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Course Logistics

e Starting Monday, Sept. 11, all lectures for both sections in
PHO 203, 8:00-9:45 AM

* Course website: http://people.bu.edu/johnb/ME501.html




Observations

e In our investigation/study of “systems theory” we see that areas from
“mathematics” play a fundamental role. These areas include: Calculus, Dif-
ferential Equations, Algebra, Linear Algebra, ...

e We begin today by recalling a number of concepts from Linear Algebra and
more specifically “Finite Dimensional Vector Spaces”



A field F is a non-empty set with two operations (labelled “+” for addition and
“” for multiplication) that obey certain properties. For a, 3,7 € F we have:

l.a+pfeF (closure under addition)

a-BeF (closure under multiplication)
2.a+ 8 =0+« (addition is commutative)
a =0« (multiplication is commutative)

3 (a+fB)+y=a+(8+7) (addition is associative)

(@ B)v=a-(87) (multiplication is associative)
4 - (B+7y)=a - B+ay (multiplication is distributive with respect to
addition)

5. F contains an element denoted as “0” such that a+0 = « for every element
in F (0 is the additive identity)
F contains an element denoted as “1” such that a1 = a for every element
in F (1 is the multiplicative identity)

6. To every element o € F there exists an element J such that: a+ 8 = 0,
# = —a “additive inverse”
To every element a € F, @ # 0 there exists an element « such that: a-vy =1,
v = a ' “multiplicative inverse”



Examples

1. Real numbers R under the usual addition and multiplication

2. Complex numbers C under the usual addition and multiplication



Vector Spaces
A nonempty set X, is said to be a vector space over some field F if there exists
an operation “+4” defined on X with the following properties for z,y,z € X

l.z+yeX

2.z+y=y+cw

. (z+y)+z=a+ (y+ 2)

4. There exists an element in X denoted by “0” such that: z + 0 = z for all
z € X

5. To every element x € X there exists an element y € X such that z 4+ y =0



and there is an operation “” multiplication between elements of F and X
subject to:

6. foranya€ Fandz e X, a-z € X

7. € F,z,y € X, a-(z+y)=a-z+a-y
8. a,f€ F,xz€X, (a+pf) z=a-z+ P 2
9. a,0€ F,x € X, a-(f-z)=(aff) x

10. 1z ==z



Notation (X, F)

Examples

1. (R",R) n-tuples of real numbers R" over the reals R with the usual
operations of vector addition and scalar-vector multiplication

2. (C",C) n-tuples of complex numbers C" over the complex numbers C
with the usual operations of vector addition and scalar-vector multiplication



Consider a map (function) £ : C* — C" that maps n-tuples to n-tuples with
the properties:

1. L(z+vy) = L(z) + L(y)
2. L(a-z) = a- L(x)

This map is called a Linear Transformation




Definition
A vector space X is said to be finite dimensional (over its field F) if there is a
finite set of elements {z,, zy, - z,} such that every element z of X, is a linear

combination of {z,zs, - z,} (ie., T = @121, +aoxo, + -+ + anTy)

Example (R", R),

(1) (o)  [0)
(RH,R), ¢ O : 1 R 0

o) o)y
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Definition
Let X be a vector space over F, with {z1, x2, --- z,} € X. We say that
{z1, x9, -+ x,} are linearly dependent over F if there exist elements a;, as, - - ,ay, €

JF not all zero such that ai1z1 + aszo + - - - + apz, = 0.

If{z1, o, - -+ z,} are NOT linearly dependent they are said to be linearly independent.

Lemma 1: If {z,, 3, --- z,} € X are linearly independent, every element in
their span can be UNIQUELY represented in the form

T = AMZ1+ AgZo, + -+ - + Apy, A €F

Definition A subset {zi,z,---x,} of some vector space X is called a basis of X
if {1, x9,---x,} are linearly independent and any x € X can be written as:

I = )‘lml + )‘21:29 + et /\nxm )‘z' € F



Let us focus on (C", C) the vector space of n-tuples of complex numbers over
the field of complex numbers.

If we choose a basis for C", {vy,vq, -+ ,v,} we can represent each z € C"
uniquely as:

/al\

T = QU1 + QaUg + * +* + QpUp, Q= .
<y
If we choose a different basis {wy,ws, -+ ,w,} then the same z can be repre-
sented as:
(@)
_ _ _ _ 8%
T = QW) + QoWy + + + + + QuWy, Q= .
\ & )

What is the relationship between o and &?



For each 5, 1< 7 <n we can write:

I
(%) wj =) pijvi
i=1

Now

1U1 + Qoo s ahid s o aply = &l'wl + &2w2 + e d’n'wn

= a1 (p11v1 + P21Vs + + -+ + Pn1n) + G2(P12vV1 + Poovs + - -+ + Ppovy) + -+
+an(p1n'vl + PonU2 + e+ pnnvn)

= £d1p11 + Qgpio + -+ + anplnz'vl + £a1p21 + Qgpog + -+ - + anp2nlv2 + e

"
X1 Q2
+£&1pnl + @2Pn2 + e+ (_lnpnnl Un

Qn

since the representation is unique!
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In matrix form this relationship can be expressed as:

/Pn P12 *** Pin /511\ (al\
P21 P22 -+ P2n 8%) 8%)

\\ Pni pn?\f"' Pnn ) \an/ \an/

P o «




Repating the process we can represent each v; in terms of {w;,wo, - ,wy}

n
vj = E QWi
i=1

and obtain
/(111 qi2 " (hn\ /al\ (511\
21 Q22 ' Qo 6% Qo _
: : - : ’ Qa =
\\ dn1 %&225" * Qnn /J \an / \a—n /
(83 Y

P and Q are invertible and in fact, P"'=Q, Q '=P



Continuing to be focused on (C", C), we now consider some Linear Transforma-
tion

L:C"—C"
If we choose a basis for C*, {v;,v9,--- ,v,} then the image of each basis element
is uniquely expressed:

and the n? elements @;; generate a matrix A:

Lz = L(ayvy + aova + - - - + apv,) = ey Lv; + aaLlvg + - - - + o Lo,
=,31'l)1 +ﬂ2v2+"‘+ﬂnvn

(0«'11 Q12 - aln\ {al\ (/91\
A= Q21 0:22 "t Qo , A sz —B= /9:2
n n2 °°° nn n ,Bn
\ 0 0 - o ) \ : ) \ B/
that represents £ (j** column of A is the representation of Lv; in the {v1,ve,- -+ , v}

basis)



Suppose that we choose a different basis for C*, {w,ws,- - ,wy,}, we will have

(%) Lw; = Zﬂz’j’wi, 1<j<n
i=1

and we will generate a matrix B

Lz = L(yw; + dows + - - - + apwy) = a1 Lwy + asLlws + - - - + apLwy,

= Blwl + B2w2 + e+ ann

/311 Bz --- ﬂln\ /511\ /ﬂ:l\
B Bo1 5:22 oo Bon B 5f2 _ 5 éz
Bn ,Bn e )Bnn @n Bn
\ Bu Bz ) \ : ) \ 5. /
that represents £ (5" column of B is the representation of Lw; in the {wy, wq, - -+ ,w,}

basis)



Question: What is the relationship between A and B?
Recall that (%)

Apply L to both sides:

n
[,wj=LZp¢jv¢ 1<j<n
=1

and since L is a linear transformation we have:

n
Lw; =) piLyy 1<j<n
=1

Now each Lvs =) |, sty SO,

Lw; = ZP&(Z QfUk)
k=1

=1

n n
= z zp!jak[vk

£=1 k=1

n n
= Z z QP Vk

k=1 £&=1
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But we also have the images Lw; directly expressed from (xx)

n
ij= E ,Bz-jwi
i=1

now each w; is expressed in terms of the {v, vy, - ,v,} basis as (from (x))

TL
w; = z :sz‘vk
k=1

So

ij

n
E ﬁz‘j’wz’
zzl n
= Y Bii(>_ prive)
i=1 k=1
= Z Z ﬁz'jpkz"vk

i=1 k=1

TL '
- Z Z PriBijVk

k=1 i=1
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Since {v1,v2,- -+ ,v,} is a basis the representation of each Lwj; is unique. This
means that for each k,1 < k < n:

n

Eaképé’_] = Epkz‘ﬁij

i=1
(PIJ \ [ B )
_ Paj
gakl Qo+ akn)} : - £pk1 Pr2 * - pkn)l .
kthrow of A ' kthrow of P '
\p"j ) \ ﬂnj )
jthcolumn of P jthecolumn of B

This is true for 1 < 5 <n, 1<k <n which implies:

AP = PB

Recall that P is invertible so we can write:

P'AP=B
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Theorem Two square matrices A, B represent the same linear transformation if
and only if there exists a non-singular matrix P such that B = P~1AP

proof

= We just proved that if A, B are the matrix representations of some linear
transformation then there exists a P, invertible, such that B = P~1AP.

<= Suppose P invertible exists and that B = P~1AP
Let L1, Ly be two linear transformations

Ly :xz — Az (working with basis {v;} where A represents £ in this basis)
Ly : & — BZ (working with basis {w;} where B represents £, in this basis)

where P relates the two bases PT = z, & = P~ 'z. Show that £; = L i.e., that
in either basis L,z = Loz Vz

. . = -1
Lor = B, = BP x
basis{w; } basis{v; }
multiplying on the left by P will translate this into the {v;} basis, PBP 'z.
But this is equal to Az = L1z

21



Representation of x

Representation of LX

A
Pick basis a f
{v.} t
Linear f = Aa
Transformation
L:x > Lx a=Pa a =P la B=Pp b =
Pick basis ' D D= '
W ) f = Ba -
i a ﬁ
B

Representation of x

Representation of LXx



Terminology The operation A — P~ !AP is called a similarity transformation.
Two matrices represent the same transformation if and only if they are similar.

Observation/Question

By choosing different bases we obtain different representations of some linear
transformation. Well, are there “special” bases that make the matrix represen-
tations “simple” i.e., plainly reveal special characteristics of the structure of the
linear transformation?
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Example

(73)

and let

1 1 11
-(A ). (¥
V2 V2 V2 V2

Clearly P is invertible ( det P = = 1) so form P"'AP (the repre-
sentation in the second basis)

3 2)E(32)-G

Observation One can check and see that 2 and 4 are the two eigenvalues of A

det(sI — A) = (s — 2)(s — 4).

\/2 Jz \/2 \/2

S-S
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Theorem
Any square n X n matrix with n distinct eigenvalues can be put in diagonal form
by a change of basis

Proof: Let {ej,eq,- - ,€,} be any set of eigenvectors corresponding to eigenval-
ues {1, A2, -+, An} ie.,

Aej - /\jej

Let A be the representation for some basis {v;} and pick a second basis {e;} be
the basis formed by the eigenvectors. Form M

M=(e;e -+ €,)

Here M plays the role of the “P” matrix in our earlier discussion. Note that M

is invertible because {e;} are linearly independent. Now the ;% column of M is

the representation of e; in terms of the {v;}.
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Let A be the representation of A in the new basis so we have:

A = M'AM
= M! (Ael Aey --- Aen)
~— = ~—~
A1€1 A2€s An€n

= ()\IM—lel /\2M—le2 e /\nM—le‘n.)

Now note that since M 1M = I we can write:

M_161 — ? ’ M_le2 —

0 Xy 1)
(,\1 0o ... 0\

0 X -+ O

\0 0 ,\n/

1) () (0




Example

Eigenvalues are 1 and a:

s—1 -1
0 s—a

det(s] — A) =( )=(s ~ 1)(s — a)

they are distinct as long as a # 1. We now need to find corresponding eigenvec-
tors. We can see that for 1:

(1))
() ()

and for a
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this means that:

(1 1 11 a—1 -1
M_<0 a—l)’ M _a—l( 0 1)

S0 ) (0a) (0 ata)=(00)

Observation As a approaches 1 the matrix M tends to become singular. When
a = 1 we have multiple eigenvalues!

and that:




