3 OPTIMAL LINEAR STATE
FEEDBACK CONTROL SYSTEMS

3.1 INTRODUCTION

1n Chapter 2 we gave an exposition of the problems of linear control theory.
In this chapter we begin to build a theory that can be used to solve the prob-
lems outlined in Chapter 2. The main restriction of this chapter is that we
assume that the complete state z(f) of the plant can be accurately measured
at all times and is available for feedback. Although this is an unrealistic
assumption for many practical control systems, the theory of this chapter will
prove to be an important foundation for the more general case where we do
not assume that =(¢) is completely accessible.

Much attention of this chapter is focused upon regulator problems, that
is, problems where the goal is to maintain the state of the system at a desired
value. We shall see that linear control theory provides powerful tools for
solving such problerns. Both the deterministic and the stochastic versions of
the optimal linear regulator problem are studied in detail. Important ex-
tensions of the regulator problem—the nonzero set point regulator and the
optimal linear tracking problem—also receive considerable attention.

Other topics dealt with are the numerical solution of Riccati equations,
asymptotic properties of optimal control laws, and the sensitivity of linear
optimal state feedback systems.

3.2 STABILITY IMPROVEMENT OF LINEAR
SYSTEMS BY STATE FEEDBACK

3.2.1 Linear State Feedback Control

In Chapter 2 we saw that an important aspect of feedback system design is
the stability of the control system. Whatever we want to achieve with the
control system, its stability must be assured. Sometimes the main goal of a
feedback design is actually to stabilize a system if it is initially unstable, or
to improve its stability if transient phenomena do not die out sufficiently fast.
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194 Optimal Linear Sinte Feedback Control Systems

The purpose of this section is to investigate how the stability properties of
linear systems can be improved by state feedback.
Consider thelinear time-varying system with state differential equation

@(t) = A(t)x(t) + B(u(t). 31

If we suppose that the complete state can be accurately measured at all times,
1t is possible to implement a linear control law of the form

w(ty = —F(H=() + ' (1), 32

where F(t) is a time-varying feedback gain matrix and u'(f) a new input. If
this control law is connected to the system 3-1, the closed-loop system is
described by the state differential equation

#(t) = [A(1) — BOFOIE) + B (). 3.3

The stability of this system depends of course on the behavior of A(¢) and
B(t) but also on that of the gain matrix F(#}. It is convenient to introduce
the following terminology.

Definition 3,1, Tire linear conirol law
w(t) = —F(a(t) + ' (1) 34
is called an asymptotically stable control law for the system

&(#) = A(Nx(t) + B(Du(r) 3-5
if the closed-loop system

() = [A() — BOYF()]= () + Bty (2) 3-6
is asymptotically stable.

If the system 3-5 is time-invariant, and we choose a constant matrix F, the
stability of the control law 3-4 is determined by the characteristic values of
the matrix 4 — BF., In the next section we find that under a mildly re-
strictive condition {namely, the system must be completely controllable), all
closed-loop characteristic values can be arbitrarily located in the complex
plane by choosing F suitably (with the restriction of course that complex
poles occur in complex conjugate pairs). If all the closed-loop poles are placed
in the left-half plane, the system is of course asymptotically stable.

We also see in the next section that for single-input systems, that is,
systems with a scalar input «, usually a unique gain matrix F is found for a
given set of closed-loop poles. Melsa {1970) lists a FORTRAN computer
program to determine this matrix. In the multiinput case, however, & given
set of poles can usually be achieved with many different choices of F.



3.2 Stability Improvement hy Siate Feedbock 195

Example 3.1. Stabilization of the inverted pendulum
The state differential equation of the inverted pendulum positioning system
of Example 1.1 (Section 1.2.3) is given by

0 1 0 0 0
0 — A—F; 0 0 ALJ
1) = 0 0 o0 1 SO B FTOR 3-7
L r
Let us consider the time-invariant control law
p(t) = — (1. P, by, Pp)x(t). 3-8
It follows that for the system 3-7 and control law 3-8 we have
0 1 0 0
b _Fih b b
M M M M
A—BF= 0 0 0 1 39
_£ 0 £ 0
L L
The characteristic polynomial of this matrix is
F a a F :
ER + ¢ S-(ﬁ_g)_s +¢n+¢4§_¢1+d’n£. 310
M M I M r M L

Now suppose that we wish to assign all closed-loop poles to the location —o.
Then the closed-loop characteristic polynomial should be given by

(s + o)t = 5s* 4 4os” + 6u’s” + do's + at 3-1
Equating the coefficients of 3-10 and 3-11, we find the following equations
in ¢y, a, by, and dby:

F o

Ftéde_ .
M
ﬁ—§=6mﬁ,
ML 3-12
F4+d+dyg 4 i

- == 4,

M L
¢l+¢:lg 4
— el 2= g

M L
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With the numerical values of Example 1.1 and with & = 3 51, we find from
these linear equations the following control law:

u(t) = —(65.65, 11.00, —72.60, —21.27)x(t). 3-13

Example 3.2, Stirred tank

The stirred tank of Example 1.2 (Section 1.2.3) is an example of a multi-
input system. With the numerical values of Example 1.2, the linearized state
differential equation of the system is

( —0.01 0 0+ 1 1 ( 314
z(t) = x(? u(?). -
) ( 0 —0.02 —0.25 0.75 )
Let us consider the time-invariant control law
u(t) = — (9511 tit512)::.:(:). 315
ap QPoa

It follows from 3-14 and 3-15 that the closed-loop characteristic polynomial

is given by .

det (s — 4 + BF) = 5* + 5(0.03 + ¢; — 0.25¢1n + oy + 0.75¢0)

+ (0.0002 4 0.02¢,; — 0.0025¢2 + 0.02¢bpy + 0.0075¢hs + hy1ban — chynthay).
3-16

We can see at a glance that a given closed-loop characteristic polynomial
can be achieved for many different values of the gain factors ¢,;. For example,
the three following feedback gain matrices

1.1 3.7 0 0 0.1 0
Fa = ] F[l = aI'ld FB =
0 0 .1 —1.2333 0 0.1

3-17

all yield the closed-loop characteristic polynomial s# 4+ 0.2050s + 0.01295,
so that the closed-loop characteristic values are —0.1025 + j0.04944, We
note that in the control law corresponding to the first gain matrix the second
component of the input is not used, the second feedback matrix leaves the
first component untouched, while in the third control law both inputs con-
trol the system.

In Fig. 3.1 are sketched the responses of the three corresponding closed-
loop systerns to the initial conditions

£(0)=0m?, £q(0) = 0.1 kmol/m?3, 318

Note that even though the closed-loop poles are the same the differences in
the three responses are very marked.
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3.2.2%¥ Conditions for Pole Assignment and Stabilization

In this section we state precisely (1) under what conditions the closed-loop
poles of a time-invariant linear system can be arbitrarily assigned to any
location in the complex plane by linear state feedback, and (2) under what
conditions the system can be stabilized. First, we have the following result.

Theorem 3.1. Consider the linear time-invariant system

(t) = Ax(t) + Bu(t) 3-19
with the time-invariant control law
u(t) = —Fx(t) + o' (1). 320

Then the closed-loop characteristic values, that is, the characteristic values of
A — BF, can be arbitrarily located in the complex plane {with the restriction
that complex characteristic values occur in complex conjugate pairs) by
choosing F suitably if and only if the system 3-19 is completely controllable.

A complete proof of this theorem is given by Wonham (1967a), Davison
(1968b), Chen (1968b), and Heymann {1968). Wolovich (1968) considers
the time-varying case. We restrict our proof to single-input systems. Suppose
that the system with the state differential equation

(1) = As(t) + bu(), 321

where p(2) is a scalar input, is completely controllable. Then we know from
Section 1.9 that there exists a state transformation z'(t) = T 'x(¢), where T
is a nonsingular transformation matrix, which transforms the system 3-19
into its phase-variable canonical form:

0 1 0 eeeees 0 0
0 0 10 - 0 0
FE) = e 40 R ()}
O rereeaeenen 0 1 0
—ay —oy et Y 1

322

Here the numbers «;, i = 0,1, -+ ,n — 1 are the coefficients of the char-
acteristic polynomial of the system 3-21, that is, det (s] — A) = s" + o,_,8""
<+ oy5 + o, Let us write 3-22 more compactly as

&'(t) = A’z (1) + b'u(r). 3-23
Consider now the linear conirol law
p(t) = —f'a'(t) + p' (1), 3-24
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where f” is the row vector
f, = (961: 952: Tty 9511)- 3-25

If this contro! law is.connected to the system, the closed-loop system is
described by the state differential equation

@)= (4" — b () + ' (). 326
It is easily seen that the matrix 4" — b'f is given by

0 i Oreverennnennnn 0
0 0 1 '0 .......... 0

A — B = cere
Oecvrvrmrrrmnrnoneennens 0 1

g — y — g — e oy — b

This clearly shows that the characteristic polynomial of the matrix 4" — b'f"
has the coefficients (x; + #;,1), i=0,1,---,n — 1. Since the ¢, i=1,
2,:-+,n, are arbitrarily chosen real numbers, the coefficients of the closed-
loop characteristic polynomial can be given any desired values, which means
that the closed-loop poles can be assigned to arbitrary locations in the com-
plex plane (provided complex poles occur in complex conjugate pairs).

Once the feedback law in terms of the transformed state variable has been
chosen, it can immediately be expressed in terms of the original state variable
=(r) as follows:

plt) = ~f'5O) + pO) = ~fT() + /() = —fa(t) + £/()). 328

This proves that if 3-19 is completely controllable, the closed-loop charac-
teristic values may be arbitrarily assigned. For the proof of the converse of
this statement, see the end of the proof of Theorem 3.2. Since the proof
for multiinput systems js somewhat more involved we omit it. As we have
seen in Example 3.2, for multiinput systems there usually are many solutions
for the feedback gain matrix F for a given set of closed-loop characteristic
values.

Through Theorem 3.1 it is always possible to stabilize a completely con-
trollable system by state feedback, or to improve its stability, by assigning
the closed-loop poles to locations in the left-half complex plane. The theorem
gives no guidance, however, as to where in the left-half complex plane the
closed-loop poles should be located. Even more uncertainty occurs in the
multiinput case where the same closed-loop pole configuration can be
achieved by various control laws. This uncertainty is removed by optimal
linear regulator theory, which is discussed in the remainder of this chapter.
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Theorem 3.1 implies that it is always possible to stabilize a completely
controllable linear system. Suppose, however, that we are confronted with
a time-invariant system that is not completely controllable. From the dis-
cussion of stabilizability in Section 1.6.4, it can be shown that stabilizability,
as the name expresses, is precisely the condition that allows us to stabilize
a not completely controllable time-invariant system by a time-invariant
linear control law (Wonham, 1967a):

Theorem 3.2. Consider the linear time-invariant system
#(1) = Az(t) + Bu(t) 3-29
with the time-invariant control law
u(t) = —Fx(t) + ' (¢). 3-30

Then it is possible to find a constant matrix F such that the closed-loop system
is aspmptatically stable if and only if the system 3-29 is stabilizoble.

The pfcof of this theorem is quite simple. From Theorem 1.26 (Section
1.6.3), we know that the system can be transformed into the controllability
canomnical form _
Ay Aiz) (B;)
() = ( () + u(t), 331
0 A ) 0 ) :

where the pair {4;;, B;} is completely controllable. Consider the linear con-
trol law

a3l

() = —(F;, Fz'(1) + v'(1). 3-32
For the closed-leop system we find
(A, AL B, B!
(1) = ( v )ss'(r) - ( ‘)(F;, F'(1) + ( l)u'm
0 A 0 . 0
Ay — BiF{ Af{s — BiFy B]
= ®'() + u'(1). 3-33
0 Ady 0

The characteristic values of the compound matrix in this expression are the
characteristic values of Ay, — By Fy together with those of 4. Now if the
system 3-29 is stabilizable, 43 is asymptotically stable, and since the pair
{A1;, By} is completely controllable, it is always possible to find an Fj such
that A4j; — BiFj is stable. This proves that if 3-29 is stabilizable it is always
possible to find a feedback law that stabilizes the system. Conversely, if one
can find a feedback law that stabilizes the system, 45, must be asymptotically
stable, hence the system is stabilizable. This proves the other direction of the
theorem.
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The proof of the theorem shows that, if the system is stabilizable but not
completely controllable, only some of the closed-loop poles can be arbitrarily
located since the characteristic values of 41, are not affected by the control
law. This proves one direction of Theorem 3.1.

3.3 THE DETERMINISTIC LINEAR OPTIMAL
REGULATOR PROBLEM

3.3.1 TIntroduction

In Section 3.2 we saw that under a certain condition (complete control-
lability) a time-invariant linear system can always be stabilized by a linear
feedback law. In fact, more can be done. Because the closed-loop poles can
be located anywhere in the complex plane, the system can be stabilized;
but, moreover, by choosing the closed-loop poles far to the left in the com-
plex plane, the convergence to the zero state can be made arbitrarily fast.
To make the system move fast, however, large input amplitudes are required.
In any practical problem the input amplitudes must be bounded ; this imposes
a Hmit on the distance over which the closed-loop poles can be moved to the
left. These considerations lead quite naturally to the formulation of an
optimization problem, where we lake into account both the speed of con-
vergence of the state to zero and the magnitude of the input amplitudes.

To introduce this optimization problem, we temporarily divert our atten-
tion from the question of the pole locations, to return to it in Section 3.8.

Consider the linear time-varying system with state differential equation  ~

&) = (D) + B(Ou(r), 3-34

and let us study the problem of bringing this system from an arbitrary initial
state to the zero state as quickly as possible (in Section 3.7 we consider the
case where the desired state is not the zero state). There are many criteria
that express how fast an initial state is reduced to the zero state; a very useful
one is the quadratic integral criterion

fhzﬂ'(t)ﬂl(f)x(t) di. 3-35

Here Ry(f) is a nonnegative-definite symmetric matrix. The quantity
x7 (NR,()x(¢) is a measure of the extent to which the state at time ¢ deviates
from the zero state; the weighting matrix R,(f) determines how much weight
is attached to each of the components of the state. The integral 3-35 is a
criterion for the cumulative deviation of x(¢) from the zero state during the
interval [#,, #].



202 Optimal Linear State Feedbock Control Systems

~ As we saw in Chapter 2, in many control problems it is possible to identify
a controlled variable z(7). In the linear models we employ, we usually have

z(t) = D(t)=(t). 3-36

If the actual problem is to reduce the controlled variable =z{t) to zero as
fast as possible, the criterion 3-35 can be modified to

f I OR(D) dt, 3.37
{

[1}
where Ry(?) is a positive-definite symmetric weighting matrix. It is easily seen
that 3-37 is equivalent to 3-35, since with 3-36 we can write

i h
f 2T (DR, (1)=(7) dt =f aT(OR,()x(2) dt, 3-38

where " "
Ry() = DT()R(N D). 339
If we now attempt to find an optimal input to the system by minimizing
the quantity 3-35 or 3-37, we generally run into the difficulty that indefinitely
large input amplitudes result. To prevent this we include the input in the

criterion; we thus consider

f P EROR(D(1) -+ uT(ORLu(D)] 3-40

where Ro(t) is a positive-definite symmetric weighting matrix. The inclusion
of the second term in the criterion reduces the input amphitudes if we attempt
to make the total value of 3-40 as small as possible. The relative importance
of the two terms in the criterion is determined by the matrices Ry and R..
If it is very important that the terminal state x(#,) is as close as possible to
the zero state, it is sometimes useful to extend 3-40 with a third term as follows

f tl[zT(t)Rs(t)z(t) + uT(ORDu()] dt + =T (t) Py(hy), 3-41
to

where P; is a nonnegative-definite symmetric matrix.
We are now in a position to introduce the deterministic linear optimal
regulator problem:

Definition 3.2. Consider the linear time-varying system

#(t) = A=) + B(Ou(?), : 3-42
where
. x(ty) = %, 343
with the controlled varioble
2(f) = D(e)=(1). 3-44
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Consider also the criterion

[ E QR0 + W OROUN bt + T)Pretr), 345
)] B

where Py is a nonnegative-definite symimetric matrix and Ry(t) and Ry(¢) are
positive-definite symmetric matrices for t, < t £ t,. Then the problem of
determining an input u'(t), ty <t £ 1, for which the criterion is minimal
is called the deterministic linear optimal vegulator problem.

Throughout this chapter, and indeed throughout this book, it is understood
that A(t) is a continuous function of ¢ and that B(¢), D(f), Ry(t), and Ry(?)
are piecewise continuous functions of ¢, and that all these matrix functions
are bounded.

A special case of the regulator problem is the time-invariant regulator
problem:

Definition 3.3. If all matrices occurring in the formulation of the deterministic
linear optimal regulator problem are constant, we refer to it as the time-
invariant deterministic linear optimal regulator problem.

‘We continue this section with a further discussion of the formulation of
the regulator problem. First, we note that in the regulator problem, as it
stands in Definition 3.2, we consider only the transient situation where an
arbitrary initial state must be reduced to the zero state, The problem formula-
tion does not include disturbances or a reference variable that should be
tracked ; these more complicated situations are discussed in Section 3.6.

A difficulty of considerable interest is how to choose the weighting matrices
Ry, Ry, and P, in the criterion 3-45. This must be done in the following
manner. Usually it is possible to define three quantities, the integrated square
regulating error, the inmtegrated square input, and the weighted square ter-
minal error. The integrated square regulating error is given by

f A OW a0 dr, 346

te
where W, (f), t, <t < t;, is a weighting matrix such that =7 ()W, (1)z(?)
is properly dimensioned and has physical significance. We discussed the
selection of such weighting matrices in Chapter 2. Furthermore, the integrated
square input is given by

f LWL dt, 347

where the weighting matrix W, (1), t; < ¢t < t,, is similarly selected. Finally,
the weighted square terminal error is given by

() Wya(ty), 3-48
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where also W, is a suitable weighting matrix. We now consider various prob-
lems, such as:

1. Minimize the integrated square regulating error with the integrated
square input and the weighted square terminal error constrained to certain
maximal values.

2. Minimize the weighted square terminal error with the inteprated square
input and the integrated square regulating error constrained to certain
maximal values.

3. Minimize the integrated square input with the integrated square
regulating error and the weighted square terminal error constrained to
certain maximal values,

All these versions of the problem can be studied by considering the mini-
mization of the criterion

31 3
p1 f 2T ()W (1=(8) dt + po f uT (W, (D) dt + paaT ()W), 3-49
tg tn

where the constants p,, ps, and p; are suitably chosen. The expression 3-45
is exactly of this form. Let us, for example, consider the important case where
the terminal error is unimportant and where we wish to minimize the inte-
prated square regulating error with the inteprated square input constrained
to a certain maximal value. Since the terminal error is of no concern, we set
pz = 0. Since we are minimizing the integrated square regulating error, we
take p; = 1. We thus consider the minimization of the quantity

f "[zT(:) W (0= + patTOW(Hu(D)] dt. 350
to

The scalar p, now plays the role of a Lagrange multiplier. To determine the
appropriate value of p., we solve the problem for many different values of p,.
This provides us with a graph as indicated in Fig. 3.2, where the integrated
square regulating error is plotted versus the integrated square input with
p: as a parameter. As p, decreases, the integrated square regulating error
decreases but the integrated square input increases. From this plot we can
determine the value of g, that gives a sufficiently small regulating error with-
out excessively large inputs.

From the same plot we can solve the problem where we must minimize the
integrated square input with a constrained integrated square regulating error.
Other versions of the problem formulation can be solved in a similar manner,
We thus see that the regulator problem, as formulated in Definition 3.2, is
quite versatile and can be adapted to various purposes.
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integfatéd
square
regulating errar

Nncrenﬁng :
P2

integroted squore input —e—

Fig. 3.2. TIntegrated square regulating error versus integrated square input, with g, = 1
and p; = 0,

We see in later sections that the solution of the regulator problem can be
given in the form of a linear control law which has several useful prop-
erties. This makes the study of the regulator problem an interesting and
practical proposition.

Example 3.3. Angular velocity stabilization problem

As a first example, we consider an angular velocity stabilization problem.
The plant consists of a dc motor the shaft of which has the angular velocity
&£(#) and which is driven by the input voltage x(f). The system is described by
the scalar state differential equation

£ = —ak(t) + «u(t), 3-51

where o and « are given constanis. We consider the problem of stabilizing
the angular velocity £(t) at a desired value wq. In the formulation of the
general regulator problem we have chosen the origin of state space as the
equilibrium point. Since in the present problem the desired equilibrium
positienis £(t) = wy, we shift the origin. Let yx, be the constant input voltage
to which w, corresponds as the steady-state angular velacity. Then gg and
w, are related by :

= —oy + Kl 3-52

Introduce now the new state variable
E) = E(t) — wy. 353

Then with the aid of 3-52, it follows rom 3-51 that £'(t) satisfies the state
differential equation

E(t) = —al () + xp'(1), 3-54
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where
g1 = p(t) — gy 3-55

This shows that the problem of bringing the system 3-51 from an arbitrary
initial state £(fy) = w, to the state £ = w, is equivalent to bringing the system
3-51 from the initial state £(¢,) = w, — e, to the equilibrium state & = 0.
Thus, without restricting the generality of the example, we consider the
problem of regulating the system 3-51 about the zero state. The controlled
variable { in this problem obviously is the state &:

{0 = &), 3-56

As the optimization criterion, we choose

_£ h[t.:ﬂ(t) + pa(N] dt + mE(tD), 357

with p-> 0, 7, > 0. This criterion ensures that the deviations of £(f) from
zero are rtestricted [or, equivalently, that £(f) stays close to w,], that x(z)
does not assume too large values [or, equivalently, x{t) does not deviate too
much from g,l, and that the terminal state £(#,) will be close to zero [or,
equivalently, that £(t,) will be close to ay). The values of p and 7, must be
determined by trial and error. For o and « we use the following numerical
values:

o = 0.5587,

x = 150 rad/(V s%).

3-58

Example 3.4. Porsition control
In Example 2.4 (Section 2.3), we discussed position control by a dc motor.
The system is described by the state differential equation

0 1 0
2(r) = (O B )w(r)+( )#(r), 3-59

where z(#) has as components the angular position &,(#) and the angular
velocity £.(¢) and where the input variable u(¢) is the input voltage to the dc
amplifier that drives the motor. We suppose that it is desired to bring the
angular position to a constant value &,. As in the preceding example, we make
a shift in the origin of the state space to obtain a standard regulator problem.
Let us define the new state variable ='(£) with components

f{(t) = 51(0 — -510,

£ = E(1). 360
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A simple substitution shows that 2'(¢) satisfies the state differential equation '

. 0 1 0
E (1) = ( )m'(t) + ( )p(l‘). 3-61
0 —a K

Note that in contrast to the preceding example we need not define a new
input variable. This results from the fact that the angular position can be
maintained at any constant value with a zero input. Since the system 3-61
is identical to 3-59, we omit the primes and consider the problem of regulating
3-59 about the zero state.

_For the controlled variable we choase the angular position:

L) = &) = (1, 0)a(1). 3-62

An appropriate optimization criterion is

i1
L (L1t} + pu’(D] dr. 3-63

The positive scalar weighting coefficient p determines the relative importance
of each term of the integrand. The following numerical values are used for

o and «:
=465,

« = 0,787 rad/(V s%).
3.3.2 Solution of the Regulator Problem

364

In this section we solve the deterministic optimal regulator problem using
elementary methods of the calculus of variations. It is convenient to rewrite
the criterion 3-45 in the form

i
[ B OR a0 + ORI 8t + SR 368
ty
where R,(t) is the nonnegative-definite symmetric matrix

Ry() = DT(DR,(1) D(L). 3-66

Suppose that the input that minimizes this criterion exists and let it be de-
noted by 1°(1), t, < ¢ < t,. Consider now the input

u(t) = u"(1) + eit(t), h<t<ty, 3-67

where #(7) is an arbitrary function of time and e is an arbitrary number,
We shall check how this change in the input affects the criterion 3-65. Owing
to the change in the input, the state will change, say from z%(z) (the optimal
behavior) to

o(f) = 2(1) + e8(), L <1<t 3-68
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This defines #(t}, which we now delermine. The solution =t} as given by
3-68 must satisfy the state differential equation 3-42 with u(¢) chosen accord-
ing to 3-67. This yields

() + £3(1) = AN + eAWDF) + BOW() + eBOA(E).  3-69

Since the optimal solution must also satisfy the state differential equation,

we have
(1) = A()(t) + B{u(¢). 3-70

Subtraction of 3-69 and 3-70 and cancellation of ¢ yields
1) = A + Ba@). 37

Since the initial state does not change if the input changes from u%(¢) to
() + eit(t), ty, <t <1, we have &(r,) = 0, and the solution of 3-71
using 1-61 can be written as

(1) =J;t‘1)(t, )B(D)i(7) d, 372

where ©(z, t,) is the transition matrix of the system 3-71. We note that Z(t)
does not depend upon =. We now consider the criterion 3-65. With 3-67
and 3-68 we can write

ft:l[mT(r)Rl(r)m(t) + uT(OR(Du(D] dt + 27 (1,)Py(t)
=f, [Z(OR(N"(1) + u* (DR (D)} dt + 2*F(1) P,2(1)
+ 2£{£:ifa‘:f(t)R1(r)m"(r) + @T(OR(Du"()] dr + .%T(II)PI:L-“(;]_)}
+ E“U:ZL[ET(I)&(:)&(:) + T (ORLDID] di + :ET(tJ)Pl-fE(n)]. 373

Since #%(t) is the optimal input, changing the input from u°(¢) to the input
3-67 can only increase the value of the criterion. This implies that, as a func-
tion of g, 3-73 must have a minimum at e = 0. Since 3-73 is a quadratic ex-
pression in e, it can assume a minimum for £ = 0 only if its first derivative
with respect to ¢ is zero at ¢ = 0. Thus we must have

fh[fr (DR(DZ(1) + (ORI di + &T(1)P2%t) = 0. 3-74
tn

Substitution of 3-72 into 3-74 yields after an interchange of the order of
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integration and a change of variables

iy 31
f ﬁT(t)[BT(t) f O (r, HR)(7)2(+) dr + Ro()(1)
" )u%
7 + BT(OOT(t,, HP, ()| di = 0. 375
Let us now abbreviate,

i1
PO = O, ORGP dr 4 B, 0P 376
¢
With this abbreviation 3-75 can be written more compactly as
t
o,
f F(WO{BT(O)p(t) + R ()u®(t)} dt = 0. 377
o

This can be true for every fi(t), f, < ¢ < 1y, only if

BT(H)p(t) + R("(H) = 0, Lh<t< b, 3.78
By the assumption that R,(t) is nonsingular for 7, < t < #,, we can write

W) = —RFNBTOP(1), HL1< 3-79

IF p(¢) were known, this relation would give us the optimal input at time ¢,

We convert the relation 3-76 for p(t) into a differential equation. First,
we see by setting t = 7, that

plt) = Przt(1y). 3-80
By differentiating 3-76 with respect to f, we find
B = —Ry(Na"() — AT(Dp(), 381

where we have employed the relationship [Theorem 1.2(d), Section 1.3.1]
%(Df(rﬂ, ) = — ATy, 1), 1.82

We are now in a position to state the variational equations. Substitution
of 3-79 into the state differential equation yields

#2(1) = A()z"(t) — B(OR (DB (H)p(1). 3.83

Together with 3-81 this forms a set of 2n simultaneous linear differential
equations in the # components of =°(f) and the n components of p(f). We
term p(t) the adjoint variable. The 2n boundary conditions for the differential
equations are

20(t,) = T, 3-84
and

o) = P, 3.85
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We see that the boundary conditions hold at opposite ends of the interval
[ts, t1], which means that we are faced with a two-point boundary value
problem. To solve this boundary value problem, let us write the simultaneous
differential equations 3-83 and 3-81 in the form

(na"(r)) 3 ( A(1) —B(r)R?(t)BT(r)) (m"(x))
20/ \—=Ryf) —AT(1) Py

Consider this the state differential equation of an 2n-dimensional linear
system with the transition matrix ®(z,.7,). We partition this transition matrix
corresponding to 3-86 as

O, 1) = (

3-86

Oult, ty) Ot ru))
. 3-87

®21(r! tﬂ) GEE(L r())

With this partitioning we can express the state at an intermediate time ¢ in
terms of the state and adjoint variable at the terminal time #, as follows:

(1) = On {1, 1)2%1) + Ot H)p(). 3-88
With the terminal condition 3-85, it follows
22(t) = [On(t, 1) + Owlt, 1) PrJ?(t). 3-89

Similarly, we can write for the adjoint variable

) = Oun(t, 1)) + Oult, t)p{t)
= [@n(t, 1) + Ouwlr, 1) P12, 3-90
Elimination of ="(#,) from 3-89 and 3-90 yields
P = [Oult, 11} + Oult, )P [On{, ) + Oplt, 1) P]2%(r). 391
The expression 3-91 shows that there exists a linear relation between p(r)

and z%r) as follows

p) = PO, 3.92
where

P(1) = [0n(1, 1) + Oult, ))Pi1[On (1, 1) + Owlt, )P 3-93
With 3-79 we obtain for the optimal input to the system

() = —F({)z%(1), 3-94
where

F(f) = RZ()BT())P(1). 3-95
This is the solution of the regulator problem, which has been derived under

the assumption that an optimal solution exists, We summarize our findings as
follows.
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Theorem 3.3. Consider the deterministic linear optimal regulator problem.
Then the aptimal input can be generated through a linear control law of the
farm
() = —F(Nz(1), 3-96
where
F(H) = RF'(OBT(OP(D). 3-97
The matrix P(t) is given by
P(t) = [Ou(t, &) + Oult, t)P11[On (1, 1) + Onlt, tPP]™, 398

where O (¢, ta), O1a(t, 1), O (Y, 1), and Ouu(t, t,) are obtained by partitioning
the transition matrix @(t, t,) of the state differential equation

(r:(r)) ( A(f) —B(r)Rf(r)BT(r)) (z(r)) 2.0
A0/ \—Ry®) —~AT(f) o0/’
where

Ry(1) = DT(HR(1) D(1). 3-100

This theorem gives us the soluticn of the regulator problem in the form of a
linear control law. The control law automatically generates the optimal input
for any initial state. A block diagram interpretation is given in Fig. 3.3 which
very clearly illustrates the closed-loop nature of the solution.

o+ uft) x(E)

system

feedbock
goin
matrix
Fit)

Fig. 3.3. The feedback structure of the optimal linear regulator.

The formulation of the regulator problem as given in Definition 3.2 of
course does not impose this closed-loop form of the solution. We can just as
easily derive an open-loop representation of the solution. At time ¢, the
expression 3-89 reduces to

zg = [Oulty, 1) + Oualty, 1) P 120(1,). 3-101
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Solving 3-101 for #°(¢,) and substituting the result into 3-90, we obtain
Pty = [®2;(t= 1) + Oty 1)P][O1(as 11) + Oralty, 1)P1] 5. 3-102
This gives us from 3-79

u'(f) = =Ry (OB ()[Ou(t, 1)) + Ogo(t, 1)P,][O1 (15, 1) + Oualte, 1P 2,
pLt<y 3-103
For a given =, this yields the prescribed behavior of the input. The corre-

sponding behavior of the state follows by substituting =(z,) as obtained from
3-101 into 3-89:

2'(1) = [O4(t, ) + Oult, tDP)[On(to, 1)) + Oualty, 1P 2. 3-104

In view of what we learned in Chapter 2 about the many advantages of

closed-loop control, for practical implementation we prefer of course the

closed-loop form of the solution 3-96 to the open-loop form 3-103, In Section

3.6, where we deal with the stochastic regulator problem, it is seen that state
feedback is not only preferable but in fact imperative.

Example 3.5. Aagular velocity stabilization

The angular velocity stabilization problem of Example 3.3 (Section 3.3.1} is
the simplest possible nontrivial application of the tlieory of this section. The
combined state and adjoint variable equations 3-99 are now given by

(E(r))_ - =" (E(r))'
(D) PR AET0) 3-105

The transition matrix corresponding to this system of differential equations
can be found to be

a

. 2
? - & li=to) + b4 7+ e s I 'JL gtimtol _ pmrte—toy
2y <y “PY
G("'r 'tl]) = : ?
1 [ _ gttt yto Q= 4 YT & vt
2y _ 2y 2y
: 3-106
where
y=_[a® + £. 3-107
o A
To simplify the notation we write the transition matrix as
0t f)  Onalt, o)
B, 1) = ( H e ) 3-108
O (2, t0) Bl #5)
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Tt follows from 3-103 and 3-104 that in open-loop form the optimal input
and state are given by

1ty =

) WP bha(t 1) + Oraltn, 1) " {A \.

j (1) = Oty 8 B, 1)m 0.'\ ) ;i v
o Bty ) 4 Bua(ty, t1}m :

Figure 3.4 shows the optimal trajectories and the behavior of the optimal

input for different values of the weighting factor p. The following numerical

values have been used:

K Oa(2, t1) + Bunlt, 1))y [ \) 3-109

3-114

e =055,
w = 150 rad/(V s, 3111
t, =20s, t,=1s.

The weighting coefficient =, has in this case been set to zero. The figure clearly
shows that as p decreases the input amplitude grows, whereas the settling
time becomes smaller,

Figure 3.5 depicts the influence of the weighting coefficient 7, ; the factor
p is kept constant. It is seen that as =, increases the terminal state tends to be
closer to the zero state at the expense of a slightly larger input amplitude
toward the end of the interval.

Suppose now that it is known that the deviations in the initial state are
usually not larger than 4100 rad/s and that the input amplitudes should be
limited to £3 V. Then we see from the fipures that a suitable choice for p
is about 1000. The value of = aflects the behavior only near the terminal
time.

Let us now consider the feedback form of the solution. It follows from
Theorem 3.3 that the optimal trajectories of Figs. 3.4 and 3.5 can be generated
by the control law

w) = —FEW, 3-112

where the time-varying scalar gain F{¢) is given by

Bt 1) 4 Bualt, t)m

p Bu(t, 1) + B1al2, )y

Figure 3.6 shows tlie behavior of the gain #7(f) corresponding to the various -
numerical values used in Figs. 3.4 and 3.5. Figure 3.6 exhibits quite clearly
that in most cases the gain factor F(r} is constant during almost the whole
interval [t, £]. Only near the end do deviations occur. We also see that
m, = 0.19 gives a constant gain factor over the entire interval. Such a gain
factor would be very desirable from a practical point of view since the im-
plementation of a time-varying gain is complicated and costly. Comparison

F(t) =

3113
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of the curves for -, = 0.19 in Fig. 3.5 with the other curves shows that there
is little point in letting F vary with time unless the terminal state is very heavily
weighted. _

3.3.3 Derivation of the Riccati Equation

We proceed with establishing a few more facts about the matrix P(¢)
as given by 3-98. In our further analysis, P(¢) plays a crucial role. It is possible
to derive a differential equation for P(¢). To achieve this we differentiate
P(f) as given by 3-98 with respect to . Using the rule for differentiating the
inverse of a time-dependent matrix M (¥},

(%M"(t) = — M (OMOMD, 3-114
which can be proved by differentiating the identity M(EOM2() =1, we
obtain

B(t) = [On(t, 1) + Ou(t, BP][0n(, 1) + O, AT
— [Bu(t, 1) + Ou(t, 1) P[0 (2, 1) + Oz, )P
. [@u(f, L) + O, P[0n(t 1) + On(t, )P, 3-115

where a dot denotes differentiation with respect to ¢, Since ©(t, 1,) is the
transilion matrix of 3-99, we have

Oult, 1) = A()B1n(t, 1) — BORT'()BT(H)O(t, 1),
Ot 1) = ANt 1) — B(OYRZ(NBT(1)B(1, 1),
Bult, 1) = —R(HO,({, 1) — AT (DOt t1)s

Oult, 1) = —R(NO(1, 1) — AT(H)Oult, 1,).

Substituting all this into 3-115, we find after rearrangement the following
differential equation for P(t):

~P() = R((#) — POBINORT{DBTNP) + POAW) + ATP(). 3-117

The boundary condition for this differential equation is found by setting’
t = t, in 3-98. It follows that

3-116

P(t) =P, 3-118

The matrix differential equation thus derived resembles the well-known
scalar differential equation

;‘:ﬂ + a(@)y + A = a), 3-119
x

where 2 is the independent and y the dependent variable, and «(z), 3(z),
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and y(z) are known functions of x. This equation is known as the Riccati
equation (Davis, 1962). Consequently, we refer to 3-117 as a matrix Riccati
equation (Kalman, 1960).

We note that since the matrix P, that occurs in the terminal condition for
P(t) is symmetric, and since the matrix differential equation for P(f) is also
symmetric, the solution P(z) must be symmetric for afl #, <t < #. This
symmetry will often be used, especially when computing P.

We now find an interpretation for the matrix P(f). The optimal closed-
loop system is described by the state differential equation

#(1) = [A(1) — BOFORE). 3120

Let us consider the optimization criterion 3-65 computed over the interval
[z, t;]. We write

ﬁmf@)&(ﬂz(ﬂ + uT@REAUC] dr + ()Pt

= [ FERE) + FIORMFEE) dr + 5P, 3121
since ‘
u(r) = —F(z)=(r). 3-122

From the results of Section 1.11.5 (Theorem 1.54), we know that 3-121 can
be written as ‘

T (NE()=(1), 3-123

where £(t) is the solution of the matrix differential equation

—B(f) = Ry() + FTORLDF ()

i + FIA(N — BOFW] + [A() — BOFOF (1), 3-124
wl

By =P,
Substituting F(t} = Rz'(1}BT(1)P(f) into 3-124 yields
—B(t) = Ry(t) + P(VB(ORZ'(DBT(DP(1) + P(HA()
— B(HBMRT' (NBT(HP(1) + AT(HFP()
— P(OB(ORT(DBT(OP(). 3-125
We claim that the solution of this matrix differential equation is precisely

B@t) = P(2). 3126
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This is easily seen since substitution of P(#) for P(¢) reduces the differential
equation 3-125 to '

—P(1) = Ry(t) — P(OBORF(OBT(DP(L) + POA(Q) + AT(1)P(). 3-127

This is the matrix Riccati equation 3-117 which is indeed satisfied by P(t);
also, the terminal condition is correct. This derivation also shows that P(#)
must be nonnegative-definite since 3-121 is a nonnegative expression because
Ry, R,, and P, are nonnegative-definite.

We summarize our conclusions as follows.

Theorem 3.4. The optimal input for the deterministic optimal linear regulator
is generated by the linear control law

u(r) = —F(1)=(0), 3-128
where
F'(t) = RF'()BT(H) P(D). 3-129
Here the symmetric nonnegative-definite matrix P({) satisfies the matrix
Riccati equation
—P(1) = Ry(t) — P(B(1)RF(NBT(NP(Y) + PMA(r) + AT(HP(), 3-130
with the terminal condition
P{t,) = Py, 3-131

and where
R,(t) = DT ()R,(1)D(¢).

For the optimal solution we have

ﬁ TR, ) + 1T (RR(u)] dr + 29T(1) Pt

= TP, t<t. 3-132

We see that the matrix P(f) not only gives us the optimal feedback law but
also allows us to evaluate the value of the criterion for any given initial state
and initial time.

From the derivation of this section, we extract the following result
(Wonham, 1968a), which will be useful when we consider the stochastic
linear optimal regulator problem and the optimal observer problem.

Lemma 3.1. Consider the matrix differential equation

—B(f) = Ry(t) + FT(HRLOFQ) + PO)A(R) — BE)F(1)]
+ [A(f) — B(OF(OITB(), 3-133
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with the terminal condition _
P(t)=P, 3-134

where Ry(1), Ra(t). A(t) and B(t) are given time-varying matrices of appropriate
dimensions, with R((i) nonnegative-definite and R.(t) positive-definite for
t; < t < 1y, and Py nonnegative-definite. Let F(t) be an arbitrary continuous
matrix function for t) <t < t;. Then for 1, <t < 1,

B > P, 3-135
where P() is the solution of the matrix Riccati equation
—P(f) = R(1) — P(OBORT(DBT(DP() + P(OA() + 4T(OHP(), 3-136
P(t) = Py. 3-137
The inequality 3-135 converts into an equality if

F(v) = RF(*)BT(AP(+) fort<r<H. 3-138

The lemma asserts that P(¢) is “minimized” in the sense stated in 3-135 by
choosing F as indicated in 3-138. The proof is simple. The quantity

= () P(1)(1) 3-139

is the value of the criterion 3-121 if the system is controlled with the arbitrary

linear control law
l!(T) = —F{r)z(7), t<r<H. . 3-140

The optimal control law, which happens to be linear and is therefore also
the best linear control law, yields = (#)P(f)z(f) for the criterion (Theorem
3.4), so that

2T (OE(D=() > 2T (H)P(H)z(t)  for all z(7). 3141

This proves 3-133.

‘We conclude this section with a remark about the existence of the solution
of the regulator problem. It can be proved that under the conditions formu-
lated in Definition 3.2 the deterministic linear optimal regulator problem
always has a unique solution. The existence of the solution of the regulator
problem also guarantees (1) the existence of the inverse matrix in 3-98, and
{2) the fact that the matrix Riccati equation 3-130 with the terminal condition
3-131 has the unique solution 3-98. Some references on the existence of the
solutions of the regulator problem and Riccati equations are Kalman
(1960), Athans and Falb (1966), Kalman and Englar (1966), Wonham
(1968a), Bucy (1967a, b), Moore and Anderson (1968), Bucy and Toseph
(1968), and Schumitzky (1968).
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Example 3.6. Angular velocity stabilization
Let us continue Example 3.5. P(#) is in this case a scalar function and
satisfies the scalar Riccati equation

—Piy=1— K—2132(1) — 2uP(1), 3-142
p

with the terminal condition

P(ty) = my. 3-143
In this scalar situation the Riccati equation 3-142 can be solved directly.
In view of the results obtained in Example 3.5, however, we prefer to use
3-98, and we write
Ogalt, 83} + Oonls, ti)m
G]l(t! t) + H]_L‘(t: h)m :
with the ;; defined as in Exampie 3.5. Figure 3.7 shows the behavior of P(f)
for some of the cases previously considered. We note that P(f), just as the
gain factor F(¢), has the property that it is constant during almost the entire
interval except near the end. (This is not surprising since P(f) and F(¢) differ
by a constant factor.)

Pty = 1< b, 3-144

P
05 p==10000. mq=0
oo
2
{rod /5)0.3
0.2
TR ™ =019
0.1 p=100,77=0 i
0 1
0 0.5

t—-—[S) 1

Fig. 3.7. The behavior of P(t) for the angular velocity stabilization problem for varions
values of p and .

3.4 STEADY-STATE SOLUTION OF THE
DETERMINISTIC LINEAR OPTIMAL
REGULATOR PROBLEM

3.41 Introduction and Summary of Main Results

In the preceding section we considered the problem of minimizing the criterion

f ll[ET(T)R;.(I)E(D-‘) + T (OR(Nu(D)] dt 4 &7 (1) Pya(ty) 3-145
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for the System £(1) = A(Dx(t) + B(u(1),

2(1) = D)= (1),

where the terminal time ¢, is finite. From a practical point of view, it is often
natural to consider very long control periods [fg, £;]. In this section we there-
fore extensively study the asymptotic behavior of the solution of the deter-
ministic regulator problem as ¢; — oo.

The main results of this section can be summarized as follows.

3-146

1. As the terminal time t, approaches infinity, the solution P(¢) of the
matrix Riccati equation

—P(t) = D¥(OR(H) D() — P(NBORT (NB*(DP(1) + AT(OP(1) + P(DA(D),
3-147

with the terminol condition P(t) =P, 3.148

generally approaches a steady-state solution P(1) that is independent of P,.

The conditions under which this result holds are precisely stated in Section
3.4.2, We shall also see that in the time-invariant case, that is, when the
matrices 4, B, D, Ry, and R, are constant, the steady-state solution P, not
surprisingly, is also constant and is a solution of the algebraic Riccati equa-
tion
0= DTR,D — PBR;'BTF + ATF + PA. 3-149

It is easily recognized that P is nonnegative-definite. We prove that in general
(the precise conditions are given) the steady-state solution £ is the only solu-
tion of the algebraic Riccati equation that is nonnegative-definite, so that it
can be uniquely determined.

Corresponding to the steady-state solution of the Riccati equation, we
obtain of course the steady-siate control law

u() = — F(Hz(n, 3-150
where

F() = R (OBT(H)P(). 3-151
It will be proved that this steady-state control law minimizes the criterion
3-145 with ¢, replaced with oo. Of great importance is the following:

3. The steady-state control law is in general asympiotically stable.

Apgain, precise conditions will be given. Intuitively, it is not difficult to
understand this fact. Since

f BERORLDD + uT(ORLDu(D] dt 3-152
ty



222 - Optimal Linear State Feedbock Conirol Systems

exists for the steady-state comtrol law, it follows that in the closed-loop
system u(t) — 0 and 2(t) — 0 as { — ca0. In general, this can be true only if
z(z) — 0, which means that the closed-loop system is asymptotically stable.

Fact 2 is very important since we now have the means to devise linear
feedback systems that are asymptotically stable and at the same time possess
optimal transient properties in the sense that any nonzero initial state is
reduced to the zero state in an optimal fashion. For time-invariant systems
this is a welcome addition to the theory of stabilization outlined in Section
3.2. There we saw that any time-invariant system in general can be stabilized
by a linear feedback law, and that the closed-loop poles can be arbitrarily
assigned. The solution of the regulator problem gives us a prescription to
assign these poles in a rational manner. We return to the question of the
optimal closed-loop pole distribution in Section 3.8.

Example 3.7. Angular velocity stabilization

For the angular velocity stabilization problem of Examples 3.3, 3.5, and
3.6, the solution of the Riccati equation is given by 3-144. It is easily found
with the aid of 3-106 that as {, — oo,

P(t)—~ P = ﬂn(-—-a + \/aﬂ + 1‘—) 3-153
K p

P can also be found by solving the algebraic equation 3-149 which in this case

reduces to . :

0=1—"<PF"— 2P 3-154
P

This equation has the solutions

-”;(—ai\/aﬂ +£). 3155
" p

Since P must be nonnegative, it follows immediately that 3-153 is the correct
solution.
The corresponding steady-state gain is given by

F=1(—m+ /a2+—'5). 3-156
x p

p(t) = —FE() 3-157
into the system state differential equation, it follows that the closed-loop
system is described by the state differential equation

En=—J* + L (D). 3-158
p

By substituting
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Obviously, this system is asymptotically stable,

Example 3.8. Position control

As a more complicated ¢xample, we consider the position control problem -
of Example 3.4 (Section 3.3.1). The steady-state solution P of the Riccati
equation 3-147 must now satisfy the equation

o= )a,0— Bl |0, 0P + P4 P . 3159
o klp —u 0 —n

Let Py, i, j =1, 2, denote the elements of P. Then using the fact that P, =
B, the following algebraic equations are obtained from 3-159

-
O=1_— ]..-‘.!:
g
Kﬂ—- " - _
0= — = Pualyn + Py — by, 3-160
P
K o _
0=——P2‘.2+2P12""2U.Pnn
F

These equations have several solutions, but it is easy to verify that the only
nonnegative-definite solution is given by

pla 2
Py, = \"Z"E\/U'-- +__n'i,
p J7

= ve 3-161

K

Py = “E-(—-o'. + \/12 + 2—5)
- K2 \/P

The corresponding steady-state feedback gain matrix can be found to be

el B s
Ve & P

Thus the input is given by

|
T

1z

w(t) = — Fa(b), 3-163

It is easily found that the optimal closed-loop system is described by the
state differential equation
0 1

i={ . \/— 2|0 3-164
—— — o =
Je Ve
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The ciosed-loop characteristic polynomial can be computed to be

524-5\/ar2+-?'£ 4+ 3165
NERNG

The closed-loop characteristic values are

1(— ot 4 2K i\/a_‘—' - 2—’1) 3-166
2 r p

Figure 3.8 gives the loci of the closed-loop characteristic values as p varies.
It is interesting to see that as p decreases the closed-loop poles go to infinity
along two straight lines that make an angle of /4 with the negative real axis.
Asymptotically, the closed-loop poles are given by

1/4 _
i‘“{;‘; JA-1L£)  as p—0. 3-167

Figure 3.9 shows the response of the steady-state optimal closed-loop system

p=0.00002 {571y

4-15

Fig. 3.8. Loci of the closed-loop roois ol the position control sysiem as a function of p.
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angular 0]

position
Lit)
{rod)
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input U ; () 05
voltoge
pit)
(v)
-25

Fig. 3.9. Response of the optimal positien control system to the initial stote £,(0) =
0.1 rad, £(0) = O rad/s.

corresponding to the following numerical values:

e = 0.787 rad/(V s%),
o =4.6571, 3-168
p = 0.00002 rad?®/v=:.

The corresponding gain matrix is
F = (223.6, 18.69), 3-169

while the closed-loop poles can be computed to be —9.658 4 j9.094. We
observe that the present design is equivalent to the position and velocity
feedback design of Example 2.4 (Section 2.3). The gain matrix 3-169 is
optimal from the point of view of transient response. It is interesting to note
that the present design method results in a second-order system with relative
damping of nearly 1+/2, which is exactly what we found in Example 2.7
(Section 2.5.2) to be the most favorable design.

To conclude the discussion we remark that it follows from Example 3.4
that if 2(f) is actnally the deviation of the state from a certain equilibrium
state x, which is not the zero state, z(¢) in the control law 3-163 should be re-
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Here £y is the desired angular position. This results in the control law
pt) = A& — Eu] — F&(®), 3-1M

where F = (F,, F). The block diagram corresponding to this control law
is given in Fig. 3,10, '

Example 3.9. Stirred tank

As another example, we consider the stirred tank of Example 1.2 (Section
1.2.3). Suppose that it is desired to stabilize the outgoing flow F(¢) and the
outpoing concentration c(f). We therefore choose as the controlled variable

0.01 0
#(1) = y(t) = ( 0 1)m(:), 3-172

where we use the numerical values of Example 1.2. To determine the weight-
ing matrix Ry, we follow the same arpument as in Example 2.8 (Section
2.5.3). The nominal value of the outpoing flow is 0.02 m%s. A 10% change
corresponds to 0.002 m®/s. The nominal value of the outgoing concentration
is 1.25 kmol/m®. Here a 10% chanpe corresponds to about 0.1 kmol/m?.
Suppose that we choose Ry diagonal with diagonal elements «; and o..
Then

2T(ORy2(1) = ouls™(1) + 0ula"(0), 3173
where 2(t) = col (£,(8), £:(t)). Then if a 10%, change in the outgoing flow is

to make about the same contribution to the criterion as a 109 change in the
cutpoing concentration, we must have '

0,{0.002)% ~ g,4(0.1)%, 3-174
or
% ~ 2500. 3175
T
Let us therefore select
o, = 50, Ty = 1-]1—[_], 3-176
or
50 0
R, = . 3177
o 002

To choose R; we follow a similar approach. A 10%, change in the feed Fy
corresponds to 0.0015 m¥/s, while a 109/ change in the feed F; corresponds to
0.0005 m%s. Let us choose R, = diag (py, po). Then the 109, changes in F
and ¥, contribute an amount of

£1(0.0015)? + p,(0.0005) 3-178
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to the criterion. Both terms contribute equally if

Aa_l 3-179
px 9
We therefore select
0
0 3

where p is a scalar constant to be determined.

Figure 3.11 depicts the behavior of the optimal steady-state closed-loop
system for p = o, 10, 1, and 0.1. The case p = oo corresponds to the open-
loop system (no control at all). We see that as p decreases a faster and faster
response is obtained at the cost of larger and larger input amplitudes. Table
3.1 gives the closed-loop characteristic values as a function of p. We see that
in all cases a system is obtained with closed-loop poles that are well inside the
left-half complex plane.

Table 3.1 Locations of the Steady-State
Optimal Closed-Loop Poles as a Function
of p for the Regulated Stirred Tank

Optimal closed-loop poles

P ™
@ —0.01 —0.02
10 —0.02952, —0.04523
1 —0.07517, —0.1379
0.1 —0.2310, —0.4345

We do not list here the gain matrices £ found for each value of p, but it
turns out that they are not diagonal, as opposed to what we considered in
Example 2.8. The feedback schemes obtained in the present example arec
optimal in the sense that they are the best compromises between the require-
ment of maximal speed of response and the himitations on the input ampli-
todes.

Finally, we observe from the plots of Fig. 3.11 that the closed-loop system
shows relatively little interaction, that is, the response to an initial disturb-
ance in the concentration hardly affects the tank volume, and vice versa,

3.4.2%* Steady-State Properties of Optimal Repulators

In this subsection and the next we give precise results concerning the steady-
state properties of optimal regulators. This section is devoted to the general,
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time-varying case; in the next section the time-invariant case is investigated
in much more detail. Most of the results in the present section are due
to Kalman (1360). We more or less follow his exposition.

We first state the following result.

Theorem 3.5. Consider the matrix Riccati equation

—~B(1) = DT(Ry(HD(r} — P()BORT(OBT(OP() + AT()P(1) + P(HA(®).
3-181

Suppose that A(t) is contimious and bounded, that B(t), D(t), Ry(), and Ru(t)
are piecewise continuous and bounded on [1,, ), and furthermore that

Ry() > al, Re()>pI, forallt, 3-182

where o and # are positive constants.
(i) Then if the system
#(t) = A(t)=(2) + B(Du(r),
z(t) = D{Dz(¢), 3-183
is either
(2) completely controllable, or
(b) exponentially stable,
the solution P(t) of the Riccati equation 3-181 with the terminal condition
P(1,) = O converges to a nonnegative-definite matrix function B(tf) as t, — oo.
P(t) is a solution of the Riccati equation 3-18L.
(i) Moreover, if the system 3-183 is either
(c) both uniformly completely controllable and uniformly completely re-
constriictible, or
(d) exponentially stable,
the solution P(t) of the Riccati equation 3-181 with the terminal condition
P(t)) = P, converges to P(t) as {, — o for any P, 2> 0.

The proof of the first part of this theorem is not very difficult, From Theorem
3.4 (Section 3.3.3), we know that for finite ¢

ty
T ()P()z(t) = min {f [ET(T)R(D)z(7) + T (PR (Du(r)] d‘l’}. 3-184
- i.[‘:...“fgh '
Of course this expression is a function of the terminal time f,. We first
establish that as a function of ¢, this expression has an upper bound. If the
system is completely controllable [assumption {a)], there exists an input that
transfers the state z(r) to the zero state at some time #;. For this input we can
compute the criterion

h'[zT(T)R:.(T)z(T) + uT(@R(r)u(r)] d. 3-185
t
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This number is an upper bound for 3-184, since obviously we can take u(f) =
0 for t > 1. )

If the system is exponentially stable (Section 1.4.1), =(t) converges ex-
ponentially to zero if we let u(f) = 0. Then

ftl[zT(T)Ra(T)z(T) + uT(r)Ro(@)ue(r)] b .—_flzi"(-r)Rn(T)z(T) dr  3-186

converges to a finite number as #, — <o, since D(¢) and R4(t) are assumed to
be bounded. This number is an upper bound for 3-184.

Thus we have shown that as a function of ¢, the expression 3-184 has an
upper bound under either assumption (a) or (b). Furthermore, it is reasonably
obvious that as a function of ¢, this expression is monotonicaily nonde-
creasing. Suppose that this were not true. Then there must exist a #{ and 17
with #; > #, such that for 7, = #y the criterion is smaller than for r, = 1.
Now apply the input that is optimal for {] over the interval [#;, #1]. Since the
integrand of the criterion is nonnegative, the criterion for this smaller interval
must give a value that is less than or equal to the criterion for the larger
interval [t,, #1]. This is a contradiction, hence 3-184 must be 2 monotonically
nondecreasing function of #,.

Since as a function of ¢, the expression 3-184 is bounded from above and
monotonically nondecreasing, it must have a limit as #; — co. Since z(r)
is arbitrary, each of the elements of P(t) has a limit, hence P() has a limit
that we denote as P(z). That P(t) is nonnegative-definite and symmetric is
obvious. That P(¢) is a solution of the matrix Riccati equation follows by the
continuity of the solutions of the Riccati equation with respect to initial
conditions. Following Kalman (1960), let I1(z; P,, ;) denote the solution of
the matrix Riccati equation with the terminal condition Py(f;) = P;. Then

Py =1imTl{t; 0, t,) = Em I1{y; I1(#;; 0, t.), t,]

ta—m tn—m

= H{[; lim H(rl; D: Iﬂ): tl]

ta—m

= TI[t, P(1), 4], 3-187

which shows that F{¢) is indeed a solution of the Riccati equation. The™
proof of the remainder of Theorem 3.5 will be deferred for a2 moment.

We refer to P(f) as the steady-state solution of the Riccati equation. To
this steady-state solution corresponds the steady-state optimal control law

u(f) = — (1), 3-188
where
F(n) = RFY(OBT(HE(). 3-189
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Concerning the stability of the steady-state control law, we have the following
result.

Theorem 3.6. Consider the deterministic linear optimal regulator problem
and suppose that the assumptions of Theorem 3.5 concerning A, B, D, Ry and
R, are satisfied. Then if the system

£(1) = A()=(t) + B(u(s), 3-190
=(t) = D(t)=(1),
is either
(a) botlt uniformly completely controllable and uniformly completely re-
constructible, or
(b) exponentially stable,
the following facts hold:

(i) The steady-state aptimal conirol law

u(ty = —R7(NBTOP(D=() 3191
is exponentially stoble.
(i) The steady-state controd law 3-191 minimizes

liml h[zT(r)Ra(:)z(r) 1 wT(DRDu(D)] dt + ¥T(L)Pya(t)) 3192

t1=+m ta
Jorall Py > 0. The minimal value of the criterion 3-192, which is achieved by the
steady-state contral law, is given by

2T(t) P(1g)z(ty)- 3-193
A tigorous proof of these results is given by Kalman (1960). We only make
the theorem plausible. If conditien (a) or (b) of Theorem 3.6 is satisfied, also
condition (a) or (b) of Theorem 3.5 holds. It follows that the solution of the
Riccati equation 3-181 with P(z,) = O converges to P(r) as #, — co. For the
corresponding steady-state control law, we have

f m[zT(‘)Ra(f)z(t) + uTOR(Du()] dt = 2T(t)P(t)x(ty).  3-194

Since -the integral converges and Rg(t) and R.(¢) satisfy the conditions
3-182, both z(z) and #(¢) must converge to zero as # -— 0. Suppose now that
the closed-loop system is not asymptotically stable. Then there exisis an
initial state such that z(z) does not approach zero while z(z)— 0 and u(z} — 0.
This is clearly in conflict with the complete reconstructibility of the system if
(a) holds, or with the assumption of exponential stability of the system if
(b) holds. Hence the closed-loop system must be asymptotically stable. That
it moreover is exponentially stable follows from the uniformity properties.
This settles part (i) of the theorem. Part (ji) can be shown as follows. Sup-
pose that there exists another control law that yields a smaller value for
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3-192. Because the criterion 3-192 yields a finite value when the steady-state
optimal control law is used, this other control law must also yield a finite
value. Then, by the same argument as for the steady-state control law,
this other control law rmust be asymptotically stable. This means that for
this control law

lim [J.h[zT(I)Rn(t)z(l‘) + (R Nu(2)] dt + $T(11)P1x(f1)]

1= m

=J.m[zT(t)R3(t)z(r) + uT(ORADu()] dt.  3-195

But since the right-hand side of this expression is minimized by the steady-
state control law, there cannot be another control law that yields a smaller
value for the left-hand side. This proves part (if) of Theorem 3.6. This more-
over proves the second part of Theorem 3.5, since under assumptions (c)
ot (d) of this theorem the steady-state feedback law minimizes the criterion
3-192 for all P, > 0, which implies that the Riccati equation converges to
EB()forall A, > 0.

We illustrate the results of this section as follows.

Example 3.10. Reel-winding mechanism
As an example of a simple time-varying system, consider the reel-winding
mechanism of Fig. 3.12. A dc motor drives a reel on which a wire is being

angutar reel

HHHNWHH

I J_rndius Rt}

—— ]

by d-c motor

wire

speed [it)

Fig. 3.12. Schematic representation of a reel-winding mechanism.

wound. The speed at which the wire runs on to the reel is to be kept.constant.
Because of the increasing diameter of the reel, the moment of inertia in-
creases; moreover, to keep the wire speed constant, the anpular velocity must
decrease. Let w(i) be the angular velocity of the reel, J{¢) the moment of
inertia of reel and motor armature, and u(r) the input voltage to the power
amplifier that drives the dc motor. Then we have

< UOu(0] = ) — gald 3196
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where i is a constant which expresses the proportionality of the torque of
the motor and the input voltage, and where ¢ is a friction cocfficient. Further-
more, let R(?) denote the radius of the reel; then the speed {(t} at which the
wire is wound is given by

£{t) = R{t)w(1). 3-197
Let us introduce the state variable

() = J(w(}). 3-198
The system is then described by thie equations

¢

163 == }6 1) + wpld),

. 0 3-199
R(1

i = J_("t-)_ &(1).

We assume that the reel speed is so controlled that the wire speed is kept
constant at the value £;. The time dependence of J and R can then be esta-
blished as follows. Suppose that during a short time d¢ the radius increases
from R to R + dR. The increase in the volume of wire wound upon the reel
is proportional to R dR. The volume is also proportional to dt, since the wire
is wound with a supposedly constant speed. Thus we have

RdR = c dt, 3200
where ¢ is a constant. This yields after integration

R(1) = VR¥0) + It, 3201

where fi is another constant, However, if the radius increases from R to
R + dR, the moment of inertia increases with an amount that is proportional
to RdR R* = R® dR. Thus we have

d] = ¢'R*dR, 3-202
where ¢’ is a constant. This yields after integration
J(t) = J(0) + ' [RI(t) — RYO)], 3-203

where i’ is another constant.

Let us now consider the problem of regulating the system such that the
wire speed is kept at the constant value {,. The nominal solution ,(z),
y(2) that corresponds to this situation can be found as follows. If £,(t) = £,
we have

J(1)

Eft) = ﬁ Lo- 3.204
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The nominal input is found from the state differential equation:
¢ a[jm) ¢
()= [ ! +——§() }g 3.205
o £ol1) ) 0 dr R(1) R(r) 0-
Let us now define the shifted state, input, and controlled variables:
E(1) = &0 — &),
K = ) — (), 3-206
TN = L) — L.

These variables satisfy the equations

b

(1) = EQ) + ' (1),
I
) R(1) 3-207
t@ = (). '
J(1)
Let us choose the criterion
ty
l: () + pu'*(1)] dt. 3-208
Then the Riccati equation takes the form
=B pry 5 L opg, 3209
T P J(1)
with the terminal condition
B(t,) = 0. 3-210

P(t) is in this case a scalar function. The scalar feedback gain factor is given
by
F(t) == P(n). 3211
P

We choose the following numerical values:
J(f) = 0.02 + 66.67[R}() — R(0)] kg m2,
R{f) = +/0.01 + 0.0005¢ m,
¢ = 0.01 kg m?¥s, 3-212
e = 0.1 kg m? rad{(V s),
p = 0.06 m¥/(V3®).

Figure 3.13 shows the behavior of the optimal gain factor F(r) for the terminal
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steody -~ stote portion
af curves

g 5 9 15 0

L )

Fig. 3.13. Behavior of the optimal gain factor for the reel-winding problem for various
values of the terminal time £,

times 1, = 10, 15, and 20 s. We note that for each value of ¢, the gain ex-
hibits an identical steady-state behavior; only near the terminal time do
deviations occur. It is clearly shown that the steady-state gain is time-
varying. It is not convenient to implement such a time-varying gain, In
the present case a practically adequate performance might probably just as
well be obtained through a time-invariant feedback gain,

3.4.3* Steady-State Properties of the Time-Invariant Optimal
Regulator

In this section we study the steady-state properties of the time-
invariant optimal linear regulator. We are able to state sufficient and neces-
sary conditions under which the Riccati equation has a steady-state solution
and under which the steady-state optimal closed-loop system is stable. Most
of these facts have been piven by Wonham (i196Ba}, Lukes (1968), and
Martensson (1971).

Our results can be summarized as follows.

Theorem 3.7. Consider the time-invariant regulator problem for the system

(1) = Ax(t) + Bu(t),

2(f) = Da(r), 3213

and the criterion

fﬁ[zﬂ'(r)an(I) + uT(ORu(t)] dt + =T (1P (1), 3-214

ta
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with Rg > 0, Ra > 0, P, > 0. The ossociated Riccati equotion is given by
—P(t) = DTR,D — P()BRT'BTP(I) + ATP(1) + P(1)A, 3-215

with the terminal condition
.P(tl) = Pl‘ 3-216

(2) Assume that Py = 0. Then as t, — o the solution of the Riccati equation
approaches a constant steady-state volue P if and anly if the system possesses
no poles that are at the same time unstoble, uncontroliable, and reconstructible.
(b) If the system 3-213 is bath stabilizable and detectable, the solution of the
Riccati equation 3-215 approaches the unigue value P as t, — <o for every
P, > 0.

(c) If P exists, it is a nonnegative-definite symmetric solution of the algebraic
Riccati equation

0 = DTR,D — PBR7*BTP + ATP 4 PA. 3-217

If the system 3-213 is stabilizable and detectable, P is the unique nannegative-
definite symmetric solution of the algebraic Riccati equation 3-217.

(d) If P exists, it is strictly pasitive- dqﬁmte if and only if the system 3-213
is camplerely reconstrictible.

() If P exists, the steady-state control law

u(t) = — Fa(1), 3-218
where
F=R7'BTP, 3-219
is asymptotically stable if and only if the system 3-213 is stabilizable and
detectable.
(£) If the system 3-213 is stabilizable and detectable, the steady-state control
law minimizes

iy
lim [f [z T()Rz2(t) + uT(ORuu(t)] dt + =T(t,)P (1) 3-220
f1—=mlJdin
Jor all P, > 0. For the steady-state control law, the criterion 3-220 takes the
value

27 (1) P(ty). 3221
We first prove part (a) of this theorem. Suppose that the system is not com-

pletely reconstructible. Then it can be transformed into reconstructibility
canonical form as follows,

G o+ ()
o = (f) + u(t), 3222
AEI .A"l"] BE

23

Z(f) = (Dli O)I(I)s
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where the pair {4,;, D} is completely reconstructible. Partitioning the solu-
tion P(¢) of the Riccati equation 3-215 according to the partitioning in 3-222
as

PL(0) Pu(t)) 3223

P =
® (Pf‘;(t) Poo(t)

it is easily found that the Riccati equation 3-215 reduces to the following three
matrix equations

—Py(t) = D,TRy Dy — [Pi(1)B; + P(D)B,]RG"
: [Beru(t) + BarplTﬂ(t)] + Aﬁpu(f)

4+ AZPI() 4 P4y, + Pu()Aw, 3-224
—Pyu(t) = —[Pu()B) + Pro(t)Ba]R7 BT Pralt) + ByTPun(1)]

4+ AZP (1) + AZPuu(t) 4 Pra(£) Asa, 3-225
—Py(t) = —[P(1)By + Pua()BaIRT By Pralt) + Bo Puu(1)]

4+ ALPu(t) + Poa()Aug. 3-226

It is easily seen that with the terminal conditions Py,(f;) = 0, Py(t;) = 0,
and Pas(#,) = 0 Egs. 3-225 and 3-226 are satisfied by

Py(r) =0, Pa(f) =0, 1<t 3-227
With these identities 3-224 reduces to
—Py() = D,TRyDy — Pyy(OBRT' By TP(1) + ATPu(1) + Pu(DAy,

Pu(t) = 0. 3-228
It follows from this that the unreconstructible poles of the system, that is,
the characteristic values of Aq., do not affect the convergence of Py, (t) as
t; — o, hence that the convergence of P(¢) is also not affected by the un-
reconstructible poles. To investigate the convergence of P(f), we can therefore
as well assume for the time being that the system 3-213 is completely re-
canstructible.
Let us now transform the system 3-213 into controllability canaonical
form and thus represent it as follows:

Ay Ap B

i(f) = ( s ):t:(t) + ( 1)u(r), 3-229

0 A 0
2(f) = (Dy, Do)a(1),

where the pair {4,;, B,} is completely controllable. Suppose now that the

system is not stabilizable so that A., is not asymptotically stable. Then
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obviously there exist initial states of the form col (D, z.,) such that &(f) — w0
no matter how u(¢) is chosen. By the assumed complete reconstructibility,
for such initial states

£y
f (R + v (HRu()] di 3-230
to

wiil never converge to a finite number as ¢, — oo. This proves that P(¢) also
will not converge to a finite value as £, — oo if the system 3-213 is not stabiliz-
able. However, if 3-213 is stabilizable, we can always find a feedback law
that makes the closed-loop system stable. For this feedback law 3-230 con-
verges to a finite number as #; ~= oo; this number is an upper bound for the
minimal value of the critericn. As in Section 3.4.2, we can argue that the
minimal value of 3-230 is 2 monotonically nondecreasing function of #.
This proves that the minimal value of 3-230 has a limit as #; — =0, hence that
P(#) as solved from 3-215 with P(#;) == 0 has a limit P as #, — oo. This
terminates the proof of part (a) of the theorem.

We defer the proof of parts (b) and (c) for a moment. Part (d) is easily
recognized to be valid. Suppose that the system is not completely recon-
structible. Then, as we have seen in the beginning of the proof of (a}), when
the system is represented in reconstructibility canonical form, and P, = 0,
P(r) can be represented in the form

(Pu(t) 0) 2231
o o

which very clearly shows that P_ il it exists, is singular, This proves that if
P is strictly positive-definite the system must be completely reconstructible,
To prove the converse assume that the system is completely reconstructible
and that P is singular. Then there exists a nonzero initial state such that

.[m[z""(t)Raz(r) + uP()Ryu()) dt = 0. - 3-232
{

Since Ry > 0 and R, > 0, this implies that
u(t) =0 and z(t) =0 for t > ¢, 3-233

Bui this would mean that there is a nonzero initial state that causes a zero
input response of z(¢) that is zero for all ¢. This is in contradiction to the
assumption of complete reconstructibility, and therefore the assumption
that P is singular is false. This terminates the proof of part (d).

We now consider the proof of part (e). We assume that P exists. This means
that the systern has no unstable, uncontrollable poles that are reconstructible.
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We saw in the proof of (a) that in the reconstructibility canonical representa-
tion of the system £ is given in the form

7. 0
( u ) 3-234
0 0

This shows that the steady-state feedback gain matrix is of the form
- fPu O -
F= R38BT, B 0 = (R7*B,*F,,, 0O). 3-235
0

This in turn means that the steady-state feedback gain matrix leaves the un-
reconstructible part of the system completely untouched, which implies that
if the steady-state control law is to make the closed-loop system asymptotic-
ally stable, the unreconstructible part of the system must be asymptotically
stable, that is, the open-loop system must be detectable. Moreover, if the
closed-loop system is to be asymptotically stable, the open-loop system
must be stabilizable, otherwise no control law, hence not the steady-state
control law either, can make the closed-loop system stable. Thus we see
that stabilizability and detectability are necessary conditions for the steady-
state control law to be asymptotically stable.

Stabilizability and detectability are also sufficient to guarantee asymptotic
stability. We have already seen that the steady-state control law does not
affect and is not affected by the unreconstructible part of the system; there-
fore, if the system is detectable, we may as well omit the unreconstructible
part and assume that the system is completely reconstructible. Let us repre-
sent the system in controllability canonical form as in 3-229. Partitioning the
matrix P(#) according to the partitioning of 3-229, we write:

1 PIE
P(1) = ( ;(i) (r)). 3-236
Pi(f)  Paslt)

It is not difficult to find from the Riccati equation 3-215 that Py, () is the
sclution of
_Pll(‘r) = DITRHDI - B(I)BJ.R‘LTIBITPII(I) + AEPII(I) + Pll(r)Alli
FPu(t) = 0. 3-237

We see that this is the usual Riccati-type equation. Now since the pair
{44, B,} is completely controllable, we know from Theorem 3.5 that Py, (f)
has an asymptotic solution Py, as t; - o such that A4, — ByF,, where
F, = R,\B"F,,, is asymptotically stable. The control law for the whole
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system 3-229 is given by

_ P Bl
F=(A, FK)=RrR BT, 0 e (Rz'B, TP, Ry'B P
o 13 29,
3-238

With this control law the closed-loop system is described by
Ay — 31F1 A — BIF‘J
#1t) =
0 Agy

Clearly, if the open-loop system is stabilizable, the closed-loop system is
asymptotically stable since both A;; — B.F; and Ay are asymptotically
stable. This proves that detectability and stabilizability are sufficient con-
ditions to guarantee that the closed-loop steady-state control law will be
asymptotically stable. This terminates the proof of (e).

Consider now part (f) of the theorem. Obviously, the steady-state control
law minimizes

) 2(1). 3239

fm[z"" (ORs2(1) + uT(HRu(D)] dt, | 3-240
173

and the minimal value of this criterion is given by 27 (¢,)Pz(t;). Let us now
consider the criterion

lim { f h[zT(t)R:,z(t) + uT(OR(D] dt + ::T(tl)le(t,_)}, 3241

f1—-@

with P; > 0. If the system is stabilizable and detectable, for the steady-state
control law the criterion 3-241 is equal to

J: m[z’*" (ORE(L) + &T(OR.a(D] dt = zT(t)Px(1y), 3242

where £ and 7 are the controlled variable and input generated by the steady-
state control law. We claim that the steady-state control law not only
minimizes 3-240, but also 3-241. Suppose that there exists another control
law that gives a smaller value of 3-241, so that for this control law

fm[zT (OR2(®) + uT(DRu(D)] dt + lim =T(1)Pyz(t) < aT(t)Px(ty). 3-243

o

Because £, > 0 this would imply that for this feedback law

fm[zT(t)R:,z(t) + uT(ORu(D] dt < zyT(tg) P(ty). 3-244

But since we know that the left-hand side of this expression is minimized by
the steady-state control law, and no value of the criterion less than
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=" (t,)Px(fy) can be achieved, this is a contradiction, which means that
3-241 is also minimized by the steady-state control law. This terminates the
proof of part (f).

We now return to part (b) of the theorem. The fact stated in (b) immedi-
ately follows from (f). Consider now part (c). In general, the algebraic
Riccati equation has many solutions (see Problem 3.8). If 7 exists, it is a
nonnegative-definite solution of the algebraic Riccati equation becaunse
P must be a solution of the Riccati differential equation 3-215. Suppose
that the system 3-213 is stabilizable and detectable, and let P’ be any non-
nepative-definite solution of the alpebraic Riccati equation. Consider the
Riccati differential equation 3-215 with the terminal condition P, = F'.
Obviously, the solution of the Riccati equation is P(f) = P, t < t. Then the
steady-state solution P must also be given by P’. This proves that any
nonnegative-definite solution P’ of the algebraic Riccati equation is the steady-
state solution 2, hence that the steady-state value ? is the unique nonnegative-
definite solution of the algebraic Riccati equation. This terminates the proof
of (c), and also the proof of the whole theorem.

Comments. We conclude this section with the following comments. Parts
(b} and (c) state that stabilizability and detectability are sufficient conditions
for the Riccati equation to converge to a unique P for all P; > 0 and for the
algebraic Riccati equation to have a unique nonnegative-definite selution.
That these conditions are not necessary can be seen from simple examples.
Furthermore, it may very well happen that although £ does not exist,

F = lim R7*BTP(1) 3.245
t1—+m

does exist.

It is not difficult to conclude that the steady-state control law u(t) =
— Fi(¢), if it exists, changes only the locations of those open-loop poles
that are both controllable and reconstructible. Therefore an unfavorable
situation may arise when a system possesses uncontrollable or unrecon-
structible poles, in particular if these poles are unstable. Unfortunately,
it is usvally impossible to change the structure of the system so as to make un-
controllable poles controllable. If a system possesses unreconstructible
poles with undesirable locations, it is often possible, however, to redefine
the controlled variable such that the system no lenger has unreconstructible
poles.

3.4.4* Solution of the Time-Invariant Regulator Problem by
Diagonalization

In this section we further investigate the steady-state solution of the time-
invariant regulator problem. This first of all provides us with a method for
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computing the steady-state solution P of the Riccati equation, and moreover
puts us into a position to derive information about the closed-loop regulator
poles and the closed-loop behavior of the regulator. Throughout the section
we assume that the open-loop system is both stabilizable and detectable.

In Section 3.3.2 we saw that the regulator problem can be solved by con-
sidering the linear differential equation

(1) ()
=z ; 3-246
A1) p()
where Z is the constant matrix Q '
oERY —ar ] )
L) N7
Here R, = DR, D. Correspondingly, we have the boundary conditions
x(ty) = xy, 3-248a
plh) = P(t). 3-248b

From Sections 3.3.2 and 3.3.3 (Eq. 3-92), we know that p(f) and x(f) are
related by
(1) = P(n=(1), 3-249

where P(t) is the solution of the matrix Riccati equation with the terminal
condition P(#} = P;. Suppose now that we choose

P =P, 3250

where P is the steady-state solution of the Riccati equation. Then the Riccati
equation obviously has the solution

P(E) =P, L<t<. 3.251 -

This shows that the steady-state solution can be obtained by replacing the
terminal condition 3-248b with the initiafl condition

plto) = Pa(ty). - 3252

Solving the differential equation 3-246 with the initial conditions 3-248a and
3-252 gives us the steady-state behavior of the state and adjoint variable.

We study the solution of this initial value problem by diagonalization
of the matrix Z. It can be shown by elementary determinant manipulations
that

det (—sf — Z) = det (s] — Z). 3-253

Consequently, det (sf — Z)is a polyﬁomial in s* which shows that, if 4 is a
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characteristic value of Z, -1 is also a characteristic value. Let us for simplic-
ity assume that the characteristic values of Z are all distinct (for the more
general case, see Problem 3.9). This allows us to diagonalize Z as follows:

A0
=W w1, 3-254
0 —A

Here A is a diagonal matrix which is constructed as follows. If a characteristic
value 4 of Z has a strictly positive real part, it is a diagonal element of A;
— 4 is automatically placed in —A. If 4 has zero real part, one of the pair 4,
—A is arhitrarily assigned to A and the other to —A. The matrix W is com-
posed of the characteristic vectors of Z; the ith column vector of W is the
characteristic vector of Z corresponding to the characteristic value in the
ith diagonal position of diag (A, —A).
Let us now consider the differentiai equation

(;:1(:) A 0 (zl(t)
= . 3255
£(1) 0 —Af\z()
where
z,(t x(t
(‘ )) = W—l( ()). 3-256
z,(t) p(D)
We partition ¥~ as follows:
Ve Via
W=V = ( v ) 3257
Vur Vae '

Then we can write
z(1) = Vu2(?) + Vap(t)
= (Vg + VaaP)a(2). 3-258

We know that the steady-state solution is stable, that is, (¢} — 0 as { — o0,
This also implies that z;(t) — 0 as t —+ co. From 3-255, however, we see that

2, (1) = Moz (1)), 3-259

Since the characteristic values of A all have zero or positive real parts,
z;(¢) can converge to zero only if z,(¢,) = 0. According to 3-258, this can be
the case for all 2 if and only if P satisfies the relation

Vis + VP =0 3-260
If ¥}, is nonsingular, we can solve for P as follows:

P=—ViWy. 3-261
In any case # must satisfy 3-260. Let us suppose that 3-260 does not have a
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unique nonnegative-definite solution for P and let P’ be any nonnegative-
definite solution. Consider now the differential equation 3-246 with the
terminal condition

plt) = P'z(t). 3262

‘We can write the solution in the form

(I(t)) (Wu Wlf_-) (e:\tl‘—hl 0 )(Vu VIE) (:u(t,_)) 3-263
p)  \Wa Wu/\ 0 N v/ \p))”

where W has also been partitioned. Substitution of 3-262 gives

(z(r)) B (W Wm)(e“‘—“’ 0 )((rﬁ1+ VisP")ax(1)
(1) B Wi  Wa (Var -+ VaaP)z(t)

By using the fact that P’ is a solution of 3-260, this can be further worked
out; we obtain

o he ) 3-264

(t) = Wyae MM (Vo + VaaP)a(ty), 3-265a
P(t) = Waae MWy + VaoPJa(t)- 3-265b
For t = 1, the first of these equations reduces to

By = Wope MV -+ VieP')a(t). 3-266
Since the two-point boundary value problem must have a solution for all
%y, the matrix that relates z, and z(#,) must be nonsingular (otherwise this
equation would not have a solution if =, is not in the range of this matrix).
In fact, since any ¢ < #; can be considered as the jnitial time for the intervai
[2, t,], the matrix
WlaeuA(tFttJ(VzL “+ VauP') 3-267
must be nonsingular for all ¢ < #,. Solving 3-265a for z(#,) and substituting
this into 3-265b yields '

pt) = WEQEMA”_h)(Vﬂl + VP W Vay + VauP Y MWW 2(e),  3-268
ar (O’Donnell, 1966)
p(t) = W WiRz(D). 3-269
Apparently, solving the two-point boundary value problem with the ter-
minal condition P(t,} = P’ yields a solution of the form
p(t) = Px(t), 3270

where P is constant. Since this solution is independent of the terminal time #,,
P is also the steady-state solution P of the Riccati equation as #, — co.
Since, as we know from Theorem 3.7, this steady-state solution is unique, we
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cannot but conclude that
P = WuWi. 3271

This argument shows that W, is nonsingular and that P can be represented
in the form 3-271. Since the partitioned blocks of ¥ and W have a special
relationship, it can also be shown that V7, is nonsingular, hence also that
3-261 is a valid expression (Problem 3.12).

In addition to these results, we can obtain the following interesting con-
clusion. By solving 3-266 for z(t,) and substituting the result into 3-265a, we
find

2(t) = Whue MW, 3-272

This shows very explicitly that the characteristic values of the steady-state
closed-loop system are precisely the diagonal elements of —A {O’Donnell,
1966). Since the closed-loop system is known to be asymptotically stable, it
follows that the diagonal elements of —A have strictly negative real parts.
Since these characteristic values are obtained from the characteristic values
of Z. this means that Z cannot have any characteristic values with zero real
parts, and that the steady-state closed-loop characteristic values are precisely
those characteristic values of Z that have negative real parts {Letov, 1960).
We summarize these conclusions as follows.

Theorem 3.8. Consider the time-invariant deterministic Ilinear optinal
regulator problem and suppose that the pair {A, B} is stabilizable and the pair
{A, D} detectable. Define tlte 21t X 2n mnatrix

A —BR;*BY
Z= , 3-273
—~DTRy,D  —AT

and assume that Z has 2n distinct characteristic values. Then

(@) If X is a characteristic value of Z, — A also is a characteristic value. Z has no
characteristic values with zero real parts.

(b) The characteristic values of the steady-state closed-loop optimal regulator
are those characteristic values of Z that have negative real parts.

(c) If Z is diagonalized in the form

A O
Z=W W, 3274
0 —A

where the diagonal matrix A lhas as diagonal elements the characteristic values
of Z with positive real parts, the steady-state solution of the Riccati equation
3-215 can be written as

P = WyuWil = —VitWa, 3-275
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where the W; and Vi, I, j = 1, 2, are obtained by partitioning W and V =
W1, respectively. The inverse matrix inn both expressions exists.

(d) The response of the steady-state closed-loop optimal regulator can be
written as

z(t) = Wy 20w ila,, 3-276
The diagonalization approach discussed in this section is [urther pursued in
Problems 3.8 through 3.12.

3.5 NUMERICAL SOLUTION OF THE RICCATI
EQUATION

3.5.1 Direct Integration

In this section we discuss various methods for the numerical solution of the
Riccati equation, which is of fundamental importance for the regulator
problem and, as we see in Chapter 4, also for state reconstruction problems.
The matrix Riccati equation is given by

—P(1) = R(t) — POBORT(OBTMP() + AT(H)P() + P(HA(D), 3-277
with the terminal condition
P(!l‘) =P,

A direct approach results from considering 3-277 a set of #® simultaneous
nonlinear first-order differential equations (assumning that P(f) is an n X n
matrix) and using any standard numerical technique to integrate these
equations backward from #,. The most elementary method is Euler’s method,

where we write
P(t — At) =~ P(t) — P(1) At, 3-278

and compute P(t) for ¢ = ¢, — A¢, t; — 2At, - - - | If the solution converges
to a constant value, such as usually occurs in the time-invariant case, some
stopping rule is needed. A disadvantage of this approach is that for sufficient
accuracy usually a quite small value of At is required, which results in a large
number of steps. Also, the symmetry of P(¢) tends to be destroyed because of
numerical errors. This can be remedied by symmetrizing after each step, that
is, replacing P(r) with 4[P(#) + PT(f)]. Alternatively, the symmetry of P(¢)
can be exploited by reducing 3-277 to a set of in{n 4 1) simultaneous first-
order differential equations, which results in an appreciable saving of com-
puter time. A further discussion of the method of direct integration may be
found in Bucy and Joseph (1968).

The methed of direct integration is applicable to both the time-varying
and the time-invariant case. If only steady-state solutions for time-invariant
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problems are required, the methods presented in Sections 3.5.3 and 3.5.4 are
more cffective.

We finally point out the following. In order to realize a time-varying con-
trol law, the entire behavior of F(t) for 1y < t <, must be stored. It seems
attractive to circumvent this as follows. By off-line integration P(t;) can be
computed. Then the Riccati equation 3-277 is integrated on-line, with the
correct initial value P(t,), and the feedback gain matrix is obtained, on-line,
from F(1) = Ry'(1)BT(1)P(1). This method usually leads to unsatisfactory
results, however, since in the forward direction the Riccati equation 3-277 is
unstable, which causes computational inaccuracies that increase with ¢
(Kalman, 1960).

3.52 The Kalman-Englar Method

When a complete solution is required of the time-invariant Riccati equation, a
convenient approach (Kalman and Englar, 1966) is based upon the following
expression,-which derives from 3-98:

Pty = [Oo1(ligrs 1) + Opaltips, t)PUI[On{tig1, 1) + Oplter, 1)PUN],

3279
where tis = t; — At 3-280
The matrices ®,(t, t;) are obtained by partitioning the transition matrix
®(t, t,) of the system . _
(1 a(t
[49) ()
20 20
where
A —BR;'BY
Z= . 3281
—DTR,D —AT
We can compute &t 4, ¢;} once and for all as
Oty 1) = €725, 3-283

which can be evaluated according to the power series method of Section
1.3.2. The solution of the Riccati equation is then found by repeated appli-
cation of 3-279. It is advantageous to symmetrize after each step.

Numerical difficulties occur when At is chosen too large. Vaughan (1969)
discusses these difficulties in some detail. They manifest themselves in near-
singularity of the matrix to be inverted in 3-279. 1t has been shown by Vaughan
that a very small Az is required when the real parts of the characteristic
values of Z have a large spread. For most problems there exists a Az small
enough to obtain accurate results. Long computing times may result, how-
ever, especially when the main interest is in the steady-state solution.
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3.53* Solution by Diagonalization

In order to obtain the steady-state solution of the time-invariant Riccati
cquation, the results derived in Section 3.4.4 by diagonalizing the 2n X 2n
matrix Z are useful. Here the asymptotic solution is expressed as

P- = %nwl_gl, 3-284
where W,, and P, are obtained by partitioning a matrix B as follows:
Wi Wia
w={ " 7). 3285
Wo W

The matrix W consists of the characteristic vectors of the matrix Z so arranped
that the first n columns of W correspond to the characteristic values of Z
with positive real parts, and the last # columns of W to the characteristic
values of Z with negative real parts.

Generally, some or all of the characteristic vectors of Z may be complex
so that Wy, and W;, may be complex matrices. Complex arithmetic can be
avoided as follows. Since if e is a characteristic vector of Z corresponding to a
characteristic value 1 with negative real part, its complex conjupate € is also
a characteristic vector corresponding to a characteristic value 4 with a
negative real part, the last # columns of W will contain besides real column
vectors only complex conjugate pairs of column vectors. Then it is always
possibie to perform a nonsingular linear transformation

ZAN]
= U, 3-286
Wil \W

such that every pair of complex conjugate column vectors e and £ in
col (Wya, We) is teplaced with two real vectors Re (¢) and Im (e) in
col (Wys, W;a). Then

W:.:zwlrc_l = (W:IEU)(WizU)_I = erwﬁl: 3-287
which shows that Wy, and Wj; can be used to compute £ instead of W, and

Wlﬂ-
Let us summarize this method of obtaining P:

(a) Form the matrix Z and use any standard numerical technique to com-
pute those characteristic vectors that correspond to characteristic values witb

negative real parts.
(b) Form from these n characteristic vectors a 2r X n matrix

Wi '
. 3.288
Wil
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where Wi, and W, are n x p submatrices, as follows. If e is a real character-
istic vector, let e be one of the columns of 3-288. If e and & form a complex
conjugate pair, let Re ‘(e) be one column of 3-288 and Im (e) another.
(c) Compute Pas
P = WLWizt 3289

The efficiency of this method depends upon the efficiency of the subprogram
that computes the characteristic vectors of Z. Van Ness (1969) has suggested
a characteristic vector algorithm that is especially suitable for problems of
this type. The algorithm as outlined above has been successfully applied for
solving high-order Riccati equations (Freestedt, Webber, and Bass, 1968;
Blackburn and Bidwell, 1968; Hendricks and Haynes, 1968). Fath (1969)
presents a useful modification of the method.

The diagonalization approach can also be employed to obtain not only
the asymptotic solution of the Riccati equation but the complete behavior of -
P(t) by the formulas of Problem 3.11.

A different method for computing the asymptotic solution P is to use the
identity (see Problem 3.10)

I
Z =0, 3-290
T )
where ¢(s5) is obtained by factoring
det (sf — Z) = $(8)p(—5), 3-291

such that the roots of ¢(s) are precisely the characteristic values of Z with
negative real parts. Clearly, (s) is the characteristic polynomial of the steady-
state closed-loop optimal system. Here det (sf — Z) can be obtained by the
Leverrier algorithm of Section 1.5.1, or by any standard technique for
obtaining characteristic values of matrices. Both favorable (Freestedt,
Webber, and Bass, 1968) and unfavorable {Blackburn and Bidwell, 1968;
Hendricks: and Haynes, 1968) experiences with this method have been
reported. .

3.5.4* Solution by the Newton-Raphson Method

In this subsection a method is discussed for computing the steady-state
solution of the time-invariant Riccati equation, which is quite different from
the previous methods. It is based upon repeated solution of a linear matrix
equation of the type

0= ATP + P4 + R, 3-202

which has been discussed in Section 1.11.3.
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The steady-state solution P of the Riccati equation must satisfy the algebraic
Riccati equation
0= R, — PSP + ATP + PA, 3-293
where
S = BR7'B™. 3-294
Consider the matrix function

F(P) = R, — PSP + ATP 4 PA. 3.295

The problem is to find the nonnegative-definite symmetric matrix P that
satisfies
HP)=0. 3-296

We derive an iterative procedure. Suppose that at the &-th stage a solution
P, has been obtained, which is not much different from the desired solution P,
and let us write

P=P. 4+ P 3-297

If P is small we can approximate F(P) by omitting quadratic terms in £ and
we obtain

F(P)= R, — P,SP, — P,.SP — PSP, — AT(P,. + P) 4+ (P. + P)4. 3-298

The basic idea of the Newton-Raphson method is to estimate P by setting
the right-hand side of 3-298 equal to zero. If the estimate of F so obtained is
denoted as Py and we let

P=P.+ P, 3-299
then we find by setting the right-hand side of 3-298 equal to zero:
0 == Rl + PkSPk + Pk+1Ak + AkTPk,‘_]V, 3-300
where
A, =4 — SP,. 3-301

Equation 3-300 is of the type 3-292, for which efficient methods of solution
exist (see Section 1.11.3). We have thus obtained the following algorithm.

(a) Choose a suitable P, and set the iteration index k equal to 0.

(b) Salve Py, from 3-300.

{c) If convergence is obtained, stop; otherwise, increase & by one and
return to (b).

Kleinman (1968) and McClamroch (1969) have shown that if the algebraic
Riccati equation has a unique nonnegative-definite solution, P, and P,
satisfy

PP, k=0,1,2,..., 3-302
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and
lim P, = P, 3-303

ot

provided P, is so chosen that
A, = A — SP, 3-304

is asymptotically stable. This means that the converpgence of the scheme is
assured if the initial estimate is suitably chosen. If the initial estimate is
incorrectly selected, however, convergence to a different solution of the
algebraic Riccati equation may occur, or no convergence at all may result.
If A is asymptotically stable, a safe choice is Py = 0. If 4 is not asymptoticaily
stable, the initial choice may present difficulties. Wonham and Cashman
(1968), Man and Smith (1969), and Kleinman (1970b) give methods for
selecting Py, when A4 is not asymptotically stable.

The main problem with this approach is 3-292, which must be solved
many times over. Although it is linear, the numerical effort may still be
rather formidable, since the number of linear equations that must be solved
at each iteration increases rapidly with the dimension of the problem (for
n = 15 this number is 120). In Section 1.11.3 several numerical approaches
to solving 3-292 are referenced. In the literature favorable experiences
using the Newton—Raphson method to solve Riccati equations has been
reported with up to 15-dimensional problems (Blackburn, 1968; Kleinman,
1968, 1970a).

3.6 STOCHASTIC LINEAR OPTIMAL REGULATOR
AND TRACKING PROBLEMS

3.6.1 Regulator Problems with Disturbances—The Stochastic Regulator
Problem

In the preceding sections we discussed the deterministic linear optimal
regulator problem. The solution of this problem allows us to tackle purely
transient problems where a linear system has a disturbed initial state, and it is
required to return the system to the zero state as quickly as possible while
limiting the input amplitude. There exist practical problems that can be
formulated in this manner, but much more common are problems where
there are disturbances that act uninterruptedly upon the system, and that
tend to drive the state away from the zero state. The problem is then to design
a feedback confipuration throuph which initial offsets are reduced as quickly
as possible, but which also counteracts the effects of disturbances as much as
possible in the steady-state situation. The solution of this problem will bring
us into a position to synthesize the controllers that have been asked for in
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Chapter 2. For the time being we maintain the assumption that the complete
state of the system can be accurately observed at each instant of time.

The effect of the disturbances can be accounted for by suitably extending
the system description. We consider systems described by

3(t) = A@() + BOu() + (),
2(1) = D(Da(t),

where u(t) is the input variable, z(#) is the controlled variable, and v(?)
represents disturbances that act upon the sysiem. We mathematically repre-
sent the disturbances as a stochastic process, which we model as the output
of a linear system driven by white noise. Thus we assume that »() is given by

o(t) = D=, (). 3-306
Here x,(r) is the solution of

(1) = Az (Dz,(8) + w(D), 3-307.

where w(z) is white noise. We furthermore assume that both z{#,) and z,(%)
are stochastic variables.

‘We combine the description of the system and the disturbances by defining
an augmented state vector #(f) = col [z(¢), z;(¢)], which from 3-305, 3-306,
and 3-307 can be seen to satisfy :

. A(t) Dd(t) 0+ B(t) 0+ V) 3.308
(1) = & . -
¥ ( 0 Ad(r)) ® ( 0 )"() (w(r))

3-305

In terms of the anugmented state, the controlled variable is given by
z() = (D(5), WE(). 3-309

We note in passing that 3-308 represents a system that is not completely
controllable (from u).

We now turn our attention to the optimization criterion. In the determi-
nistic regulator problem, we considered the quadratic integral criterion

f tl[zﬂ"(r)R,,(r)z(z) + uTORL(Du(D] dt + 2T(L)Pyz(t).  3-310
tp .

For a given input u(f), t, < t < t;, and a given realization of the disturbances
v(t), £y <t < 1y, this criterion is a measure for the deviations z(¢) and u(t)
from zero. 4 priori, however, this criterion cannot be evaluated because of
the stochastic nature of the disturbances. We therefore average over all
possibie realizations of the disturbances and consider the criterion

E{ftl[zT(t)Ra(t)z(t) + uT (R (Nu()] dt + n:T(tl)Pl:c(tl)}- 3311
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In terms of the augmented state #(¢) = col [x(t), %4(t)], this criterion can be
expressed as

E{J.tl[zT(I)Iiaki)z(t) + IIT(I)Rﬂ(f)ll(I)] dt + iT(rﬂﬁlf(t)], 3312

P, 0
B ={" ) 3313
00

where

It is obvious that the problem of minimizing 3-312 for the system 3-308 is
nothing but a special case of the general problem of minimizing

EUh{zT(t)Rn(t)z(r) + uT(OR(Du(1)] dt + zT(rl_)Plx(zl)] 3.314

for the system
£(t) = A=) + B({Ou() + wiz), 3-315

where w(f) is white noise and where =(#,) is a stochastic variable. We refer to
this problem as the stochastic linear optimal regulator problem:

Definition 3.4. Consider the system described by the state differential equa-
tion
(1) = A=) + B{u(t) + w(t) 3-316
with initial state '
z(ty) = %y 3-317
and controlled variagble :
2{(t) = D(t)z(t). 3-318

In 3-316 w(t) is white noise with intensity V(t). The initial state z, is a stochastic
variable, independent of the white noise w, with

E{zez,T} = Q. 3-319
Consider the criterion

EUh[zT(r)R“(:)z(z) + uT(OR(Du(D] dt + zT(tl)le(rl)], 3.320
to

where Ry(1) and R.(t) ore positive-definite symmetric matrices for 1, <t < 1
and P, is nonnegative-definite symmetric. Then the problem of determining for
each t, ty < t < t,, the input u(t) as a function of all information from the past
such that the criterion is minimized is called the stochastic linear optimal
regulator problem. If all matrices in the problem formulation are constant,
we refer to it as the time-invariant stochastic linear optimal regulator problem.

The solution of this problem is discussed in Section 3.6.3.
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Example 3.11. Stirred tank

In Example 1.37 (Section 1.11.4), we considered an exlension of the model
of the stirred tank where disturbances in the form of fluctuations—in the
concentrations of the feeds are incorporated. The extended system model is
given by

L 6 0o 0 1 1
20
0 1 Fyy Fy 10— Cp Coan— Cy
0 W |4 | 14 )
B(t) = ‘  EOR ’ ’ 0
0 0o - L 0 0 0
by
1
0] 0 0 — = 0 0
7
0 0
+ 00 fH, 3321
10 w(), 3-
01
where w() is white noise with intensity
it 0
0,
V= ] 3322
20’2-‘
i

Here the components of the state are, respectively, the incremental volume of
fluid, the incremental concentration in the tank, the incremental concentra-
tion of the feed Fy, and the incremental concentration of the feed #.. Let us
consider as previously the incremental ouigoing flow and the incremental
outgoing concentration as the components of the controlled variable. Thus
we have

Looo
() = |20 (1) 3-323
0100

The stochastic optimal regulator problem now consists in determining the
input u(r) such that a criterion of the form

E[fh[zﬂ'(r)an(r) 4 nT(ORu(N] dt + 2T(t)Px(1) 3-324 -
fn
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is minimized. We select the weighting matrices Ry and R, in exactly the same
manner as in Example 3.9 {Section 3.4.1), while we choose P; to be the zero
matrix.

3.6.2 Stochastic Tracking Problems

We have introduced the stochastic optimal regulator problem by considering
regulator problems with disturbances. Stochastic regulator problems also
arise when we formulate stocliastic opifimal tracking problems. Consider the
linear system '

E(t) = A(z(t) + B{Ou(?), 3-325

with the controlled variable
z(1) = D({)=(1). 3-326

Suppose we wish the controlled variable to follow as closely as possible a
reference variable z,(t) which we model as the output of a linear differential
system driven by white noise:

2.(t) = D, (O, (1), 3-327

with
# () = A (e, (1) + w(r). 3-328
Here w() is white noise with given intensity F(t). The system equations and

the reference model eguations can be combined by defining the augmented
state &(f) = col [=(t), =.(¢)], which satisfies

. A@ 0 B(t) 0 .
T = z(t t . -
® ( 0 A,(r)) @ +( 0 )"(H (w(z))

In passing, we note that this system (just as that of 3-308) is not completely
controllable from .
To obtain an optimal tracking system, we consider the criterion

EUtl{[z(t) — 2 ()T R(A)[2(1) — 2,(0] + uT(H)R(D(1)} dt], 3-330
g

where Ry(¢) and Ry(t) are suitable weighting matrices. This criterion expresses
that the controlled variable should be close to the reference variable, while
the input amplitudes should be restricted. In fact, for Ry(t) = W,{#) and
Ra(t) = pW (1), the criterion reduces to

[(teo + peuona, 3331
to

where C,(7) and C,(t) denote the mean square tracking error and the mean
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square input, respectively, as defined in Chapter 2 (Section 2.3):
— EfeT
CN = E{eT(OW,(De(t), 2332

CD) = E{uT())W,(Du(d)}.
Here e(t) is the tracking error
e(t) = z(t) — =z,(1). 3-333

The weighting coefficient p must be adjusted so as to obtain the smallest
possible mean square tracking error for a given value of the mean square
input.

The criterion 3-330 can be expressed in terms of the augmented state (1)
as follows:

ty
EU ETNORA(NED) + uT(OHR(Du(D)] dt}, 3-334
where o
3(1) = (D), — D, (D)) ' 3-335
Obviously, the problem of minimizing the criterion 3-334 for the systeni
3-329 is a special case of the stochastic linear optimal regulator problem of
Definition 3.4,

Without going into detail we point out that tracking problerns with disturb-
ances also can be converted into stochastic regulator problems by the state
augmentation technique. '

In conclusion, we note that the approach of this subsection is entirely
in line with the approach of Chapter 2, where we represented reference
variables as having a variable part and a constant part. In the present section
we have set the constant part equal to zero; in Section 3.7.1 we deal with
nonzero constant references.

Example 3.12. Angular velocity tracking system

Consider the angular velocity control system of Example 3.3 (Section 3.3.1).
Suppose we wish that the angular velocity, which is the controlled variable
£(#), follows as accurately as possible a reference variable {,(¢), which may be
described as exponentially correlated noise with time constant § and rms
value . Then we can model the reference process as (see Example 1.36,
Section 1.11.4)
. L.(0) = £}, 3-336
where £ (r) is the solution of

£y = — é E(D + w(D). 3-337

The white noise w(#) has intensity 20%/f. Since the system state differential

equation is .
() = —af(t) + xp(D), 3-338
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the augmented state differential equation is given by

f—= 0 i 0
1) = 0 _LfaEn + 0 w(t) + | w(t), 3-339
é
with %(1) = col [£(), £.(£)]. For the optimization criterion we choose
i1
E{J: [N — LD + pu(D] fft], 3-340
13
where p is a suitable weighting factor. This criterion can be rewritten as
31
4fﬁ%y+m%Hm} 3-341
i
where !
{0 = (1, ~DF(). 3-342

The problem of minimizing 3-341 for the system described by 3-339 and 3-342
constitutes a stochastic optimal regulator problem.

3.6.3 Solution of the Stochastic Linear Optimal Regulator Problem

In Section 3.6.1 we formulated the stochastic linear optimal regulator prob-
iem. This problem (Definition 3.4) exhibits an essential difference from the
deterministic regulator problem because the white noise makes it impossible
to predict exactly how the system is going to behave. Because of this, the best
policy is obviously not to determine the input u(¢) over the control period -
[ts, 11] @ priori, but to reconsider the situation at each intermediate instant f
on the basis of all available information.

At the instant ¢ the further behavior of the system is entirely determined by
the present state =(¢), the input «(r) for = > ¢, and the white noise w(r) for
T > t. All the information from the past that is relevant for the future is
contained in the state z(t). Therefore we consider control laws of the form

u(t) = glz(1), 11, - 3-343

which prescribe an input corresponding to each possible value of the state at
time ?.

The use of such control Jaws presupposes that each component of the state
can be accurately measured at all times. As we have pointed out before, this
is an unrealistic assumption. This is even more so in the stochastic case
where the state in general includes components that describe the disturbances
or the reference variable; it is very unlikely that these components can be
easily measured. We postpone the solution of this difficulty until after
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Chapter 4, however, where the reconstruction of the state from incomplete
and inaccurate measurements is discussed.

In preceding sections we have obtained the solution of the deterministic
regulator problem in the feedback form 3-343. For the stochastic version of
the problem, we have the surprising result that the presence of the white
noise term w(z) in the system equation 3-316 does not alter the solution
except to increase the minimal value of the criterion. We first state this fact
and then discuss its proof: '

Theorem 3.9. The optimal linear solution of the stochastic linear optimal
regulator problem is to choose the input according to the linear control law
u(t) = —F(Hx(1), 3-344
where )
FY1) = RS(BT () P(1). 3-345

Here P(t) is the solution of the matrix Riccati equation

——Ptt) = R,(t) — P(OB(ORT{NBT(OHP() + AT(OP() + P(HA(1) 3-346

with the terminal condition
: P(t) = P.. 3-347
Here we abbreviate as usual
R{) = DY(ORAND(). 3-348

The minimal value of the criterion is given by

tr [P(tu)Qn +J::1P(I)V(t) dt]. 3349

It is observed that this theorem gives only the best /inear solution of the
stochastic regulator problem. Since we limit ourselves to linear systems, this
is quite satisfactory. It can be proved, however, that the linear feedback law
is optimal (without qualification) when the white noise w(#) is Gaussian
(Kushner, 1967, 1971; Astrém, 1970).

To prove the theorem let us suppose that the system is controlled through

the linear control law
u(t) = —F(t)=(1). 3-350

Then the closed-loop system is described by the differential equation
’ () = [A(t) — BOOF(NO(e) + w() 3.351

and we can write for the criterion 3-320

EutlmT(t)[Ri(‘) + FROR(OFO]=(1) di + =" (tl)le(fl)}- 3352
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We know from Theorem 1.54 (Section 1.11.5) that the criterion can be ex-
pressed as .

e - iy . :
Ctr [P(rc,)QJ +f IZ0140) dr], 3-353
1] )
where P(¢) is the solution of the matrix differential equation

—B(t) = [A(f) — B()F(D)TP(1)
+ B[A() — BOF()] + Ry(t) + FT(R(OF(f), 3-354

with the terminal condition

_ B(z) = P,. 3-355
Now Lemma 3.1 (Section 3.3.3) states that P(z) satisfies the inequality
Bty > P(D) 3-356

for all £, < ¢ < t,, where P(¢) is the solution of the Riccati equation 3-346
with the terminal condition 3-347. The inequality 3-356 converts into an
equality if F is chosen as

F'() = RF\(D)BT()P(r), 1<t 3.357
The inequality 3-35¢ implies that
tr [P()T] > tr [P(O)T] ‘ 3-358

for any nonnegative-definite matrix I". This shows very clearly that 3-353 is
minimized by choosing F according to 3-357. For this choice of F, the criterion
3-353 is given by 3-349. This terminates the proof that the control law 3-345
is the optimal linear control law.

Theorem 3.9 puts us into a position to solve various types of problems.
In Sections 3.6.1 and 3.6.2, we showed that the stochastic linear optimal
regulator problem may originate from regulator problems for disturbed
systems, or from optimal tracking problems. In both cases the problem has a
special structure. We now briefly discuss the properties of the solutions that
result from these special structures.

In the case of a regulator with disturbances, the system state differential
and output equations take the partitioned form 3-308, 3-309. Suppose that
we partition the solution P(¢) of the Riccati equation 3-346 according to
the partitioning #(¢) = col [=(1), 2,(1)] as

Pu(t)  Pg(i)
Pi)y=1\{ .
Piaolt)  Puol)
If, accordingly, the optimal feedback gain matrix is partitioned as
F) = (Fy(2), FaD)), 3-360

3-359
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it is not difficult to see that
F,{(1) = RF{(OBT (1)Py(d),

Fy(t) = RT(NBT(1)P1s(1).
Furthermore, it can be found by partitioning the Riccati equation that P,
P.,, and P,, are the solutions of the matrix differential equations

—Py(t) = DYOR()D(D) ~ Pr()BORT (BT P11(1)
+ AT(OP,(1) + Pyy(DA(), 3-362

3-361

Py(t) = Py,
—Pyy(1) = Pp(t)DL1) + [A(1) — BOF(D]TPa(t) + Pra(D A1), 3.363
P 11('5). =0,

— Po() = — PE(OBOR(OBT(O)P() + DF () Paa() + PE(E)D(1)

+ AT (O)Pu(t) T Pau(DA(t), 3-364

Pyn(1y) = 0.
We observe that Py, and therefore also F, is completely independent of the
properties of the disturbances, and is in fact obtained by solving the determi-
nistic regulator problem with the disturbances omitted. Once P, and F; have
been found, 3-363 can be solved to determine P,y and from this F;. The
control system structure is given in Fig. 3.14, Apparently, the feedback link,

white noise
w

1

disturbonce

feedforward dynomics
Link
F
2 |" xg
Be| I
disturbonce
v
C 4 plant X -—j! D z
B

feedbock link

Fig. 3.14. Structure of the optimal state feedback regulator with disturbances.
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that is, the link from the state = to the input u is completely independent of the
properties of the disturbances. The feedforward link, that is, the link from the
state of the disturbances z, to the input u, is of course dependent upon
the properties of the disturbances,

A similar conclusion can be reached for optimal tracking problems. Here
it turns out that with the structures 3-329 and 3-335 of the state differential
and output equations the feedback gain matrix can be partitioned as

F() = (Fy(1), —Fa(1)) 3365
{note the minus sign that has been introduced), where
Fy(t) = RyNO)BT(()Py(1),
Fo(t) = —R{()BT()Py1a(0).

3-366

Here the matrices P,,, Pyy, and Py, are obtained by partitioning the matrix P
according to the partitioning £(¢) = col [(f), = (t)]; they satisfy the matrix
differential equations

— Pi() = DT(OR(DD() — Pu{t)BIHRT (BT ()P (1)
+ AT(OHPL(D) + PL(DA(D, 3-367
P (’*‘1) "“_“/0,/ EL .

—Pu(t) = — DT(OR(D DD + [A(D) — BOF{O]"Py(t)

+ P(AL), 3-368
P 12(11) =0,

—Po(f) = DI()Ry(1) D,{t) — PEOBHORT(DBI(H)Pu(t)

+ AT(OPu(f) + Pu(A(D), 3-369
Pau(ty) = 0. )

We conclude that for the optimal tracking system as well the feedback link
is independent of the properties of the reference variable, while the feedforward
fink is of course influenced by the properties of the reference variable. A
schematic representation of the optimal tracking system is given in Fig. 3.15.

Let us now return to the general stochastic optimal regulator problem.
In practice we are usually confronted with control periods that are very
long, which means that we are interested in the case where ¢, — co. In the
deterministic regulator problem, we saw that normally the Riccati equation
3-346 has a steady-state solution P{r) as ¢, — oo, and that the corresponding
steady-state control law F(?) is optimal for half-infinite control periods. It is
not difficult to conjecture (Kushner, 1971) that the steady-state control law
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Fig. 3.15. Structure of the optimal state feedback tracking system.

is optimal for the stochastic regulator in the sense that it minimizes

lim
ll—nn 1

{ f EZ(HRy(1)2(t) + uT(6)Ra(the(1)] m] 3-370

if this expression exists for the steady-state control law, with respect to all
other control laws for which 3-370 exists. For the steady-state optimal
control law, the criterion 3-370 is given by

lim
i1~ m tl — §

ty
f tr [P())V(1)] dt, 33711
o
if it exists (compare 3-349). Moreover, it is recognized that for a time-

invariant stochastic regulator problem and an asymptotically stable time-
invariant control law the expression 3-370 is equal to

lim E{=T(1)Ryz(t) + uZ(DRau(t)}. 3.372
t=t oo

From this it immediately follows that the steady-state optimal control law
minimizes 3-372 with respect to all other time-invariant control laws. We see
from 3-371 that the minimal value of 3-372 is given by

tr (PV). 3373

We observe that if Ry = W, and R, = pW,, where W, and W, are the
weighting matrices in the mean square tracking error and the mean square
input (as introduced in Section 2.5.1), the expression 3-372 is precisely

Cow + pCas. 3-374

Here C,, is the steady-state mean square tracking error and C,,, the steady-
state mean square input. To compute C,,, and C,,, separately, as usually is
required, it is necessary to set up the complete closed-loop system equations
and derive from these the differential equation for the variance matrix of the
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state. From this variance matrix all mean square quantities of interest can be
obtained.

Example 3.13.  Stirred tank regulator

In Example 3.11 we described a stochastic regulator problem arising from
the stirred tank problem. Let us, in addition to the numerical values of
Example 1.2 (Section 1.2.3), assume the following values:

51 =40s,
0 = 30, 3375
0, = 0.1 kmol/m?, A

as = 0.2 kmol/m?®,

Just as in Example 3.9 (Section 3.4.1), we choose the weighting matrices R,
and R, as follows.

5 0 10
R, = ., Ry=p , 3-376
0 0.02 0 3

where p is to be selected. The optimal control law has been computed for
p =10, 1, and 0.1, as in Example 3.9, but the resuits are not listed here. It
turns out, of course, that the feedback gains from the plant state variables
are not affected by the inclusion of the disturbances in the system model.
This means that the closed-loop poles are precisely those listed in Table 3.1.

In order to evaluate the detailed performance of the system, the steady-
state variance matrix

g = lim E{z(t)z? ()} 3-377
I—+m
has been computed from the matrix equation

0= (4 —BF)0J 4+ @(4 — BFY* + V. 3-378

The steady-state variance matrix of the input can be found as follows:
lim E{u(}u™()} = lim E{F=()aT()FT} = FOFT. 3-379
fokon -+

From these variance matrices the rms values of the components of the con-
trolled variable and the input variable are easily obtained. Table 3.2 lists the
results. The table shows very clearly that as p decreases the fluctuations in
the outgoing concentration become more and more reduced. The fAuctuations
in the outgoing flow caused by the control mechanism also eventually
decrease with p. All this happens of course at the expense of an increase in the
fluctuations in the incoming feeds. Practical considerations must decide which
vaiue of p is most suitable.
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Table 3.2 Rms Yalues for Stirred-Tank Regulator

Steady-state rms values of

Incremental Incremental feed
outpoing Incremental
fow concentration No. 1 No. 2
p (m?fs) (kmol/m™) (m?fs) (m¥s)
m 0 0.06124 0 0
10 0.0001038 0.03347 0.0008957 0.0006980
1 0.00003303 0.008238 0.001367 0.001487
0.1 0.000004967 0.001127 0.001769 0.001754

Example 3.14. Angular velocity tracking system

Letus consider the angular velocity tracking problem as outlined in Example
3.12. To solve this problem we exploit the special structure of the tracking
problem. It follows from 3-365 that the optimal tracking law is given by

n(t}y = —F 5@ + FE)EW. 3-380

The feedback gain Fy(r) is independent of the properties of the reference
variable and in fact has already been computed in previous examples where
we considered the angular velocity regulation problem. From Example 3.7
(Section 3.4.1), it follows that the steady-state value of the feedback gain is

given by
F = 1(—m a4 E), 3-381
i p

while the steady-state value of £, is

B, = ﬂn(—m + ot + f). 3-382
'3 P

By using 3-368, it follows that the steady-state vatue of £, can be solved from

0=_"1_ 12+£P12_1P12. 3"383
v p b '

Phpe —————e, | 3-384

Solution yields
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so that

E
Fy= I_P.__.,: : 3-385
PRI
p

Finally, solution of 3-369 for P, gives

2 /. 2
R N
g* 0 P

= f
e =5 - 3-386
Z ( + U.E + K_)
B P
" Let us choose the following numerical values:

o = 0.585"1,
x = 150 rad/(V s?),
0 =15, 3-387
o = 30rad/s,

p = 1000 rad?/(V* s%).
This yields the following numerical results:
F, =0.02846, F, = 0.02600, 3-388

_ 0.1897 —0.1733 .
P= . 3-389
—0.1733  0.1621
From 3-373 it follows that '
lim [E{£(1)} + pE{u(N}] = tr (PV), 3-390
t~+ oo .
where £(f) = £(t) — £,(¢). Since in the present problem
0 0 00
V= et | = . 3-391
0 -a 0 1800
we find that
lim [E{Z*()} + pE{p"(D}] = 291.8 rad®/s". 3-392
f—+m

‘We can use 3-392 to obtain rough estimates of the rms tracking error and rms
input voltage as follows. First, we have from 3-392

lim E{{*(1)} < 291.8 rad®fs® 3-393
t-t oo
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1t follows that
steady-state rms tracking error < 17.08 rad/s. 3-394
Similarly, it follows from 3-392

2
tim E{u(0)} < 222 — 02018 v, 3.395
t—=m P

We conclude that
steady-state rms input voliape < 0,5402 V. 3-396

Exact values for the rms tracking error and rms input voltage can be found by
computing the steady-state variance matrix of the state Z(t) of the closed-
loop augmented systern. This system is described by the equation

) —c 0 0
(1) = NEYE (K)(—Fl, Fz(1) + (l)w(t), 3-397
0 — 5 0
or
—_e — KFI KF_E 0
(1) = 1 &) + ( )w(r). 3-398
0 1 1

7

As a result, the steady-state variance matrix @ of Z(z), is the solution of the
matrix equation

—a— kF, 1k, —o — kF 0 0 0
0= 0+3 _ + 55t
0 _1 xF, iy o =
g 7 7
3-399
Numerical solution yields
. 497.5 608.4
= . 3-400
608.4 900.0

The steady-state mean square tracking error can be expressed as
jim E{[5(1) — &0} = Ou — 201 + 8

= 180.7 rad?/s", 3-401
where the §,, are the entries of . Similarly, the mean square input is given
by

=

tlirn E{[— R + RENT) = RBP0n — 2R F.0 + FOn
= 0.1110 V%, - 3402
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In Table 3.3 the estimated and actual rms values are compared. Also given are
the open-loop rms values, that is, the rms values without any control at ail.
Tt is seen that the estimated rms tracking error and input voitage are a little
on the large side, but that they give a very good indication-of the orders of
magnitude. We moreover see that the control is not very good since the rms
tracking error of 13.44 rad/s is not small as compared to the rms value of the

Table 3.3 Numerical Results for the Angular Velocity
Tracking System

Steady-state Steady-state
rms rms
tracking error input voltage
(rad]s) )
Open-loop 30 0
Estimated closed-loop <17.08 <0.5402
Actual closed-loop 13.44 0.3333

reference variable of 30 radfs. Since the rms input is quite small, however,
there seems to be room for considerable improvement. This can be achieved
by choaosing the weighting coefficient p much smaller (see Problem 3.5).

Let us check the reference variable and closed-loop system bandwidths -
for the present example. The reference variable break frequency is 1/6 =
1 radfs. Substituting the control law into the system equation, we find for the
closed-loop system equation

£ = — o + 80 + Fuck 0. 3.403
P

This is a first-order system with break frequency

Jat 4 K 4769 rad/s. 3-404
P

Since the power spectral density of the reference variable, which is exponen-
tially correlated noise, decreases relatively slowly with increasing frequency,
the difference in break frequencies of the reference variable and the closed-
loop system is not large enough to obtain a sufficiently small tracking error.
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3.7 REGULATORS AND TRACKING SYSTEMS WITH
NONZERO SET POINTS AND CONSTANT
DISTURBANCES

3.7.1 Nonzero Set Points

In our discussion of regulator and tracking problems, we have assumed up
to this point that the zero state is always the desired equilibrium state of the
system. In practice, it is nearly always true, however, that the desired
equilibrium state, which we call the se paint of the state, is a constant point
in state space, different from the origin. This kind of discrepancy can be
removed by shifting the origin of the state space to this point, and this is
what we have always done in our examples. This section, however, is devoted
to the case where the set point may be variable; that is, we assume that the
set point is constant over long periods of time but that from time to time it is
shifted. This is a common situation in practice.

We limit our discussion to the time-invariant case. Consider the linear
time-invariant system with state differential equation

&(1) = Ax(r) + Bu(1), 3-405
where the controlled variable is given by
z(f) = Dx(t). 3-406

Let us suppose that the set point of the controlled variable is given by. z;.
Then in order to maintain the system at this set point, a constant input
must be found (diCaprio and Wang, 1969) that holds the state at a point x,
such that

: 2p = Dy, 3-407

It follows from the state differential equation that =, and u, must be related
by
0 = Axy + Bu,. 3.408

Whether or not the system can be maintained at the given set point depends on
whether 3-407 and 3-408 can be solved for u, for the given value of z,.
We return to this question, but let us suppose for the moment that a selution
exists. Then we define the shifted input, the shifted state, and the shifted
controlled variable, respectively, as

') = u(®) — uy,
w' () = x{t) — xy, 3-409
2 (8) = 2(t) — =z
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It is not difficult to find, by solving these equations for #, z, and z, substituting
the result into the state differential equation 3-405 and the ouiput equation
3-406, and using 3-407 and 3-408, that the shifted variables satisfy the
equations ,
(1) = Ax(t) 4+ Bu'(1),

2 (1) = Dr'(1). 3-410

Suppose now that at a given time the set point is suddeniy shifted from one
value to another. Then in terms of the shifted system equations 3-410, the
system suddenly acquires a nonzero initial state. In order to let the system
achieve the new set point in an orderly fashion we propose to effect the trans-
ition such that an optimization criterion of the form

f h[z'”'(r)Raz'(r) + u (R (1)) dt 4+ &' T(t) Py’ (t,) 3411
fa

is minimized. Let us assume that this shifted regulator problem possesses a
steady-state solution in the form of the time-invariant asymptotically stable
steady-state control law

w' (1) = —Fe'(). 3-412

Application of this control law ensures that, in terms of the original system
variables, the system is transferred to the new set point as quickly as possible
without excessively large transient input amplitudes.

Let us see what form the control law takes in terms of the original system
variables. We write from 3-412 and 3-409: '

u(t) = —Fz(t) + uy + Fr,. 3-413
This shows that the control law is of the form
u(t) = — Fz(t) + ul, 3-414

where the constant vector u, is to be determined such that in the steady-
state situation the controlled variable z(t) assumes the given value z,. We now
study the question under what conditions 1, can be found.

Substitution of 3-414 into the system state differential equation yields

#t) = (4 — BF)x(1) + Bu;. 3-415

Since the closed-loop system is asymptotically stable, as ¢ — oo the state
reaches a steady-state values =, that satisfies

0 = Az, + Buj. 3-416
Here we have abbreviated

A=A— BF. 3-417
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Since the closed-loop system is asymptotically stable, A has all of its character-
istic values in the left-half complex plane and is therefore nonsingular;
consequently, we can solve 3-416 for z;:

3y = (—A) ™ Bu}, 3-418
If the set point z, of the controlled variable is to be achieved, we must there-
fore have
z, = D(—A)yBuj. 3-419
When considering the problem of solving this equation for i, for a given value
of z;, three cases must be distinguished:

(a) The dimension of = is greafer than that of u: Then 3-419 has a solution
for special values.of z; only; in general, no solution exists. In this case we
attempt to control the variable 2(t) with an input #(t} of smaller dimension;
since we have too few degrees of freedom, it is not surprising that no solution
can generally be found.

{b) The dimensions af u and z are the same, that is, a sufficient number of
degrees of freedom is available to control the system. In this case 3-419 can
be solved for g provided D(—4)~1B is nonsingular; assuming this to be the
case {we shall return to this), we find

uh = [D(—AY Bz, 3-420
which yields for the optimal input to the tracking system
u(t) = — Fu(t) + [D(— A2 Bz, 3-421

(c) The dimension of z is less than that of u: In this case there are too many
degrees of freedom and 3-419 has many solutions. We can choose one of
these solutions, but it is more advisable to reformulate the tracking problem
by adding components to the controlled variable.

On the basis of these considerations, we henceforth assume that

dim (z) = dim (), 3-422
50 that case (b) applies. We see that
D(—A)B = H,(0), 3-423
where
H,(s) = D(s] — A)1B. 3-424

We call H.(s5) the closed-loop transfer matrix, since it is the transfer matrix
from u'(t) to z(t) for the system

(1) = Az(t) + Bu(t),
2(t) = Da(t), 3425
u(t) = —Fa(t) + ' ().
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In terms of H,(0) the optimal control law 3-421 can be written as

w(t) = — Fa(t) + H;(0)z,. 3-426

As we have seen, this control law has the property that after a step change in
the set point z, the system is transferred to the new set point as quickly as
possible without excessively large transient input amplitudes. Moreover, this
control law of course makes the system return to the set point from any
initial state in an optimal manner. We call 3-426 the nonzero set point
optimal control Imw. It has the property that it statically decouples the control
system, that is, the transmission 7(s) of the control system (the transfer
matrix from the set point z; to the controlled variable z) has the property
that 7(0) = I

We now study the question under what conditions A,(0) has an inverse.
It will be proved that this property can be directly ascertained from the open-
loop system equations

' #(t) = Ax(t) + Bu(?),
2(r) = Dax(t).

Consider the foliowing string of equalities

3-427

det [H(5)] = det [D(s] — A + BFy™'B]
= det [D(s] — AT + BF(s] — Ay} 'B]
= det [D(sI — Ay (I — BF[J + (sI — Ay BF(sI — AY"}B] |
= det [D(s] — A)y'Bldet [I — F(sI — A + BFy™B]
= det [D(s] — AY"'Bldet [ — (s] — A + BFY"BF]
= det [D(s] — A)"'B]det [(s] — A + BF)™"] det (s] — A)
_ det [D(s] — A)"'B] det (s] — 4)
det (sf — A + BF)

o)
bo(s)

Here we have used Lemma 1.1 (Section 1.5.3) twice. The polynomial p(s) is
defined by :

3-428

_ ¥ .
det [H(] = = 3-429

where H(s) is the open-loop transfer matrix

H(s) = D(sI — A)B, 3-430
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and ¢(s) the open-loop characteristic polynomial

$(s) = det (s — A). 3431
Finally, ¢,(s) is ‘the closed-loop characteristic polynomial
do(s) = det (s] — A + BF). 3-432

We see from 3-428 that the zeroes of the closed-loop transfer matrix are the
same as those of the open-loop transfer matrix. We also see that

PO
4(0)
is zero if and only if p(0) == 0. Thus the condition (0) £ 0 guarantees that

D(—A)B is nonsingular, hence that the nonzero set point control law
exists. These results can be summarized as follows.

det [ D(—AY" B} = det [H,{0)] = 3-433

Theorem 3.10. Consider the time-invariant s5ystem

&(1) = Ax(t) 4 Bu(t),

2(t) = Dx(t), 3-434

where z and u have the same dimensions. Consider any asymptatically stable
time-invarian! controf law

w(f) = —Fe(t) + u'(1). 3-435
Let H(s) be the open-loop fransfer matrix
H(s} = D(sI — A)™'B, 3-436

and H (s) the closed-loop transfer matrix
| H,(s) = D(sI — A + BF)-B. 3437

Then H (0} is nansingular and the contralled variable z(t) can under steady-
state conditions be maintained at any constant value z, by choosing

u'(f) = HIY(0)z, 3-438

if and only if H(s)} has a nonzero numerator polynomial that has no zeroes
at the origin.

It is noted that the theorem is stated for any asymptotically stable control
law and not only for the steady-state optimal control law.

The discussion of this section has been confined to deterministic regulators.
Of course stochastic regulators (including tracking problems) can also have
nonzero set points. The theory of this section applies to stochastic regulators
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without modification; the nonzero set point optimal control law for the
stochastic regulator is also given by

() = — Fu(t) + H7{0)z,. 3.439

Example 3.15. Position contral system

Let us consider the position control system of Exarnple 3.4 (Section 3.3.1).
In Example 3.8 (Section 3.4.1), we found the optimal steady-state control law.
It is not difficult to find from the results of Example 3.8 that the closed-loop
transfer function is given by

L3

st +S\/D( —|—_—fi—|——

NI/

If follows from 3-435 and 3-438 that the nonzero set point optimal control
law is given by

3-440

Hy(s) =

— _F —
p(t) = —Fa(t) + G(U)E

=1 + Fl, 34l
- H0 - (m a2 \/P) 20 fg

where £, is the set point for the angular position. This is precisely the control
law 3-171 that we found in Example 3.8 from elementary considerations.

Example 3.16. Stirred tank

As an example of a multivariable system, we consider the stirred-tank
regulator problem of Example 3.9 (Section 3.4.1). For p = 1 {where p is
defined as in Example 3.9), the regulator problem yields the steady-state
feedback gain matrix

Fe (0.1009 —0.09708)_ 3-442

0.01681  0.05475
It is easily found that the corresponding closed-loop transfer matrix is given
by
H,(s)= D(sI — A+ BFy'B
s* 4 0.2131s 4 0.01037
] ( 0.01s 4 0.0007475 0.01s + 0.001171)
—0.255 — 0.01931  0.75s + 0.1084 /

3-443
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From this the nonzero set point optimal control law can be found to be

10.84 —0.1171)
1.931  0.07475

Figure 3.16 gives the response of the closed-loop system to siep changes in
the components of the set point z,. Here the set point of the outgoing flow is

u(t) = — Fu(t) + ( z. 3-4d4

ineramental
putgoing
flow g oozp 0.002p
Gt Lyt
(m¥s) (m¥s)
1} ] ] ]
50 50
t ——a—{s} E——=—{5)
incrementol
outgoing
concentrotion
G 9 L o
{kmol/m3) (kmol/m3)
D ) 1] 1
50
b —w— (5} t——a— {5}

Fig. 3.16. The responses of the stirred tank as a nonzero set point regulating system. Left
eolumn: Responses of the incremental outgoing flow and concentration to a step of
0.002 m%s in the set point of the flow. Right column: Responses of the incremental
outgoing flow and concentration to a step of 0.1 kmol/m* in the set point of the
concentration.

changed by 0.002 r#*/s, which amounts to 10 % of the nominal value, while the
set point of the outgoing concentration is changed by 0.1 kmol/m?®, which is
8 % of the nominal value. We note that the control system exhibits a certain
amount of dynamic coupling or interaction, that is, a change in the set point
of one of the components of the controlled variable transiently affects the
other component. The effect is small, however.
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3.7.2* (Constant Disturbances

In ihis subsection we discuss a method for counteracting the effect of constant
disturbances in time-invariant regulator systems. As we saw in Chapter 2,
in regulators and tracking systems where high precision is required, it is
important to eliminate the effect of comstant disturbances completely.
This can be done by the application of integrating action. We introduce
integrating action in the context of state feedback control by first extending
the usual regulator problem, and then consider the effect of constant disturb-
ances in the corresponding modified closed-loop control system configuration.
Consider the time-invariant system with state differential equation

2t} = Ax(t} + Bu(r), 3-445
with x(#,) given and with the controlled variable
z(t) = D=z(t). 3-446

We add to the system variables the “integral state’ g(¢) (Newell and Fisher,
1971; Shih, 1970; Porter, 1971}, defined by

§() = 2(2), 3-447

with g(#,) given. One can now consider the problem of minimizing a criterion
of the form

[ Em0Ra + a0l + v R at 3-448
ty

where Ry, Ry, and R, are suitably chosen weighting matrices. The first term
of the integrand forces the controlled variable to zero, while the second term
forces the integral state, that is, the total area under the response of the
controlled variable, to go to zero. The third term serves, as usual, to restrict the
input amplitudes.

Let us assume that by minimizing an expression of the form 3-448, or by
any other method, a time-invariant contrel law

u(t) = —Fx(t) — Fuq(t) 3-449

is determined that stabilizes the augmented system described by 3-445,
3-446, and 3-447. (We defer for a moment the question under which con-
ditions such an asymptotically stable control law exists.) Suppose now that a
constant disturbance occurs in the system, so that we must replace the state
differential equation 3-445 with

£t} = Az(t) + Bu(®) + v,, 3-450

where v, is a constant vector. Since the presence of the constant disturbance
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does not affect the asympiotic stability of the system, we have

lim () =

Jm (1) =0, 3.451
or, from 3-447,

lim 2() = 0.

Jim 2(1) 3-452

This means that the control system with the asymplotically stable contral law
3-449 has the praperty that the effect of constant disturbances on the controlled
variable eventually vanishes. Since this is achieved by the introduction of the
integral state g, this control scheme is a form of integral control. F igure 3.17
depicts the integral control scheme.

x=Ax+Bu X D z f 9

Fy

Fa

Fig. 3.17. State feedback integral contral.

Let us now consider the mechanism that effects the suppression of the
constant disturbance. The purpose of the multivariahle integration of 3-447
is to penerate a constant contribution #, to the input that counteracts the
cffect of the constant disturbance on the controlled variable. Thus let us
consider the response of the system 3-450 to the input

u(t) = —Fx(t) + vy, 3-453
Substitution of this expression into the state differential equation 3-450 yiclds
#(1} = (A — BF}x(t) + Bug + vg. 3-454

In equilibrium conditions the state assumes a constant value x, that must
satisfy the relation

0 = Az, + Bug + vy, 3-455
where
A=A — BF, 3-456
Solution for =, yields
3y = (—A)LBu, 4+ (—A) 1, 3-457

provided A is nonsingular. The corresponding equilibrium value z; of the
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controlled variable is given by
2o = Dxy = D(—AY'Buy + D(—A) v, 3-458

When we now consider the question whether or not a value of u, exisis that
makes z; = 0, we obviously obtain the same conditions as in Section 3.7.1,
broken down to the three following cases.

(@) The dimension of z is greater than that of u: In this case the equation
0 = D(— Ay "By + D(— Ay, 3-459

represents more equations than variables, which means that in general no
solution exists. The number of degrees of freedom is too small, and the
steady-state error in z cannot be eliminated.
(b) The dimension of z equals that of u: In this case a solution exists if and
only if
D(—A)'B = H,(0) 3-460
is nonsingular, where
H, (s) = D(sf — Ay1B 3-461

is the closed-loop transfer matrix. As we saw in Theorem 3.10, H/(0) is
nonsingular if and only if the open-loop transfer matrix H(s} = D(sf — A)7'B
has no zeroes at the origin.

(c) The dimension of z is less than that of u: In this case there are too many
degrees of freedom and the dimension of z can be increased by adding
components to the controlled variable.

On the basis of these considerations, we from now on restrict ourselves to
the case where dim (g} = dim (). Then the present analysis shows that a
necessary condition for the successful operation of the integral scheme under
consideration is that the open-loop transfer matrix H(s) = D(s] — 4B
have no zeroes at the origin. In fact, it can be shown, by a slight extension of
the argument of Power and Porter (1970) involving the controllability canoni-
cal form of the system 3-445, that necessary and sufficient conditions for the
existence of an asymptotically stable control law of the form 3-449 are that

(i) the system 3-445 is stabilizable; and
(ii) the open-loop transfer matrix H(s) = D(sI — A)~'B has no zeroes at
the origin.

Power and Porter (1970) and Davison and Smith (1971) prove that necessary
and sufficient conditions for arbitrary placement of the closed-loop system
poles are that the system 3-445 be completely controllable and that the open-
loop transfer matrix have no zeroes at the origin. Davison and Smith (1971)
state the latter condition in an alternative form.
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In the literature alternative approaches to determining integral control
schemes can be found (see, e.g., Anderson and Moore, 1971, Chapter 10;
Johmnson, 1971b).

Example 3.17. Integral control of the positioning system

Let us consider the positioning system of previous examples and assume
that a constant disturbance can enter into the system in the form of a con-
stant torque T, on the shaft of the motor. We thus modify the state differential
equation 3-59 to

i(f) = (O 1) 2(1) + (O),u(r) ¥ (0) 3-462
0 —= K ¥

where y = 1/J, with J the moment of inertia of all the rotating parts. As
before, the controlled variable is given by

L) = (1, O=z(). 3-463
We add to the system the scalar integral state g{z), defined by
g(t) = L{¢). 3464

From Example 3.15 we know that the open-loop transfer function has no
zeroes at the origin; moreover, the system is completely controliable so that
we expect no difficulties in finding an integral control system. Let us consider
the optimization criterion

w0 + 100 + peon 3-465
o
As in previous examples, we choose

p == 0.00002 rad?/ V2. 3-466

Inspection of Fig. 3.9 shows that in the absence of integral control g{¢) will
reach a steady-state value of roughly 0.01 rad s for the given initial condition.
Choosing

A=10s2 3-467

can therefore be expected to affect the control scheme significantly.

Numerical solution of the corresponding regulator problem with the
numerical values of Example 3.4 (Section 3.3.1) and ¥ = 0.1 kg m™* yields
the steady-state control law

u(t) = —Fs(t) — Fag(h), 3-468
with
: F, = (299.8, 22.37),

Fp == 707.1. 3-469
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The corresponding closed-loop characteristic values are —9.519 4+ 9.222 572
and —3.168 5~L. Upon comparison with the purely proportional scheme of
Example 3.8 (Section 3.4,1), we note that the proportional part of the feed-
back, represented by 7}, Has hardly changed (compare 3-169), and that the
corresponding closed-loop poles, which are —9.658 £ j9.094 s~! in Example
3.8 also have moved very httle. Figure 3.18 gives the response of the integral

ongular 0,004

position
L
0002

(rod)
g i I
0 1 2

t—— {5)

input
volioge 0 i 2
—/

(V) -2
Fig. 3.18. Response of the integral position control system to a constant torque of 10 N m
on the shaft of the motor, .

control system from zero initial conditions to a constant torgue r, of [0 N'm
on the shaft of the motor. The maximum deviation of the angular displace-
ment caused by this constant torque is about 0.004 rad,

3.8¥ ASYMPTOTIC PROPERTIES OF
TIME-INVARIANT OPTIMAL CONTROL LAWS

3.8.1* Asymptotic Behavior of the Optimal Closed-Loop Poles

In Section 3.2 we saw that the stability of time-invariant linear state feedback
control systems can be achieved or improved by assipning the closed-loop
poles to suitable locations in the left-half complex plane. We were not able
to determine which pole patterns are most desirable, however. In Sections 3.3
and 3.4, the theory of linear optimal state feedback control systems was
developed. For time-invariant optimal systems, a question of obvious
interest concerns the closed-loop pole patterns that result. This section is
devoted to a study of these patterns. This will supply valuable information
about the response that can be expected from optimal regulators,
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Suppose that in the time-invariant regulator problem we let
R, = pN, 3-470

where IV is a positive-definite symmetric matrix and p a positive scalar. With
this choice of R., the optimization criterion is given by

f ET(ORe() + pe () Nu(f)] dr. 3471
Ig

The parameter p determines how much weight is attributed to the input; a
large value of p results in small input amplitudes, while a small value of p
permits large input amplitudes, We study in this subsection how the locations
of the optimal closed-loop regulator poles vary as a function of p. For this
investipation we employ root locus methods.

In Section 3.4.4 we saw that the optimal closed-loop poles are the left-
half plane characteristic values of the matrix Z, where

A —BR;'BT A — 1 py-p7
Z = - P

—R, AT —D”R,D —AT

3-472

Using Lemma 1.2 (Section 1.5.4) and Lemma 1.1 (Section 1.5.3), we expand
det (sI — Z) as follows:

sl — A lBN"]BT
det (sI — Z) = det £
DTR,D s+ AT

=det(s] — A)
- det _(SI + A7) — DTR,D(sT — A)™ ,—i BN‘lBT]
= det (s; — A) det (sI + AT)
- det [ I — DTRD(sT — A)“1;1 BN-BT(s + AT)_I]-
= det (sI — A)(—1)" det (—sI — A)

cdet | I + L N-UBT(—sI — ATY DR, D(sI — A)—IB]

L p

= (—1)"d(s)e(—s) det [I J{,_t N%HT(—S)Rnﬂ(s)], 3473

[
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where # is the dimension of the state =, and

¢(s) = det (s] — 4),
H(s) = D(sI — A)B. 3474

For simplicity, we first study the case where both the input © and the con-
trolled variable z are scalars, while

R;=1, N=1 3475
We return to the multiinput multioutput case at the end of this section. It

follows from 3-473 that in the single-input single-output case the closed-loop
poles are the left-half plane zeroes of

1
(=1 P(5)b(~5) [1 + = H(—S}H(S):[, 3-476
P
where H(s) is now a scalar transfer function. Let us represent A (s) in the form
H(s) = #(s) \ 3-477
#(5)

where (s) is the numerator polynomial of H(s). It follows that the closed-
loop poles are the left-half plane roots of

¢®M~ﬂ+iw®ﬂ~ﬂ=& 2478

We can apply two techniques in determining the loci of the closed-loop poles.-
The first methed is to recognize that 3-478 is a Function of 5%, to substitute
s* =5, and to find the root loci in the s'-plane. The closed-loop poles are
then obtained as the left-half plane square roots of the roots in the s'-plane.
This is the root-square locus method (Chang, 1961).

For our purposes it is more convenient to trace the loci in the s-plane. Let
us write

p(s) = mﬁ (s — ), .
f=l 3-479
() =11 — m, '

where the »;, i=1,2,---,p, are the zeraes of /(s), and the m, i =1,
2, -+, n, the poles of H(s). To bring 3-478 in standard form, we rewrite it
with 3-479 as

il

IT G — s + m) + (—0' " ST — s + %) = 0. 3-480
=1 pi=
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Applying the rules of Section 1.5.5, we conclude the following,

(a) As p — 0, of the 2» roots of 3-480 a total number of 2p asymptotically
approach the p zeroes »;,, i = 1,2, -+, p, and their negatives —v;, i =1,
2,0,

(b) As p—0, the other 2(n — p) roots of 3-480 asymptotically approach
straight lines which intersect in the origin and make angles with the positive
real axis of

kw ) k=0,1,2,--+,2n —2p — 1, n — podd,
n—op . 3481
(k+ir)'rr, k=0,1,2,--,2n —2p — 1, 1 — peven.
n—p
(c) As p— 0, the 2(n — p) faraway roots of 3-480 are asymptotically at a
distance
21/[3{n—p)]
(a_) 3-482
p

from the origin.
(d) As p— o, the 2u roots of 3-4B0 approach the # poles =, i=1,
2, -+, n,and their negatives —m;, i=1,2,---,m.

Since the optimal closed-loop poles are the left-half plane roots of 3-480 we
easily conclude the following (Kalman, 1964). .

Thearem 3,11. Consider the sieady-state solution of the single-input single-
output regulator problem with Ry =1 and R, = p. Assume that the open-
loop system is stabilizable and detectable and let its transfer function be given by

T
a [T(s—n)
H(s) = —=——, o #0, 3-483
H (s —m)
i=1
where the =;, i =1,2,---,n, are the characteristic volues of the system.

Then we have the following.

(@) As p | 0, p of the n optimal closed-loep characteristic values asymptotically
approach the numbers #,, i = 1,2, -+, p, where

L ff Re (ij) S 0;
—»,  if Re()>0.

(b) As p | O, the remaining n — p optimal closed-loop choracteristic values
asymptotically approach straight lines which intersect in the origin and make

3484

A
1=
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angles with the negative real axis of

+1 L s I=O,1,---,"_—p_—-l, n — p odd,
L 2 3-485

iw, 1=0,1,-~,u—1, 1 -- p even.

n—p 2
These faraway closed-loop characteristic values are asymptotically at a distance
ML/ [2n—p)]
wy = (“—) 3.486
P

from the origin.
(€) As p— oo, the n closed-loop characteristic values approach the numbers

A

#,i=1,2,---,n, where
- _[ m  if Re(m) <0,
—ar if Re(wm)>0.
The configuration of poles indicated by (b} is known as a Butterwerth
configuration of order n — p with radius w, (Weinberg, 1962). In Fig. 3.19

3-487

Im im m
i j gy
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Rel|1 e Re |-t 0 Re |- 0
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Re \-1 g Re -t 0
x \
\’\ .
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Fig. 3.19. Buiterworth pole confipurations of orders one through five and unit radii.
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some low-crder Butterworth configurations are indicated. In the next section
we investigate what responses correspond to such configurations.

Fipure 3.20 gives an example of the behavior of the closed-loop poles for a
fictitious open-loop pole-zero configuration. Crosses mark the open-loop
poles, circles the open-loop zeroes. Since the excess of poles over zeroes is
two, a second-order Butterworth configuration results as p | 0. Theremaining

pho im P
rd
Fa
rd
7
’/
f=ea — ___I/
p;m p:u i - - Ra
pueo
= -
~
~
N
N
N
N
- AN
Dil] x open-loop poles .
0 open-loop Zeroes

Fig. 3.20. Root loci ol the characteristic values of the mairix 2 (dashed and solid lines)
and of the closed-loop poles (solid lines only) for a single-input single-output system with a
fictitious open-loop pole-zero configuration.

closed-loop pole approaches the open-loop zero as p | 0. For p— oo the
closed-loop poles approach the single left-half plane open-loop pole and the
mirror images of the two right-half plane open-loop poles.

We now return to the multiinput case. Here we must investigate the roots of

$(s)p(—s) det [I + :1] NTHT (—s)R;.H(s)} =0. 3-488

The problem of determining the root loci for this expression is not as simple
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as in the single-input case. Evaluation of the determinant leads to an expres-
sion of the form

e i s

B 2 o{1/p)s* =0, 3-489

7=}

where the functions o(I/p}, i=0,1,2,---,n are polynomials in 1fp.
Rosenau (1968) has piven rules that are helpful in obtaining root loci for
such an expression. We are only interested in the asymptotic behavior of the
roots as p — 0 and p — o0. The roots of 3-488 are also the roots of

#(s)p(—s) det [pI + NTHT(—$)R H(s)] = 0. 3-490

As p — 0 some of the roots po to infinity; those that stay finite approach the
zeroes of

H()(—s) det [N HZ(— )R, H(s)), 3-491

provided this expression is not identically zero. Let us suppose that H(s) is a
square transfer matrix (in Section 3.7 we saw that this is a natural assump-
tion). Then we know from Section 1.5.3 that

det [H(s)] = ¥(s) ‘ 3-492

$(s)”
where 9(s) is 2 polynomial at most of degree n — k&, with » the dimension of
the system and k& the dimension of i and z. As a result, we can write for 3-491

det (Ry)

det (V) w{ —s)p(s). 3-493
Thus it follows that as p | O those roots of 3-490 that stay finite approach the
zeroes of the transfer matrix H(s) and their nepatives. This means that those
optimal closed-loop poles of the regulator that stay finite approach those
zeroes of H(s) that have nepative real parts and the negatives of the zeroes
that have nonnegative real parts.

It turns out (Rosenau, 1968) that as p | O the far-off closed-loop regulator
poles, that is, those poles that go to infinity, generally do not form a single
Butterworth configuration, such as in the single-input case, but that they
group into several Butterworth configurations of different orders and different
radii (see Examples 3.19 and 3.21}, A rough estimate of the distance of the
faraway poles from the origin can be obtained as follows. Let ¢,(s) denote
the closed-loop characteristic polynomial. Then we have

PuS)bpo(—5) = P(5)P(—s) det [I + 1Ny T(-—S)R;,H(s)jl. 3-494

p
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For small p we can approximate the right-hand side of this expression by

det (R;])
p* det (N)
where k is the dimension of the input u. Let us write

P(s)p(—s) det E NHT(—5)RgH (s):l = w(s)p(—s) 3-495

o
p(s) = e[ (s — »). 3-196
i=1
Then the leading term in 3-491 is given by

SR e 3497
p* det (N)

This shows that the polynomial ¢,(s)¢,(—5) contains the following terms

0 o det(Ry) a
—§) = (=1 Fee——— (1)’ "4 -. 3-498
P(S}o(—8) = (—D%" + -+ 4+« p"det(N)( VRN
The terms given are the term with the highest power of s and the term with
the highest power of 1/p. An approximation of the faraway roots of this
polynomial (for small p) is obtained from

a1 a d a
(=% 4+ o ";ﬂi (-7 =0. 3-499
p- det (N)
Tt follows that the closed-loop poles are approximated by the left-half plane
solutions of

. d L/2(n=n)]

-1 {n—p—1)/[2{n~p)] (a,,_-
=0 gt det (N)

This first approximation indicates a Butterworth configuration of order
n — p. We use this expression to estimate the distance of the faraway poles
to the origin; this (crude) estimate is given by

( . det (Ry) 1/[2{n—n)]
g M
We consider finally the behavior of the closed-loop poles for p — 0. In
this case we see from 3-494 that the characteristic values of the matrix Z
approach the roots of ¢(s)¢(—s). This means that the closed-loop poles
approach the numbers #,, i = 1,2, - - -, », as given by 3-487.
We summarize our results for the muitiinput case as follows.

3-501

Theorem 3.12. Consider the steady-state solution of the multiinput time-
invariant regulator problem. Assume thot the open-loop system is stabilizable
and detectable, that the input u and the controlled variable = have the same
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dimension k, and that the state = has dimension n. Let H(s) be the kb x & apen-
loop transfer matrix

H(s) = D(sT — AY"B. 3-502

Suppose that ¢(s) is the open-loop characteristic polynomial and write

»
D'.H (S —_ ')’i)
det [H(S)] S ’;% = ":l:—l—""“— 3-503
5
-_DI: (s — )
Assume that w £ O and take Ry = pN with N > 0, p > 0,

(a) Then as p—0, p of the optimal closed-loop regulator poles approach the
values #;,i = 1,2, -+, p, where

b — [ v, if Re(y)<0
=
—; if Re(») >0,
The remaining closed-loop poles go to infinity and group into several Butter-

worth configurations of different orders and different radii. A rough estimate
of the distance of the faraway closed-loop poles to the origin is

( , det (R:]) 1/[2{n—n}]

* o det (m) '

(b) As p — o0, the n closed-loop regulator poles approach the numbers #,,
i=1,2,--,n, where

A _{_'rri if Re(m) <0

-y if Re(=)>0,

We conclude this section with the following comments. When p is very
small, large input amplitudes are permitted. As a result, the system can move
fast, which is reflected in a great distance of the faraway poles from the origin.
Apparently, Butterworth pole patterns give good responses. Some of the
closed-loop poles, however, do not move away but shift to the locations of
open-loop zeroes. As is confirmed later in this section, in systems with left-
half plane zeroes only these nearby poles are “canceled” by the open-loop
zeroes, which means that their effect in the controlled variable response is not
noticeable.

The case p = o corresponds to a very heavy constraint on the input
amplitudes. It is interesting to note that the ‘““cheapest™ stabilizing control
law (““cheap” in terms of input amplitude) is a control law that relocates the
unstable system poles to their mirror images in the left-half plane.

Problem 3.14 gives some information concerning the asymptotic behavior of
the closed-loop poles for systems for which dim () 5 dim (z).

3-504

3-505

3-506
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Example 3.18. Position control system

In Example 3.8 (Section 3.4.1), we studied the locations of the closed-loop
poles of the optimal position control system as a function of the parameter p.
As we have seen, the closed-loop poles approach a Butterworth configuration
of order two. This is in agreement with the results of this section. Since the
open-loop transfer function

K
s(s + o)
- has no zeroes, both closed-loop poles go to infinity as p | 0.

Example 3.19. Stirred tank

As an example of a multiinput multioutput system consider the stirred tank
regulator problem of Example 3.9 (Section 3.4.1). From Example 1.15
(Section 1.5.3), we know that the open-loop transfer matrix is given by

H(s) = 3-507

0.01 0.01
s+ 001 54001
H(s) = . 3-508
—0.25 0.75

s+ 002 54002

For this transfer matrix we have

0.01
(s + 0.01)(s + 0.02)
Apparently, the transfer matrix has no zeroes; all closed-loop poles are

therefore expected to go to e as p | 0. With the numerical values of Example
3.9 for R, and N, we find for the characteristic polynomial of the matrix Z

det [H(s)] =

3-509

. 0
S+ s~(—0.5 x 107 — M)
p
- —1
+ (0.4 x 10~ 4 QTHO X 107 T0 ) 3-510
p p

Figure 3.21 pives the behavior of the two closed-loop poles as p varies.

Apparently, each pole traces a first-order Butterworth pattern. The asymp-

totic behavior of the roots for p | 0 can be found by solving the equation

g 0.02416 o 10:‘l _o, 1511
P P

which yields for the asymptotic closed-loop pole locations

0.1373 0.07280
—_—— and — .

Ve Jp

3-512
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-0.4 -0.2 0
et el ot locus of tirst pole
Re
B {s-1)
pP=10
p=0.1 phi
.-\:—*"., B locus of second pole
-04 -0.2 of —=
Re
{s-1

Fig. 3.21. Loci of the closed-loop roots for the stirred tank regulator. The locus en top
originates from —0.02, the one below from —0.01.

The estimate 3-505 yields for the distance of the faraway poles to the origin
' 0.1

Jr

We see that this is precisely the peometric average of the values 3-512.

3-513

Example 3.20. Pitch control of an airplane

As an example of a more complicated system, we consider the longit
tudinal motions of an airplane (see Fig. 3.22). These motions are character!
ized by the velocity « along the z-axis of the airplane, the velocity i along
the z-axis of the airplane, the pitch 0, and the pitch rate ¢ = 8. The z- and
z-axes are rigidly connected to the airplane. The z-axis is chosen to coincide

with the horizontal axis when the airplane performs a horizontal stationary -
flight.

horizontal

verticol

Fig. 3.22. The longitudinal motions of an airplane.
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The control variables for these motions are the engine thrust T and the
elevator deflection 4. The equations of motion can be linearjzed around 2
nominal solution which consists of horizontal flight with constant speed.
It can be shown (Blakelock, 1963) that the linearized Jongitudinal equations
of motion are independent of the lateral motions of the plane.

We choose the components of the state as follows:

£1(1) = u(1), incremental speed along z-axis,
E(t) = w(t), speed along z-axis,

3-514
§4(t) = B(t),  pitch,
£4(1) = q(1), pitch rate.
The input variable, this time denoted by ¢, we define as
o) = (T(t)) incremental engine thrust, 3.515
() elevator deflection.

With these definitions the state differential equations can be found from the
inertial and aerodynamical laws governing the motion of the airplane (Blake-
lock, 1965). For a particular medium-weight transport aircraft under cruising
conditions, the following linearized state differential equation results:

—0.01580 0.02633 —9.810 0

—01571  —1.030 0 120.5
(i) = w(t)
0 0 0. 1
0.0005274  —0.01652 0  —1.466
0.0006056 0
0 —9.496
+ e(r). 3-516

0 0
0 —5.565

Here the following physical units are employed: # and w in mfs, # in rad,
g in radfs, Tin N, and 4 in rad.

In this example we assume that the thrust is constant, so that the elevator
deflection d8(¢) is the only confrol variable. With this the system is described
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by the state differential equation
—0.01580 0.02633 —9.810 0
—0.1‘571 —1.030 0 120.5

o) = (1)
0 0 0 1
0.0005274 —0.01652 0 —1.466
0
—9.496
+ a(n. 3-517
0
—5.565
As the controlled variable we choose the pitch 6(t):
() = (0, 0, 1, 0)=(1). 3-518

Tt can be found that the transfer function from the elevator deflection &(2)
to the pitch 8(¥) is given by

—3.5655" — 5.663s — 0.1112

2 . 3-519
s' + 2.5125" — 3.544s" + 0.06487s + 0.03079
The poles of the transfer function are
—0.006123 + 70.09353,
3-520

—1.250 £ j1.394,
while the zeroes are given by

—0.02004 and —0.9576. 3521

The loci of the closed-loop poles can be found by machine computation.
They are given in Fig. 3.23. As expected, the faraway poles group into a
Butierworth pattern of order two and the nearby closed-loop poles approach
the open-loop zeroes. The system is further discussed in Example 3.232.

Example 3.21. The control of the longitudinal motions of an airplane
In Example 3.20 we considered the control of the pitch of an airplane
through the elevator deflection. In the present example we extend the system
by controlling, in addition to the pitch, the speed along the x-axis. As an
additional control variable, we use the incremental engine thrust T(¢). Thus

we choose for the input variable

o) = (T(r)) incremental engine thrust,
3-522

6(t)

elevator deflection,
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Im
—10]

(5%

| .p=0.1 and lorger

i}

-10j

=m ( 5"1 )
p=0m  p=1 0.4}
i p:wn?
-1 ' - p=1, p=00
Ry \ ,
Re—={s"1} -0}

Fig. 3.23. Loci of the closed-loop poles of the pitch stabilization system. («) Faraway
poles; (b) nearby pales.

and for the controlled variable

(1) = ( u(t)) incremental speed along the 2-axis, 1523

a0 pitch,
From the system state differential equation 3-516, it can be computed that
the system transfer matrix has the numerator polynomial

p(s) = —0.003370(s + 1.002), 3524
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which results in a single open-loop zero at —1.002. The open-loop poles are

—0,006123 4 70.09353 and —1.250 4 j1.354.

Before analyzing the problem any further, we must establish the weighting
matrices Ry and N, For both we adopt a diagonal form and to determine
their values we proceed in essentially the same manner as in Example 3.9
{Section 3.4.1) for the stirred tank. Suppose that Ry = diag (g,, 62). Then

2T (ORz=(1) = o (1) + a:0%1). 3-525

Now let us assume that a deviation of 10 m/s in the speed along the z-axis is
considered to be about as bad as a deviation of 0.2 rad (12°) in the pitch.
We therefore select o, and o, such that

a,(10)* = 5,(0.2)%, 3-526
or
o
— = 0.0004. 3.527
]
Thus we choose
002 0
R, = . 3-528
0 50

where for convenience we have let det (R;) = 1. Similarly, suppose that
N = diag (p,, pa) 50 that

eT(ONe() = p, T(1) + po 8°(0). 3-529
To determine p; and p., we assume that a deviation of 500 N in the engine

thrust is about as acceptable as a deviation of 0.2 rad (12°) in the elevator
deflection. This Ieads us to select

p1(500)2 = pa(0.2), 3-530
which results in the following choice of V:
0.0004 0O
N = . - 3531
0 2500

With these values of R, and &, the relation 3-505 gives us the fo]lowmg
estimate for the distance of the far-off poles:

( . det (Ry) )1"[“‘""”] 0.15
g = O —(— = T
’ p* det (N) P
The closed-loop pole locations must be found by machine computation.
Table 3.4 lists the closed-loop poles for various values of p and also gives the

estimated radius w,. We note first that one of the closed-loop poles
approaches the open-loop zero at —1.002, Furthermore, we see that wy is

3-532
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only a very crude estimate for the distance of the faraway poles from the
origin,

The complete closed-loop loci are sketched in Fig. 3.24, It is noted that the
appearance of these loci is quite different from those for single-input systems.
Two of the faraway poles assume a second-order Butterworth configuration,
while the third traces a first-order Butterworth pattern. The system is further
discussed in Example 3.24.

p=0.07 Im
. EJ 1
(s

p=1

x
=100,
p=na

L 0
-5

Re —={5-1)

~-5j
o
Im
T
\ {sh
p=1072 p=10-1 P=0.4 0.1
| | 0.2
T - e J N
p—_-|1n-5 p:’ﬁ]"' =10
- -0
Re——(571)
p=0.4 =1
and
p=10"3

b

Fig. 3.24. Loci of the closed-loop poles for the longitudinal motion control system.
{a) Farawoy poles; (&} nearby pole and one faraway pole. For clarity the coinciding

portions of the loci on the real axis are represented as distinct lines; in reality they coincide
with the real axis,
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Table 3.4 Closed-Loop Poles for the Longitudinal Motion Stability Augmentation
System

Closed-loop poles ttry
P (G (s
© ~—0.006123 £ 70.09353 —1.250 £ f1.394 0
1 —0.1734 4 j0.1184 —1.263 £ j1.415 0.15
101 —0.5252 — 0.2166 —1.376 £ j1.564 0.32
10~ —0.8877 — 0.2062 —1.986 + j2.179 0.70
103 —0.9745 — 0.2431 —3.484 4 j3.609 1.5
104 —0.9814 — 0.4806 —6.241 + j6.312 2
10-5 —1.020 — 1.344 ~11.14 +£/11.18 7.0
1070 —1.003 — 4.283 —19.83 4 j19.B3 13
10-8 -1.002 —42.82 —62,73 +j62.73 70

3.8.2* Asymptatic Properties of the Single-Input Single-Output
Nonzero Set Point Regulator

In this section we discuss the single-input single-output nonzero set point
optimal regulator in the light of the results of Section 3.8.1. Comsider the
single-input system ,

- 2(1) = A={1) + bu(t) 3-533

- with the scalar controlled variable
L(t) = du(s). 3-534

Here b is a column vector and 4 a row vector. From Section 3.7 we know
that the nonzero set point optimal control law is given by

1
H(0)

wt) = —fut) + ——= Ly, 3-535

where [ is the row vector

J=28T5, | 3-536

-

with P the solution of the appropriate Riccati equation. Furthermore, H (s}
is the closed-loop transfer function

H(s) = d(sI — A + by, 3-537

and I, is the set point for the controlled variable,

In order to study the response of the regulator to a step chanpe in the set
point, let us replace £, with a time-dependent variable y(#). The inter-
connection of the open-loop system and the nonzero set point optimal
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control law is then described by
1) = (A — bF 1
L) = d= (1).

Laplace transformation yields for the transfer function T(s) from the varjable
set point {y(r) to the controlled variabie {(r):

1
H(0)
Let us consider the closed-loop transfer function d(sf — A4 + bf)b.
Obviously,

T(s) = d(sT ~ A + bfy™b 3-539

bo(s)’

where ¢,(s) = det (s — A + bf) is the closed-loop characteristic poly-
nomial and ,(s) is another polynomial. Now we saw in Section 3.7 {Eq.
3-428) that the numerator of the determinant of a square transfer matrix
D{sI — 4 + BF)'R is independent of the feedback gain matrix F and is
equal to the numerator polynomial of the open-loop transfer matrix
D(sI — A)y-1B. Since in the single-input single-output case the determinant
of the transfer function reduces to the transfer function itself, we can immedi-
ately conclude that v, {s) equals y(s), which is defined from

disI — A + by 'b = 3-540

H(s) = ¥ 3:541
b(s)
Here H(s) = d(sT — A)™b is the open-loop transfer function and ¢(s) =
det (sI — A) the open-loop characteristic polynomial.
As a result of these considerations, we conclude that

w(s) $,(0)
T(S) =—7——. 3-542
. =% w0
Let us write
p(s) = cf-f[ (s — v, 3-543

where the »;, i = 1,2, - - -, p, are the zeroes of H(s). Then it follows from
_Theorem 3.11 that as p | 0 we can write for the ¢losed-loop characteristic
polynomial

A—n"

n
bs) = ]._,[ (s — #) ]._,[ (s — 14my), 3-544
i=1 i=1
where the #;, i =1, 2, -- -, p, are defined by 3-484, the %, i=1,2,:-+,
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n — p, form a Butterworth configuration of order n — p and radius 1, and
where ‘
N aﬂ 1/(2{n—m]
S Wy = (_) 3-545

i)
Substitution of 3-544 into 3-542 yields the following approximation for T(s):

. , [T +1
() = — I %
n= . : 3-546
I (— —— 4 1) -2
=1 7]1-(1]“ ﬁl.
This we rewrite as
s
1 2 - ']’1‘ + 1
T() > ——— —1, 3-547
xn—p(slwu) i=1 _ 5 |
7,

where y,,_,(s) is a Butterwortlt polynomial of order n — p, that is, g,_,(s) is
defined by

n—n
Xu—als) =TT (-— EAE 1). 3.548

=1 Wi

Table 3.5 lists some low-order Butterworth polynemials (Weinberg, 1962),

Table 3.5 Butterworth Palynomials of Orders One
through Five

n=s5+1

) =5 + 14145 + 1

) = 5% 4+ 2% + 25 + 1

(8} = s 4+ 261357 4 3.4148% + 2.6135 + 1

7:{8) = 5% + 32365 + 5.2365° + 52365 + 3.2365 + 1

The expression 3-547 shiows that, if the open-loop transfer function has
zeroes in the left-half plane only, the control system transfer function T(s)

approaches
1

xn—p(‘s‘/mﬂ)
as p | 0. We call this a Butterworth wansfer function of order n — p and

break frequency w,. In Figs. 3.25 and 3.26, plots are given of the step
responses and Bode diagrams of systems with Butterworth transfer functions

3-549
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step r S

response

o t I
1} 5 t—==—1I(s5} 10

Fig. 3.25. Step responses of systems with Butterworth transfer functions of orders one
throngh five with break [requencies 1 rad/s.

of various orders. The plots of Fig. 3.25 give an indication of the type of
response obtained to steps in the set point, This response is asymptotically
independent of the open-loop system poles and zeroes (provided the latter
are in the left-half complex plane). We also see that by choosing p small
enough the break frequency w, can be made arbitrarily high, and corre-
spondingly the settling time of the step response can be made arbitrarily
small. An extremely fast response is of course obtained at the expense of
large input amplitudes.

This analysis shows that the response of the controlled variable to changes
in the set point is dominated by the far-off poles #;wy, i=1,2,---,n — p.
The nearby poles, which nearly coincide with the open-loop zeroes, have
little effect on the response of the controlled variable because they nearly
cancel against the zeroes. As we see in the next section, the far-off poles
dominate not only the response of the controlled variable to changes in the
set point but also the response to arbitrary initial conditions. As can easily
be seen, and as illustrated in the examples, the nearby poles do show up in
the input. The settling time of the tracking error is therefore determined by
the faraway poles, but that of the input by the nearby poles.

The situation is less favorable for systems with right-half plane zeroes.
Here the transmission 7(s) contains extra factors of the form

s+ 7,
5_11,'

3-550
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Tig. 3.26. Modulus and phase of Butterworth transler Tunctions ol orders one through
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and the tracking error response is dominated by the nearby pole at #;.. This
points to an inherent limitation in the speed of response of systems with
right-half plane zeroes. In the next subsection we further pursue this topic.
First, however, we summarize the results of this section;

Theorem 3.13. Consider the nonzera set point optimal control law 3-535 for
the time-invariant, single-input  single-output, stabilizable and detectable
system
(1) = A=x(t) + bu(2),
E(t) = dz(t),

where Ry =1 and Ry = p. Then as p | 0 the control system transmission
T(s) (i.e., the closed-loop transfer function from the variable set point ()

3-551
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ta the controlled variable [(1)) upproaches

B 1 n - T + 1
T(s) — I —x i 3552
Xrl—p(s/wu)l'=1 . % +1
i;

where y,_,(s) is a Butterworth palynomial of order n — p and radius 1, n is
the order of the system, p is the munber of zeroes of the open-loop transfer
Junction of the system, wq is the asymptotic radjus of the Butterworth con-
Sfiguration of the faraway closed-loop poles as given by 3-486,v;,i =1,2,---,
p. are the zeroes of the open-loop transfer function, and #;, i = 1,2, -, p,
are the open-loop transfer function zeroes mirrored into the left-half complex

plane.

Example 3.22. Pitch contro!
Consider the pitch control problem of Example 3.20. For p = 0.01 the
steady-state feedback gain matrix can be computed to be

F=(—0.0001174, 0.002813, —10.00, —1.619). 3-556
The corresponding closed-loop characteristic polynomial is given by
do(5) = 51 4+ 11.4957 4 66.435% 4 56.845 4 1.112. 3-557
The closed-loop poles are
—0.02004, —0.9953, and —0.5239 4 j5.323. 3-558

We see that the first two poles are very close to the open-loop zeroes at
—0.2004 and —0.9976. The closed-loop transfer function is given by

ps) —5.5655" — 5.663s — 0.1112

Hfs) = = : - , 3-559
d(s) s* 4 11.495" 4- 66.435" 4 56.845 + 1.112
so that H,(0) = —0.1000. As a result, the nonzero set point control law is
given by
3{t) = —fu(t) — 10.000,(), 3-560

where 0y{t) is the set point of the pitch.

Figure 3.27 depicts the response of the system to a step of 0.1 rad in the
set point @,(7). It is seen that the pitch & quickly settles at the desired value;
its response is completely determined by the second-order Butterworth
configuration at —5.239 & 75.323. The pole at —0.9953 (corresponding to a
time constant of about 1 s) shows up most clearly in the response of the speed
along the z-axis w and can also be identified in the behavior of the elevator
deflection 8. The very slow motion with a time constant of 50 s, which
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Fig, 3.27. Response of the pitch control system
-1k to a step of 0.1 rad in the pitch angle set point.

corresponds to the pole at —0.02004, is represented in the response of the
speed along the z-axis v, the speed along the z-axis w, and also in the elevator
deflection §, although this is not visible in the plot. It takes about 2 min for
1 and w to settle at the steady-state values —49.16 and 7.754 m/s.

Note that this control law yields an initial elevator deflection of —1 rad
which, practically speaking, is far too large. '
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Lxample 3.23. System with a right-half plane zero
As a second example consider the single-input system with state differ-
ential equation

= (0 1) ) + (O)u 3-561
% — T ).

Let us choose for the controlled variable

- =01, —N=z(. 3-562

This system has the open-loop transfer function
—5+41

s(s +2)°

and therefore has a zero in the right-half plane Consider for this system the
criterion

H(s) = 3-563

ﬁm[gﬂ(f) + pu'()] dt. : 3-564

It can be found that the corresponding Riccati equation has the steady-state
solution

1+Jm Ve
— 3-565
' Ve ( 24 [4+= +\/P)

The corresponding steady-state feedback gain vector is

= (ﬁ —2+\/4+ +\/P) 3-566

The-closed-loop poles can be found to be

1
0( \/4+ +—i\/4+1-i_). 3-567
2 Vr poJr
Figure 3.28 gives a sketch of the loci of the closed-loop poles. As expected,
one of the closed- -loop poles approaches the mirror image of the right-half

plane zero, while the other pole goes to — oo along the real axis.
For p = 0.04 the closed-loop characteristic polynomial is given by

5% - 6.2455 - 5, 3-568

and the closed-loop poles are located at —(0.943 and —5.302. The closed-loop
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Fig. 3.28. Loci of the closed-loop poles for a system with n right-half plane zero.
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transfer function is
y(s) —5-1

H{s) = = ) 3-569
d(s) s -+62455+ 5
so that #,(0) = 0.2. The steady-state feedback gain vector is
f=1(5, 4243). 3-570

As a result, the nonzero set point control law is
p(f) = —(5, 4.245)(r) -+ 5Lo(0). 3571

Figure 3.29 gives the response of the closed-loop system to a step in the set
point £,(¢). We see that in this case the response is dominated by the closed-
loop pole at —0.943. It is impossible to obtain a response that is faster and at
the same time has a smaller integrated square tracking error,

3.8.3* The Maximally Achievable Accuracy of Regulators and Tracking
Systems

In this section we study the steady-state solution of the Riccati equation as p

approaches zero in
R, = pN. 3-572

The reason for cur interest in this asymptotic solution is that it will give us
insight into the maximally achievable accuracy of regulator and tracking
systems when no limitations are imposed upon the input amplitudes.

This section is organized as follows. First, the main results are stated in the
form of a theorem. The proof of this theorem (Kwakernaak and Sivan,
1972), which is long and technical, is omitted. The remainder of the section
is devoted to a discussion of the results and to examples.

We first state the main results: '

Theorem 3.14. Counsider the time-invariant stabilizable and detectable linear
System
(1) = Az{t) + Bu(t),

2(f) = Dx(t), 3573

wihere B and D are assumed to have full rank. Consider also the criterion

fm EY(OR(D + uT(DRu(1)] dt 3-574
tg ’

where Ry > 0, R. > 0. Let
R, = pN, 3-575

with N > 0 and p a positive scalar, and let P, be the steady-state solution af
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the Riccati equation

—P,(1) = DTR,D — P,()BR*BTP,(1) + ATP,(1) + P (D)4,

. 3.576
P(t)=0.""
Then the following facts hald,
(8) The limit
lim P, = P, 3-577

. plﬂ
exists.

(b) Let z,(1), t > 1y, denate the response of the controlled variable for the
regulator that is steady-state optimal for R, = pN. Then

@

Hlin 2, (D Ryz, (1) di = a1} Py(ty). 3-578

alo Jig
(€) If dim (2) > dim (u), then P, 5= 0.
(d) If dim (=) = dim (&) and the nmumerataor palynomial p(s) of the open-loap
transfer matrix H(s) = D(sI — AY™'B is nonzera, Py = 0 if and only if 9(s)
has zeroes with nonpasitive real parts anly.
(&) If dim (2) < dim (u), then a sufficient condition for Py to be O is that there
exists a rectangular matrix M such that the numerator polynomiol (s) of
the square tronsfer matrix D{sI — A)2BM is nonzero and hos zeraes with
nanpasitive real parts only.

A discussion of the significance of the various parts of the theorem now
follows. Item (a) states that, as we let the weighting coefficient of the input g
decrease, the criterion '

f T, 5O, + pur, NONu (0] dt = S(1Pya(t) 3579

to
approaches a limit z7 (z,) P (t,). If we identify R, with W, and N with W/, the
expression 3-57% can be rewritten as

j C, (1) ﬂ’f+Pf C,.. (1) dt, 3.580
tp th

where C, (1) = zﬂT (t)Wz,(1) is the weighted square regulating error and
C, (1) = 1, " (W, (1) the weighted square input. It follows from item (b)
of the theorem that as p | 0, of the two terms in 3-580 the first term, that is,
the integrated square regulating error, fully accounts for the two terms
together so that in the limit the integrated square regulating error is given by

m

lim | C, (1) dt = (1) Py(ty). 3-581

pitJh



308 Optimal Linear Staiec Feedback Confrol Systems

If the weighting coefficient p is zero, no costs are spared in the sense that
no limijtations are imposed upon the input amplitudes. Clearly, under this
condition the greatest accuracy in regulation is achieved in the sense that the
integrated square regulation error js the least that can ever be obtained.

Parts (c), (d}, and (&) of the theorem are concerned with the conditions
under which Py =0, which means that ultimately perfect regulation is
approached since

lim f Cop{tydt = 0. 3-582
sl Jig

Part (c) of the theorem states that, if the dimension of the controlled variable
is greater than that of the input, perfect regulation is impossible. This is
very reasonable, since in this case the number of degrees of freedom to control
the system is too small. In order to determine the maximal accuracy that can
be achieved, Py must be computed. Some remarks on how this can be done
are given in Section 4.4.4.

In part {d) the case is considered where the number of degrees of freedom
is sufficient, that is, the input and the controlled variable iave the same dimen-
sions. Here the maximally achievable accuracy is dependent upon the
properties of the open-loop system transfer matrix H(s). Perfect regulation is
possible only when the numerator polynomial (s} of the transfer matrix
has no right-half plane zeroes (assuming that w(s) is not identical to zero).
This can be made intuitively plausible as follows. Suppose that at time 0 the
system is in the initial state ;. Then in terms of Laplace transforms the
response of the controlled variable can be expressed as

Z(s) = H(sYU(s) + D(sI — Ay =, 3-583

where Z(s) and U(s) are the Laplace transforms of z and », respectively.
Z(s) can be made identical to zero by choosing

U(s) = —H-Y(5)D(s] — A)'z,. _ 3-584

The input u(t) in general contains delta functions and derivatives of delta
functions at time 0. These delta functions instantaneously transfer the system
from the state xy at time O to a state x(0") that has the property that z(0+) =
Dz(0%) = 0 and that z(t) can be maintained at 0 for ¢ > 0 (Sivan, 1965).
Note that in general the state =(¢) undergoes a delta function and derivative
of delta function type of trajectory at time 0 but that z(¢) moves from z(0) =
D=y to O directly, without infinite excursions, as can be seen by inserting
3-584 into 3-583,

The expression 3-584 leads to a stable behavior of the input only if the
inverse transfer matrix A—1(s) is stable, that is if the numerator polynomial
w(s) of H(s) has no right-half plane zeroes. The reason that the input 3-584
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cannot be used in the case that A~1(s) has unstable poles is that although the
input 3-584 drives the controlled variable z(7) to zero and maintains z(¢) at
zero, the input itself grows indefinitely (Levy and Sivan, 1966). By our
problem formulationsuch inputs are ruled out, so that in this case 3-584
is not the limiting input as p | 0 and, in fact, costless regulation cannot be
achieved.

Finally, in part {e) of the theorem, we see that if dim () < dim (), then
" Py = 0 if the situation can be reduced to that of part (d) by replacing the
input # with an input #" of the form

' (1) = Mut). _ 3-585

The existence of such a matrix M is not a necessary condition for P, to be
zero, however,

Theorem 3.14 extends some of the results of Section 3.8.2. There we found
that for single-input single-output systems without zeroes in the right-half
complex plane the response of the controlled variable to steps in the set
point is asymptotically completely determined by the faraway closed-loop
poles and not by the nearby poles. The reason is that the nearby poles are
canceled by the zeroes of the system. Theorem 3.14 leads to more general
conclusions. It states that for multiinput multioutput systems without zeroes
in the right-half complex plane the integrated square regulating error goes to
zero asymptotically. This means that for small values of p the closed-loop
response of the controlled variable to any initial condition of the system is
very fast, which means that this response is determined by the faraway
closed-loop poles only. Consequently, also in this case the effect of the nearby
poles is canceled by the zeroes. The slow motion corresponding to the nearby
poles of course shows up in the response of the input variable, so that in
general the input can be expected to have a much longer settling time than
the controlled variable. Tor illustrations we refer to the examples.

It follows from the theory that optimal regulator systems can have “hidden
modes” which do not appear in the controlled variable but which do appear
in the state and the input. These modes may impair the operation of the
control system. Often this phenomenon can be remedied by redefining or
extending the controlled variable so that the requirements upen the system
are more faithfully reflected.

It also follows from the theory that systems with right-half plane zeroes are
fundamentally deficient in their capability to regulate since the mirror images
of the right-half plane zeroes appear as nearby closed-loop poles which are
not canceled by zeroes. If these right-half plane zeroes are far away from the
origin, however, their detrimental effect may be limited.

It should be mentioned that ultimate accuracy can of course never be
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hchieved since this would involve infinite feedback gains and infinite input
mplitudes. The results of this section, however, give an idea of the ideal
erformance of which the system is capable. In practice, this limit may not
early be approximated because of the consiraints on the input amplitudes.
So far the discussion has been confined to the deterministic regulator
problem. Let us now briefly consider the stochastic regulator problem, which
includes tracking problems, As we saw in Section 3.6, we have for the
stochastic regulator problem

Cﬂm.p + Pcum.p = tr (PV)s 3-586

where C,_, and C,_ indicate the steady-state mean square regulation error
and the steady-state mean square input, respectively. It immediately follows
that

hrn (Comp + PCum.p) = tr (PyV). 3-587

'It is not difficult to argue [analogously to the proof of part (b) of Theorem
3.14] that of the two terms in 3-587 the first term fully accounts for the left-
hand side so that

iplgmn Com.p = LT (Pyl). 1.588
This means that perfect stochastic regulation (Py = 0) can be achieved under
the same conditions for which perfect deterministic regulation is possible. It
furthermore is easily verified that, for the regulator with nonwhite disturb-
ances (Section 3.6.1) and for the stochastic tracking problem (Section 3.6.2),
perfect regulation or tracking, respectively, is achieved if and only if in both
cases the planr transfer matrix H(s) = D(s] — A)~'B satisfies the comn-
ditions outlined in Theorem 3.14. This shows that it is the plant alone that
determines the maximally achievable accuracy and not the properties of the
disturbances or the reference variable.
In conclusion, we note that Theorem 3.14 gives no results for the case in
which the numerator polynomial y(s) is identical to zero. This case rarely
seems to occur, however.

Example 3.24.  Control of the longitudinal motions of an airplane

As an example of a multiinput system, we consider the regulation of the
longitudinal motions of an airplane as described in Example 3.21. For p =
107" we found in Example 3.21 that the closed-loop poles are —1.003,
—4.283, and —19.83 4- j15.83. The first of these closed-loop poles practically
coincides with the open-loop zero at —1.002.

Figure 3.30 shows the response of the closed-loop system to an initial
deviation in the speed along the x-axis u, and to an initial deviation in the
pitch 0. It is seen that the response of the speed along the x-axis is determined
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mainly by a time constant of about 0.24 s which corresponds to the pole at
—4.283. The response of the pitch is determined by the Butterworth con-
figuration at —19.83 4 j19.83. The slow motion with a time constant of
about I s that corresponds to the pole at —1.003 only affects the response of
the speed along the z-axis w.

We note that the conirolled system exhibits very little interaction in the
sense that the restoration of the speed alonp the w-axis does not result in an
appreciable deviation of the pitch, and conversely.

Finally, it should be remarked that the value p = 10~ is not suitable from
a practical point of view, It causes far too large a change in the engine thrust
and the elevator angle. In addition, the engine is unable to follow the fast
thrust changes that this control law requires. Further investigation should
take into account the dynamics of the engine.

The example confirms, however, that since the plant has no right-haif
plane zeroes an arbitrarily fast response can be obtained, and that the nearby
pole that corresponds to the open-loop zero does not affect the response of the
controlled variable.

Example 3.25. A system with a right-half plane zero
In Example 3.23 we saw that the system described by 3-561 and 3-562 with
the open-loop transfer function

Hi) = =+ 1 3.589
s(s + 2)

has the following steady-state solution of the Riccati equation

141 +4p +2Vp Ve

Fe A TR ¥
- - 1,2
NG p(—z +\/4 +—+——)
, INY
As p approaches zero, P approaches P,, where

2 0

Py= . 3-591
- N0 O

As we saw in Example 3.23, in the limit p | O the response is dominated by
the closed-loop pole at —1.

3.9*% SENSITIVITY OF LINEAR STATE FEEDBACK
CONTROL SYSTEMS

In Chapter 2 we saw that a very important property of a feedback system is
its ability to suppress disturbances and to compensate for parameter changes.
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In this section we investigate to what extent optimal regulators and tracking
systems possess these properties. When we limit ourselves to time-invariant
problems and consider only the steady-state case, where the terminal time is
. atinfinity, the optiml regulator and tracking systems we have derived have
the structure of Fig. 3.31. The optimal control law can generally be represented

state of
reference vorioble -

®r(t)

Fr

x(t} z{t)
=

utt) plaont o

setpoint -
2n +
— = Fg

F

Fig. 3.31. The structure of a time-invariant linear state leedback control system.

in the form
u(t) = —Fz(t) + Fz (1) + Fz, 3-592

where z,(f) is the state of the reference variable, z, the set point, and F, F,,
and F, are constant matrices. The matrix F is given by

F = R;"B7P, ) 3-593

where F is the nonnegative-definite solution of the algebraic Riccati equation
0 = DTR,D — PBR;'BYP 4 ATP 4 PA. 3-594

~In Chapter 2 (Section 2.10) we saw that the ability of the closed-loop system
to suppress disturbances or to compensate for parameter changes as compared
to an equivalent open-loop configuration is determined by the behavior of the
return difference mairix J(s5). Let us derive J(s) in the present case. The

transfer matrix of the plant is given by (sI — A4)~'B, while that of the feed-
back link is simply F. Thus the return difference matrix is :

J(s) =TI 4 (sT — Ay 'BF. 5 3505

Note that we consider the complete state z(t) as the controlled variable (see -
Section 2.10), .

We now derive an expression for J(s) starting from the algebraic Riccati
equation 3-594. Addition and substraction of an exira term sP yields after
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rearrangement
| 0= DTRyD — PBRy'BYF — (—sI — AT)P — P(sI — A). 3-596
Premultiplication by BT (—sI — 4T)~* and postmultiplication by (s — A)™'B
gives
0 = BT(—si — ATY"Y—PBR;'BTF + DTR,DT)(s1 — A)'B

— BTP(sI — AY"'B — BT(~-si — ATY'PB. 3-597

This can be rearranged as follows:

[f + BT(—sI — ATY'PBR;IR,[I + R;'BTE(sl — AY"B]
= Ry + BT(—sI — ATY*DTR,D(s] — A)™'B. 3-598

After substitution of R;*BTP = F, this can be rewritten as

[f + BT(—sI — ATY'FTIR,I + F(sI — AY™B]
= R, + HT(—5)R,H(s), 3-599

where H(s) = D(sI — A)™'B. Premultiplication of both sides of 3-599 by
FT and postmultiplication by F yields after a simple manipulation

[I + FYBT(—sI — ATy \FTR,F[I + (s — A BF]
. = FTR,F + F'HT(—s)R,H(5)F, 3-600
or

JT(—5)FTR.FI(s) = FTR.F + FTH™(—s)RH(s)F. 3-601

If we now substitute s = jw, we see that the second term on the right-hand
side of this expression is nonnegative-definite Hermitian; this means that we
can write s
JH(—jw)WI(jw) > W  for all real w, 3-602
where
W = FYR,F. 3-603

We know from Section 2.10 that a condition of the form 3-602 guarantees
disturbance suppression and compensation of parameter changes as com-
pared to the equivalent open-loop system for all frequencies. This is a nseful
result. We know already from Section 3.6 that the optimal regulator gives
optimal protection against white noise disturbances entering at the input side
of the plant. The present result shows, however, that protection against
disturbances is not restricted to this special type of disturbances only. By the
same token, compensation of parameter changes is achieved.

Thus we have obtained the following result (Kreindler, 1968b; Anderson
and Moore, 1971).
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Theorem 3.15. Consider the sysiem configuration of Fig. 3.31, where the
“plant™ is the detectable and stabilizable time-invariant system

a5t = Az(t) + Bu(f). N 3-604
Let the feedback gain matrix be given by

F = R;'BTP, 3-605
where P is the nonnegative-definite solution of the algebraic Riccati equation
0 = DTR,D — PBR;'BTP + ATP { PA. 3-606
Then the return difference
J(5) =1+ (sI — 4)'BF 3-607
satisfies the inequality '
JI(—ja)WI(jw) > W  for all real w, 3-608
where .
W = FTR,F. ‘ 3-609

For an extension of this result to time-varying systems, we refer the reader
to Kreindler (1969).

Tt is clear that with the configuration of Fig. 3.31 improved protection is
achieved only against disturbances and parameter variations inside the feed-
back loop. In particular, variations in D fully affect the controlled variable
(). It frequently happens, however, that D does not exhibit variations. This
is especially the case if the controlled variable is composed of components ‘
of the state vector, which means that z(¢) is actually inside the loop (see
Fig. 3.32),

Xr(ﬂ . .
- %ty =2t -
plont
20 ! e x2(t)
E

Fig. 3,32, Example of a situation in which the controlled variable is inside the feedback
loop.



316 Optimal Linear State Feedbock Control Systems

Theorem 3.15 has the shortcoming that the weighting matrix FXR,F is
known only after the centrel law has been computed; this makes it difficult
to choose the design parameters Ry and R, such as to achieve a given weighting
matrix. We shall now see that under certain conditions it is possible to deter-
mine an asymptotic expression for M. In Section 3.8.3 it was found that if
dim (z} = dim (u), and the epen-loop transfer matrix H(s} = D(s/ — A} B
does not have any right-half plane zeroes, the solution P of the algebraic
Riccati equation approaches the zero matrix as the weighting matrix R,
approaches the zero matrix. A glance at the algebraic Riccati equation 3-594
shows that this implies that

PBR;*BTP — DTR,D 3-610
as Ry — 0, or, since R;*"BYP = F, that

FTR,F— DTR,D 3611

as R, — 0. This proves that the weighting matrix ¥ in the sensitivity criterion
3-608 approaches D”RyD as R, — 0.

We have considered the entire state z(z) as the feedback variable. This
means that the weighted square tracking error is

=T (W (1) 3612

From the resuits we have just obtained, it follows that as R, — 0 this can be
replaced with
aT () DTR, Da(t) = =T ()Ryz(H). 3-613

This means (see Section 2,10) that in the limit R, — 0 the controlled varjable
receives all the protection against disturbances and parameter variations,
and that the components of the controlled variable are weighted by R,. This
is a useful result because it is the controlled variable we are most interested in.

The property derived does nof hold, however, for plants with zeroes in the
right-half plane, or with too few inputs, because here P does not approach
the zero matrix.

‘We summarize our conclusions:

Theorem 3.16. Consider the weighting matrix

W = FTR,F, 3-614
where
F = R;'BTP, 3-615

with P the nonnegative-definite symmetric solution of

0= DTR,D — PBR;'BTP 4+ ATP 4 PA. 3-616
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If the conditions are satisfied (Theorem 3.14) under which P —0 as R, — 0,
then

W — DTR,D 3-617
as Rg —-0.

The results of this section indicate in a general way that state feedback
systems offer protection against disturbances and parameter variations. Since
sensitivity matrices are not very convenient to work with, indications as to
what to do for specific parameter variations are not easily found. The follow-
ing general conclusions are valid, however.

1. As the weighting matrix R, is decreased the protection against disturb-
ances and parameter variations improves, since the feedback gains increase.
For plants with zeroes in the left-half complex plane only, the break fre-
quency up to which protection is obtained is determined by the faraway
closed-loop poles, which move away from the origin as R, decreases.

2. For plants with zeroes in the left-half plane only, most of tbe protection
extends to the controlled variable. The weight attributed to the various
components of the controlled variable is determined by the weighting
matrix Rj.

3. For plants with zeroes in the right-half plane, the break frequency up to
which protection is obtained is limited by those nearby closed-loop poles
that are not canceled by zeroes.

Example 3.26. Position control system

As an illustration of the theory of this section, let us perform a brief
sensitivity analysis of the position control system of Example 3.8 (Section.-
3.4.1). With the oumerical values given, it is easily found that the weigliting
matrix in the sensitivity criterion is given by

L 1 0.08364
W = FTR,F = . 3-618
0.08364 0.006994

This is quite close to the limiting value

10
DTR,D = . 3-619
00

To study the sensitivity of the closed-loop system to parameter variations,
in Fig. 3.33 the response of the closed-loop system is depicted for nominal
and off-nominal conditions. Here the off-nominal conditions are caused by
a change in the inertia of the load driven by the position control system.
The curves a correspond to the nominal case, while in the case of curves &
and ¢ the combined inertia of load and armature of the motor is § of nominal
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Fig. 3.33. The effect of parameter variations on the response of the position control
system: (a) Nominal load; () inertial load £ ol nominal; (c) inertial load £ of nominal.

and & of nominal, respectively. A change in the total moment of inertia by a
certain factor corresponds to division of the constants o and « by the same

factor. Thus § of the nominal moment of inertia yields 6.9 and 1.18 for «

and r, respectively, while 4 of the nominal moment of inertia results in the

values 3.07 and 0.525 for  and «, respectively. Figure 3.33 vividly illustrates

the limited effect of relatively large parameter variations.

3.10 CONCLUSIONS

This chapter has dealt with state feedback control systems where all the
components of the state can be accurately measured at all times, We have
discussed quite extensively how linear state feedback control systems can
be designed that are optimal in the sense of a quadratic integral criterion.
Such systems possess many useful properties. They can be made to exhibit a
satisfactory transient response to nenzero initial conditions, to an external
reference variable, and to a change in the set point. Moreover, they have
excellent stability characteristics and are insensitive to disturbances and
parameter variations.
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All these properties can be achieved in the desired measure by appropri-
ately choosing the controlled variable of the system and properly adjusting
the weighting matrices Ry and R,. The results of Sections 3.8 and 3.9, which
concern the asymptotic properties and the sensitivity properties of steady-
state control laws, give considerable insight into the influence of the weighting
matrices.

A major objection to the theory of this section, however, is that very often
it is either too costly or impossible to measure all components of the state.
To overcome this difficulty, we study in Chapter 4 the problem of recon-
structing the state of the system from incomplete and inaccurate measure-
ments. Following this in Chapter 5 it is shown how the theory of linear state
feedback control can be integrated with the theory of state reconstruction
to provide a general theory of optimal linear feedback control.

3.11 PROBLEMS

3.1. Stabilization of the position conirol system

Consider the position control system of Example 3.4 (Section 3.3.1).
Determine the set of all linear control laws that stabilize the position
control system.

3.2. Position control of a frictionless de motor

A simplification of the regulator problem of Example 3.4 (Section 3.3.1)
occurs when we neglect the friction in the motor; the state differential equation
then takes the form

01 0y :
(1) = (0 0) =(f) + (K),u(t), | 3-620

where x(#) = col [&;(1), &(1)]. Take as the controlled variable
L) = (1, 0)=(), 3-621

and consider the criterion
iy
ﬁ (L) + pu’(D)] du. 3-622

(a) Determine the steady-state solution 2 of the Riccati equation.

(b) Determine the steady-state control law.

(c) Compute the closed-loop poles. Sketch the loci of the closed-loop poles
as p varies.

(d) Use the numerical values « = 150 rad/(V s*) and p = 2.25 rad*/V*
and determine by computation or simulation the response of the closed-loop
system to the initial condition &,(0) = 0.1 rad, £,(0) = O rad/s.
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3.3. Regulation of an amplidyne
Consider the amplidyne of Problem 1.2.

(a) Suppose that the output voltage is to be kept at a constant value ey,
Denote the nominal input voltage as e, and represent the system in terms ofa
shifted state variable with zero as nominal value.

{b) Choose as the controlled variable

E(t) = EE(I) — EEU! 3'623

and consider the criterion
I
f L5 + p(D] dt 3-624
I
where '
.u"(t) = ey{t) — eg. 3-625

Find the steady-state solution of the resulting regulator problem for the
following numerical values:

Ricwoe,  Boae

1 2
R, =50, R, =100, 3-626
ky = 20V/A,  ky = 50V/A,

p = 0.023.

(c) Compute the closed-loop poles.
(d) Compute or simulate the response of the closed-loop system to the
initial conditions ©(0) = col (1, 0) and {0} = col (0, 1).

3.4. Stochastic position control system

Consider the position control problem of Example 3.4 (Section 3.3,1) but
assume that in addition to the input a stochastically varying torque operates
upon the system so that the state differential equation 3-59 must be exiended

as follows:
; (D 1 ) (0) ( 0 ) 3.62
£'(t) = 1) + ult) + 627
@ 0 -~ =0 K ® Wty

Here »(t) represents the effect of the disturbing torque. We model #(¢) as
exponentially correlated noise:

() = — é () 4 e{t), 3-628

where w(¢) is white noise with intensity 2¢%/6.
(a) Consider the controlled variable ‘
=01, 0@ 3-629
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and the criterion ‘
51
. EU: [Z(1) + pp*(D)] df}- 3-630

Find the steady-state solution of the corresponding stochastic regulator
problem.
(b) Use the numerical values

= 0,787 rad/(V Sz),

« =465, 3631
¢ = 5rad/s?,
=1s.

Compute the steady-state rms values of the controlled variable {(t) and the
input p(t) for p = 0.2 x 107% rad?®/ V2.

3.5. Angular velocity tracking system

Consider the angular velocity tracking problem of Examples 3.12 (Section
3.6.2) and 3.14 (Section 3.6.3). In Example 3.14 we found that the value of p
that was chosen (p = 1000) leaves considerable room for improvement.

(a) Vary p and select that value of p that results in a steady-state rms input
voltage of 3 V.

(b) Compute the corresponding steady-state rms tracking error.

(c) Compute the corresponding break frequency of the closed-loop system
and compare this to the break frequency of the reference variable.

3.6. Nonzero set point regulator for an amplidyne
Consider Problem 3.3 where a regulator has been derived for an amplidyne.

(a) Using the results of this problem, find the nonzero set point regulator.
{b) Simulate or calculate the response of the regulator to a step in the
output voltage set point of 10V.

3.7. Extension af the regulator problem
Counsider the linear time-varying system

#(t) = A@=() + Bu(t) 3-632

with the generalized quadratic criterion

f tllmﬂ"(r)Rl(t)m(z‘) + 22T(OR (D) + uT(DR(Du()] dt + 2T (t)Pz(ty),
o
3-633

where R,(f), Rys(t), and R.(z) are matrices of appropriate dimensions.
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(a) Show that the problem of minimizing 3-633 for the system 3-632 can
be reformulated as minimizing the criterion

_rl[a:T (DR(Dx(D) + ' T(OHRLO' (D] dt + =T (t)Pyx(t) 3-634
ty

for the system
() = A'(Nz(6) + B (1), 3-635
where

Ri(1) = Ri(f) — Ru(ORT'(DREQ),
w' () = u() + RIORED=(H, 3-636
A'() = A(®) — BORT' (DR
(Kalman, 1964; Anderson, 1966a; Andersbn and Moore, 1971).
{b) Show that 3-633 is minimized for the system 3-632 by letting

u(t) = —F(z(1), 3-637
where

FY(f) = R(DIBT(HP(t) + RE()], 3-638
with P(7) the selution of the matrix Riccati equation

—P(1) = [A(1) — B(ORT(OREDITP(H)

+ P(IA(H) — B(OR ()Ri(0)]

+ Ry(t) — Rul DR (ORE(D 3-639

— PMOBMORT'OBTMOP(, t< 1,

(1) = P,.
(¢) Forarbitrary F(#), # < t,, let B(t) be the solution of the matrix differential
equation ‘
—B(t) = [A(t) ~ BOFWITE() + F(OIA() — BOF(®)

+ Ry(f) — Ru(OF() — FT(OREM 3-640
+ FIOR(NF(), 1< 1,
Bty = P,.

Show that by choosing F(¢) equal to F'(¢), P(¢) is minimized in the sense that
B(t) > P(D), t < t,, where P(¢t) is the solution of 3-639. Remark: The proof
of (c) follows from (b). One can also prove that 3-637 is the best linear
control law by rearranging 3-640 and applying Lemma 3.1 (Section 3.3.3) to it.

3.8*. Solutions of the algebraic Riccati equation (O’Donnell, 1966; Ander-
son, 1966b; Potter, 1964)
Consider the algebraic Riccati equation

0 =R, — PBR;'BTP 4 PA + ATP. 3-641
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Let Z be the matrix

A —BR;'BY
Z= . 3-642
_Rl —‘AT
Z can always be represented as
Z = WIW™, 3-643

where J is the Jordan canonical form of Z. It is always possible to arrange
the columns of W such that J can be partitioned as

J 0
J= ( . ) 3-644

Ju Jm

Here Jy, J» and Jus are n X 1 blocks. Partition W accordingly as
Wn W,
W= ( . 1“). 3-645
: Wo We
(a) Consider the equality

ZW = Wi, 3-646

and show by considering the 12- and 22-blocks of this equality that if W,
is nonsingular P = Wy, W33 is a solution of the algebraic Riccati equation.
Note that in this manner many solutions can be obtained by permuting the
order of the characteristic values in .J.

(b) Show also that the characteristic values of the matrix 4 —
BR;'BTW,, Wi are precisely the characteristic values of Jy, and that the
(generalized) characteristic vectors of this matrix are the columns of W,,.
Hint: Evaluate the 12-block of the identity 3-646.

3.9%.  Steady-state solution of the Riccati equation by diggonalization
Comnsider the 2r x 2n matrix Z as given by 3-247 and suppose that it
cannot be diagonalized. Then Z can be represented as

Z = WIw-, 3-647

where J is the Jordan canonical form of Z, and W is composed of the charac-
teristic vectors and generalized characteristic vectors of Z. It is always
possible to arrange the columns of W such that J can be partitioned as

follows
J. 0
J={" i 3-648
J'.!l Jﬂﬂ

where the # X n matrix J; has as diagonal elements those characteristic
values of Z that have positive real parts and half of those that have zero
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real parts, Partition W and ¥V = W~ accordingly as
P Wi Vi Vi
we=| 1), V=( . ‘). 3-649
%1 W‘.‘.E Vﬂl VE.‘.!

Assume that {4, B} is stabilizable and {4, D} detectable. Follow the argu-
ment of Section 3.4.4 closely and show that for the present case the following
conclusions hold.

(a) The steady-state solution P of the Riccati equation

—P(1) = R, — P()BR7'BTP(1) + ATP(f) + P(NA 3-650
satisfies
Vi + VP = 0. 3-651

(b) Wi, is nonsingular and
P‘ = %EIVIQ:_I-~ 3'652
(c) The steady-state optimal behavior of the state is given by
a(f) = Wye = Wila(s,). 3-653

Hence Z has no characteristic values with zero real parts, and the steady-
state closed-loop poles consist of those cbaracterstic values of Z that have
negative real parts. Hint: Show that

g1t ' 0
et = ( ), ‘ 3-654
x(n _
where the precise form of X(¢) is unimportant,
3.10*%. Basy’ relation for P (Bass, 1967)
Consider the algebraic Riccati equation
0 =R, — PBR;'BTP 4+ ATP 4 P4 3-655

and suppose that the conditions are satisfied under which it has a unique
nonnegative-definite symmetric solution. Let the matrix Z be given by

A —BRTBT
Z= . 3-656
—R, —dT

It follows from Theorem 3.8 (Section 3.4.4) that Z has no characteristic
values with zero real parts. Factor the characteristic polynomial of Z as
follows

det (s3I — Z) = $(s)p(—s) 3-657
such that the roots of ¢(s) have strictly negative real parts. Show that P
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satisfies the relation:
I
$(2Z) ( _) =0. 3-658
P
Hint: Write $(Z) = (WIWY) = W) W-? = We(NV where V= W
and J = diag (A, —A) in the notation of Section 3.4.4.

3.11%.  Negative exponential solution of the Riceati equation (Vaughai,
1969)

Using the notation of Section 3.4.4, show that the solution of the time-
invariant Riccati equation

—B(t) = R, — P()BR7*BTP(t) + ATP(1) + P(DA,

P(1) = P, 3-659
can be expressed as follows:
P(t) = [Wag + WnG(t; — D[Wae + Wy G(ty, — DI, 3-660
where
G(t) = e MSe™™, 3-661
with
§= (Vi + VPV + Vaur) 3-662
Show with the aid of Problem 3.12 that S can also be written in terms of W as
= —(Wy — PyWp) 7 (Wa — PLW). 3-663

3.12*. The relation between Wand V
Consider the matrix Z as defined in Section 3.4.4.

(a) Show that if e = col {¢’, "), where ¢’ and ¢” both are #-dimensional
vectors, is a right characteristic vector of Z corresponding to the characteristic
value 2, that is, Ze = Ze, then ("7, —e'T) is a left characteristic vector of Z
corresponding to the characteristic value —A4, that is,

(e"?, —eT)Z = —Ae"T, —e'T). 3-664

(b) Assume for simplicity that all characteristic values 4;, i = 1,2, ---, 2n,
of Z are distinct and let the corresponding characteristic vectors be given by
e, i =1,2,---,2n, Scale the e; such that if the characieristic vector

e = col (¢', ") corresponds to a characteristic value 4, and f = col (7, /)
corresponds to —A4, then

fTe — 2" =1, 3-665
Show that if ¥/ is a matrix of which the columns are e;, i = 1,2, ---, 2n,

and we partition
W W n
W= ( woE ) 3-666
Wy We
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then (O'Donnell, 1966; Waltér, 1970)

Wi —Wh
W=V = oo 3-667
- W!l Wll

Hint: Remember that left and right characteristic vectors for different
characteristic values are orthogonal. '

3.13%. Frequency domain solution of regulator problems
For single-input time-invariant systems in phase-variable canonical form,
the regulator problem can be conveniently solved in the frequency domain,
Let
&(t) = A=(f) + bu(t) 3-668
be given in phase-variable canonical form and consider the problem of
minimizing

[T + seena, 3,669
where ’
L(t) = d={1). 3-670

(a) Show that the closed-loop characteristic polynomial can be found by
factorization of the polynomial n&

W WA B0 ot 14+ 1 H(s)H(—5), 3-671
P

where H(s) is the open-loop transfer function H(s) = d(s] — A)™'b. _
(b) For a given closed-loop characteristic polynomial, show how the corre-
sponding control law
w(t)y = —fa(D) 3-672

can be found. Hint: Compare Section 3.2.

3.14*%.  The minimum number of faraway closed-loop poles
Consider the problem of minimizing

f [T(OR () + puT ()Nu(h)] dt, 3-673
tp
where R; > 0, N > 0, and p > 0, for the system

(1) = Az(?) + Bu(?). 3-674

(a) Show that as p | 0 some of the closed-loop poles go to infinity while
the others stay finite. Show that those poles that remain finite approach the
left-half plane zeroes of

det [BT(—sI — ATY R (sI — A)™B]. 3-675
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(b) Prove that at least & closed-loop poles approach infinity, where & is
the dimension of the input u. Hint: Let |s| — oo to determine the maximum
number of zeroes of 3-675. Compare the proof of Theorem 1.19 (Section

1.5.3).
(c) Prove that as p — oo the closed-loop poles approach the numbers
#, i=1,2,+-+,n, which are the characteristic values of the matrix 4

mirrored into the left-half complex plane.

3.15%.  Estimation of the radius of the faraway closed-loop poles from the
Bode plot (Leake, 1965; Schultz and Melsa, 1967, Section 8.4)
Consider the probiem of minimizing

J: [E() + p(D)] dt 3-676
for the single-input single-output system

2(2) = Az(r) + bu(),

L) = d=(t).

Suppose that a Bode plot is available of the open-loop frequency response
function H(jw) = d(jwl — A)™b. Show that for small p the radius of the
faraway poles of the steady-state optimal closed-loop system can beestimated :

as the frequency w, for which |H(jw,)| = N/ ;

3-677
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