is, the total area under the response of the 
controlled variable, to go to zero. The third term serves, as usual, to restrict the 
input amplitudes. 

Let us assume that by minimizing an expression of the form 3-448, or by 
any other method, a time-invariant control law 

is determined that stabilizes the augmented system described by 3-445, 
3-446, and 3-447. (We defer for a moment the question under which con- 
ditions such an asymptotically stable control law exists.) Suppose now that a 
constant disturbance occurs in the system, so that we must replace the state 
differential equation 3-445 with 

~ ( 1 )  = A 4 t )  + Bu(t) + v,, 3-450 

where u, is a constant vector. Since the presence of the constant disturbance 



278 Optinlnl Linenr Stntc Ferdbnck Control Systcms 

does not affect the asymptotic stability of the system, we have 

or, from 3-447, 
lim q(t)  = 0, 
t-m 

lim z(t)  = 0. 
t-m 

This means that the control sj~sfein wit11 the as~tnrptotically stable control la11, 
3-449 has tliepropert~r that the effect of comtant disttirbances on the cor~tro/led 
uariable eue~itlially vanislres. Since this is achieved by the introduction of the 
integral state g, this control scheme is a form of integral control. Figure 3.17 
depicts the integral control scheme. 

Fig. 3.17. State feedback integral control. 

Let us now consider the mechanism that effects the suppression of the 
constant disturbance. The purpose of the multivariahle integration of 3-447 
is to generate a constant contribution t i ,  to the input that counteracts the 
effect of the constant disturbance on the controlled variable. Thus let us 
consider the response of the system 3-450 to the input 

Substitution of this expression into the state differential equation 3-450 yields 

~ ( t )  = ( A  - BFl)x(t) + Bu, + 0,. 3-454 

In equilibrium conditions the state assumes a constant value a, that must 
satisfy the relation 

0 = x x ,  + Bu, + u,, 3-455 
where 

K = A - B F , .  3-456 
Solution for x, yields 

x, = ( - x ) - l B ~ i ,  + (-x)-'v,, 3-457 

provided K is nonsingular. The corresponding equilibrium value 2, of the 



3.7 Nonzero Set Points nnd Constant Disturbances 279 

controlled variable is given by 

z, = DX, = D(-A)-~BII, + D(-x)-)-~~,. 3-458 

When we now consider the question whether or not a value of 11, exists that 
makes z, = 0, we obviously obtain the same conditions as in Section 3.7.1, 
broken down to the three following cases. 

(a) The di~itertsiort of 2: is greater tltan tlrot of 11: In this case the equation 

0 = D(-L)-~BII~ -I- D(-L)-~Z+, 3-459 

represents more equations than variables, which means that in general no 
solution exists. The number of degrees of freedom is too small, and the 
steady-state error in z cannot be eliminated. 

(b) The rlintmtsio~z of z eyrtals that of n: In this case a solution exists if and 
only if 

D(-L)-'B = HJO) 3-460 

is nonsingular, where 

HJs) = D(sI - L)-'B 3-461 

is the closed-loop transfer matrix. As we saw in Theorem 3.10, HJO) is 
nonsingular if and only if the open-loop transfer matrix H(s) = D(sI - A)-'B 
has no zeroes at the origin. 

(c) The dimension of z is less than that of tr: In this case there are too many 
degrees of freedom and the dimension of z can be increased by adding 
components to the controlled variable. 

On the basis of these considerations, we from now on restrict ourselves to 
the case where dim (z) = dim (11). Then the present analysis shows that a 
necessary condition for the successful operation of the integral scheme under 
consideration is that the open-loop transfer matrix H(s) = D(sI- A)-'B 
have no zeroes at the origin. In fact, it can be shown, by a slight extension of 
the argument of Power and Porter (1970) involving the controllability canoni- 
cal form of the system 3-445, that necessary and sufficient conditions for the 
existence of an asymptotically stable control law of the form 3-449 are that 

(i) the system 3-445 is stabilizable; and 
(ii) the open-loop transfer matrix H(s) = D(sI - A)"B has no zeroes a t  

the origin. 

Power and Porter (1970) and Davison and Smith (1971) prove that necessary 
and sufficient conditions for arbitrary placement of the closed-loop system 
poles are that the system 3-445 be completely controllable and that the open- 
loop transfer matrix have no zeroes at the origin. Davison and Smith (1971) 
state the latter condition in an alternative form. 
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In the literature alternative approaches to determining integral control 
schemes can be found (see, e.g., Anderson and Moore, 1971, Chapter 10; 
Johnson, 1971h). 

Example 3.17. Ii~tegral control of the positioning system 
Let us consider the positioning system of previous examples and assume 

that a constant disturbance can enter into the system in the form of a con- 
stant torque T, on the shaft of the motor. We thus modify the state differential 
equation 3-59 to 

where y = I/J, with J the moment of inertia of all the rotating parts. As 
before, the controlled variable is given by 

We add to the system the scalar integral state q(t), defined by 

From Example 3.15 we know that the open-loop transfer function has no 
zeroes at the origin; moreover, the system is completely controllable so that 
we expect no difficulties in finding an integral control system. Let us consider 
the optimization criterion 

As in previous examples, we choose 

Inspection of Fig. 3.9 shows that in the absence of integral control q(t) will 
reach a steady-state value of roughly 0.01 rad s for the given initial condition. 
Choosing 

A = 10 srP 3-467 

can therefore be expected to affect the control scheme significantly. 
Numerical solution of the corresponding regulator problem with the 

numerical values of Example 3.4 (Section 3.3.1) and y = 0.1 kgr1 mr2 yields 
the steady-state control law 

P(t) = -F9(t) - F,q(t), 3-468 
with 
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The corresponding closed-loop characteristic values are -9.519 & j9.222 s-I 
and -3.168 s-1. Upon comparison with the purely proportional scheme of 
Example 3.8 (Section 3.4.1), we note that the proportional part of the feed- 
back, represented by ' F ~ ,  lias hardly changed (compare 3-169), and that the 
corresponding closed-loop poles, which are -9.658 & j9.094 s-l in Example 
3.8 also have moved very little. Figure 3.18 gives the response of the integral 

t- is1 
input 

vo l tage  0 1 2 
P 0 1  I 

Fig.3.18. Response of theintegrnl position control system to a constant torque of 10 N m 
on the shaft of the motor. 

control system from zero initial conditions to a constant torque r0 of 10 N m 
on the shaft of the motor. The maximum deviation of the angular displace- 
ment caused by this constant torque is about 0.004 rad. 

3.8* A S Y M P T O T I C  P R O P E R T I E S  O F  
TIME-INVARIANT O P T I M A L  C O N T R O L  LAWS 

3.8.1* Asymptotic Behavior of the Optimal Closed-Loop Poles 

In Section 3.2 we saw that the stability of time-invariant linear state feedback 
control systems can be achieved or improved by assigning the closed-loop 
poles to suitable locations in the left-half complex plane. We were not able 
to determine which pole patterns are most desirable, however. In Sections 3.3 
and 3.4, the theory of linear optimal state feedback control systems was 
developed. For time-invariant optimal systems, a question of obvious 
interest concerns the closed-loop pole patterns that result. This section is 
devoted to a study of these patterns. This wiU supply valuable information 
about the response that can be expected from optimal regulators. 
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Suppose that in the time-invariant regulator problem we let 

where N is a positive-definite symmetric matrix and p a positive scalar. With 
this choice of R?, the optimization criterion is given by 

The parameter p determines how much weight is attributed to the input; a 
large value of p results in small input amplitudes, while a small value of p 
permits large input amplitudes. We study in this subsection how the locations 
of the optimal closed-loop regulator poles vary as a function of p. For this 
investigation we employ root locus methods. 

In  Section 3.4.4 we saw that the optimal closed-loop poles are the left- 
half plane characteristic values of the matrix 2, where 

Using Lemma 1.2 (Section 1.5.4) and Lemma 1.1 (Section 1.5.3), we expand 
det ( s l -  2) as follows: 

1 
s l  - A - BN-'BT 

det ( s l  - 2) = det 

= det ( s l  - A) 

= det ( s l  - A) det ( s l  + A'') 

= det ( s l  - A)(-1). det ( - s t  - A) 

r 
\ 

= ( - l )"+(s)$(-s)  det 4 N-'HT(- s)R,H(s)] ,  3-473 
-\ 
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where n is the dimension of the state x, and 

$(s) = det (sI - A), 

' H(s) = D(s1- A)-lB. 
3-474 

For simplicity, we first study the case where both the input u and the con- 
trolled variable z are scalars, while 

We return to the multiinput multioutput case at the end of this section. I t  
follows from 3-473 that in the single-input single-output case the closed-loop 
poles are the left-half plane zeroes of 

where H(s) is now a scalar transfer function. Let us represent H(s) in the form 

where y(s) is the numerator polynomial of H(s). It follows that the closed- 
loop poles are the left-half plane roots of 

We can apply two techniques in determining the loci of the closed-loop poles. 
The first method is to recognize that 3-478 is a function of s\ to substitute 
s" s', and to find the root loci in the s'-plane. The closed-loop poles are 
then obtained as the left-half plane square roots of the roots in the s'-plane. 
This is the root-square loclis method (Chang, 1961). 

For our purposes it is more convenient to trace the loci in the s-plane. Let 
us write 

where the vi, i = 1,2, . . . , p ,  are the zeroes of H(s), and the ri, i = 1, 
2, . . . , 11 ,  the poles of H(s). To bring 3-478 in standard form, we rewrite i t  
with 3-479 as 



284 Optimnl Linenr Stnte Feedbock Control Systems 

Applying the rules of Section 1.5.5, we conclude the following. 

(a) As p -t 0 ,  of the 211 roots of 3-480 a total number of 2p asymptotically 
approach the p zeroes si, i = 1,2, . . . , p ,  and their negatives -%I,., i = 1, - - 

2 , .  . . ,p .  
(b) As p -. 0 ,  the other 2(n - p)  roots of 3-480 asymptotically approach 

straight lines which intersect in the origin and make angles with the positive 
real axis of 

brr - l i  = 0 ,  1,2,  - . . ,211 - 2p - 1, n - p odd, 
rl - p  3-481 

(c) As p - 0 ,  the 2(n - p)  faraway roots of 3-480 are asymptotically at a 
distance 

from the origin. 
(d) As p- m, the 211 roots of 3-480 approach the 11 poles rrj, i = 1, 

2 ,  . . . , n, and their negatives -rr,., i = 1,2, . . . , n. 

Since the optimal closed-loop poles are the left-half plane roots of 3-480 we 
easily conclude the following (Kalman, 1964). 

Theorem 3.11. Consider the steady-state solution of the single-input single- 
output regulator problen~ with R, = 1 mld R, = p. Asslrtne that the open- 
loop system is stabilizable oriddetecfablea~ldlet its transferjifitnctior be giuerl by 

where the rr,, i = 1, 2 ,  . . . , 11, are the characteristic ualries of the systmil. 
Then we haue thefollowing. 

(a) As p 4 0 , p  of the n optintal closed-loop characteristic ualttes asyniptoticolly 
approacl~ the nlrmbers gi, i = 1,2, . . . , p ,  where 

(h) As p 0, the rernoining 11 - p optimal closed-loop characteristic values 
osyrytotically approach straight lines ivl~ich intersect in the origin and iiiake 
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a~lg[es 11,itlz the ciegatiue real axis of 

* (1  + 4 . h  I 1  - p , l = O , l ; . . , - -  1, n - p euen. 
11 - p - 7 

Tllese faraway closerl-loop cl~aracteristic ualues are asyiilpfoficolly at a clistarlce 

., . 
f,om the origin. 
(c) As p --. m, tlie 11 closed-loop characteristic ualries approach the 11an1bers 
+. $ 3  i = I , ? ,  . . . , n, iv11ere 

wciri= wi if R e ( d l 0 ,  I 3-487 
- if Re (n,) > 0 .  

The configuration of poles indicated by (b) is known as a Btctter~sortlr 
co~Ifig~cratian of order 11 - p  with radius w, (Weinberg, 1962). In Fig. 3.19 

Fig. 3.19. Butterworth pole configurations of orders one through five and unit radii. 
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some low-order Butterworth configurations are indicaled. In  the next section 
we investigate what responses correspond to such configurations. 

Figure 3.20 gives an example of the behavior of the closed-loop poles for a 
fictitious open-loop pole-zero configuralion. Crosses mark the open-loop 
poles, circles the open-loop zeroes. Since the excess of poles over zeroes is 
two, a second-order Butterworth configuration results as p 1 0. The remaining 

Fig. 3.20. Root loci of the chamctcristic values of the matrix Z (dashed and solid lines) 
and of the closed-loop poles (solid lines only) for a single-input single-output system with a 
fictitious open-loop pole-zero configuration. 

closed-loop pole approaches the open-loop zero as p 1 0. For p - m the 
closed-loop poles approach the single left-half plane open-loop pole and the 
mirror images of the two right-half plane open-loop poles. 

We now return to the multiinput case. Here we must investigate the roots of 

The problem of determining the root loci for this expression is not as simple 
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as in the single-input case. Evaluation of the determinant leads to an expres- 
sion of the form 

where the functions a,(l/p), i = 0, 1,2, . . . , I T  are polynomials in lip. 
Rosenau (1968) has given rul'es that are helpful in obtaining root loci for 
such an expression. We are only interested in the asymptotic behavior of the 
roots as p -+ 0 and p - m. The roots of 3-488 are also the roots of 

$(s)$(-S) det [pI + N-1HT(-s)R3~(s)] = 0. 3-490 

As p -t 0 some of the roots go to infinity; those that stay finite approach the 
zeroes of 

$(s)$(-S) det [N-lIf T( -s )~3  ~ ( s ) ] .  3-491 

provided this expression is not identically zero. Let us suppose that H(s) is a 
square transfer matrix (in Section 3.7 we saw that this is a natural assump- 
tion). Then we know from Section 1.5.3 that 

Y(S) det [H(s)] = - . 
$W 

where ?/J(s) is a polynomial at most of degree 11 - k,  with 11 the dimension of 
the system and k the dimension of 11 andz. As a result, we can write for 3-491 

1p(-s)yl(s) 
det (N) 

Thus it follows tliat as p 1 0  those roots of 3-490 tliat stay finite approach the 
zeroes of the transfer matrix H(s) and their negatives. This means that those 
oplimal closed-loop poles of the regulntor that stay finite approach those 
zeroes of H(s) that have negative real parts and the negatives of the zeroes 
that have nonnegative real parts. 

I t  turns out (Rosenau, 1968) that as p j, 0 the far-off closed-loop regulator 
poles, that is, those poles that go to infinity, generally do not form a single 
Butterwortli configuration, such as in the single-input case, but that they 
group into seuerolButterworth configurations of digerent orders and different 
radii (see Examples 3.19 and 3.21). A rough estimate of the distance of the 
faraway poles from the origin can be obtained as follows. Let $,(s) denote 
the closed-loop characteristic polynomial. Then we have 

$r(s)$o(-s) = $(s)$(-s) det 
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For small p we can approximate the right-hand side of this expression by 

where k is the dimension of the input 11. Let us write 

Then the leading term in 3-491 is given by 

This shows that the polynomial $,(s)$,(-s) contains the following terms 

$o(S)$o(-S) = ( - l )nS2n + . . . + u2 det (R3) ( -1) '~~'  + . - . . 3-498 
p" det ( N )  

The terms given are the term with the highest power of s and the term with 
the highest power of lip. An  approximation of the faraway roots of this 
polynomial (for small p) is obtained from 

(-l)nsz" + det (R3) (-l)ns?x = 0, 
P" det (N) 

I t  follows that the closed-loop poles are approximated by the left-half plane 
solutions of 

det (RJ j /ci l~t-di ,  
( - l ) ( n - n - ~ i / ~ n - n ~ ~  (=z 3-500 

Pk det (N) 

This first approximation indicates a Butterworth configuration of order 
11 - p .  We use this expression to estimate the distance of the faraway poles 
to the origin; this (crude) estimate is given by 

iuz det (RJ j""n-wll, 

pkdet (N) 

We consider ha l ly  the behavior of the closed-loop poles for p - m. In 
this case we see from 3-494 that the characteristic values of the matrix Z 
approach the roots of $(s)$(-s).  This means that the closed-loop poles 
approach the numbers 6, i = 1 , 2 ,  . . . , ti, as given by 3-487. 

We summarize our results for the multiinput case as follows. 

Theorem 3.U. Consider the steady-state solrrtiori of the rilultii~iput time- 
invariant regulator probleril. Assirrile that the open-loop system is stabilizable 
arid detectable, that the irlpirt tr arid the controlled variable 2 have the same 
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di~i~eiision k ,  and tliat the state z 110s di~irension 11. Let H(s) be the lc x lc open- 
loop trarrsfer matrix 

H(s) = D(sI - A)-lB. 3-502 

Stppose t l~ot $(s) is the open-loop cl~aracteristicpo[yno~i~iol arid write 

Assume that a # 0 and talce R, = pN witlt N > 0, p > 0. 
(a) Tlien as p - 0, p of the optin~al closed-loop regrilator poles approach the 
ualt~es 11,, i = 1, 2, . . . , p,  ivlrere 

= [ 1" if Re (4 5 0 3-504 
-vi if Re (I:.) > 0. 

Tlre remai~ring closed-loop poles go to iifinity arid grorp into several Butter- 
~ ~ o r t l t  confgt~rotio~is of dnferent orders and diferertt radii. A rorrglt estimate 
of the distance of the faraway closed-loop poles to the origin is 

ia2 det (RJ Tx";"', 
pk det ( N )  

(b) As p -* m, tlie 11 closed-loop replator poles approaclr the rrranbers 6, 
i =  1,2;..,n, ivlrere 

if Re ( R J  < 0 3-506 
-- if Re(rJ.0. 

We conclude this section with the following comments. When p is very 
small, large input amplitudes are permitted. As a result, the system can move 
fast, which is reflected in a great distance of the faraway poles from the origin. 
Apparently, Butterworth pole patterns give good responses. Some of the 
closed-loop poles, however, do not move. away hut shift to the locations of 
open-loop zeroes. As is confirmed later in this section, in systems with left- 
half plane zeroes only these nearby poles are "canceled" by the open-loop 
zeroes, which means that their effect in the controlled variable response is not 
noticeable. 

The case p = m corresponds to a very heavy constraint on the input 
amplitudes. I t  is interesting to note that the "cheapest" stabilizing control 
law ("cheap" in terms of input amplitude) is a control law that relocates the 
unstable system poles to their mirror images in the left-half plane. 

Problem 3.14 gives some information concerning the asymptotic behavior of 
the closed-loop poles for systems for which dim (u) # dim (a). 
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Example 3.18. Positior~ control system 
In Example 3.8 (Section 3.4.1), we studied the locations ofthe closed-loop 

poles of the optimal position control system as a function of the parameter p. 
As we have seen, the closed-loop poles approach a Butterworth configuration 
of order two. This is in agreement with the results of this section. Since the 
open-loop transfer function 

has no zeroes, both closed-loop poles go to iniinity as p 1 0. 

Example 3.19. Stirred tank 
As an example of a multiinput multioutput system consider the stirred tank 

regulator problem of Example 3.9 (Section 3.4.1). From Example 1.15 
(Section 1.5.3), we know that the open-loop transfer matrix is given by 

For this transfer matrix we have 

det [H(s)] = 
0.01 

(s + O.Ol)(s + 0.02) ' 

Apparently, the transfer matrix has no zeroes; all closed-loop poles are 
therefore expected to go to m as p 1 0. With the numerical values of Example 
3.9 for R, and N,  we find for the characteristic polynomial of the matrix Z 

Figure 3.21 gives the behavior of the two closed-loop poles as p varies. 
Apparently, each pole traces a first-order Butterworth pattern. The asymp- 
totic behavior of the roots for p 1 0 can be found by solving the equation 

which yields for the asymptotic closed-loop pole locations 

0.1373 -- 0.07280 and - -. 3-512 
JP JP 
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Fig. 3.21. Loci of the closed-loop roots for the stirred tank regulator. The locus on top 
originates from -0.02, the one below from -0.01. 

The estimate 3-505 yields for the distance of the faraway poles to the origin 

We see that this is precisely the geometric average of the values 3-512. 

Exnmple 3.20. Pitch coutrol of an airplane 
As an example of a more complicated system, we consider the longik 

tudinal motions of an airplane (see Fig. 3.22). These motions are character! 
I ized by the velocity it along the x-axis of the airplane, the velocity 111 along 

the z-axis of the airplane, the pitch 0, and the pitch rate q = 8. The x- and 
z-axes are rigidly connected to the airplane. The x-axis is chosen to coincide 
with the horizontal axis when the airplane performs a horizontal stationary 
flight. 

I 

Fig. 3.22. The longitudinal motions of an airplane. 
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The control variables for these motions are the engine thrust T and the 
elevator deflection 8. The equations of motion can he linearized around a 
nominal solution which consists of horizontal Eght  with constant speed. 
I t  can he shown (Blakelock, 1965) that the linearized longitudinal equations 
of motion are independent of the lateral motions of the plane. 

We choose the components of the slate as follows: 

fl(t) = tr(t), incremental speed along x-axis, 

f?(t) = ~ ( t ) ,  speed along z-axis, 

M t )  = W ,  pitch, 

f4(t) = q(t), pitch rate. 

The input variable, this time denoted by c, we d e k e  as 

incremental engine thrust, 
3-515 

elevator deflection. 

With these definitions the state differential equations can be found from the 
inertial and aerodynamical laws governing the motion of the airplane (Blake- 
lock, 1965). For a particular medium-weight transport aircraft under cruising 
conditions, the following linearized state differential equation results: 

Here the following physical units are employed: u and IV in m/s, 0 in rad, 
q in rad/s, T i n  N, and 8 in rad. 

In this example we assume that the thrust is constant, so that the elevator 
deflection S(r) is the only control variable. With this the system is described 



by the state differential equation 

/-0.01580 0.02633 
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As the controlled variable we choose the pitch O ( t ) :  

It can be found that the transfer function from the elevator deflection B(t )  
to the pitch O ( t )  is given by 

The poles of the transfer function are 

-0.006123 i jO.09353, 
3-520 

-1.250 i jl.394, 
while the zeroes are given by 

-0.02004 and -0.9976. 3-521 

The loci of the closed-loop poles can be found by machine computation. 
They are given in Fig. 3.23. As expected, the faraway poles group into a 
Butterworth pattern of order two and the nearby closed-loop poles approach 
the open-loop zeroes. The system is further discussed in Example 3.22. 

Example 3.21. The control of the longiludinal riiotions of an airplone 
In Example 3.20 we considered the control of the pitch of an airplane 

through the elevator deflection. In the present example we extend the system 
by controlling, in addition to the pitch, the speed along the x-axis. As an 
additional control variable, we use the incremental engine thrust T(t) .  Thus 
we choose for the input variable 

= ( incremental eopinetinst,  

elevator deflection, 
3-522 
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b 

Fig. 3.23. Loci of the closed-loop poles of the pitch stabilization system. (a) Faraway 
poles: (b) nearby poles. 

and for the controlled variable 

incrementalspeed along the z-axis, 
3-523 

pitch. 
From the syslem state differential equation 3-516, i t  can be computed that 
the system transfer matrix has the numerator polynomial 

~ J ( s )  = -0.003370(s + 1.002), 3-524 
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which results in a single open-loop zero at -1.002. The open-loop poles are 
at -0.006123 + jO.09353 and -1.250 & jl.394. 

Before analyzing the,problem any further, we must establish the weighting 
matrices R, and N. For both we adopt a diagonal form and to determine 
their values we proceed in essentially the same manner as in Example 3.9 
(Section 3.4.1) for the stirred tank. Suppose that R, = diag (u,, u ~ ) .  Then 

zT(t)R,z(t) = ulti2(t) + uzBZ(t). 3-525 

Now let us assume that a deviation of 10 m/s in the speed along the x-axis is 
considered to be about as bad as a deviation of 0.2 rad (12") in the pitch. 
We therefore select u, and u, such that 

-- u1 - 0.0004. 
UE 

Thus we choose 

where for convenience we have let det (R,) = 1. Similarly, suppose that 
N = diag (p,, p,) so that 

cT(t)Nc(t) = plT2(t) + pz a2(t). 3-529 

To determine p, and p,, we assume that a deviation of 500 N in the engine 
thrust is about as acceptable as a deviation of 0.2 rad (12") in the elevator 
deflection. This leads us to select 

which results in the following choice of N: 

With these values of R, and N, the relation 3-505 gives us the following 
estimate for the distance of the far-off poles: 

The closed-loop pole locations must be found by machine computation. 
Table 3.4 lists the closed-loop poles for various values of p and also gives the 
estimated radius on. We note first that one of the closed-loop poles 
approaches the open-loop zero at -1.002. Furthermore, we see that w, is 
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only a very crude estimate for the distance of the faraway poles from the 
origin. 

The complete closed-loop loci are sketched in Fig. 3.24. I t  is noted that the 
appearance of these loci is quite different from those for single-input systems. 
Two of the faraway poles assume a second-order Butterworth configuration, 
while the third traces a fist-order Butterworth pattern. The system is further 
discussed in Example 3.24. 

Fig. 3.24. Loci of the closed-loop poles for the longitudinal motion control system. 
(a) Faraway poles; (6) nearby pole and one faraway pole. For clarity the coinciding 
portions of the loci on the renl axis ate represented as distinct lines; in reality they coincide 
with the real axis. 
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Table 3.4 Closed-Loop Poles for the Longitudinal Motion Stability Augmentation 
System 

Closed-loop poles 
(s-l) 

3.82" Asymptotic Properties of the Single-Input Single-Output 
Nonzero Set Point Regulator 

In this section we discuss the single-input single-output nonzero set point 
optimal regulator in the light of  the results of Section 3.8.1. Consider the 
single-input system 

i ( f )  = Ax(t) + bp( t )  3-533 

with the scalar controlled variable 

Here b is a column vector and d a row vector. From Section 3.7 we know 
that the nonzero set point optimal control law is given by 

1 
= -f'm + - 50, 3-535 

wheref'is the row vector 
H m  

1 f'= - bTP, 3-536 
P 

with P the solution of the appropriate Riccati equation. Furthermore, H,(s) 
is the closed-loop transfer function 

and C0 is the set point for the controlled variable. 
In order to study the response of the regulator to a step change in the set 

point, let us replace 5, with a time-dependent variable [ ,( t) .  The inter- 
connection of the open-loop system and the nonzero set point optimal 
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control law is then described by 

c(t) = dx (1 ) .  

Laplace transformation yields for the transfer function T(s) from the variable 
set point co(t) to the controlled variable 5 0 ) :  

Let us consider the closed-loop transfer function d(s1- A + by)-lb. 
Obviously, 

where &(s) = det (ST - A + by) is the closed-loop characteristic poly- 
nomial and y,(s) is another polynomial. Now we saw in Section 3.7 (Eq. 
3-428) that the numerator of the determinant of a square transfer matrix 
D(sI - A + BF)-'B is independent of the feedback gain matrix F and is 
equal to the numerator polynomial of the open-loop transfer matrix 
D(sI - A)-'B. Since in the single-input single-output case the determinant 
of the transfer function reduces lo the transfer function itself, we can immedi- 
ately conclude that y~&)  equals yt(s), which is defined from 

Here H(s) = d(s1- A)-'b is the open-loop transfer function and $(s) = 
det (s1 - A) the open-loop characleristic polynomial. 

As a result of these considerations, we conclude that 

Let us write 

where the v,., i = 1,2,  . . . , p ,  are the zeroes of H(s). Then it follows from 
Theorem 3.11 that as p 0 we can write for the closed-loop characteristic 
polynomial 

where the fli, i = 1, 2, . . . , p ,  are defined by 3-484, the qi, i = 1, 2, . . . , 
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I I  - p ,  form a Butterworth configuration of order n - p  and radius 1, and 
where 

3-545 

Substitution of 3-544 into 3-542 yields the following approximation for T(s): 

where x,-,(s) is a Bufterwor.th po/~~noiniol of order 11 - p ,  that is, ~,-,(s) is 
defined by 

Table 3.5 lists some low-order Butterworth polynomials (Weinberg, 1962). 

Table 3.5 Butterworth Polynomials of Orders One 
through Five 

)I&) = s + 1 
x&) = s2 + 1.414s + 1 
x,(s) = s3 + 2s3 + 2s + 1 
x4(s) = s1 + 7.613s3 + 3.414sD + 2.613s + 1 
&(s) = s5 + 3.236s4 + 5.7369 + 5.236s3 + 3.236s + 1 

The expression 3-547 shows that, if the open-loop transfer function has 
zeroes in the left-lrolfplane 0114, the control system transfer function T(s) 
approaches 

1 
3-549 

%.-,(~l%) 

as p 1 0. We call this a Butterworth tr.ansfer fiiitction of order n - p and 
break frequency a,. In Figs. 3.25 and 3.26, plots are given of the step 
responses and Bode diagrams of systems with Butterworth transfer functions 
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step 1 - 
response 

I 

Rig. 3.25. Step responses of systems with Butlerworth transfer functions of orderi 
through five with break frequencies 1 rad/r;. 

one 

of various orders. The plots of Fig. 3.25 give an indication of the type of 
response obtained to steps in the set point. This response is asymptotically 
independent of the open-loop system poles and zeroes (provided the latter 
are in the left-half complex plane). We also see that by choosing p small 
enough the break frequency w,  can he made arbitrarily high, and cone- 
spondingly the settling time of the step response can he made arbitrarily 
smaU. An extremely fast response is of course obtained at the expense of 
large input amplitudes. 

This analysis shows that the response of the controlled variable to changes 
in the set point is dominated by the far-off poles iliwa, i = 1,2, . . . , n - p. 
The nearby poles, which nearly coincide with the open-loop zeroes, have 
little effect on the response of the controlled variable because they nearly 
cancel against the zeroes. As we see in the next section, the far-off poles 
dominate not only the response of the controlled variable to changes in the 
set point but also the response to arbitrary initial conditions. As can easily 
he seen, and as illustrated in the examples, the nearby poles do show up in 
the iilput. The settling time of the tracking error is therefore determined by 
the faraway poles, but that of the input by the nearby poles. 

The situation is less favorable for systems with right-halfplane zeroes. 
Here the transmission T(s) contains extra factors of the form 

s + %  3-550 
s - 17, 
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Pig. 3.26. Modulus and phase of Butterworth transfer functions of orders one through 
five with break frequencies 1 rad/s. 

and the tracking error response is dominated by the nearby pole at lli. This 
points to an  inherent limitation in the speed of response of systems with 
right-half plane zeroes. I n  the next subsection we further pursue this topic. 
First, however, we summarize the results of this section: 

Theorem 3.13. Consider the nonzero set point optimal control law 3-535 for 
the time-inuariant, single-inplrt single-outprrt, stabilizable and detectable 
svstem 

wlrere R, = 1 and R, = p. Then as p 0 the control sju-ten1 tmnsniission 
T(s) (i.e., the closed-loop transfer firnctian from the uariable set point [ ,( t)  
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to the confrolled uariable i ( t ) )  approacltes 

11t11ere x,-,(s) is a Butterivorfl~ poiynoii~ial of order 11 - p ai~d radills 1, n is 
the order of the system, p is the ntriilber of zeroes of the open-loop fraiuj%r 

firilctioil of tile systenl, w, is the asJJlllptotic radius of the Butterluorfll con- 
jigwatiorl of the fara~sajl closed-looppoles asgiuel~ by 3-486, r i ,  i = 1 ,  2, . . . , 
p,  are the zeroes of the open-loop transfer jirnction, and gi, i = 1, 2, . . . , p ,  
are the open-loop frartsferjirnctio,~ zeroes rnirrored info the le f t -ha[fco~q~lex 
plane. 

Example 3.22. Pitch control 
Consider the pitch control problem of Example 3.20. For p = 0.01 the 

steady-state feedback gain matrix can be computed to be 

The corresponding closed-loop characteristic polynomial is given by 

The closed-loop poles are 

-0.02004, -0.9953, and -0.5239 & j5.323. 3-558 

We see that the first two poles are very close to the open-loop zeroes at 
-0.2004 and -0.9976. The closed-loop transfer function is given by 

so that HJO) = -0.1000. As a result, the nonzero set point control law is 
given by 

6(t) = -yx(t) - IO.OOO,(~), 3-560 

where B,(t) is the set point of the pitch. 
Figure 3.27 depicts the response of the system to a step of 0.1 rad in the 

set point O,(t). I t  is seen that the pitch B quickly settles at the desired value; 
its response is completely determined by the second-order Butterworth 
configuration at -5.239 lt j5.323. The pole at -0.9953 (corresponding to a 
time constant of about 1 s) shows up most clearly in the response of the speed 
along the z-axis 111 and can also be identified in the behavior of the elevator 
deflection 6. The very slow motion with a time constant of 50 s, which 
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Fig. 3.27. Responsc of the pitch control system 
to a step oF0.1 rad in the pitch angle set point. 

I 
Irodl 

-1 

corresponds to the pole at -0.02004, is represented in the response of the 
speed along the x-axis ti, the speed along the z-axis 111, and also in the elevator 
deflection 6, although this is not visible in the plot. It takes about 2 min for 
11 and is to settle at the steady-state values -49.16 and 7.7544s. 

Note that this control law yields an initial elevator deflection of -1 rad 
which, practically speaking, is far too large. 

- 
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Example 3.23. System 11dt11 a right-halfplane zero 
As a second example consider the single-input system with state differ- 

ential eauation 

Let us choose for the controlled variable 

c( t )  = (1, - l )x( t ) .  3-562 

This system has the open-loop transfer function 

and therefore has a zero in the right-half plane. Consider for this system the 
criterion 

I t  can be found that the corresponding Riccati equation has the steady-state 
solution 

l + J l + 4 p + 2 f i  & 
. 3-565 

JP 4 - 2  + \ia) 
The corresponding steady-state feedback gain vector is 

-- 
T h g - ~ l m o o p  poles can be found to he 

FigureG.28 gives a sketch of the loci of the closed-loop poles. As expected, 
one of the closed-loop poles approaches the mirror image of the right-half 
plane zero, while the other pole goes to -m along the real axis. 

For p = 0.04 the closed-loop characteristic polynomial is given by 

and the closed-loop poles are located at -0.943 and -5.302. The closed-loop 



Wig. 3.28. Loci of the closed-loop poles for a system with a right-half plane zero. 

Fig. 3.29. Response of a closed-loop system with a righl-half plane zero to a unit step in 
the set poinl. 
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transfer function is 

so that HJO) = 0.2. The steady-state feedback gain vector is 

f = (5, 4.245). 3-570 

As a result, the nonzero set point control law is 

Figure 3.29 gives the response of the closed-loop system to a step in the set 
point c,(t). We see that in this case the response is dominated by the closed- 
loop pole at -0.943. It is impossible to obtain a response that is faster and at 
the same time has a smaller integrated square tracking error. 

3.8.3' The Maximally Achievable Accuracy of Regulators and Tracking 
Systems 

In this section we study the steady-state solution of the Riccati equation as p 
approaches zero in 

R, = pN.  3-572 

The reason for our interest in this asymptotic solution is that it will give us 
insight into the maximally achievable accuracy of regulator and tracking 
systems when no limitations are imposed upon the input amplitudes. 

This section is organized as follows. First, the main results are stated in the 
form of a theorem. The proof of this theorem (Kwakernaak and Sivan, 
1972), which is long and technical, is omitted. The remainder of the section 
is devoted to a discussion of the results and to examples. 

We fust state the main results: 

Theorem 3.14. Consider the time-i~luariant stabilizable and detectable linear 
system 

 elle ere B and D are assn~ned to hauefi~ll rank. Consider also the criterion 

where R, > 0 ,  Ril > 0 .  Let 
R, = p N ,  

1vit11 N > 0 and p apositiue scalar, and let Fp be the steady-state sol~~tiorl of 
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the Riccati eqz~ation 

Tlten the foUoiving facts hold. 
(a) The limit 

lim F, = Po 3-577 

exists. 
(h) Let z,(t), t 2 to,  denote the response of the controlled variable for the 
reglilator that is steady-state optirnal for R, = pN. Then 

(c) Ifdim (z) > dim (ti), t l~en Po # 0. 
(d) If dim (2)  = dim (11) and the nunlerotor polynomial y(s)  of the open-loop 
transfer n1atri.v H(s)  = D ( d  - A)-lB is nonzero, Po = 0 if and o n b  if y (s) 
has zeroes i~'itlr norlpositiue realparts only. 
(e) Ifdim (2) < dim (I,), t l~en a sr~flcient condition for Po to be 0 is that there 
exists a rectangdar matrix M sirclr tlmt the nlouerator poly~ton~ial y(s)  of 
the syuare transfer matrix D(sI - A)-IBM is nonzero and has zeroes isith 
nonpositiue realparts only. 

A discussion of the significance of the various parts of the theorem now 
follows. Item (a) states that, as we let the weighting coe5cient of the input p 
decrease, the criterion 

approaches a limit ~ ~ ( t , ) ~ ~ ( t , ) .  If we identify R, with W ,  and N with V',,, the 
expression 3-579 can he rewritten as 

where C,,,(t) = z,,T(t)V',zp(t) is the weighted square regulating error and 
C,,,(t) = ~ i , ' ( t )  W,,tr,(t) the weighted square input. It  follows from item (b) 
of the theorem that as p 1 0, of the two terms in 3-580 the first term, that is, 
the integrated square regulating error, fully accounts for the two terms 
together so that in the limit the integrated square regulating error is given by 
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If the weighting coefficient p is zero, no costs are spared in the sense that 
no limitations are imposed upon the input amplitudes. Clearly, under this 
condition the greatest accuracy in regulation is achieved in the sense that the 
integrated square regulation error is the least that can ever be obtained. 

Parts (c), (d), and (e) of the theorem are concerned with the conditions 
under which P, = 0, which means that ultimately perfect regulation is 
approached since 

lim J"m~o,u) dt = 0. 3-582 
,'lU 10 

Part (c) of the theorem states that, if the dimension of the controlled variable 
is greater than that of the input, perfect regulation is impossible. This is 
very reasonable, since in this case the number of degrees of freedom to control 
the system is too small. In order to determine the maximal accuracy that can 
be achieved, P, must be computed. Some remarks on how this can be done 
are given in Section 4.4.4. 

In part (d) the case is considered where the number of degrees of freedom 
is sufficient, that is, the input and the controlled variable have the same dimen- 
sions. Here the maximally achievable accuracy is dependent upon the 
properties of the open-loop system transfer matrix H(s). Perfect regulation is 
possible only when the numerator polynomial y(s) of the transfer matrix 
has no right-half plane zeroes (assuming that y(s) is not identical to zero). 
This can be made intuitively plausible as follows. Suppose that at time 0 the 
system is in the initial state xu. Then in terms of Laplace transforms the 
response of the controlled variable can he expressed as 

Z(s) = H(s)U(s) + D(sI - A)-Ix,, 3-583 

where Z(s) and U(s) are the Laplace transforms of z and u, respectively. 
Z(s) can be made identical to zero by choosing 

U(s) = -H-l(s)D(sI - A)-lx,. 3-584 

The input u ( f )  in general contains delta functions and derivatives of delta 
functions at time 0. These delta functions instantaneously transfer the system 
from the state xu at time 0 to a state x(0+) that has theproperty that z(0f) = 
Dx(O+) = 0 and that z(t) can be maintained at 0 for t > 0 (Sivan, 1965). 
Note that in general the state x(t) undergoes a delta function and derivative 
of delta function type of trajectory at time 0 hut that z(t) moves from z(0) = 
Dx, to 0 directly, without infinite excursions, as can be seen by inserting 
3-584 into 3-583. 

The expression 3-584 leads to a stable behavior of the input only if the 
inverse transfer matrix H-'(s) is stable, that is if the numerator polynomial 
y(s) of H(s) has no right-half plane zeroes. The reason that the input 3-584 
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cannot be used in the case that H-'(s) has unslable poles is that although the 
input 3-584 drives the controlled variable z(t) to zero and maintains z ( t )  at 
zero, the input itself grows indefinitely (Levy and Sivan, 1966). By our 
problem formulation such inputs are ruled out, so that in this case 3-584 
is not the limiting input as p I 0 and, in fact, costless regulation cannot be 
achieved. 

Finally, in part (e) of the theorem, we see that if dim (2) < dim ( 1 0 ,  then 
Po = 0 if the situation can be reduced to that of part (d) by replacing the 
input u with an input 11' of the form 

The existence of such a matrix M is not a necessary condition for Po to be 
zero, however. 

Theorem 3.14 extends some of the results of Section 3.8.2. There we found 
that for single-input single-output systems without zeroes in the right-half 
complex plane the response of the controlled variable to steps in the set 
point is asymptotically completely determined by the faraway closed-loop 
poles and not by the nearby poles. The reason is that the nearby poles are 
canceled by the zeroes of the system. Theorem 3.14 leads to more general 
conclusions. It states that for multiinput multioutput systems without zeroes 
in the right-half complex plane the integrated square regulating error goes to 
zero asymptotically. This means that for small values of p the closed-loop 
response of the controlled variable to any initial condition of the system is 
very fast, which means that this response is determined by the faraway 
closed-loop poles only. Consequently, also in this case the effect of the nearby 
poles is canceled by the zeroes. The slow motion corresponding to the nearby 
poles of course shows up in the response of the input variable, so that in 
general the input can be expected to have a much longer settling time than 
the controlled variable. For illustrations we refer to the examples. 

I t  follows from the theory that optimal regulator systems can have "hidden 
modes" which do not appear in the controlled variable but which do appear 
in the state and the input. These modes may impair the operalion of the 
control system. Often this phenomenon can be remedied by redefining or 
extending the controlled variable so that the requirements upon the system 
are more faithfully reflected. 

I t  also follows from the theory that systems with right-half plane zeroes are 
fundamentally deficient in their capability to regulate since the mirror images 
of the right-half plane zeroes appear as nearby closed-loop poles which are 
not canceled by zeroes. If these right-half plane zeroes are far away from the 
origin, however, their detrimental effect may be limited. 

I t  should he mentioned that ultimate accuracy can of course never be 
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i 
chieved since this would involve i nh i t e  feedback gains and infinite input 
mplitudes. The results of this section, however, give an idea of the ideal 
erformance of which the system is capable. In practice, this limit may not 
early be approximated because of the constraints on the input amplitudes. 
So far the discussion bas been confined to the deterministic regulator 

problem. Let us now briefly consider the stochastic regulator problem, which 
includes tracking problems. As we saw in Section 3.6, we have for the 
stochastic regulator problem 

Cam,, + PC,,,,, = t r  (PV),  3-586 

where C,, and C,,, indicate the steady-state mean square regulation error 
and the steady-state mean square input, respectively. I t  immediately follows 
that 

lim (C,,,, + PC,,,,) = t r  (PoV). 3-587 
P!U 

I t  is not difficult to argue [analogously to the proof of part (b) of Theorem 
3.141 that of the two terms in 3-587 the first term fully accounts for the left- 
hand side so that 

lim C,,,, = tr (POI'). 
I' ! 0 

This means that perfect stochastic regulation (Po = 0) can be achieved under 
the same conditions for which perfect deterministic regulation is possible. It 
furthermore is easily verified that, for the regulator with nonwhite disturb- 
ances (Section 3.6.1) and for the stochastic tracking problem (Section 3.6.2), 
perfect regulation or tracking, respectively, is achieved if and only if in both 
cases the plant transfer matrix H(s) = D(sI - A)-lB satisfies the con- 
ditions outlined in Theorem 3.14. This shows that it is the plant alone that 
determines the maximally achievable accuracy and not the properties of the 
disturbances or the reference variable. 

In  conclusion, we note that Theorem 3.14 gives no results for the case in 
which the numerator polynomial 7p(s) is identical to zero. This case rarely 
seems to occur, however. 

Example 3.24. Control of the loi~gitrrrlii~al i~iotior~s of an airplarie 
As an example of a mnltiinput system, we consider the regulation of the 

longiludinal motions of an airplane as described in Example 3.21. For p = 
10-0 we found in Example 3.21 that the closed-loop poles are -1.003, 
-4.283, and -19.83 & jl9.83. The 6rst of these closed-loop poles practically 
coincides with the open-loop zero at -1.002. 

Figure 3.30 shows the response of the closed-loop system to an initial 
deviation in the speed along the x-axis u, and to an initial dev~ation in the 
pitch 0 .  I t  is seen that the response of the speed along the x-axis is determined 



Fig. 3.30. Closed-loop responses of a longitudinal stability augmentation system for an 
airplane. Leit column: Responses to the initial state u(O)=l  m/s, while all other com- 
ponents or the initial slale are zero. Right column: Response to the initial state O(0) = 
0.01 rad, while all other components of the initial state are zero. 
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mainly by a time constant of about 0.24 s which corresponds to the pole a t  
-4.283. The response of the pitch is determined by the Butterworth con- 
figuration at -19.83 & jl9.83. The slow motion with a time constant of 
about 1 s that corresponds to the pole at - 1.003 only affects the response of 
the speed along the z-axis IIJ.  

We note that the controlled system exhibits very little interaction in the 
sense that the restoration of the speed along the x-axis does not result in an 
appreciable deviation of the pitch, and conversely. 

Finally, it should be remarked that the value p = lo-' is not suitable from 
a practical point of view. It causes far too large a change in the engine thrust 
and the elevator angle. In addition, the engine is unable to follow the fast 
thrust changes that this control law requires. Further investigation should 
take into account the dynamics of the engine. 

The example confirms, however, that since the plant has no right-half 
plane zeroes an arbitrarily fast response can be obtained, and that the nearby 
pole that corresponds to the open-loop zero does not affect theresponse of the 
controlled variable. 

Example 3.25. A system with a right-halfplane zero 
In Example 3.23 we saw that the system described by 3-561 and 3-562 with 

the open-loop transfer function 

has the following steady-state solution of the Riccati equation 

i + J 1 + 4 p + 2 J P  JP 
. 3-590 

JP 
1 7  

4,-+,) 

As p approaches zero, P approaches Po, where 

As we saw in Example 3.23, in the limit p I 0 the response is dominated by 
the closed-loop pole at -1. 

3.9* SENSITIVITY O F  LINEAR S T A T E  FEEDBACK 
C O N T R O L  SYSTEMS 

In  Chapter 2 we saw that a very important property of a feedback system is 
its ability to suppress disturbances and to compensate for parameter changes. 



In  this section we investigate to what extent optimal regulators and tracking 
systems possess these properties. When we limit ourselves to time-invariant 
problems and consider only the steady-state case, where the terminal time is 
at infinity, the optimal regulator and tracking systems we have derived have 
the structure of Fig. 3.31. The optimal control law can generally be represented 

- L+-I 
Fig. 3.31. The structure of a time-invariant linear state feedback control system. 

in the form 

tl(f) = -Fx(i) + ~,.x,(t) + F a%y 3-592 

where xJf) is the state of the reference variable, 2, the set point, and P,  Fr, 
and F, are constant matrices. The matrix F is given by 

where P is the nonnegative-definite solution of the algebraic Riccati equation 

In Chapter 2 (Section 2.10) we saw that the ability of the closed-loop system 
to suppress disturbances or to compensate for parameter changes as compared 
to an equivalent open-loop configurationis determined by the behavior of the 
return difference malrix J(s). Let us derive J(s) in the present case. The 
transfer matrix of the plant is given by (sI - A)-'B, while that of the feed- 
back link is simply F. Thus the return difference matrix is 

Note that we consider the complete state x(t) as the controlled variable (see 
Section 2.10). 

We now derive an expression for J(s) starting from the algebraic Riccati 
equation 3-594. Addition and substraction of an extra term sP yields after 
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rearrangement 

0 = DTR,D - PBR;'BTP - (PSI - AT)F - P(sI - A). 3-596 

Premultiplication by BT(-sI - AT)-' and postmultiplication by (sI - A)-IB 
gives 

o = B*(-SI - A ~ ) - ~ ( - P B R ; ~ B ~ P  + D~'R,D~)(sI - A)-'B 
- P P ( s I  - A)-'B - B~(--SI - A ~ ) - ~ P B .  3-597 

This can be rearranged as follows: 

After substitution of R;'B~P = E, this can be rewritten as 

where H(s) = D(sI - A)-'& Premultiplication of both sides of 3-599 by 
ET and postmultiplication by f yields after a simple manipulation 

If we now substitute s = jw, we see that the second term on the right-hand 
side of this expression is nonnegative-definite Hermitian; tbis means that we 
can write 

JZ'(-jw)WJ(jw) 2 W for all real w, 3-602 
where 

w = fl '~,E. 3-603 

We know from Section 2.10 that a condition of the form 3-602 guarantees 
disturbance suppression and compensation of parameter changes as com- 
pared to the equivalent open-loop system for all frequencies. This is a useful 
result. We know already from Section 3.6 that the optimal regulator gives 
aptirital protection against white noise disturbances entering a t  the input side 
of the plant. The present result shows, however, that protection against 
disturbances is not restricted to tbis special type of disturbances only. By the 
same token, compensation of parameter changes is achieved. 

Thus we have obtained the following result (Kreindler, 1968b; Anderson 
and Moore, 1971). 
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Theorem 3.15. Consider the systern c01figwatio11 of Fig. 3.31, ivlrere the 
"plant" is the detectable and stabilizable time-ir~uariant system 

Let the feedback gain motrix be given by 

ivlrere P is the rronrtegatiue-defi~tife sol~rfion of the algebraic Riccati eqrration 

0 = DTR,D - FER;~E*F + A ~ F  + FA. 3-606 

Then the return dl%fererice 

J(S) = I + (s1 - A)-~BE 3-607 
satisfies the ineqtrality 

JT(- jo)WJ(jw)  2 W for all real w,  3-608 
i14er.e 

W = P T ~ D F .  3-609 

For an extension of this result to time-varying systems, we refer the reader 
to Kreindler (1969). 

I t  is clear that with the configuration of Fig. 3.31 improved protection is 
achieved only against disturbances and parameter variations inside the feed- 
back loop. In particular, variations in D fully affect the controlled variable 
z(t). It frequently happens, however, that D does not exbibit variations. This 
is especially the case if the controlled variable is composed of components 
of the state vector, which means that z ( f )  is actaally inside the loop (see 
Fig. 3.32). 

Rig. 3.32. Example of a situation in which the controlled variable is inside the feedback 
loop. 
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Theorem 3.15 has the shortcoming that the weighting matrix F T ~ , F  is 
known only after the control law has been computed; this makes it difficult 
t o  choose the design parameters R, and R, such as to achieve a given weighting 
matrix. We shall now see that under certain conditions it is possible to deter- 
mine an asymptotic expression for PV. In  Section 3.8.3 it was found that if 
dim (2) = dim (10, and the open-loop transfer matrix H(s) = D(sI - A)-lB 
does not have any right-half plane zeroes, the solution P of the algebraic 
Riccati equation approaches the zero matrix as the weighting matrix R3 
approaches the zero matrix. A glance at the algebraic Riccati equation 3-594 
shows that this implies that 

P B R ; ~ B ~ F +  D'R,D 3-610 

as R, - 0, or, since R ; ~ B ~ ' P  = F ,  that 

F T ~ , F -  D ~ R , D  3-611 

as R, -t 0. This proves that the weighting matrix Win the sensitivity criterion 
3-608 approaches DZ'R,D as Re - 0. 

We have considered the entire state x(t)  as the feedback variable. This 
means that the weighted square tracking error is 

sT(l)Wx(l) .  3-612 

From the results we have just obtained, it follows that as R, - 0 this can he 
replaced with 

x ' ( ~ ) D ~ R , D x ( ~ )  = t T ( t ) ~ , z ( t ) .  3-613 

This means (see Section 2.10) that in the limit R ,  - 0 the controlled variable 
receives all the protection against disturbances and parameter variations, 
and that the components of the controlled variable are weighted by R,. This 
is a useful result because it is the controlled variable we are most interested in. 

The property derived does not hold, however, for plants with zeroes in the 
right-half plane, or with too few inputs, because here P does not approach 
the zero matrix. 

We summarize oar conclusions: 

Theorem 3.16. Consider the iseighting matrix 
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If the condifions are satisfied (Tlreorem 3.14) r~nllrr ~eliicli P -* 0 as R9 - 0 ,  
tlrerz 

w - D'R, D 3-617 
as R, - 0. 

The results of this section indicate in a general way that state feedback 
systems offer protection against disturbances and parameter variations. Since 
sensitivity matrices are not very convenient to work with, indications as to 
what to do for specific parameter variations are not easily found. The follow- 
ing general conclusions are valid, however. 

1. As the weighting matrix R, is decreased the protection against disturb- 
ances and parameter variations improves, since the feedback gains increase. 
For plants with zeroes in the left-half complex plane only, the break fre- 
quency up to which protection is obtained is determined by the faraway 
closed-loop poles, which move away from the origin as Rz decreases. 
2. For plants with zeroes in the left-half plane only, most of the protection 

extends to the controlled variable. The weight attributed to the various 
components of the controlled variable is determined by the weighting 
matrix R,. 

3. For plants with zeroes in the right-half plane, the break frequency up to 
which protection is obtained is limited by those nearby closed-loop poles 
that are not canceled by zeroes. 

Example 3.26. Positiort confrol system 
As an illustration of the theory of this section, let us perform a brief 

sensitivity analysis of the position control system of Example 3.8 (Section 
3.4.1). With the numerical values given, it is easily found that the weighting 
matrix in the sensitivity criterion is given by 

This is quite close to the limiting value 

To study the sensitivity of the closed-loop system to parameter variations, 
in Fig. 3.33 the response of the closed-loop system is depicted for nominal 
and off-nominal conditions. Here the off-nominal conditions are caused by 
a change in the inertia of the load driven by the position control system. 
The curves a correspond to the nominal case, while in the case of curves b 
and c the combined inertia of load and armature of the motor is # of nominal 
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Fig. 3.33. The effccl of parameter variations on the response or the position control 
system: (a) Nominal load; (6)  inertial load + of nominal; (e) inertial load +of nominal. 

and 3 of nominal, respectively. A change in the total moment of inertia by a 
certain factor corresponds to division of the constants a and K by the same 
factor. Thus + of the nominal moment of inertia yields 6.9 and 1.18 for a 
and K ,  respectively, while of the nominal moment of inertia results in the 
values 3.07 and 0.525 for a and K ,  respectively. Figure 3.33 vividly illustrates 
the limited effect of relatively large parameter variations. 

3.10 CONCLUSIONS 

This chapter has dealt with state feedback control systems where all the 
components of the state can be accurately measured at  all times. We have 
discussed quite extensively how linear state feedback control systems can 
be designed that are optimal in the sense of a quadratic integral criterion. 
Such systems possess many useful properties. They can be made to exhibit a 
satisfactory transient response to nonzero initial conditions, to an external 
reference variable, and to a change in the set point. Moreover, they have 
excellent stability characteristics and are insensitive to disturbances and 
parameter variations. 



3.11 Problems 319 

All these properties can be achieved in the desired measure by appropri- 
ately choosing the controlled variable of the system and properly adjusting 
the weighting matrices R, and R2. The results of Sections 3.8 and 3.9, which 
concern the asymptotic properties and the sensitivity properties of steady- 
state control laws, give considerable insight into the influence of the weighting 
matrices. 

A major objection to the theory of this section, however, is that very often 
it is either too costly or impossible to measure all components of the state. 
To overcome this difficulty, we study in Chapter 4 the problem of recon- 
structing the state of the system from incomplele and inaccurate measure- 
ments. Following this in Chapter 5 it is shown how the theory of linear state 
feedback control can be integrated with the theory of state reconstruction 
to provide a general theory of optimal linear feedback control. 

3.11 PROBLEMS 

3.1. Stabilization of the position control system 
Consider the position control system of Example 3.4 (Section 3.3.1). 

Determine the set of all linear control laws that stabilize the position 
control system. 

3.2. Positiorz control ofof,.ictio~~less rlc motor 
A simplification of the regulator problem of Example 3.4 (Section 3.3.1) 

occurs when we neglect the friction in the motor; the state differential equation 
then takes the form 

where z(t) = col Ifl([), Cz(t)]. Take as the controlled variable 

H )  = (1, O)x(t), 
and consider the criterion 

J:[L"(l) + PPW] dt. 3-622 

(a) Determine the steady-state solution P of the Riccati equation. 
(b) Determine the steady-state control law. 
(c) Compute the closed-loop poles. Sketch the loci of the closed-loop poles - ~ 

as p varies. 
(d) Use the numerical values rc = 150 rad/(V s2) and p = 2.25 rad2/Vz 

and determine by computation or simulation the response of the closed-loop 
system to the initial condition [,(0) = 0.1 rad, Cz(0) = 0 rad/s. 
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3.3. Regulatioiz of an a~iiplidy/~e 
Consider the amplidyne of Problem 1.2. 

(a) Suppose tbat the output voltage is to be kept at a constant value e,, 
Denote the nominal input voltage as e,, and represent the system in terms of a 
shifted state variable with zero as nominal value. 

(b) Choose as the controlled variable 

&) = 4 )  - QO, 3-623 
and consider the criterion 

J:[L%) + pp1'(t)1& 3-624 
where 

p'(0 = 4 )  - eon. 3-625 

Find the steady-state solution of the resulting regulator problem for the 
following numerical values: 

-- R1 - 10 s-1, -- R, - I s-1, 
L1 L ? 

Rl = 5 9, R, = 10 9, 
lcl = 20 VIA, lc, = 50 VIA, 
p = 0.025. 

(c) Compute the closed-loop poles. 
(d) Compute or simulate the response of the closed-loop system to the 

initial conditions z(0) = col (1,O) and z(0) = col(0, I). 

3.4. Stochastic position control system 
Consider the position control problem of Example 3.4 (Section 3.3.1) but 

assume that in addition to the input a stochastically varying torque operates 
upon the system so tbat the state differential equation 3-59 must be extended 
as follows: 

Here ~ ( t )  represents the effect of the disturbing torque. We model v( t )  as 
exponentially correlated noise : 

1 
+(t) = - - v(t) + dt) ,  3-628 

0 

where w(t) is white noise with intensity 7.0~18. 

(a) Consider the controlled variable 

5(0 = (1, O)z'(t) 
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and the criterion 

Find the steady-state solution of the corresponding stochastic regulator 
problem. 

(b) Use the numerical values 

K = 0.787 rad/(V s2), 

a = 4.6 s-l, 3-631 

a = 5 rad/s5, 

8 = l s .  

Compute the steady-state rms values of the controlled variable 5(t) and the 
input p(t) for p = 0.2 x radVV. 

3.5. Ar~g~rlar velocity trocking system 
Consider the angular velocity tracking problem of Examples 3.12 (Section 

3.6.2) and 3.14 (Section 3.6.3). In Example 3.14 we found that the value of p 
that was chosen (p = 1000) leaves considerable room for improvement. 

(a) Vary p and select that value of p that results in a steady-state rms input 
voltage of 3 V. 

(b) Compute the corresponding steady-state rms tracking error. 
(c) Compute the corresponding break frequency of the closed-loop system 

and compare this to the break frequency of the reference variable. 

3.6. Norizero set poir~t regtrlafor for an ariiplidyr~e 
Consider Problem 3.3 where a regulator has been derived for an amplidyne. 

(a) Using the results of this problem, find the nonzero set point regulator. 
(b) Simulate or calculate the response of the regulator to a step in the 

output voltage set point of 10 V. 

3.7. Extermion of the regulator probleiit 
Consider the linear time-varying system 

i(t) = A(t)x(t) + B(t)u(t) 3-632 

with the generalized quadratic criterion 

where Rl(t), R,,(f), and R,(t) are matrices of appropriate dimensions. 
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(a) Show that the problem of minimizing 3-633 for the system 3-632 can 
be reformulated as minimizing the criterion 

~ ~ [ z ~ t ) ~ ~ t ) z ( t )  + d ~ f ) R ~ u r ( t ) ]  dt + zl'(tJPli(tl) 3-634 

for the system 
i ( t )  = A'(t)z(t) + B(t)ri1(t), 3-635 

where 

R;W = ~ , ( t )  - R,,(~)R;Y~)Rz(~), 
rr'(1) = u(t) + R;'(t)RE(t)z(t), 3-636 
~ y t )  = ~ ( t )  - ~ ( t ) ~ ; l ( t ) ~ g ( t )  

(Kalman, 1964; Anderson, 1966a; Anderson and Moore, 1971). 
(b) Show that 3-633 is minimized for the system 3-632 by letting 

u(t) = -P(t)z(t), 3-637 
where 

FU(t) = Rd(t)[BT(t)P(t) + Rg(t)], 3-638 

with P(t) the solution of the matrix Riccati equation 

-P(t) = [A(t) - B(t)R;'(t)RZ(t)lT~(t) 

+ P(t)[A(t) - B(t)R;'(t)RZ(t)] 

+ RLt) - R~z(t)R;'(t)R~(t) 3-639 
- P(t)B(t)Ryl(t)BT(t)P(t), t 1 tl, 

P(fl) = P,. 

(c) For arbitrary F(t), t 1 t,, let F(t) be the solution of the matrix differential 
equation 

-&t) = [A(t) - B(t)F(f)lTF(t) + P( t ) [~( t )  - B(t)F(t)] 

+ R L ~ )  - R&)F(~) - ~ ~ ( f ) ~ g ( t )  3-640 

+ ~ ~ ( t ) ~ ? ( t ) ~ ( t ) ,  t 1 t,, 
P(tJ = P,. 

Show that by choosing F(t) equal to Fo(t), B(t) is minimized in the sense that 
F(t) 2 P(t), t 5 t,, where P(t) is the solution of 3-639. Rwiark: The proof 
of (c) follows from (b). One can also prove that 3-637 is the best linear 
control law by rearranging 3-640 and applying Lemma3.1 (Section3.3.3) to it. 

3.8". Sohitiom of tlie algebraic Riccati equation (O'Donnell, 1966; Ander- 
son, 1966b; Potter, 1964) 

Consider the algebraic Riccati equation 

0 = R, - PBR$B~P + FA + A ~ F .  3-641 



Let Z be the matrix 
A -BR;~B~ 

-R1 -AT 
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3-642 

Z can always he represented as 

where J is the Jordan canonical form of Z. I t  is always possible to arrange 
the columns of W such that J can be partitioned as 

Here J,,, J,, and J,, are 11 x 11 blocks. Partition W accordingly as 

(a) Consider the equality 

Z W =  WJ, 3-646 

and show by considering the 12- and 22-blocks of this equality that if W12 
is nonsingular P = WzCK: is a solution of the algebraic Riccati equation. 
Note that in this manner many solutions can be obtained by permuting the 
order of the characteristic values in J. 

(b) Show also that the characteristic values of the matrix A - 
BR;1B1'W,2K: are precisely the characteristic values of J,, and that the 
(generalized) characteristic vectors of this matlix are the columns of VIE. 
Hint: Evaluate the 12-block of the identity 3-646. 

3.9*. Steady-state solrrtion of the Riccati eqtiation by clingo~~alization 
Consider the 2n x 2n matrix Z as given by 3-247 and suppose that it 

cannot be diagonalized. Then Z can be represented as 

where J i s  the Jordan canonical form ofZ, and Wis composed of the charac- 
teristic vectors and generalized characteristic vectors of Z. I t  is always 
possible to arrange the columns of W such that J can be partitioned as 
follows 

where the n x 11 matrix J, has as diagonal elements those characteristic 
values of Z that have positive real parts and half of those that have zero 
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real parts. Partition Wand V = W-I accordingly as 

Assume that {A, B) is stahilizable and {A, D) detectable. Follow the argu- 
ment of Section 3.4.4 closely and show that for the present case the following 
conclusions hold. 

(a) The steady-state solution P of the Riccati equation 

-P(t) = R, - P(t)BR;lBTP(t) + ATp(t) + P(t)A 3-650 
satisfies 

V, + Vl,P = 0. 3-651 

(b) W13 is nonsingular and 
P = w,,wz. 

(c) The steady-state optimal behavior of the state is given by 

Hence Z has no characteristic values with zero real parts, and the steady- 
state closed-loop poles consist of those cbaracterstic values of Z that have 
negative real parts. Hint: Show that 

where the precise form of X(t) is unimportant. 

3.10*. Bass' relation for P (Bass, 1967) 
Consider the algebraic Riccati equation 

and suppose that the conditions are satisfied under which it has a unique 
nonnegative-definite symmetric solution. Let the matrix Z be given by 

It follows from Theorem 3.8 (Section 3.4.4) that Z has no characteristic 
values with zero real parts. Factor the characteristic polynomial of Z as 
follows 

det (sI - Z) = $(s)$(-s) 3-657 

such that the roots of $(s) have strictly negative real parts. Show that P 
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satisfies the relation: 

Hint: Write $(Z) = $(WJW-I) = W $ ( a  W-1 = W$(.7)lT where V = W-I 
and J = diag (A, -A)  in the notation of Section 3.4.4. 

3.11'. Negative espo~~entiol so111tion of the Riccati eqlrotiorl (Vaughan, 
1969) 

using the notation of Section 3.4.4, show that the solution of the time- 
invariant Riccati equation 

can be expressed as follows: 

p(t) = [b + W&(tl - t)][W,, + WllG(tl - f)]-l, 3-660 
where 

G(t) = e-"'~e-"', 3-661 
with 

8 = (VII + VI,P~)(VZI + V:,Pl)-l. 3-662 

Show with the aid of Problem 3.12 that S can also be written in terms of Was 

3.12*. The re loti or^ between Wand V 
Consider the matrix Z as defined in Section 3.4.4. 

(a) Show that if e = col (e', e"), where e' and e" both are n-dimensional 
vectors, is a right characteristic vector o f 2  corresponding to the characteristic 
value 1, that is, Ze = Ae, then (e"', -elT) is a left characteristic vector o f Z  
corresponding to the characteristic value -1, that is, 

(ellT, - d T ) z  = -,l(ellz', 3-664 

(b) Assume for simplicity that all characteristic values At, i = 1, 2,  . . . ,211, 
of Z are distinct and let the corresponding characteristic vectors be given by 
e. $ 9  i = 1,2,  . . . ,2n. Scale the e j  such that if the characteristic vector 
e = col (e', e'') corresponds to a characteristic value 1, and f = col (7, f " )  
corresponds to -A, then 

y T e t  - pe,, = 1. 3-665 
Show that if W is a matrix of which the columns are e,, i = 1,2: . . . , 211, 
and we partition 
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then (O'Donnell, 1966; Walter, 1970) 

Hint: Remember that left and right characteristic vectors for different 
characteristic values are orthogonal. 

3.13'. Freqltericy do~iiain sol~ttion of regdator problenis 
For single-input time-invariant systems in phase-variable canonical form, 

the regulator problem can be conveniently solved in the frequency domain. 
Let 

i ( t )  = Ax(i) + bp(t) 3-668 

be given in phase-variable canonical form and consider the problem of 
minimizing 

l;[~'(t) + PPV)] dt, 3-669 

where 
((t) = dx(t). 3-670 

(a) Show that the closed-loop characteristic polynomial can be found by 

3-671 
P 

where H(s) is the open-loop transfer function H(s) = d(sI - A)-'b. 
(b) For a given closed-loop characteristic polynomial, show how the corre- 

sponding control law 
p(t) = - Jw)  3-672 

can be found. Hint: Compare Section 3.2. 

3.14*. The riiinini~rm nuniber of faraway closed-loop poles 
Consider the problem of minimizing 

~ ~ [ x ~ ( t ) ~ ~ x ( O  + p~ iT( t )~~! ( t ) l  dt, 3-673 

where R, 2 0, N > 0, and p > 0, for the system 

i ( t )  = Ax(t) + Bu(t). 3-674 

(a) Show that as p L O  some of the closed-loop poles go to infinity while 
the others stay finite. Show that those poles that remain finite approach the 
left-half plane zeroes of 

det [BT(-sI - AT')-'R,(sl - A)-'B]. 3-675 



(b) Prove that at least k closed-loop poles approach inhi ty,  where k is 
the dimension of the input a. Hint: Let Is1 - m to determine the maximum 
number of zeroes of 3-675. Compare the proof of Theorem 1.19 (Section 
1.5.3). 

(c) Prove that as p + m the closed-loop poles approach the numbers 
7i. I, i = 1,2, . . . , 11, which are the characteristic values of the matrix A 
mirrored into the left-half complex plane. 

3.15*. Estimation of the radius of the faraway closed-loop poles from the 
Bode plot (Leake, 1965; Schultz and Melsa, 1967, Section 8.4) 

Consider the problem of minimizing 

J l o  

for the single-input single-output system 

Suppose that a Bode plot is available of the open-loop frequency response 
function H@) = d ( j o I  - A)-lb. Show that for small p the radius of the 
faraway poles of the steady-state optimal closed-loop system canbeestimated: - 
as the frequency w, for which IH(jw.)I = JP. 
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