
2 ANALYSIS OF LINEAR 
CONTROL SYSTEMS 

2.1 INTRODUCTION 

In  this introduction we give a brief description of control problems and of the 
contents of this chapter. 

A control system is a dynamic system which as time evolves behaves in a 
certain prescribed way, generally without human interference. Control 
theory deals with the analysis and synthesis of control systems. 

The essential components of a control system (Fig. 2.1) are: (1) theplaizt, 
which is the system to be controlled; (2) one or more sensors, which give 
information about the plant; and (3) the controller, the "heart" of the control 
system, which compares the measured values to their desired values and 
adjusts the input variables to the plant. 

An example of a control system is a self-regulating home heating system, 
which maintains a t  all times a fairly constant temperature inside the home 
even though the outside temperature may vary considerably. The system 
operates without human intervention, except that the desired temperature 
must be set. I n  this control system the plant is the home and the heating 
equipment. The sensor generally consists of a temperature transducer inside 
the home, sometimes complemented by an outside temperature transducer. 
The coi~froller is usually combined with the inside temperature sensor in the 
thermostat, which switches the heating equipment on and off as necessary. 

Another example of a control system is a tracking antenna, which without 
human aid points a t  all times at a moving object, for example, a satellite. 
Here the plant is the antenna and the motor that drives it. The sensor con- 
sists of a potentiometer or  other transducer which measures the antenna 
displacement, possibly augmented with a tachometer for measuring the 
angular velocity of the antenna shaft. The controller consists of electronic 
equipment which supplies the appropriate input voltage to the driving motor. 

Mthough at  first glance these two control problems seem different, upon 
further study they have much in common. First, in both cases the plant and 
the controller are described by difTerential equations. Consequently, the 
mathematical tool needed to analyze the behavior of the control system in 
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Fig. 2.1. Schemalic rcprcscntation of a conlrol system. 

both cases consists of the collection of methods usually referred to as system 
theory. Second, both control systems exhibit the feature of feedback, that is, 
the actual operation of the control system is compared to the desired opera- 
tion and the input to the plant is adjusted on the basis of this comparison. 

Feedback has several attractive properties. Since the actual operation is 
continuously compared to the desired operation, feedback control systems 
are able to operate satisfactorily despite adverse conditions, such as dis- 
t~sbances that act upon the system, or uariations ill pla~lt properties. In  a 
home heating system, disturbances are caused by fluctuations in the outside 
temperature and wlnd speed, and variations in plant properties may occur 
because the heating equipment in parts of the home may be connected or  
disconnected. I n  a tracking antenna disturbances in the form of wind gusts 
act upon the system, and plant variations occur because of different friction 
coefficients at different temperatures. 

I n  this chapter we introduce control problems, describe possible solutions 
to these problems, analyze those solutions, and present basic design objec- 
tives. In  the chapters that follow, we formulate control problems as mathe- 
matical optimization problems and use the results to synthesize control 
systems. 

The basic design objectives discussed are stated mainly for time-invariant 
linear control systems. Usually, they are developed in terms of frequency 
domain characteristics, since in t h ~ s  domain the most acute insight can be 
gained. We also extensively discuss the time domain description of control 
systems via state equations, however, since numerical computations are 
often more conveniently performed in the time domain. 

This chapter is organized as follows. In Section 2.2 a general description is 
given of tracking problems, regulator problems, and terminal control 
problems. In Section 2.3 closed-loop controllers are introduced. In  the re- 
maining sections various properties of control systems are discussed, such 
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as stabilily, steady-state tracking properties, transient tracking properties, 
effects of disturbances and observation noise, and the influence of plant 
variations. Both single-input single-output and multivariable control systems 
are considered. 

2.2 THE FORMULATION OF CONTROL PROBLEMS 

2.2.1 Introduction 

In this section the following two types of control problems are introduced: 
(1) tracking probleriis and, as special cases, reg~~lator prablen7s; and (2) 
ter~ninal cor~tralproblerns. 

In  later sections we give detailed descriptions of possible control schemes 
and discuss at length bow to analyze these schemes. In  particular, the 
following topics are emphasized: root mean square (rms) tracking error, rms 
input, stability, transmission, transient behavior, disturbance suppression, 
observation noise suppression, and plant parameter variation compensation. 

23.2 The Formulation of Tracking and Regulator Problems 

We now describe in general terms an important class of control problems- 
tracliir~gproblems. Given is a system, usually called the plant, which cannot 
be altered by the designer, with the following variables associated with it 
(see Fig. 2.2). 

disturbonce vorioble 

controlled vorioble z 
input varimble 

reference vorioble ohservotion noise 
r vm 

Fig. 2.2. The plant. 

1.  An illput variable n( t )  which influences the plant and which can be 
manipulated; 

2. A distlubarlce variable v,(t)  which influences the plant but which cannot . 
be manipulated; 
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3. An obserued uariable y(t) which is measured by means of sensors and 
which is used to obtain information about the state of the plant; this observed 
variable is usually contaminated with obseruation noise u,,(t); 

4. A controlled uariable z(t) which is the variable we wish to control; 
5. A reference uarioble r(t) which represents the prescribed value of the 

controlled variable z(t). 

The tracking problem roughly is the following. For a given reference 
variable, find an appropriate input so that the controlled variable tracks the 
reference variable, that is, 

z(t) u r(f), t 2 to, 2-1 

where to is the time at which control starts. Typically, the reference variable 
is not known in advance. A practical constraint is that the range of values 
over which the input u(t) is allowed to vary is limited. Increasing this range 
usually involves replacement of the plant by a larger and thus more expen- 
sive one. As will be seen, this constraint is of major importance and prevents 
us from obtaining systems that track perfectly. 

In designing tracking systems so as to satisfy the basic requirement 2;1, 
the following aspects must be taken into account. 

1. The disturbance influences the plant in an unpredictable way. 
2. The plant parameters may not be known precisely and may vary. 
3. The initial state of the plant may not be known. 
4. The observed variable may not directly give information about the 

state of the plant and moreover may be contaminated with observation noise. 

The input to the plant is to be generated by a piece of equipment that will 
be called the controller. We distinguish between two types of controllers: 
open-loop and closed-loop controllers. Open-loop controllers generate n(t) on 
the basis of past and present values of the reference variable only (see 
Fig. 2.3), that is, 

11(t) = ~ o L [ ~ ( T ) ,  to I T < 11, f 2 to. 2-2 

re ference  i n p u t  control led 
var iab le  

Eig. 2.3. An open-loop control system, 
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observation n o i s e  
vm I 

c o n t r o l l e d  

Fig. 2.4. A closed-loop control system. 

Closed-loop controllers take advantage of the information about the plant 
that comes with the observed variable; this operalion can be represented by 
(see Fig. 2.4) 

Note that neither in 2-2 nor in 2-3 are future values of the reference variable 
or the observed variable used in generating the input variable since they are 
unknown. The plant and the controller will be referred to as the control 
SJJStelJl. 

Already at this stage we note that closed-loop controllers are much more 
powerful than open-loop controllers. Closed-loop controllers can accumulate 
information about the plant during operation and thus are able to collect 
information about the initial state of the plant, reduce the effects of the dis- 
turbance, and compensate for plant parameter uncertainty and variations. 
Open-loop controllers obviously have no access to any information about the 
plant except for what is available before control starts. The fact that open-loop 
controllers are not afflicted by observation noise since they do not use the 
observed variable does not make up for this. 

An important class of tracking problems consists of those problems where 
the reference variable is constant over long periods of time. In such cases it is 
customary to refer to the reference variable as the setpoint of the system and 
to speak of regt~latorproblems. Here the main problem usually is to maintain 
the controlled variable at the set point in spite of disturbances thal act upon 
the system. In this chapter tracking and regulator problems are dealt with 
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Example 2.1. A position servo sjutmu 
In  this example we describe a control problem that is analyzed extensively 

later. Imagine an object moving in a plane. At the origin of the plane is a 
rotating antenna which is supposed to point in the direction of the object a t  
all times. The antenna is driven by an electric motor. The control problem is 
to command the motor such that 

( 1  ( )  t 2 to, 2-4 

where O(t) denotes the angular position of the antenna and B,(t) the angular 
position of the object. We assume that Or([) is made available as a mechanical 
angle by manually pointing binoculars in the direction of the object. 

The plant consists of the antenna and the motor. The disturbance is the 
torque exerted by wind on the antenna. The observed variable is the output 
of a potentiometer or other transducer mounted on the shaft of the antenna, 
given by 

v ( t )  = o( t )  + lj(t), 2-5 

where v( t )  is the measurement noise. In this example the angle O(t) is to be 
controlled and therefore is the co~ltrolled variable. The reference variable is 
the direction of the object Or(/). The input to the plant is tlie input voltage 
to tlie motor p. 

A possible method of forcing the antenna to point toward the object is as 
follows. Both the angle of the antenna O(t) and the angle of the object OJt) 

I are converted to electrical variables using potentiometers or  other trans- 
ducers mounted on the shafts of the antenna and the binoculars. Then O(t) is 
subtracted from B,(t); the direrence is amplified and serves as the input 
voltage to the motor. As a result, when Or(/) - B(t) is positive, a positive 
input voltage is produced that makes the antenna rotate in a positive direc- 
tion so that the difference between B,(t) and B(t) is reduced. Figure 2.5 gives 
a representation of this control scheme. 

This scheme obviously represents a closed-loop controller. An open-loop 
controller would generate the driving voltage p( t )  on the basis of the reference 
angle O,(t) alone. Intuitively, we immediately see that such a controller has 
no way to compensate for external disturbances such as wind torques, or  
plant parameter variations such as different friction coefficients a t  different 
temperatures. As we shall see, the closed-loop controller does offer pro- 
tection against such phenomena. 

This problem is a typical tracking problem. 

Example 2.2. A stirred tarllc regulator system 
The preceding example is relatively simple since the plant has only a single 

input and a single controlled variable. M~rllivariable control problems, where 
thk plant has several inputs and several controlled variables, are usually 
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much more difficult to deal with. As an example of a multivariableproblem, 
we consider the stirred tank of Example 1.2 (Section 1.2.3). The tank has two 
feeds; their flows can be adjusted by valves. The concentration of the material 
dissolved in each of the feeds is fued and cannot be manipulated. The tank 
has one outlet and the control problem is to design equipment that auto- 
matically adjusts the feed valves so as to maintain both the outgoing flow and 
the concentration of the outgoing stream constant at given reference values 
(see Fig. 2.6). 

This is a typical regulator problem. The components of the input variable 
are the flows of the incoming feeds. The components of the controlled 
variable are the outgoing Row and the concentration of the outgoing stream. 
The set point also has two components: the desired outgoing flow and the 
desired outgoing concentration. The following disturbances may occur: 
fluctuations in the incoming concentrations, fluctuations in the incoming 
flows resulting from pressure fluctuations before the valves, loss of fluid 
because of leaks and evaporation, and so on. In order to control the system 
well, both the outgoing flow and concentration should be measured; these 
then are the components of the observed variable. A closed-loop controller 
uses these measurements as well as the set points to produce a pneumatic 
or  electric signal which adjusts the valves. 

2.2.3 The Formulation of Terminal Control Problems 

The framework of terminal control problems is similar to that of tracking 
and regulator problems, but a somewhat different goal is set. Given is a 
plant with input variable 11, disturbance variable u,, observed variable ?/, 
and controlled variable z ,  as in the preceding section. Then a typical terminal 
control problem is roughly the following. Find u( t ) ,  1 ,  5 t 5 I , ,  so that 
z(tJ r r,  where r is a given vector and where the terminal time t ,  may or 
may not be specified. A practical restriction is that the range of possible 
input amplitudes is limited. The input is to be produced by a controller, which 
again can be of the closed-loop or the open-loop type. 

In this book we do not elaborate on these problems, and we confine 
ourselves to giving the following example. 

ExampIe 2.3. Position control as a terminal control problem 
Consider the antenna positioning problem of Example 2.1. Suppose that 

at a certain time I ,  the antenna is at rest at an angle 8,. Then the problem of 
repositioning the antenna at an angle O,, where it is to be at rest, in as short 
a time as possible without overloading the motor is an example of a terminal 
control problem. 
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2.3 CLOSED-LOOP CONTROLLERS; THE BASIC 
DESIGN OBJECTIVE 

In this section we present detailed descriptions of the plant and of closed-loop 
controllers. These descriptions constitute the framework for the discussion 
of the remainder of this chapter. Furthermore, we define the mean square 
tracking error and the mean square input and show how these quantities can 
be computed. 

Throughout this chapter and, indeed, throughout most of this book, it 
is assumed that the plant can be described as a linear differential system 
with some of its inputs stochastic processes. The slate differential equation of 
the system is 

i ( t )  = A(f).z(t) + B( t ) l~ ( t )  + v, ,(f) ,  2-6 
% ( I , )  = 2,. 

Here x(t)  is the state of Ule plant and tc(t) the i ~ ~ p u t  variable. The initial srote 
x, is a stochastic variable, and the disturbance variable us , ( [ )  is assumed to be 
a stochastic process. The observed variable y(t)  is given by 

where the obseruarion r~oise v,,,(t) is also assumed to be a stochastic process. 
The cor~trolled variable is 

z ( t )  = D(t)x( t ) .  2-8 

Finally, the reference variable r ( t )  is assumed to be a stochastic process of the 
same dimension as the controlled variable z( t ) .  

The general closed-loop controller will also be taken to be a linear differen- 
tial system, with the reference variable r ( f )  and the observed variable y( t )  as 
inputs, and the plant input ~ ( t )  as output. The state differential equation of 
the closed-loop controller will have the form 

while Llie output equation of the controller is of the form 

Here the index r refers to the reference variable and the index f to feedback. 
The quantity q(t )  is the state of the controller. The initial state q, is either a 
given vector or a stochastic variable. Figure 2.7 clarifies the interconnection 
of plant and controller, which is referred lo as the co~tfral S J , S ~ ~ I I I .  If Kf( t )  - 
0 and H,(t) - 0, the closed-loop controller reduces to an open-loop con- 
troller (see Fig. 2 .8 ) .  We refer to a control system with a closed-loop 
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controller as a closed-loop control system, and to a control system with a n  
open-loop controller as an open-loop control system. 

We now define two measures of control system performance that will 
serve as our main tools in evaluating how well a control system performs its 
task: 

Definition 2.1. The mean sqnare tracking ewor C,(t) m d  the mean square 
inprrt C,,(t) are defined as: 

Here the tracking error e ( f )  is giuen by 

and W,( f )  and W,,(t), t 2 to,  are giuerl nonnegative-definite syrl~rnerric 
iaeiglriii~g matrices. 

When W J t )  is diagonal, as it usually is, C,(t) is the weighted sum of the 
mean square tracking errors of each of the components of the controlled 
variable. When the error e( t )  is a scalar variable, and Wa = 1, then 4% 
is the rrm tracking error. Similarly, when the input i f ( / )  is scalar, and W, = 1, 
then JC,,(t) is the r im input. 

Our aim in designing a control system is to reduce the mean square tracking 
error C.(t) as much as possible. Decreasing C,(t) usually implies increasing 
the mean square input C,,(t). Since the maximally permissible value of the 
mean square input is determined by the capacity of the plant, a compromise 
must be found between the requirement of a small mean square tracking 
error and the need to keep the mean square input down to a reasonable 
level. We are thus led to the following statement. 

Basic Design Objective. In the design of control sjrstems, //re lo~vest possible 
meall square tracking error shorrld be acl~ieued without letting the mean square 
i r p t  exceed its n~aximally pernrissible ualire. 

I n  later sections we derive from the basic design objective more speciEc 
design rules, in particular for time-invariant control systems. 

We now describe how the mean square tracking error C,(t) and the mean 
square input C,,(t) can be computed. First, we use the state augmentation 
technique of Section 1.5.4 to obtain the state differential equation of the 
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control system. Combining the various state and output equations we find 

2-13 

For the tracking error and the input we write 

The computation of C,(t)  and C,,(t)  is performed in two stages. First, we 
determine the mean or deteuiiinisticpart of e( t )  and u(t) ,  denoted by 

~ ( t )  = E{e(t)}, ~ ( t )  = E{~r( t ) } ,  t 2 to. 2-15 

These means are computed by using the augmented state equation 2-13 and 
the output relations 2-14 where the stochastic processes ~ ( t ) ,  v,(t), and 
u,,,(t) are replaced with their means, and the initial state is taken as the mean 
of col [x(to), 4('0)1. 

Next we denote by Z ( t ) ,  ? (I) ,  and so on, the variables ~ ( t ) ,  q(t) ,  and so on, 
with their means Z(t), ?(I), and so on, subtracted: 

.'(I) = x(t)  - Z(t), j ( t )  = q( t )  - q(t) ,  and so on, t 2 to. 2-16 

With this notation we write for the mean square tracking error and the 
mean square input 

C.(t) = ~ { a * ( t ) M / , , ( t ) ~ ( t ) }  = 17~(t)W,,(t)fi(t) + E{tiT(t)Wu(t)ii(t)}. 2-17 

The terms E{ZZ' ( f )~ . ( t )Z( t ) }  and E{tiZ'(t) W,,(t)ii(t)} can easily be found when 
the variance matrix of col [.'(t), q(t)]  is known. In order to determine this 
variance matrix, we must model the zero mean parts of r(t) ,  v,(t), and 
u,,,(t) as output variables of linear differential systems driven by white noise 
(see Section 1.11.4). Then col [j.(t), q(t)] is augmented with the state of the 
models generating the various stochastic processes, and the variance matrix 
of the resulting augmented state can be computed using the differential 
equation for the variance matrix of Section 1.11.2. The entire procedure is 
illustraled in the examples. 
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Example 2.4. Tlre position servo wit11 tliree rlierent conb.ollers 
We continue Example 2.1 (Section 2.2.2). The motion of the antenna can 

be described by the differential equation 

Here J i s  the moment of inertia of all the rotating parts, including the antenna. 
Furthermore, B is the coefficient of viscous friction, ~ ( f )  is the torque applied 
by the motor, and ~, , ( t )  is the disturbing torque caused by the wind. The 
motor torque is assumed to be proportional to p(t), the input voltage to the 
motor, so that 

~ ( 1 )  = Iv(t). 

Defining the state variables fl(t) = O(t) and 6&) = &t), the state differential 
equation of the system is 

The controlled variable [ ( t )  is the angular position of the antenna: 

When appropriate, the following numerical values are used: 

Design I. Position feedbacli via a zero-order cor~froller 
In a first atlempt to design a control system, we consider the control 

scheme outlined in Example 2.1. The only variable measured is the angular 
position O(r), so that we write for the observed variable 

where ~ ( t )  is the measurement noise. The controller proposed can be de- 
scribed by the relation 

p(t) = v , ( t )  - ?l(t)l, 2-24 

where O,(t) is the reference angle and A a gain constant. Figure 2.9 gives a 
simplified block diagram of the control scheme. Here it is seen how an input 
voltage to the motor is generated that is proportional to the difference 
between the reference angle O,(t) and the observed angular position il(f). 
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disturbing torque 

I Td 

- driving 

observed 
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1 

Fig, 2.9. Simplified block diagram of a position feedback control system via a zero-order 
controller. 

The signs are so chosen that a positive value of BJt) - q ( t )  results in a 
positive torque upon the shaft of the antenna. The question what to choose for 
1. is left open for the time being; we return to it in the examples of later 
sections. 

The state differential equation of the closed-loop system is obtained from 
2-19,223, and 2-24: 

We note that the controller 2-24 does not increase the dimension of the 
closed-loop system as compared to the plant, since it does not contain any 
dynamics. We refer to controllers of this type as zero-order coi~trollers. 

In  later examples it is seen how the mean square tracking error and the 
mean square input can be computed when specific models are assumed for 
the stochastic processes B,(t), ~ , ( t ) ,  and r ( t )  entering into the closed-loop 
system equation. 

Design II. Position and velocit~~ feedback uia a zero-order controller 
As we shall see in considerable detail in later chapters, the more informa- 

tion the control system has about the state of the system the better it can be 
made to perform. Let us therefore introduce, in addition to the potentiometer 
that measures the angular position, a tachometer, mounted on the shaft of 
the antenna, which measures the angular velocity. Thus we observe the 
complete state, although contaminated with observation noise, of course. 
We write for the observed variable 
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disturbing torque 

I d  
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Fig. 2.10. Simplified block diagram of a position and velocity feedback control system via 
a zero-order controller. 

where y(t)  = col [?l l ( f ) ,  ?/.(t)] and where u(t) = col [v1(t), v,(t)] is the 
observation noise. 

We now suggest the following simple control scheme (see Fig. 2.10): 

PW = w x t )  - M)I - a p ~ b ( t ) .  2-27 

This time the motor receives as input a voltage that is not only proportional 
to the tracking error O,(t) - Q t )  but which also contains a contribution pro- 
portional to the angular velocity d(/). This serves the following purpose. 
Let us assume that at a given instant B,(t) - B(t) is positive, and that d(t )  is 

and large. This means that the antenna moves in the right direction 
but with great speed. Therefore it is probably advisable not to continue 
driving the antenna hut to start decelerating and thus avoid "overshooting" 
the desired position. When p is correctly chosen, the scheme 2-27 can 
accomplish this, in contrast to the scheme 2-24. We see later that the present 
scheme can achieve much better performance than that of Design I. 

Design 111. Positiortfeedbock via afirst-order controller 
In this design approach it is assumed, as in Design I, that only the angular 

position B(t) is measured. If the observation did not contain any noise, we 
could use a differentiator to  obtain 8(t)  from O ( / )  and continue as in Design 
11. Since observation noise is always present, however, we cannot dilferen- 
tiate since this greatly increases the noise level. We therefore attempt to 
use an approximate dilferentialor (see Fig. 2.1 I), which has the property of 
"filtering" the noise to some extent. Such an approximate differentiator can 
be realized as a system with transfer function 
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dirtuibing torque 

I ra 

Fig.2.11. Simplified blockdingrum olnpositionfeedbuckcontrol systemusinga first-order 
controller. 

where T, is a (small) positive time constant. The larger T, is the less accurate 
the differentiator is, but the less the noise is amplified. 

The input to the plant can now be represented as 

where ?I(!) is the observed angular position as in 2-23 and where S(t) is the 
"approximate derivative," that is, a(!) satisfies the differential equation 

This time the controller is dynamic, of order one. Again, we defer to later 
sections the detailed analysis of the performance of this control system; 
this leads to a proper choice of the time constant T, and the gains rl and p. 
As we shall see, the performance of this design is in between those of Design 
I and Design 11; better performance can be achieved than with Design I, 
althougl~ not as good as with Design 11. 

2.4 T H E  STABILITY OF C O N T R O L  SYSTEMS 

In the preceding section we introduced the control system performance 
measures C,(f) and C,,(t). Since generally we expect that the control system 
will operate over long periods of time, the least we require is that both 
C&) and C,(t) remain bounded as t increases. This leads us directly to an 
investigation of the stability of the control system. 

If the control system is not stable, sooner or later some variables will 
start to grow indefinitely, which is of course unacceptable in any control 
system that operates for some length of time (i.e., during a period larger 
than the time constant of the growing exponential). If the control system is 
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unstable, usually CJt) or C,,(t), or both, will also grow indefmitely. We thus 
arrive at the following design objective. 

Design Objective 2.1. The coi~trols~~stem slrould be asj~inpfotical~ stable. 

Under the assumption that the control system is time-invariant, Design 
Objective 2.1 is equivalent to the requirement that all characteristic values of 
the augmented system 2-13, that is, the characteristic values of the matrix 

have strictly negative real parts. By referring back to Section 1.5.4, Theorem 
1.21, the characteristic polynomial of 2-31 can be written as 

det (sI - A) det (sI - L) det [ I  + H(s)G(s)], 2-32 

where we have denoted by 
H(s) = C(sI - A)-lB 

the transfer matrix of the plant from the input u to be the observed variable 
?I, and by 

G(s) = F(sI - L)-'K, + Hf 2-34 

the transfer matrix of the controller from I/ to -11. 

One of the functions of the controller is to move the poles of the plant 
to better locations in the left-hand complex plane so as to achieve an im- 
proved system performance. If the plant by itself is unstable, sfabilizing the 
system by moving the closed-loop poles to proper locations in the left-half 
complex plane is the mait1 function of the controller (see Example 2.6). 

Exnmple 2.5. Position servo 
Let us analyze the stability of the zero-order position feedback control 

system proposed for the antenna drive system of Example 2.4, Design I. 
The plant transfer function (the transfer function from the driving voltage 
to the antenna position) is given by 

IC 
H(s) = - 

s(s + U) ' 
The controller transfer function is 

Thus by 2-32 the closed-loop poles are the roots of 
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Fig. 2.12. Root loci for posilion servo. Solid lines, loci for second-order system; dashed 
lines, modifications of loci due to the presence of the pole nt -10 s-'. 

Figure 2.12 shows the loci of the closed-loop poles with A as a parameter for 
the numerical values 2-22. 

I t  is seen that ideally the control system is stable for aU positive values of 
A. In practice, however, the system becomes unstable for large A. The reason 
is that, among other things, we have neglected the electrical time constant 
T, of the motor. Taking this into account, the transfer function of motor 
plus antenna is 

As a result, the closed-loop characteristic polynomial is 

Figure 2.12 shows the modification of the root loci that results for 

For A 2 A,,,, where 

the closed-loop system is unstable. In the present case A,,, = 85.3 Vlrad. 
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Example 2.6. The stabilization of the i~~uer tedper t~r l~ i~~z  
As an example of an unstable plant, we consider the inverted pendulum of 

Example 1.1 (Section 1.2.3). In Example 1.16 (Section 1.5.4), we saw that by 
feeding back the angle'$(f) via a zero-order controller of the form 

it is not possible to stabilize the system for any value of the gain A. I t  is 
possible, however, to stabilize the system by feeding back the complete 
state x(t) as follows 

p(t) = -Icx(t). 2-43 

Here ic is a constant row vector to be determined. We note that implementa- 
tion of this controller requires measurement of all four state variables. 

In  Example 1.1 we gave the linearized state differential equation of the 
system, which is of the form 

where b is a column vector. Substitution of 2-43 yields 

The stability of this system is determined by the characteristic values of the 
matrix A - bk. In Chapter 3 we discuss methods for determining optinral 
controllers of the form2-43 that stabilize the system. By using those methods, 
and using the numerical values of Example 1.1, it can be found, for example, 
that 

k = (86.81, 12.21, -118.4, -33.44) 2-47 

stabilizes the linearized system. With this value for li, the closed-loop 
characteristic values are -4.706 f jl.382 and -1.902 + j3.420. 

To determine the stability of the actual (nonlinear) closed-loop system, we 
consider the nonlinear state differential equation 

yo - ""1 [ 
+ M 

1 - cos 
L' - ""1~ 
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where the definitions of the components h, t,, &,, and 5, are the same as 
for the linearized equations. Substitution of the expression 2-43 for p(t) into 
2-48 yields the closed-loop state differential equation. Figure 2.13 gives the 
closed-loop response of the angle $(t)  for different initial values $(O)  while 
all other initial conditions are zero. For $(O) = 10' the motion is indistin- 
guishable from the motion that would be found for the linearized system. 
For $(O)  = 20" some deviations occur, while for $(0) = 30" the system is no 
longer stabilized by 2-47. 

Rig. 2.13. Thc behavior of the angle $ ( t )  for the stabilized inverled pendulum: (a) #(O) = 
10'; (b) $(O) = 20"; (c) #(O) = 30". 

This example also illustrates Theorem 1.16 (Section 1.4.4), where it is 
stated that when a linearized system is asymptotically stable the nonlinear 
system from which it is derived is also asymptotically stable. We see that in 
the present case the range over which linearization gives useful results is 
quite large. 

2.5 THE STEADY-STATE ANALYSIS OF THE 
TRACKING PROPERTIES 

2.5.1 The Steady-State Mean Square Tracking Error and Input 
In Section 2.3 we introduced the mean square tracking error C, and the mean 
square input C,. From the control system equations 2-13 and 2-14, it can be 
seen that all three processes r( t ) ,  u,,(t), and v,,(t), that is, the reference 
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variable, the disturbance variable, and the observation noise, have an effect 
on C, and C,,. From now until the end of the chapter, we assume that r( t ) ,  
v,(t), and v,,,(t) are statistically inlcorrelated stochastic processes so that their 
contributions to C, and C,, can be investigated separately. In the present 
and the following section, we consider the contribution of the reference 
variahle r( t )  to C,(t)  and C,(t)  alone. The effect of the disturbance and the 
observation noise are investigated in later sections. 

We divide the duration of a control process into two periods: the transient 
and the steadjt-state period. These two periods can be characterized as 
follows. The transient period starts at the beginning of the process and ter- 
minates when the quantities we are interested in (usually the mean square 
tracking error and input) approximately reach their steady-state values. From 
that time on we say that the process is in its steady-state period. We assume, 
of course, that the quantities of interest converge to a certain limit as time 
increases. The duration of the transient period will be referred to as the 
settling lime. 

In thk design of control systems, we must take into account the perfor- 
mance of the system during both the transient period and the steady-state 
period. The present section is devoted to the analysis of the steady-state 
properties of tracking systems. In the next section the transient analysis is 
discussed. In this section and the next, the following assumptions are made. 

I .  Design Objective 2.1 is sotisfed, that is, the corftroi system is asjmp- 
totically stable; 

2. The control sjutenl is tinle-inuariant and t l~e  ~seighting rnatrices We and 
W,, are constant; 

3 .  The disturbance v,(t) arld the observation noise u,,,(t) are identical to zero; 
4. The reference variable r( t )  car1 be represerlted as 

r ( 0  = r, -t rJ t ) ,  2-49 

wlme r, is a stochastic vector and r,(t)  is o zero-1nea11 wide-sense stationarj~ 
vector stocliasticprocess, zu~correlatedn~itfi r,. 

Here the stochastic vector r ,  is the constant part of the reference variable 
and is in fact the set point for the controlled variable. The zero-mean process 
r,(t) is the variablepart of the reference variable. We assume that the second- 
order moment matrix of r, is given by 

E{r,rUT} = R,, 2-50 

while the variable part r,(t) will be assumed to have the power spectral 
density matrix Z,(w). 

Under the assumptions stated the mean square tracking error and the 
mean square input converge to constant values as t increases. We thus d e h e  
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the steady-state mean square traclcing error 

C,, = lim C.(t), 2-51 
i - m  

and the steadjwtate mean square input 

C,,, = lim C,,(t). 2-52 
t -m 

In order to  compute C,, and C,,, let us denote by T ( s )  the trarts~nission of 
the closed-loop control system, that is, the transfer matrix from the reference 
variable r to the controlled variable a. We furthermore denote by N(s)  the 
transfer matrix of the closed-loop system from the reference variable r to 
the input variable 11. 

In order to derive expressions for the steady-state mean square tracking 
error and input, we consider the contributions of the constant part r, and 
the variable part r,(t) of the reference variable separately. The constant part 
of the reference variable yields a steady-state response of the controlled 
variable and input as follows 

lim z(t) = T(O)r, 2-53 
I-m 

and 

lim tr(t) = N(O)r,, 
I + ,  

respectively. The corresponding contributions to the steady-state square 
tracking error and input are 

[T(O)r, - r,]TWo[T(0)r, - ?',] = tr {roraTIT(0) - I ] ~ w J T ( O )  - I ] }  2-55 

and 
[N(0)r,]TW,[N(O)r,l = t r  [r,rOTNZ'(0)W,,N(O)]. 2-56 

I t  follows that the contributions of the constarlt part of the reference variable 
to the steady-state mean square tracking error and input, respectively, are 

t r  {R,[T(O) - IITW6[T(O) - I ]  and tr  [R,NT(0)W,,N(O)]. 2-57 

The contributions of the variable part of the reference variable to the steady- 
state mean square tracking error and input are easily found by using the 
results of Section 1.10.4 and Section 1.10.3. The steady-state mean square 
tracking error turns out to be 

C,, = t r  R,[T(O) - I ]TWJT(0)  - I ]  [ 
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while the steady-state mean square input is 

These formulas are the starting point for deriving specific design objectives. 
In  the next subsection we confine ourselves to the single-input single-output 
case, where both the input v and the controlled variable z are scalar and 
where the interpretation of the formulas 2-58 and 2-59 is straightforward. In 
Section 2.5.3 we turn to the more general multiinput multioutput case. 

In conclusion we obtain expressions for T(s) and N(s) in terms of the 
various transfer matrices of the plant and the controller. Let us denote the 
transfer matrix of the plant 2-6-2-8 (now assumed to be time-invariant) 
from the input ti to the controlled variable z by K(s) and that from the input 
11 to  the observed variable y by H(s). Also, let us denote the transfer matrix 
of the controller 2-9, 2-10 (also time-invariant) from the reference variable 
r to t l  by P(s), and from the plant observed variable y to -u by G(s). Thus 
we have: 

K(s) = D ( d  - A)-'B, H(s) = C(s1- A)-lB, 
2-60 

P(s) = F(s1- L)-'K, + H,, G(s) = F(s1- L)-IK, + H,. 

The block diagram of Fig. 2.14 gives the relations between the several system 
variables in terms of transfer matrices. From this diagram we see that, if 

I 
I 
I 
I 
I 

closed- loop cant ro l le r  
I 

L ------------------- _I 

Fig. 2.14. The transfer matrix block diagram of a linear time-invariant closed-loop control 
system. 
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r ( t )  has a Laplace transform R(s) ,  in terms of Laplace transforms the several 
variables are related by 

U ( s )  = P(s)R(s) - G(s)Y(s),  

Y ( s )  = H ( s ) ~ ( s ) ,  2-61 
Z ( s )  = K(s)U(s). 

Eliminalion of the appropriale variables yields 

T ( s )  and N(s)  are of course related by 

2.5.2 The Single-Input Single-Output Case 

In this section it is assumed that both the input 11 and the controlled variable 
z ,  and therefore also the reference variable r ,  are scalar variables. Without 
loss of generality we take both W, = 1 and IV,, = 1. As a result, the steady- 
state mean square tracking error and the steady-state mean square input can 
he expressed as 

From the first of these expressions, we see that since we wish to design 
tracking systems with a small steady-state mean square tracking error the 
following advice must be given. 

Design Objective 2.2. In order to obtain a sriloll steady-state ri~ean spore  
froclcing error, tlie tror~sii~issiori T (s )  of a time-inuoriont li~tear control system 
sl~o~tlrl be designed such that 

Z,(fu) 1 T(jw) - I l2 2-66 

is s~iiollfor all real w. 111 porticulor, 114en iiorizero sefpoirits ore liliely to occur, 
T ( 0 )  slrould be iiiaclr close to 1. 

The remark about T(0)  can be clarified as follows. In certain applications 
it is importanl that the set point of the control system be maintained very 
accurately. In particular, this is the case in regulator problems, where the 
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variable part of the reference variable is altogether absent. In such a case 
it may be necessary that T(0) very precisely equal 1 .  

We now examine the contributions to the integral in 2-65a from various 
frequency regions. Typically, as w increases, &(w) decreases to zero. I t  
thus follows from 24% that it is sufficient to make IT ( jw)  - 11 small for 
those frequencies where S,(w) assumes significant values. 

In order to emphasize these remarks, we introduce two notions: the 
freqrreltcy band of the corttrol systeiit and the freqaencj~ band of tlre reference 
variable. The frequency band of the control system is roughly the range of 
frequencies over which T ( j w )  is "close" to 1 : 

Definition 2.2. Let T(s) be the scalar iransiitissiorr of on asyittptotically stable 
tiitie-iiluoriant liltear control system with scalar i t p t  and scalar controlled 
uariable. Tlrerl thefieqrrency band of the co~ltrol systein is def i~~ed as the set 
offreq~~encies w ,  w 2 0, for idtich 

ivlrere E is a given nuiiiber that is small with respect to 1 .  I f the  freql~eitcy band 
is an iittervol [w,, w,], we coll w: - w, the bandwidth of the coittrol systeitt. I f  
the freyueitcy bandis an iriterual [O, w,], ise refer to w,  as the crrtoff fi.eqrrcncy 
of the system. 

Figure 2.15 illustrates the notions of frequency band, bandwidth, and cutoff 
frequency. 

bondwidth o f  ' 
t h e  control system 

Fig. 2.15. Illustration of the definition of the frequency band, bandwidth, and cutoff 
frequency of a single-input single-output time-invariant control system. I t  is assumed that 
T ( j w ) - O a s w - a .  
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In this book we usually deal with loivpass transmissions where the fre- 
quency band is the interval from the zero frequency to the cutoff frequency 
w,. The precise vape of the cutoff frequency is of course very much dependent 
upon the number E. When E = 0.01, we refer to w, as the 1 % cutofffreq~fefzcy. 
We use a similar terminology for different values of E. Frequently, however, 
we find it convenient to speak of the break fregl~erzcy of the control system, 
which we define as that corner frequency where the asymptotic Bode plot of 
IT(jw)l breaks away from unity. Thus the break frequency of the first-order 
transmission 

is a, while the break frequency of the second-order transmission 

is w,. Note, however, that in both cases the cutoff frequency is considerably 
smaller than the break frequency, dependent upon E ,  and, in tile second-order 
case, dependent upon the relative damping (. Table 2.1 lists the 1 % and 
10% cut-off frequencies for various cases. 

Table 2.1 Relation between Break Frequency and Cutoff Frequency for First- and 
Second-Order Scalar Transmissions 

Second-order system 
with break frequency O, 

First-order system 
with break frequency a 5 = 0.4 5 = 0.707 5 = 1.5 

1 % cutoff freq. 0.01~  0.0120, 0.00710~ 0.00330, 

10% cutoR freq. 0 . 1 ~  0.120, 0.0710, 0.0330, 

Next we define the frequency hand of the reference variable, which is 
the range of frequencies over which X,(w) is significantly different from zero: 

Definition 2.3. Let r be a scalor wide-sense stationafy stochastic process isitlz 
power spectral defzsit j~fi~nctio~~ X,(w). Tlzefi.eqrfency band 0 of r( t )  is defitzed 
as t l~e  set of freqfrefzcies w ,  w 2 0, for wl~iclf 
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Here a. is so clfosen flrat tire frequency band contains a given fraction 1 - E 

where E is s~liall ivitlr respect to 1, of halfof thepower of theprocess, that is  

df = (1 - &)lm,%b) df. 2-71 

I f  the freqrrer~cy band is an interval [w,, w,], we defiirle w, - w, as the band- 
ividtb of tlieprocess. Iftlrefreqrre~icy band is an interual [O, w,] ,  ive refer to w, 
as the cutofffi.cqrrency of the process. 

Figure 2.16 illustrates the notions of frequency band, bandwidth, and cutoff 
frequency of a stochastic process. 

I 

s tochas t ic  p rocess  

Rig. 2.16. Illustration of the definition of the frequency band, bandwidlh, and cutoff 
frequency of a scalar stodmstic process r. 

Usually we deal with low-pass-type stochastic processes that have an 
interval of the form [0, w,] as a frequency band. The precise value of the 
cutoff frequency is of course very much dependenl upon the value of E. 
When E = 0.01, we speak of the 1 % cr~tofffrequency, which means that the 
interval [0, wJ contains 99% of haK the power of the process. A similar 
terminology is used for other values of E. Often, however, we find it convenient 
to speak of the breakfrequency of the process, which we d e h e  as the corner 
frequency where the asymptotic Bode plot of &(w) breaks away from its 
low-frequency asymptote, that is, from X,(O). Let us take as an example 
exponentially correlated noise with rms value a and time constant 0. This 
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process has the power spectral density function 

so that its break frequency is 110. Since this power spectral density Cunction 
decreases very slowly with w, the 1 and 10% cutoff frequencies are much 
larger than 110; in fact, they are 63.6610 and 6.31410, respectively. 

Let us now reconsider the integral in 2-65a. Using the notions just intro- 
duced, we see that the main contribution to this integral comes from those 
frequencies which are in the frequency band of the reference variable but 
not in the frequency band of the system (see Fig. 2.17). We thus rephrase 
Design Objective 2.2 as follows. 

I , , 
"I- 

I frequency b o n d  of I 
/ control s y s t e m  I 1 

I 
f requency bond of 

r e f e r e n c e  

frequency .range that 15 responsible for the 
greoter  port  of the meon squore t rack ing  error 

Fig. 2.17. Illustration of Design Objective 2.2.A. 

Design Objective 2.2A. fiz order to obtain a small steadjwtate ntean square 
trackirg error, the frequertcj~ baud of t l~e  control sj~stem sliauld co~rtairl as rzluch 
as possible of tlre freq~rerzcy bond of the uariable part of the referr~zce uorioble. 
If~lonzero set points are Iilcely to occur, T(0) sliould be mode close to 1 .  

An important aspect of this design rule is that it is also useful when very 
little is known about the reference variable except for a rough idea of its 
frequency band. 



2.5 Stendy-State Tracking Properties 149 

Let us now consider the second aspect of the design-the steady-state 
mean square input. A consideration of 2-65b leads us to formulate our next 
design objective. 

Design Objective 2.3. fii order to obtaiu a sriioN stear/y-state mean square 
ii~prrt in an asy~i~ptoticolly stable single-irpt sirzgle-oop~t fi171eiiiuaria11t 
linear control sjuteii7, 

should be made sriiaN for all real w .  This can be achieued by n~akii~g [N(jw)I 
mtflcientty sniall over tlrefreqoencjr baiid of the reference variable. 

I t  should be noted that this objective does not contain the advice to keep 
N(0) small, such as would follow from considering the first term of 2-65b. 
This term represents the contribution of the constant part of the reference 
variable, that is, the set point, to the input. The set point determines the 
desired level of the controlled variable and therefore also that of the input. 
It must be assumed that the plant is so designed that it is capable of sustaining 
this level. The second term in 2-65b is important for the dynamic range of the 
input, that is, the variations in the input about the set point that are per- 
missible. Since this dynamic range is restricted, the magnitude of the second 
term in 2-65b must be limited. 

It is not difficult to design a control system so that one of the Design 
Objectives 2.2A or 2.3 is completely satisfied. Since T(s) and N(s) are related 

by 
T(s)  = K ( s ) N s ) ,  2-74 

however, the design of T(s)  affects N(s),  and vice-versa. We elaborate a little 
on this point and show how Objectives 2.2 and 2.3 may conflict. The plant 
frequency response function IK(jw)I usually decreases beyond a certain 
frequency, say w,. If lT(jw)I is to stay close to 1 beyond this frequency, it 
is seen from 2-74 that IN(jw)l must iiicrease beyond o, .  The fact that 
IT(jw)l is not allowed to decrease beyond w ,  implies that the reference 
variable frequency band extends beyond a,,. As a result, IN(jw)I will be 
large over a frequency range where Z,(w) is not small, which may mean an 
important contribution to the mean square input. If this results in over- 
loading the plant, either the bandwidth of the control system must be reduced 
(at the expense of a larger tracking error), or the plant must be replaced by a 
more powerful one. 

The designer must h d  a technically sound compromise between the 
requirements of a small mean square tracking error and a mean square input 
that matches the dynamic range of the plant. This compromise should be 
based on the specifications of the control system such as the maximal 
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allowable rms tracking error or the maximal power of the plant. In later 
chapters, where we are concerned with the synthesis problem, optimal 
compromises to this dilemma are found. 

At this point a brief comment on computational aspects is in order. In 
Section 2.3 we outlined how time domain methods can be used to calculate 
the mean square tracking error and mean square input. In the lime-invariant 
case, the integral expressions 2-65a and 2-6513 offer an alternative computa- 
tional approach. Explicit solutions of the resulting integrals have been 
tabulated for low-order cases (see, e.g., Newton, Gould, and Kaiser (1957), 
Appendix E; Seifert and Steeg (1960), Appendix). For numerical computa- 
tions we usually prefer the time-domain approach, however, since this is 
better suited for digital computation. Nevertheless, the frequency domain 
expressions as given are extremely important since they allow us to formulate 
design objectives that cannot be easily seen, if at all, from the time domain 
approach. 

Example 2.7. The trackingproperties of the position servo 
Let us consider the position servo problem of Examples 2.1 (Section 2.2.2) 

and 2.4 (Section 2.3), and let us assume that the reference variable is ade- 
quately represented as zero-mean exponentially correlated noise with rms 
value u and time constant T,. We use the numerical values 

u = 1 rad, 
T,= 10s. 

I t  follows from the value of the time constant and from 2-72 that the reference 
variable break frequency is 0.1 rad/s, its 10% cutoff frequency 0.63 rad/s, 
and its 1 % cutoff frequency 6.4 rad/s. 

Design I. Let us first consider Design I of Example 2.4, where zero-order 
feedback of the position has been assumed. I t  is easily found that the trans- 
mission T(s) and the transfer function N(s) are given by 

We rewrite the transmission as 

where 
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is the undamped natural frequency, and 

the relative damping. In  Fig. 2.18 we plot [T(jw)[  as afunction of w for various 
values of the gain A. Following Design Objective 2.2A the gain A should 
probably not be chosen less than about 15 V/rad, since otherwise the cutoff 
frequency of the control system would be too small as compared to the 1 % 
cutoff frequency of the reference variable of 6.4 rad/s. However, the cutoff 

Fig. 2.18. Bode plots of the transmission of the position control system, Design I, for 
various vnlues of the gain rl. 

frequency does not seem to increase further with the gain, due to the 
peaking effect which becomes more and more pronounced. The value of 
15 V/rad for the gain corresponds to the case where the relative damping 5 
is about 0.7. 

It remains to be seen whether or not this gain leads to acceptable values of 
the rms tracking error and the rms input voltage. To this end we compute 
both. The reference variable can be modeled as follows 

where ~ ( t )  is white noise with intensity 2uZ/T,. The combined state equations 
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of the control system and the reference variable are from 2-19, 2-24, and 
2-80: 

With this equation as a starting point, it is easy to set up and solve the 
Lyapunov equation for the steady-state variance matrix ii of the augmented 
state col [[,(t), C2(t), B,(t)] (Theorem 1.53, Section 1.11.3). The result is 

As a result, we obtain for the steady-state mean square tracking error: 

C,, = lim E{[e(t) - 8,(r)ln} = ql, - 2qI3 + 
t-m 

- - 1 E 
0 , 2-83 

1 
a + - + KAT~ 

Tr 
where the p are the entries of Q. A plot of the steady-state rms tracking error 

'I. 
is given in Flg. 2.19. We note that increasing rl beyond 15-25 V/rad decreases 
the rms tracking error only very little. The fact that C,, does not decrease to 
zero as A - m is attributable to the peaking effect in the transmission which 
becomes more and more pronounced as J. becomes larger. 

The steady-state rms input voltage can be found to be given by 

C,, = E{&t)} = E{P[O(t) - O,(t)l3} = PC,,. 2-84 
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Fig. 2.19. Rms tracking error and rms input vollage as functions of the gain ,? for the 
position servo, Design I. 

Figure 2.19 shows that, according to what one would intuitively feel, the rms 
input keeps increasing with the gain A. Comparing the behavior of the rms 
tracking error and the rms input voltage confirms the opinion that there is 
very little point in increasing the gain beyond 15-25 V/rad, since the increase 
in rms input voltage does not result in any appreciable reduction in the rms 
tracking error. We observe, however, that the resulting design is not very 
good, since the rms tracking error achieved is about 0.2 tad, which is not 
very small as compared to the rms value of the reference variable of 1 rad. 

Design 11. The second design suggested in Example 2.4 gives better results, 
since in this case the tachometer feedback gain factor p can be so chosen that 
the closed-loop system is well-damped for each desired bandwidth, which 
eliminates the peaking effect. In this design we find for thd transmission 

,<A 
T(s) = 2-85 

s2 + (a + ICA~)S + K A  " 
which is similar to 2-76 except that a is replaced with a + d p .  As a result, 
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the undamped natural frequency of the system is 

0, = J;;;i 
and the relative damping 

The break frequency of the system is w,, which can be made arbitrarily large 
by choosing A large enough. By choosing p such that the relative damping 
is in the neighborhood of 0.7, the cutoff frequency of the control system can 
be made correspondingly large. The steady-state rms tracking error is 

while the steady-state mean square input voltage is given by 

C,, can be made arbitrarily small by choosing 1 and p large enough. For a 
given rms input voltage, it is possible to achieve an rms tracking error that 
is less than for Design I. The problem of how to choose the gains ?. and p 
such that for a given rms input a minimal rms tracking error is obtained 
is a mathematical optimization problem. 

In Chapter 3 we see how this optimization problem can be solved. At  
present we confine ourselves to an intuitive argument as fouows. Let us sup- 
pose that for each value of i the tachometer gain p is so chosen that the rel- 
ative damping I is 0.7. Let us furthermore suppose that it is given that 
the steady-state rms input voltage should not exceed 30 V. Then by trial 
and error it can be found, using the formulas 2-88 and 2-89, that for 

i = 500 V/rad, p = 0.06 s, 2-90 

the steady-state rms tracking error is 0.1031 rad, while the steady-state rms 
input voltage is 30.64 V. These values of the gain yield a near-minimal rms 
tracking error for the given rms input. We observe that this design is better 
than Design I,  where we achieved an rms tracking error of about 0.2 rad. 
Still Design I1 is not very good, since the rms tracking error of 0.1 rad is not 
very small as compared to the rms value of the reference variable of 1 rad. 
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This situation can be remedied by either replacing the motor by a more 
powerful one, or by lowering the bandwidth of the reference variable. The 
10% cutoff frequency of the present closed-loop design is 0 . 0 7 1 ~ ~  = 
0.071J;;;iri 1.41 radls, where w, is the break frequency of the system (see 
Table 2.1). This cutoff frequency is not large enough compared to the 1 % 
cutoff frequency of 6.4 rad/s of the reference variable. 

Design III. The third design proposed in Example 2.4 is an intermediate 
design: for T, = 0 it reduces to Design I1 and for T, = m to Design I. For 
a given value of T,, we expect its performance to lie in between that of the 
two other designs, which means that for a given rms input voltage an rms 
tracking error may be achieved that is less than that for Design I but larger 
than that for Design 11. 

From the point of view of tracking performance, T, should of course be 
chosen as small as possible. A too small value of T,, however, will unduly 
enhance the effect of the observation noise. In  Example 2.11 (Section 2.8), 
which concludes the section on the effect of observation noise in the control 
system, we determine the most suitable value of T,. 

2.5.3 The Multiinput Multioutput Case 

In  this section we return to the case where the plant input, the controlled 
variable, and the reference variable are multidimensional variables, for which 
we rephrase the design objectives of Section 2.5.2. 

When we iirst consider the steady-state mean square tracking error as 
given by 2-58, we see that Design Objective 2.2 should be modified in the 
sense that 

is to he made small for all real w 2 0, and that when nonzero set points are 
likely to occur, 

must be made small. Obviously, this objective is achieved when T(jw) equals 
the unit matrix for all frequencies. I t  clearly is slrficient, however, that 
T(jw) be close to the unit matrix for all frequencies for which .X ,(w) is 
significantly different from zero. In order to make this statement more 
precise, the following assumptions are made. 

1. The uariable port of tlre reference variable is a sfoclrastic process wit11 
mmcorrelated components, so tlrat its power spectral derlsity n~atrix can be 
expressed as . 
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2. Tlte constant part of the reference variable is a stoclrastic uariable iviflt 
talcorrelated conrporIeirts, so that its second-order nzoiitent matrix cart be 
expressed as 

R, = diag (R,,,, ROac, . . . , R,  ,,,, 1. 2-94 

From a practical point of view, these assumptions are not very restrictive. 
By using 2-93 and 2-94, it is easily found that the steady-state mean square 
tracking error can be expressed as 

+ 5 / n ~ . j ( w ) { [ ~ ( - j w )  - IIT W.[T(jw) - I]}. df, 2-95 
i d  -m 

where 

{[T(- jw)  - JITWJT(jw)  - Ill,. 2-96 

denotes the i-thdiagonal element of the matrix IT(-jo) - I ] T W o [ ~ ( j ~ )  - I ] .  
Let us now consider one of the terns on the right-hand side of 2-95: 

This expression describes the contribution of the i-th component of the 
reference variable to the tracking error as transmitted through the system. 
I t  is therefore appropriate to introduce the following notion. 

Definition 2.4. Let T(s )  be the nt x m fransntission of an asyntptotical[y 
stable tirite-inuariar~t linear control system. Then we define flte frequency band 
of the i-tlt link of the cortfrol system as the set of freq~reircies w ,  w 2 0,  for 
wlticl~ 

{[T(-jw) - IITW.[T(jw) - I E ' W ~ , ~ ~  2-98 

Here E is a given nuniber ivlticl~ is sinall ivitlt respect to 1, W, is the weiglrfing 
matrix for the nrean square tracking error, and W0,;, denotes the i-th diagonal 
elenrent of We. 

Once the frequency band of the i-th link is established, we can of course 
define the bandisidtlr and the cutofffreqtrei~cy of the i-th link, if they exist, as 
in Definition 2.2. I t  is noted that Definition 2.4 also holds for nondiagonal 
weighting matrices Wa. The reason that the magnitude of 

is compared to Ws,i j  is that it is reasonable to compare the contribution 
2-97 of the i-th component of the reference variable to the mean square 
tracking error to its contribution when no control is present, that is, when 
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T(s )  = 0. This latter contribution is given by 

2-99 

We refer to the normalized function {[T(-jw) - q T W a [ ~ ( j w )  - ~} i i /Wc , i i  
as the d~erencefrnzctio~z of the i-th link. In the single-input single-output 
case, this function is ) T ( j w )  - 1)". ! 

We are now in a position to extend ~ e s i ~ n  Objective 2.2A as follows. 

Design Objective 2.2B. Let T(s)  be tile nl x nz transnzissiarz of an asjmzp- 
totically stable time-iczvaria~zt lirzear control sjtstenz for i~~lziclt both the constatlt 
part and the uariable part of the reference uariable have zcncorrel~ted conz- 
ponents. Then in order to obtain a s~jzall  stead^-state mean sylcare tracking 
error, the freqtiency band of each of ,>he 111 links shorrld contain as nztrch as 
possible of the  freqrrencj~ band of the carresponditzg component of the reference 
uariable. If the i-111 conlponelzt, i = 1 ,  2 ,  - . . , nz, of the reference variable is 
likebr to have a nonzero setpoint, {[T(O) - IjT W,[T(O) - Illii sl~otdd be mode 
small as compared to Wa,{+ 

As an amendment to this rule, we observe that if the contribution to C,, of 
one particular term in the expression 2-95 is much larger than those of the 
remaining terms, then the advice of the objective should be applied more 
severely to the corresponding link than to the other links. 

In view of the assumptions 1 and 2, it is not unreasonable to suppose that 
the weighting matrix W ,  is diagonal, that is, 

w, = diag (We,11, WO,~, ,  . . . . W ,  ,,,,, 1. 2-100 

Then we can write 

{ [ T ( - j o )  - IITW,[T(jw) - Illii 

where { T ( j w )  -or< denotes the (1, i)-th element of T ( j w )  - I. This shows 
that the frequency band of the i-th link is determined by the i-th column of 
the transmission T(s). 

I t  is easy to see, especially in the case where We is diagonal, that the design 
objective forces the diagonal elements of the transmission T ( j w )  to be close 
to 1 over suitable frequency hands, while the off-diagonal elements are to be 
small in an appropriate sense. If all off-diagonal elements of T ( j w )  are zero, 
that is, T ( j w )  is diagonal, we say that the control system is completely de- 
coryled. A control system that is not completely decoupled is said to exhibit 
interaction. A well-designed control system shows little interaction. A control 
system for which T(0) is diagonal will be called statically decozpled. 

We consider finally the steady-state mean square input. IF the components 
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of the reference variable are uncorrelated (assumptions 1 and 2), we can 
write 

where { ~ ~ ( - j w ) ~ , ~ ( j r o ) } , ~  is the i-th diagonal element of NT(-ju). 
W,,,V(jw). This immediately leads to the following design objective. 

Design Objective 2.3A. In  order to obtain o small sieadj-state mean square 
inpnt in an asjm~ptot ical~ stable time-inuariant linear control system with arl 
m-diniensional reference uariable wit11 uncorrelated contponents, 

INT(-jw)W,,N(jo)},, 2-103 
slrodd be made small ouer the freqt~encj~ band of tlre i-th component of tlre 
reference uariable, for i = 1,2 ,  . . . , n7. 
Again, as in Objective 2.3, we impose no special reslrictions on 
{NT(0) W,,N(O)};; even if the i-th component of the reference variable is 
likely to have a nonzero set point, since only the fluctuations about the set 
point of the input need be restricted. 

Example 2.8. The control of a stirred t0111c 
Let us take up the problem of controlling a stirred tank, as described in 

Example 2.2 (Section 2.2.2). The linearized state differential equation is 
given in Example 1.2 (Section 1.2.3); it is 

As the components of the controlled variable z(t) we choose the outgoing 
flow and the outgoing concentration so that we write 

The reference variable r(t) thus has as its components p,(t) and p,(t), the 
desired outgoing flow and the desired outgoing concentration, respectively. 

We now propose the following simple controller. If the outgoing flow is too 
small, we adjust the flow of feed 1 proportionally to the difference between 
the actual flow and the desired flow; thus we let 

However, if the outgoing concentration differs from the desired value, the 
flow of feed 2 is adjusted as follows: 

,dl) = kdpdt )  - Cs(t)l. 2-107 

Figure 2.20 gives a block diagram of this control scheme. The reason that 



r e f e r e n c e  f o r  f l o w  a i ncoming  f l o w  1 outgoing f l o w  

Pl ltl I - &l ltl 11 It1 = 61 It1 
~ L o n t  

re ference f o r  concentrot ion incoming  f l ow 2  outgo ing concentrot ion 
P Z I ~ I  v ~ ( t 1  1 2 i t ~ = 5 2 ( t 1  

Fig. 2.20. A closed-loop control scheme for the stirred tnnk. 
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this simple scheme is expected to work is that feed 2 has a higher concentra- 
tion than feed 1; thus the concentration is more sensitive to adjustments of 
the second flow. As a result, the first flow is more suitable for regulating the 
outgoing flow. However, since the second flow also affects the outgoing flow, 
and the f i s t  flow the concentration, a certain amount of interaction seems 
unavoidable in this scheme. 

For this control system the various transrer matrices occurring in Fig. 
2.14 can be expressed as follows: 

In Example 1.17 (Section 1.5.4), we found that the characteristic polynomial 
of the closed-loop system is given by 

from which we see that the closed-loop system is asymptotically stable for 
all positive values of the gains ic, and lc:. 

I t  can be found that the transmission of the system is given by 

T(s)  = K(s)[l + G(s)H(s)]-lP(s) 

O.Olkl(s + It, + 0.02) O.Olk,(s + 0.02) 
. 2-110 

-0.25kl(s + 0.01) k,(0.75~ + O.O1kl + 0.0075) 

As a result, we find that 

I t  is easy to see that if k,  and k, simultaneously approach infinity then 
[T(s) - I ]  - 0 so that perfect tracking is obtained. 
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The transfer matrix N(s) can be found to be 

When Ic, and 1% simultaneously approach infinity, 

which means that the steady-state mean square input C,,,  will be infinite 
unless the enlries of X,(w) decrease fast enough with w. 

In order to find suitable values for the gains lc, and lc,, we now apply 
Design Objective 2.2B and determine k, and k2 so that the frequency bands 
of the two links of the system contain the frequency bands of the components 
of the reference variable. This is a complicated problem, however, and there- 
fore we prefer to use a trial-and-error approach that is quite typical of the 
way multivariable control problems are commonly solved. This approach is 
as follows. To determine lc, we assume that the second feedback link has not 
yet been connected. Similarly, in order to determine k?, we assume that the 
first feedback link is disconnected. Thus we obtain two single-input single- 
output problems which are much easier to solve. Finally, the control system 
with both feedback links connected is analyzed and if necessary the 
design is revised. 

When the second feedback link is disconnected, the transfer function 
from the first input to the first controlled variable is 

Proportional feedback according to 2-106 results in the following closed- 
loop transfer function from p,(t) to [,(t): 

We immediately observe that the zero-frequency transmission is different 
from 1 ; this can be remedied by inserting an extra gain f, into the connection 
from the first componenl of the reference variable as follows: 
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With this 2-115 is modified to 
0.0111. f, 

For each value of li,, it is possible to choose fl so that the zero-frequency 
transmission is 1. Now the value of li, depends upon the cutoff frequency 
desired. Fork,  = 10 the 10 % cutoff frequency is 0.011 rad/s (see Table 2.1). 
Let us assume that this is sufficient for the purpose of the control system. 
The corresponding value that should be chosen forf, is 1.1. 

When studying the second link in a similar manner, it can be found that 
the feedback scheme 

results in the following closed-loop transfer function from p,(t) to <?(t) 
(assuming that the first feedback link is disconnected): 

For k3 = 0.1 and f, = 1.267, the zero-frequency transmission is 1 and the 
10 % cutoff frequency 0.0095 rad/s. 

Let us now investigate how the multivariable control system with 

and 

performs. It can be found thal the control system transmission is given by 

1 0.11s + 0.0132 0.001267s + 0.00002534 T(s) = 
s" oXJ% + 0.01295 -2.75s - 0.0275 0.09502s + 0.01362 

2-122 
hence that 
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chosen arbitrarily small since the left-hand side of 2-128 is bounded from 
below. For E = 0.1 the cutoff frequency is about 0.01 rad/s. The horizontal 
part of the curve at low frequencies is mainly attributable to the second term 
in the numerator of 2-128, which originates from the off-diagonal entry in 
the first column of T(jw) - I. This entry represents part of the interaction 
present in the system. 

We now consider the second link (the concentration link). Its frequency 
band follows from the inequality 

1 0.02~'. 2-129 

By dividing by 0.02 and rearranging, it follows for this inequality, 

2-130 

The Bode plot of the left-hand side of this inequality, which is the difference 
Function of the second link, is also shown in Fig. 2.21. In this case as well, 
the horizontal part of the curve at low frequencies is caused by the interaction 
in the system. If the requirements on E are not too severe, the cutoff frequency 
of the second link is somewhere near 0.01 rad/s. 

The cutoff frequencies obtained are reasonably close to the 10% cutoff 
Frequencies of 0.011 rad/s and 0.0095 rad/s of the single-loop designs. 
Moreover, the interaction in the system seems to be limited. In conclusion, 
Fig. 2.22 pictures the step response matrix of the control system. The plots 
confirm that the control system exhibits moderate interaction (both dynamic 
and static). Each link has the step response of a first-order system with a 
time constant of approximately 10 s. 

A rough idea of the resulting input amplitudes can be obtained as follows. 
From 2-116 we see that a step of 0.002 mvs in the flow (assuming that this is 
a typical value) results in an initial flow change in feed 1 of k,1,0.002 = 
0.022 m3/s. Similarly, a step of 0.1 kmol/m3 in the concentration results in 
an initial flow change in feed 2 of k,&O.l = 0.01267 m3/s. Compared to the 
nominal values of the incoming flows (0.015 m3/s and 0.005 m3/s, respec- 
tively), these values are far too large, which means that either smaller step 
input amplitudes must be chosen or the desired transition must be made 
more gradually. The latter can be achieved by redesigning the control system 
with smaller bandwidths. 

In Problem 2.2 a more sophisticated design of a controller for the stirred 
tank is considered. 
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Fig. 2.22. Step response matrix of thestirred-tank control system. Left column: Responses 
of the outgoing Row and concentration to a step of 0.002 mJ/s in the set point of the flow. 
Right column: Responses of the outgoing flow and concentration to a step of 0.1 kmol/mJ 
in the set point of the concentration. 

2 .6 THE TRANSIENT ANALYSIS OF THE 
TRACKING PROPERTIES 

In the previous section we quite extensively discussed the steady-state 
properties of tracking systems. This section is devoted to the frar~sient 
behavior of tracking systems, in particular that of the mean square tracking 
error and the mean square input. We define the settling rime of a certain 
quantity (be it the mean square tracking error, the mean square input, or any 
other variable) as the time it takes the variable to reach its steady-state value 
to within a specified accuracy. When this accuracy is, say, 1 % of the maximal 
deviation from the steady-state value, we speak of the 1 % setf/ing time. For 
other percentages similar tern~inology is used. 

Usually, when a control system is started the initial tracking error, and as 
a result the initial input also, is large. Obviously, it is desirable that the mean 
square tracking error settles down to its steady-state value as quickly as 
possible after starting up or after upsets. We thus formulate the following 
directive. 
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Design Objective 2.4. A control s j ~ s t e ~ ? ~  sl~ould be so designed that the settlirlg 
t h e  of the mean square tracking error is as short aspossible. 

As we have seen in Section2.5.1, the mean square tracking error attributable 
to the reference variable consists of two contributions. One originates from 
the constant part of the reference variable and the other from the variable 
part. The transient behavior of the contribution of the variable part must be 
found by solving the matrix differential equation for the variance matrix of 
the state of the control system, which is fairly laborious. The transient 
behavior of the contribution of the constant part of the reference variable to 
the mean square tracking error is much simpler to find; this can be done 
simply by evaluating the response of the control system to nonzero initial con- 
ditions and to steps in the reference variable. As a rule, computing these 
responses gives a very good impression of the transient behavior of the 
control system, and this is what we usually do. 

For asymptotically stable time-invariant linear control systems, some 
information concerning settling times can often be derived from the locations 
of the closed-loop poles. This follows by noting that all responses are exponen- 
tially damped motions with time constants that are the negative reciprocals 
of the real parts of the closed-loop characteristic values of the system. Since 
the 1 % settling time of 

e-'lo, t 2 0, 2-131 

is 4.60, a bound for the 1 % settling time t ,  of any variable is 

where &, i = 1,2 ,  . . . , n, are the closed-loop characteristic values. Note 
that for squared variables such as the mean square tracking error and the 
mean square input, the settling time is half that of the variable itself. 

The hound 2-132 sometimes gives misleading results, since it may easily 
happen that the response of a given variable does not depend upon certain 
characteristic values. Later (Section 3.8) we meet instances, for example, 
where the settling time of the rms tracking error is determined by the closed- 
loop poles furthest from the origin and not by the nearby poles, while the 
settling time of the rms input derives from the nearby closed-loop poles. 

Example 2.9. Tlte settling time of the tracking error of the position seruo 
Let us consider Design I of Example 2.4 (Section 2.3) for the position servo. 

From the steady-state analysis in Example 2.7 (Section 2.5.2), we learned 
that as the gain A increases the rms steady-state tracking error keeps de- 
creasing, although beyond a certain value (15-25 V/rad) very little improve- 
ment in the rms tracking error is obtained, while the rms input voltage 
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becomes larger and larger. We now consider the settling time of the tracking 
error. To this end, in Fig. 2.23 the response of the controlled variable to a 
step in the reference variable is plotted for various values of A, from zero 
initial conditions. As can be seen, the settling time of the step response 
(hence also that of the tracking error) first decreases rapidly as A increases, 
hut beyond a value of A of about I5 V/rad the settling time fails to improve 
because of the increasingly oscillatory behavior of the response. In this case 

Rig. 2.23. Response of Design I of the 
position servo to a step of 0.1 rad in the 
refercncc variable for various values of 
the gain i.. 

as well, the most favorable value of A seems to he about 15 V/rad, which 
corresponds to a relative damping 5 (see Example 2.7) of about 0.7. From the 
plots of [T[jo)l of Fig. 2.18, we see that for this value of the gain the largest 
bandwidth is achieved without undesirable peaking of the transmission. 

2.7 T H E  EFFECTS O F  D I S T U R B A N C E S  IN T H E  
S I N G L E - I N P U T  S I N G L E - O U T P U T  C A S E  

In Section 2.3 we saw that very often disturbances act upon a control system, 
adversely affecting its tracking or regulating performance. In this section we 
derive expressions for the increases in the steady-state mean square tracking 
error and the steady-state mean square input attributable to disturbances, 
and formulate design objectives which may serve as a guide in designing 
control systems capable of counteracting disturbances. 

Throughout this section the following assumptions are made. 

1. Tlte disturbatlce uariable u,(t) is a stocl~astic process that is ~~tlcarrelated 
with the reference uariable r(t) and the abseruatiotl noise u,,,(t). 
As a result, we can obtain the increase in the mean square tracking error and 
the mean square input simply by setting r(t) and u,,,(t) identical to zero. 

2. The controlled uariable is also the abserued variable, that is, C = D. 
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and that in the time-i~~uorianf case 

The assumption that the controlled variable is also the observed variable is 
quite reasonable, since it is intuitively clear that feedback is most effective 
when the controlled variable itself is directly fed hack. 

3. The control sj~stent is asynlptotical~ stable and tinie-inuariant. 
4. The i r p t  variable and the controlled uariable, 11ence also the reference 

variable, are scalars. FVo oaltd W,, are both 1. 
The analysis of this section can he extended to multivariable systems but 
doing so adds very little to the conclusions of this and the following sections. 

5. The distwbonce variable u,(t) cart be written as 

1~11ere the consta~~t part u,,, of the disturbance variable is a stochastic vector 
lvith giuen seconhorder monte~it nlarrix, and where the uariable part u,,(t) of 
the disturbance uoriable is a wide-sense stationarj~ zero mean stoclrasticprocess 
ivith power spectral density niatris C,Jo), zuzcorreloted ivit11 v,,,. 

The transfer matrix from the disturbance variable u,(t) to the controlled 
variable z( t )  can be found from the relation (see Fig. 2.24) 

where Z ( s )  and V&) denote the Laplace transforms of z ( f )  and u,(t), 

Fig. 2.24. Transfer matrix block diagram of a closed-loop conlrol system with plant 
disturbance v,. 
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respectively, so that 

Here we have used the fact that the controlled variable is a scalar so that 
1 + H(s)G(s) is also a scalar function. We now introduce the function 

which we call the sensitiuitj~frmctio~l of the control system for reasons to be 
explained later. 

We compute the contribution of the disturbance variable to the steady- 
slate mean square tracking error as the sum of two terms, one originaling 
from the constant part and one from the variable part of the disturbance. 
Since 

Z(s)  = S(s)D(sI - A)-lV,(s), 2-139 

the steady-state response of the controlled variable to the constant part of 
the disturbance is given by 

lim ~ ( t )  = S(0)D(-A)-l~n, = S(O)u,,. 2-140 
i - m  

Here we have assumed that the matrix A is nonsingular-the case where A 
is singular is treated in Problem 2.4. Furthermore, we have abbreviated 

uuo = D(-A)"u,. 2-141 

As a result of 2-140, the contribution of the constant part of the disturbance 
to the steady-state mean square tracking error is 

where V ,  is the second-order moment of u,,, that is, V, = E{u&}. Further- 
more it follows from 2-139 with the methods of Sections 1.10.4 and 1.10.3 
that the contribution of the variable part of the disturbance to the steady- 
state mean square tracking error can be expressed as 

rn 

= L I s ( ~ ~ ) I % & )  2-143 

Here we have abbreviated 

&(w) = D(jwI - A)-lXul,(w)(-jwI - A T ) - l ~ z ' .  2144 

Consequently, the increase in the steady-state mean square tracking error 
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attributable to the disturbance is given by 

C,, (with disturbance) - C,, (without disturbance) 

= 1S(O)(' V, +lm \ S ( j ~ ) ~ ( w  d .  1145 
-m 

Before discussing how to make this expression small, we give an interpreta- 
tion. Consider the situation of Fig. 2.25 where a variable u,(t) acts upon the 
closed-loop system. This variable is added to the controlled variable. It is 

Fig. 2.25. Transfer matrix block diagram or a closed-loop control syslem with the 
equivalent disturbance q, at the controlled variable. 

easily found that in terms of Laplace transforms with the reference variable 
and the initial conditions identical to zero the controlled variable is given by 

where V,(s) denotes the Laplace transform of u,(t). We immediately see that 
if u,(t) is a stochastic process with as constant part a stochastic variable 
with second-order moment Tfo and as variable part a zero-mean wide-sense 
stationary stochastic process with power spectral density S,,(w), the increase 
in the steady-state mean square tracking error is exactly given by 2-145. We 
therefore call the process u,(t) with these properties the eqtrivalent disturbance 
at the controlled uariable. 

An examination of 2-145 leads to the following design rule. 

Design Objective 2.5. IIZ order to reduce the illcrease of the steae-state riieaiz 
square traclci~~g error attributable to distlrbmlces in an asjmtptotically stable 
linear tiiiie-iiiuariont coritrol sjuteri~ ieit11 a scalar controlled variable, ivhich is 
also the obserued uariable, the absolute ual~re of the se~isitiuiQ~firi~ctio~i S(jw) 
sl~a~ild be made sri~all over the freq~rericy b a d  of rlie eq~~iualent dist~rrbarice at 
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the controlled uarioble. If corlstalrt errors are of special concern, S(0) sl~ol~ld 
be mode ssiall, preferably zero. 

The last sentence of this design rule is not valid without further qualification 
for control systems where the matrix A of the plant is singular; this case is 
discussed in Problem 2.4. I t  is noted that since S(jw) is given by 

a small S(jw) generally must be achieved by malting the loop gain H(jw)G(jw) 
of the control system large over a suitable frequency range. This easily 
conflicts with Design Objective 2.1 (Section 2.4) concerning the stability of . . 
the control system (see Example 2.5, Section 2.4jm 

-. .- -t. A compromise must be 
round. 

Reduction of constant errors is of special importance for regulator and 
tracking systems where the set point of the controlled variable must be 
maintained with great precision. Constant disturbances occur very easily in 
control systems, especially because of errors made in establishing the nominal 
input. Constant errors can often be completely eliminated by making S(0) = 
0, which is usually achieved by introducing integrating action, that is, by 
letting the controller transfer function G(s) have a pole at the origin (see 
Problem 2.3). 

Let us now turn to a consideration of the steady-state mean square input. 
I t  is easily found that in terms of Laplace transforms we can write (see 
Fig. 2.24) 

where U(s) is the Laplace transform of u(t). I t  follows for the increase in the 
steady-state mean square input, using the notation introduced earlier in this 
section, 

C,,, (with disturbance) - C,,, (without disturbance) 

This expression results in the following directive. 

Design Objective 2.6. III order to obtain a small increase in the steady-state 
memz square input attributable to the dist~rrborlce ir~ an asj~iilptotically stable 
linear time-i~tuarionf control system ndth a scalar co~~trolled variable that is 
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also ihe obserurd variable mrd a scalar input, 

sltould be niade snlall over t l ~ e  frequency band of tlte eyrriualerrt disttirbonce at 
the car~trolled uarioble. 

In this directive no attention is paid to the constant part of the input since, 
as assumed in the discussion of Objective 2.3, the plant must be able to 
sustain these constant deviations. 

Design Objective 2.6 conflicts with Objective 2.5. Making the loop gain 
H(jw)G( jw) large, as required by Objective 2.5, usually does not result in 
small values of 2-150. Again a compromise must be found. 

Example 2.10. Tlte effect of disturbarrces o1r the position servo 
In this example we study the effect of disturbances on Design I of the 

position servo of Example 2.4 (Section 2.3). I t  is easily found that the sen- 
sitivity function of the control system as proposed is given by 

In Fig. 2.26 Bode plots of IS(jw)l are given for several values of the gain A. 
I t  is seen that by choosing A larger the frequency band over which disturbance 
suppression is obtained also becomes larger. If the equivalent disturbance a t  
the controlled variable, however, has much power near the frequency where 
IS(jw)l has its peak, then perhaps a smaller gain is advisable. 

Fig. 2.26. Bodeplots of thesensitivity function of the position control system, Design I, as 
a function of the gain A. 
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In Example 2.4 we assumed that the disturbance enters as a disturbing 
torque r,(t) acting on the shaft of the motor. If the variable part of this 
disturbing torque has the power spectral density function X,,(w), the variable 
part of the equivalent disturbance at the controlled variable has the power 
spectral density function 

2-152 
j d j w  + 4 

The power spectral density of the contribution of the disturbing torque to the 
controlled variable is found by multiplying 2-152 by IS(jw)12 and thus is 
given by 

Let us suppose that the variable part of the disturbing torque can be repre- 
sented as exponentially correlated noise with rms value u7, and time constant 
T,, so that 

The increase in the steady-state mean square tracking error attributable 
to the disturbing torque can be computed by integrating 2-153, or by modeling 
the disturbance, augmenting the state differential equation, and solving for 
the steady-state variance matrix of the augmented state. Either way we find 

C,, (with disturbing torque) - Cam (without disturbing torque) 

From this we see that the addition to C,, monotonically decreases to zero 
with increasing 1. Thus the larger 1 the less the disturbing torque arects the 
tracking properties. 

In the absence of the reference variable, we have p(t) = -1q(t) so that 
the increase in the mean square input voltage attributable to the disturbing 
torque is 1% times the increase in the mean square tracking error: 

C,,, (with disturbing torque) - C,,, (without disturbing torque) 

For 1 -+ m, C,,, monotonically increases to 



174 Analysis of Lioenr Control Systems 

I t  is easily found from 2-25 that a constant disturbing torque 7, results in a 
steady-state displacement of the controlled variable of 

Y '0 2-158 
K,? 

Clearly, this displacement can also be made arbitrarily small by making 
the gain ,? sufficiently large. 

2.8 THE EFFECTS OF OBSERVATION NOISE IN THE 
SINGLE-INPUT SINGLE-OUTPUT CASE 

In any closed-loop scheme, the effect of observation noise is to some extent 
felt. In this section the contribution of the observation noise to the mean 
square tracking error and the mean square input is analyzed. To this end, 
the following assumptions are made. 

1. The observation noise u,(t) is a stoclrastic process ~ ~ h i c h  is iotcorrelated 
i ~ ~ i f l i  the reference uoriable r( t )  and the plant disturbartce u&). 
As a result, the increase in the mean square tracking error and the mean 
square input attributable to the observation noise may be computed simply 
by setting r( t )  and v,(t) identical to zero. 

2. Tlre confroller variable is also the observed variable, tliat is, C = D, 
so tlrat 

?l(t) = z(f)  + urn@), 2-159 

and, in the tiiiie-iitvariaitt case, 
H(s)  = K(s). 

3. Tlre coittrol systeni is asyrtrptotical~ stable and time-inuariaitt. 
4. The iitpirt variable and the coirfralled variable, hence also tlie reference 

uariable, are scalars. !+re and W,, are both 1. 
Here also the analysis can be extended to multivariable systems but again 
very little additional insight is gained. 
' 

5. The abservatioit noise is a zero-mean wide-sense stationary stocltastic 
process with power spectral deiisifyfiotction X,,,(w). 

Figure 2.27 gives a transfer function block diagram of the situation that 
results from these assumptions. It is seen that in terms of Laplace transforms 

zb) = -H(s)G(s)[V,(s) + Z(s)l ,  2-161 
so that 
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Fig. 2.27. Transfer matrix block diagram of a closed-loop control system with observation 
noise. 

Consequently, the increase in the steady-state mean square tracking error 
attributable to the observation noise can be written as 

C,, (with observation noise) - C,, (without observation noise) 

Our next design objective can thus be formulated as follows. 

Design Objective 2.7. In order to redtrce the iircrease in tlre steadjwtate inearl 
spare  tracking error attriblttable to obseruation noise in all os~rn~ptotically 
stable linear time-i~tuariant corttral systertt ivitli a scalar controlled variable 
that is also the obserued variable, the sj~stent shotdd be designed so that 

is smaN ooer the freyrmtcy b a d  of tlre observation noise. 

Obviously, this objective is in conflict with Objective 2.5, since making the 
loop gain H(jw)G(jw) large, as required by Objective 2.5, results in a value 
of. 2-164 that is near I ,  which means that the observation noise appears 
unattenuated in the tracking error. This is a result of the fact that if a large 
loop gain H(jw)G(jw) is used the system is so controlled that z( t )  + u,,,(t) 
instead of z(t) tracks the reference variable. 

A simple computation shows that the transfer function from the observa- 
tion noise to the plant input is given by 

which results in the following increase in the steady-state mean square input 
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attributable to observation noise: 

C,,, (with observation noise) - C,, (without observation noise) 

This yields the design rule that to make the increase in the steady-state mean 
square input attributable to the observation noise small, 

should be made small over the frequency band of the observation noise. 
Clearly, this rule is also in conflict with Objective 2.5. 

Example 2.11. The positio~z seruo ivitl~ position feedback only 
Let us once again consider the position servo of Example 2.4 (Section 2.3) 

with the three different designs proposed. In Examples 2.7 (Section 2.5.2) and 
2.9 (Section 2.6), we analyzed Design I and chose A = 15 V/rad as the best 
value of the gain. In Example 2.7 it was found that Design I1 gives better 
performance because of the additional feedback link from the angular 
velocity. Let us now suppose, however, that for some reason (financial or 
technical) a tachometer cannot be installed. We then resort to Design 111, 
which attempts to approximate Design I1 by using an approximate differenti- 
ator with time constant Td. If no observation noise were present, we could 
choose T, = 0 and Design 111 would reduce to Design II. Let us suppose that 
observation noise is present, however, and that is can be represented as 
exponentially correlated noise with time constant 

T ,  = 0.02 s 
and rms value 

a,, = 0.001 tad. 

The presence of the observation noise forces us to choose T, > 0. In order 
to determine a suitable value of T,, we first assume that T, will turn out to be 
small enough so that the gains p and 2 can be chosen as in Design 11. Then 
we see how large T, can be made without spoiling the performance of Design 
11, while at the same time sufficiently reducing the effect of the observation 
noise. 

I t  is easily found that the transmission of the control system according to 
Design I11 is given by 
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To determine a suitably small value of T,, we argue as follows. The closed- 
loop system according to Design 11, with the numerical values obtained in 
Example 2.7 for A and p,  has an undamped natural frequency w, of about 
20 rad/s with a relative damping of 0.707. Now in order not to impede the 
behavior of the system, the time constant T, of the differentiator should be 
chosen small with respect to the inverse natural frequency, that is, small with 
respect to 0.05 s. In Fig. 2.28 we have plotted the transmission 2-170 for 

Fig. 2.28. The effect of T, on the transmission of Design III of the position servo. 

various values of T,. It is seen that for T, = 0.01 s the transmission is hardly 
affected by the approximate derivative operation, but that for T, = 0.1 s 
discrepancies occur. 

Let us now consider the effect of the observation noise. Modeling u,,(t) 
in the usual way, the additions to the steady-state mean square tracking error 
and input attributable to the observation noise can be computed from the 
variance matrix of the augmented state. The numerical results are plotted in 
Fig. 2.29. These plots show that for small T, the steady-state mean square 
input is greatly increased. An acceptable value of T, seems to be about 0.01 s. 
For this value the square root of the increase in the steady-state mean square 
input is only about 2 V, the square root of the increase in the steady-state 
mean square tracking error of about 0.0008 rad is very small, and the trans- 
mission of the control system is hardly affected. 
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Fig 2.29. The square roots of the additions to the steady-state mean square tracking error 
and input voltage due to observation noise as a function of T, for Design III of the position 
servo. 

2.9 THE EFFECT OF PLANT PARAMETER 
UNCERTAINTY I N  THE SINGLE-INPUT 
SINGLE-OUTPUT CASE 

Quite often a control system must be designed for a plant whose parameters 
are not exactly known to the designer. Also, it may happen in practice that 
changes of plant parameters frequently occur and that it is too laborious to 
measure the plant parameters each time and adjust the conlroller. 

We shall see that closed-loop controllers can be designed so that the per- 
formance of the control system deteriorates very little even though there may 
be quite a large discrepancy between the actual plant parameters and the 
non~inal plant parameters, that is, the parameter values that have been used 
while designing the controller. To this end we investigate the addition to the 
steady-state mean square tracking error attributable to parameter deviations. 

In this section we work with the following assumptions. 

1. Tlre control system is time-inuariant and asj~nlptoticall~~ stable. 
2. Tlre controlled variable is also the observed variable, that is, C = D, 

Itence K(s) = H(s). 
3. Tlre i r p t  variable and the controlled variable, hence also the reference 

variable, are scalar. W, and W,, are both 1. 
Extension to the moltivariahle case is possible, but does not give much 
additional insight. 

4. OrrlJI the effect of parameter changes on the tracking properties is con- 
sidered andnot that on the distwbonce sippression or noise red~rctianproperties. 

5. The reference variable has a canstantpart r,, ~vlriclr is a sfoclrastic vector, 
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with second-order lilor?mt R, arid as variable part a zero-inearr wide-sense 
stationary stochastic process ivith power spectral de~~sitjrfimcfior~ X,(w). 

We denote by Ha(>) the 17ornir1al transfer function of the plant, and by 
H,(s) the actual transfer function. Similarly, we write T,(s) for the trans- 
mission of the control system with the nominal plant transfer function and 
T,(s) for the transmission with the actual plant transfer function. We assume 
that the transfer function G(s) in the feedback link and the transfer function 
P(s) in the link from the reference variable (see the block diagram of Fig. 
2.14, Section 2.5.1) are precisely known and not subject to change. 

Using 263, we obtain for the nominal transmission 

and for the actual transmission 

For the actual control system, the steady-state mean square tracking error 
is given by 

We now make an estimate of the increase in the mean square tracking error 
attributable to a change in the transmission. Let us denote 

Inserting T,(s) = T,(s) + AT@) into 2-173, we obtain 

We now proceed by assuming that the nominal control system is well- 
designed so that the transmission T,(jw) is very close to 1 over the frequency 
band of the reference variable. In this case we can neglect the first four terms 
of 2-175 and we approximate 
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This approximation amounts to the assumption that 

ITo(jw) - 11 << IAT(jo)l  
for all w in the frequency band of the reference variable. 

Our next step is to express AT($ in terms of AH@), where 

We obtain: 

where 

is the sensitivity function of the actual control system, and where 

is the transfer function of the nominal control system from the reference 
variable r to the input variable 11. Now with the further approximation 

where 

= 
1 

2-183 
1 + Hds)G(s) 

is the sensitivity function of the nominal control system (which is known), 
we write for the steady-state mean square tracking error 

2-184 
We immediately conclude the following design objective. 

Design Objective 2.8. Comider a time-inuariant asyinptotically stable li~iear 
closed-loop control systern ivitli a scalar co~~trolled uariable that is also the 
obserued variable. Tllerl in order to reduce the steady-state mean sylrare 
tracking error attributable to a uariation AH(s) ill t l~eplar~t  transferftftnxtiorl 
H(s),  the cor~trol system se~~sitiuityfinlctiorl So( jw)  slrol~ld be made smaN over 
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the frequertcy band of l A H ( j ~ ) N , ( j w ) ( ~ Z , ( o ) .  Ifco~rsta~lt errors are of special 
concern, S,(O) slrotdd be mode small, preferabb zero, nhen AH(O)N,(O) is 
dr@erent from zero. 

This objective should be understood as follows. Usually the plant trans- 
mission T,(s) is determined by finding a compromise between the require- 
ments upon the mean square tracking error and the mean square input. 
Once T&) has been chosen, the transfer function N,(s) from the reference 
variable to the plant input is fixed. The given To@) and Nu@) can be realized 
in many different ways, for example, by first choosing the transfer function 
G(s) in the feedback link and then adjusting the transfer function P(s) in the 
link from the reference variable so that the desired T&) is achieved. Now 
Design Objective 2.8 states that this realization should be chosen so that 

is small over the frequency band of l A H [ j o ) N , [ j w ) [ ~ r ( w ) .  The latter 
function is known when some idea about AH[jw)  is available and T, [ jw)  
has been decided upon. We note that making the sensitivity function S , ( j o )  
small is a requirement that is also necessary to reduce the effect of disturbances 
in the control system, as we found in Section 2.7. As noted in Section 2.7, 
S,(O) can be made zero by introducing integrating action (Problem 2.3). 

We conclude this section with an interpretation of the function S,(s). 
From 2-179 and 2-171 it follows that 

Thus Sl(s) relates the relative change in the plant transfer function H(s) 
to the resulting relative change in the control system transmission T(s).  
When the changes in the plant transfer function are restricted in magnitude, 
we can approximate S l ( j o )  r S,(jw). This interpretation of the function 
S,(s) is a classical concept due to Bode (see, e.g., Horowitz, 1963). &(s) is 
called the se~rsitiuityfrrnctiorr of the closed-loop system, since it gives infor- 
mation about the sensitivity of the control system transmission to changes 
in the plant transfer function. 

Example 2.12. The effect of para~neter uariatiorrs on the position seruo 
Let us analyze the sensitivity to parameter changes in Design I of the 

position servo (Example 2.4, Section 2.3). The sensitivity function for this 
design is given by 
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Plots of IS(jw)I for various values of the gain A have been given in Fig. 2.26. 
I t  is seen that for A = 15 Vlrad, which is the most favorable value of the 
gain, protection against the effect of parameter variations is achieved up to  
about 3 rad/s. To he more specific, let us assume that the parameter variations 
are caused by variations in the moment of inertia J. Since the plant parameters 
a and K are given by (Example 2.4) 

it is easily found that for small variations AJ in J we can write 

K 
H(s)  = - 

S(S + a) 

is the plant transfer function. We note the following. 

1. For zero frequency we have 

no matter what value AJ has. Since T(0)  = 1, and consequently AT(0) = 0 ,  
this means that the response to changes in the set point of the tracking system 
is always correct, independent of the inertial load of the servo. 

2. We see from 2-189 that as a function of w the effect of a variation in 
the moment of inertia upon the plant transfer function increases up to 
the break frequency a = 4.6 rad/s and stays constant from there onward. 
From the behavior of the sensitivity function, it follows that for low fre- 
quencies (up to about 3 rad/s) the effect of a variation in the moment of 
inertia upon the transmission is attenuated and that especially for low fre- 
quencies a great reduction results. 

To illustrate the control system sensitivity, in Fig. 2.30 the response of the 
closed-loop system to a step in the reference variable is given for the cases 

-- AJ - 0, -0.3, and +0.3. 2192 
J 

Taking into account that a step does not have a particularly small frequency 
band, the control system compensates the parameter variation quite satis- 
factorily. 
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ongulor 
posftim o,lv- 
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Fig. 2.30. The effect of parameter variations 
on the response of the posilion servo, Design I. 
to a step of 0.1 rad in the reference variable: 

0 
0 (a) Nominal inertial load; (b) inertial load 1.3 

1 2 
t -(s~ of nominal; (c) inertial load 0.7 of nominal. 

2.10* THE OPEN-LOOP STEADY-STATE 
EQUIVALENT CONTROL SCHEME 

The potential advantages of closed-loop control may be very clearly brought 
to light by comparing closed-loop control systems to their so-called open- 
loop steady-state equivalents. This section is devoted to a discussion of such 
open-loop equivalent control systems, where we limit ourselves to the time- 
invariant case. 

Consider a time-invariant closed-loop control system and denote the 
transfer matrix from the reference variable r to the plant input 11 by N(s). 
Then we can always construct an open-loop control system (see Fig. 2.31) 
that has the same transfer matrix N(s) from the reference variable r to the 
plant input 11. As a result, the transmission of both the closed-loop system 
and the newly constructed open-loop control system is given by 

where K(s) is the transfer matrix of the plant from the plant input I I  to the 
controlled variable z. For reasons explained below, we call the open-loop 
system steady-state eqiiiualent to the given closed-loop system. 

In most respects the open-loop steady-state equivalent proves to be in- 
ferior to the closed-loop control system. Often, however, it is illuminating to 

open-loop controller plont -+--+-:- 
Fig. 231. The open-loop steady-state equivalent control system. 
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study the open-loop equivalent of a given closed-loop system since it provides 
a reference situation witb a performance that should be improved upon. We 
successively compare closed-loop control systems and their open-loop 
equivalents according to the following aspects of control system performance: 
stabilitjt; steady-state traclcingproperties; transient behauior; effect ofplant 
disturbances; effect of obseruation noise; ser~sitiuity to plant uoriatio~ts. 

We first consider stability. We immediately see that the characteristic 
values of the equivalent open-loop control system consist of the characteristic 
values of the plant, together with those of the controller (compare Section 
1.5.4). This means, among otller things, that on ~o~sfob le  plant cannot be 
stabilized by on open-loop controller. Since stability is a basic design objective, 
there is little point in considering open-loop equivalents when the plant is not 
asymptotically stable. 

Let us assume that the plant and the open-loop equivalent are asymp- 
totically stable. We now consider the steady-state traclci~~gproperties of both 
control systems. Since the systems have equal transmissions and equal 
transfer matrices from the reference variable to the plant input, their steady- 
state mean square tracking errors and mean square input are also equal. 
This explains the name steady-state equivalent. This also means that fi.ont 
the point of view of trackingperfornlance there is no need lo resort to closed- 
loop control. 

We proceed to the transient properties. Since among the characteristic 
values of the open-loop equivalent control system the characteristic values 
of the plant appear unchanged, obviously no inlprouenlent in the transient 
properties can be obtoirwi by open-loop confro/, in contrast to closed-loop 
control. By transient properties we mean the response of the control system 
to nonzero initial conditions of the plant. 

Next we consider the effect of disturbances. As in Section 2.7, we assume 
that the disturbance variable can be written as the sum of a constant and a 
variable part. Since in the multivariable case we can write for the contri- 
bution of the disturbance variable to the controlled variable in the closed-loop 
system 

Z(s) = [ I  + H(s)G(s)]-~D(sI - A)-'V,(s), 2-194 

it follows that the contribution of the disturbance variable to the mean 
square tracking error of the closed-loop system can be expressed as 

C,, (with disturbance) - C,, (without disturbance) 
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where we have used the results of Sections 1.10.3 and 1.10.4, and where 

v, = D ( - A ) - ~ E { u , ~ u ; ) ( - A ~ ' ) - ~ D ~ .  

In  analogy with the single-input single-output case, S(s) is called the 
sensitivity matrix of the system. The matrix A is assumed to be nonsingular. 

Let us now consider the equivalent open-loop system. Here the contri- 
bution of the disturbance to the controlled variable is given by 

Z(s)  = D(sI - A)-lV,,(s). 2-197 

Assuming that the open-loop equivalent control system is asymptotically 
stable, it is easily seen that the increase in the steady-state mean square 
tracking error due to the disturbance in the open-loop system can be expressed 
as 

C,, (with disturbance) - C,, (without disturbance) 

We see from 2-198 that the increase in the mean square tracking error is 
completely independent of the controller, hence is not affected by the open- 
loop control system design. Clearly, in an open-loop controlsysteri~ dislisrarbar~ce 
redactiorl is impossible. 

Since the power spectral density matrix X,,(w) may be ill-known, it is of 
some interest to establish whether or not there exists a condition that 
guarantees that in a closed-loop control system the disturbance is reduced as 
compared to  the open-loop equivalent irrespective of X,,. Let us rewrite the 
increase 2-195 in the mean square tracking error of a closed-loop syslem as 
follows: 

Cam (with disturbance) - Cam (without disturbance) 

where S(s) is the sensitivity matrix of the system. A comparison with 2-198 
leads to the following statement. 

Theorem 2.1. Consider a time-it~uariant asjmptoticallJi stable closed-loop 
corttrol system where the co~rtrolled variable is also the obserued variable and 
wlrere the plartt is asj~n~pfoticollJi stable. Tlren the increase in the steady-state 
mean square traclcing error due to the plant disttlrba17ce is less tltan or 
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at least equal to that for the open-loop steady-state equivalent, regardless of 
tlreproperties of t l~epla~l t  disturbance, ifand only if 

ST(-jw)WJ(jw) j W, for a l l  real w. 2200 

The proof of this theorem follows from the fact that, given any two non- 
negative-definite Hermitian matrices MI and M?, then MI 2 M2 implies 
and is implied by t r  (MIN) 2 tr ( M f l  for any nonnegative-definite Her- 
mitian matrix N. 

The condition 2-200 is especially convenient for single-input single-output 
systems, where S(s) is a scalar function so that 2-200 reduces to 

IS(jw)l 5 1 for all real w. 2-201 

Usually, it is simpler to verify this condition in terms of the return difference 
function 

With this we can rewrite 2-201 as 
IJ(jw)I 2 1 for all real w. 2-203 

Also, for multiinput multioutput systems it is often more convenient to 
verify 2-200 in terms of the return difference matrix 

J(s) = S-'(s) = I + H(s)G(s). 2-204 

In this connection the following result is useful. 

Theorem 2.2. Let J(s) = S-'(s). Tlren the three fallai~~ing stafe~ileirts are 
equivalent: 

(a) ST(-jw) W.S(jw) 5 W,, 

(b) JT(-jw)W.J(jw) 2 W,, 2205 

(c) J(~w)w;'J~(-~w) 2 Wyl. 
The proof is left as an exercise. 

Thus we have seen that open-loop systems are inferior to closed-loop 
control systems from the point of view of disturbance reduction. In all 
fairness it should he pointed out, however, that in open-loop control systems 
the plant disturbance causes no increase in the mean square input. 

The next item of consideration is the effect of abseruatiar~ noise. Obviously, 
in open-loop control systems ohservation noise does not affect either the 
mean square tracking error or the mean square input, since there is no feed- 
back link that introduces the observation noise into the system. In this 
respect the open-loop equivalent is superior to the closed-loop syslem. 
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Our final point of consideration is the sensitiuity to pla~rt variations. Let 
us first consider the single-input single-output case, and let us derive the 
mean square tracking error attributable to a plant variation for an open-loop 
control system. Since' an open-loop control system has a unity sensitivity 
function, it follows from 2-184 that under the assumptions of Section 2.9 
the mean square tracking error resulting from a plant variation is given by 

m 

Cam (open-loop) = IAH(O)N0(O)I2 Ro +I AH(jw)N/jw)12X,(w) df. 
-m 

Granting that N,(s) is decided upon from considerations involving the 
nominal mean square tracking error and input, we conclude from this 
expression that the sensitivity to a plant transfer function variation of an  
open-loop control system is not influenced by the control system design. 
Apparently, protection against plant uariatio~rs ca~titot be aclrieued throlrglr 
open-loop co~ttrol. 

For the closed-loop case, the mean square tracking error attributable to 
plant variations is given by 2-184: 

C,, (closed-loop) -. ISo(0)IZIAH(O)N,(0)12 R. 

A comparison of 2-206 and 2207 shows that the closed-loop system is 
always less sensitive to plant variations than the equivalent open-loop system, 
no matter what the nature of the plant variations and the properties of the 
reference variable are, if the sensitivity function satisfies the inequality 

ISo(jw)l 1 for all w. 2-208 

Thus we see that the condition that guarantees that the closed-loop system is 
less sensitive than the open-loop system to disturbances also makes the 
system less sensitive to plant variations. 

In the case of disturbance attenuation, the condition 2-208 generalizes to 

SoT(-jw)W,So(jw) 5 W., for all w, 2209 

for the multivariable case. I t  can be proved (Cruz and Perkins, 1964; 
Kreindler, 1968a) that the condition 2-209 glmrarttees that the i~rcrease in the 
steady-state rileart sglrare tracking error dtre to (s~ttall) plant uariatioits 
in a closed-loop system is always less than or eglral to tlratfor the open-loop 
steady-state eguivalent, regardless of the nafrrre of the plortt variatiorr and the 
properties of the refereme variable. 
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We conclude this section with Table 2.2, which summarizes the points of 
agreement and difference between closed-loop control schemes and their 
open-loop steady-state equivalents. 

Table 2.2 Comparison of Closed-Loop and Open-Loop Designs 

Feature 
Open-loop steady-state 

Closed-loop design equivalent 

Stability 

Steady-state mean square 
tracking error and 
input attributable to 
reference variable 

Transient behavior 

Effect of disturbances 

Effect of observation 
noise 

Effect of plant 
variations 

Unstable plant can be Unstable plant cannot 
stabilized be stabilized 

Identical performance if the 
plant is asymptotically stable. 

Great improvement in No improvement in 
response to initial response to initial 
conditions is possible conditions is possible 

Effect on mean square Full effect on mean 
tracking error can be square tracking error; 
greatly reduced; mean mean square input is 
square input is not affected 
increased 

Both mean square No effect on mean square 
tracking error and tracking error or mean 
mean square input are square input 
increased 

Effect on mean square Full effect on mean 
tracking error can be square tracking error 
greatly reduced 

2.11 CONCLUSIONS 

I n  this chapter we have given a description of control problems and of the 
various aspects of the performance of a control system. It has been shown 
that closed-loop control schemes can give very attractive performances. 
Various rules have been developed which can be applied when designing 
a control system. 

Very little advice has been offered, however, on  the question how to 
select the precise form of the controller. This problem is considered in the 
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following chapters. We formulate the problem of finding a suitable com- 
promise for the requirement of a small mean square tracking error without 
an overly large mean square input as a mathematical optimization problem. 
This optimization problem will be developed and solved in stages in Chapters 
3-5. Its solution enables us to determine, explicitlyandquantitatively,suitable 
control schemes. 

2.12 PROBLEMS 

2.1. The co~ttrol of the a~~gulor velocity of a motor 

Consider a dc motor described by the differential equation 

where c(t) is the angular velocity of the motor, m(t) the torque applied to the 
shaft of the motor, J the moment of inertia, and B the friction coefficient. 
Suppose that 

m(t) = Icu(t), 2-211 

where ~ ( t )  is the electric voltage applied to the motor and k the torque 
coefficient. Inserting 2-211 into 2-210, we write the system differential 
equation as 

W )  
- + ac(t) = ~ti(t). 2-212 
dl 

The following numerical values are used: 

I t  is assumed that the angular velocity is both the observed and the controlled 
variable. We study the simple proportional control scheme where the input 
voltage is given by 

u(t) = -A@) + pr(t). 2-214 

Here r(t) is the reference variable and A and p are gains to be determined. 
The system is to be made into a tracking system. 

(a) Determine the values of the feedback gain A for which the closed-loop 
system is asymptotically stable. 

(b) For each value of the feedback gain A, determine the gain p such that 
the tracking system exhibits a zero steady-state error response to a step in 
the reference variable. In the remainder of the problem, the gain p is always 
chosen so that this condition is satisfied. 

(c) Suppose that the reference variable is exponentially correlated noise 
with an rms value of 30 rad/s and a break frequency of 1 rad/s. Determine the 
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feedback gain such that the rms input voltage to the dc motor is 2 V. What is 
the nns tracking error for this gain? Sketch a Bode plot of the transmission 
of the control system for this gain. What is the 10% cutoff frequency? 
Compare this to the 10% cutoff frequency of the reference variable and 
comment on the magnitude of the rms tracking error as compared to the 
rms value of the reference variable. What is the 10% settling time of the 
response of the system to a step in the reference variable? 

(d) Suppose that the system is disturbed by a stochastically varying torque 
on the shaft of the dc motor, which can be described as exponentially 
correlated noise with an rms value of 0.1732 N m and a break frequency of 
1 rad/s. Compute the increases in the steady-state mean square tracking 
error and mean square input attributable to the disturbance for the values of 
d and p selected under (c). Does the disturbance significantly affect the per- 
formance of the system? 

(e) Suppose that the measurement of the angular velocity is afflicted by 
additive measurement noise which can be represented as exponentially 
correlated noise with an rms value of 0.1 rad/s and a break frequency of 
100 rad/s. Does the measurement noise seriously impede the performance of 
the system? 

(f) Suppose that the dc motor exhibits variations in the form of changes 
in the moment of inertia J, attributable to load variations. Consider the off- 
nominal values 0.005 kg m3 and 0.02 kg mP for the moment of inertia. How 
do these extreme variations affect the response of the system to steps in the 
reference variable when the gains A and p are chosen as selected under (c)? 

2.2. A decotipled eolztrol sj~stenz design for the stirred tank 

Consider the stirred tank control problem as described in Examples 2.2 
(Section 2.2.2) and 2.8 (Section 2.5.3). The state differential equation of the 
plant is given by 

and the controlled variable bv 

(a) Show that the plant can be completely decoupled by choosing 

where Q is a suitable 2 x 2 matrix and where ul(t) = col [p;(t), ,&)I is a 
new input to the plant. 



2.12 Problems 191 

(b) Using (a), design a closed-loop control system, analogous to that 
designed in Example 2.8, which is completely decoupled, where T(0) = I, 
and where each link has a 10% culoff frequency of 0.01 rad/s. 

2.3. liltegrating action 

Consider a time-invariant single-input single-output plant where the 
controlled variable is also the observed variable, that is, C = D, and which 
has a nonsingular A-matrix. For the suppression of constant disturbances, 
the sensitivity function S(jw) should be made small, preferably zero, at 
w = 0. S(s) is given by 

where H(s) is the plant transfer function and G(s) the controller transfer 
function (see Fig. 2.25). Suppose that it is possible to find a rational function 
Q(s) such that the controller with transfer function 

makes the closed-loop system asymptotically stable. We say that this con- 
troller introduces integrating action. Show that for this control system 
S(0) = 0, provided H(O)Q(O) is nonzero. Consequently, controllers with 
integrating action can completely suppress constant disturhances. 

2.4*. Comtarlt disturbances in plants with a singtrlar A-matrix 

Consider the effect of constant disturhances in a control system satisfying 
the assumptions 1 through 5 of Section 2.7, but where the matrix A of the 
plant is singular, that is, the plant contains integration. 

(a) Show that the contribution of the constant part of the disturbance to 
the steady-state mean square tracking error can be expressed as 

lim E{u$(-sI - AZ')"DT~(-s)S(s)D(sI - A)-'u,,}. 2-220 
3-0 

We distinguish between the two cases (b) and (c). 
(b) Assume that the disturbances enter the system in such a way that 

lim D(sI - A)-'u,, 2-221 
0-0 

is always finite. This means that constant disturbances always result in 
finite, constant equivalent errors at the controlled variable despite the 
integrating nature of the plant. Show that in this case 

(i) Design Objective 2.5 applies without modification, and . - 
(ii) s(o)= 0, provided 

lim sH(s)G(s) 
8-0 

is nonzero. 
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Here H(s) is the plant transfer function and G(s) the transfer function in the 
feedback link (see Fig. 2.25). This result shows that in a plant with integration 
where constant disturbances always result in finite, constant equivalent errors 
at the controlled variable, constant disturbances are completely suppressed 
(provided 2-222 is satisfied, which implies that neither the plant nor the 
controller transfer function has a zero at the origin). 

(c) We now consider the case where 2-221 is not finite. Suppose that 

is finite, where k is the least positive integer for which this is true. Show that 
in tbis case 

S(s) lim - 2-224 
8-0  sk 

should he made small, preferably zero, to achieve a small constant error at 
the controlled variable. Show that 2-224 can be made equal to zero by letting 

where Q(s) is a rational function of s such that Q(0) # 0 and Q(0) # m, 
and where r q  is the least integer 111 such that 

lim sn'H(s) 
s - 0  

is finite. 
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