EC/ME/SE 501 – Dynamic System Theory

Finite Dimensional Linear Systems

siam

CLASSICS

In Applied Mathematics

Roger W. Brockett

Society for Industrial and Applied Mathematics, 2015 / xvi + 244 pages ISBN 978-1-611973-87-7.

EC/ME/SE 501 – Dynamic System Theory

Control System Design: An Introduction to State-Space Methods (Dover Books on Engineering)

Bernard Friedland

Dover Publications (March 24, 2005), 528 pages ISBN-10: 0486442780, ISBN-13: 978-0486442785

Control Theory, Networks, and Life Itself

John Baillieul C.I.S.E. and Intelligent Mechatonics Laboratory

> johnb@bu.edu http://people.bu.edu/johnb http://iml.bu.edu http://www.bu.edu/systems

The Center for Information and Systems Engineering

Boston University ME 501 First Lecture

IML

John Baillieul's Research Group

Intelligent Mechatronics Laboratory

John Baillieul's Hiking Friends

Boston University---from humble beginnings

Prior outrageously titled lectures (and books)

The Center for Information and Systems Engineering

21SF

What is Life?

Statutory Lectures, 1943, Trinity

College, Dublin

- February 5, 1943
- February 12, 1943
- February 19, 1943

"How can the events *in space and time* which take place within the boundary of a living organism be accounted for by physics and chemistry?"

Prior outrageously titled lectures (and books)

Professor Lynn Margulis Boston University University Lecture 1978 The Early Evolution of Life

Lynn Margulis and Dorion Sagan, *What Is Life?*, University of California Press (August 31, 2000), 303 pages ISBN-10: 0520220218

Control Theory: Talk Outline

- I. The hidden technology--where is it hiding
- II. *Information-based control* the basis of engineered and natural systems regulated by feedback
- III. Networked Control Systems
 - Technologies enabled by information-based control
 - Complex networks of natural and engineered systems
- IV. The emerging theory of complexity-based risk and the rational management of failure
- V. Controlling highly structured motions of groups of agents
 - 1) The theory of rigid formations
 - 2) Spatial and dynamic information patterns
- III. Conclusions

People in Control at B.U.

Professor Christos G. Cassandras 46-th President of the IEEE Control Systems Society

Professor David A. Castañon 42-nd President of the IEEE Control Systems Society

People in Control at B.U.

Professor Theodore E. Djaferis 41-st President of the IEEE Control Systems Society

Emeritus Dean of Engineering University of Massachusetts

World's leading journals at B.U.

SIAM J. on Control and Optimization

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

A PUBLICATION OF THE IEEE CONTROL SYSTEMS SOCIETY

SPECIAL ISSUE ON NETWORKED CONTROL SYSTEMS

OUST EDITORIAL	
Special Issue on Networked Control Systems	1421
Scanning the Issue	1424
PAPERS	
A Moving Horizon Approach to Networked Control System Design	
	1427
Distributed Control of Systems Over Discrete Groups	1446
B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolia, M. I. Jordan, and S. S. Sastry	1453
Information Flow and Cooperative Control of Vehicle Formations	1465
When Bode Meets Shannon: Control-Oriented Feedback Communication Schemes	1477
Decentralized Control of Discrete-Event Systems With Bounded or Unbounded Delay Communication S. Tripakis Distributed Control Design for Systems Interconnected Over an Arbitrary Graph	1489
C. Langbort, R. S. Chandra, and R. D'Andrea Consensus Problems in Networks of Agents With Switching Topology and Time-Delays	1502
R. Olfati-Saber and R. M. Murray	1520
Quantized Stabilization of Linear Systems: Complexity Versus Performance	1534
Stochastic Linear Control Over a Communication Channel	1549
L. A. Montestruque and P. Antsaklis	1562
Robust Quantization for Digital Finite Communication Bandwidth (DFCB) Control K. Li and J. Baillieul	1573
Topological Feedback Entropy and Nonlinear Stabilization G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran	1585
TECHNICAL NOTES AND CORRESPONDENCE	
Scalar Estimation and Control With Noisy Binary Observations	1598

JCR Year and Edition: 2006 Science - Elec

Abbreviated Journal Title	ISSN	2006 Total Cites	Impact Factor
IEEE T AUTOMAT CONTR	0018-9286	15573	2.772
ELECTRON LETT	0013-5194	14983	1.063
IEEE T PATTERN ANAL	0162-8828	14708	4.306
IEEE T INFORM THEORY	0018-9448	14149	1.938
IEEE PHOTONIC TECH L	1041-1135	13528	2.353
J LIGHTWAVE TECHNOL	0733-8724	11582	2.824
P IEEE	0018-9219	11363	3.686
IEEE T MICROW THEORY	0018-9480	10815	2.027
J VAC SCI TECHNOL B	1071-1023	10633	1.597
IEEE T MAGN	0018-9464	10422	0.938

The Hidden Technology

- Pervasive
- Very successful
- Seldom talked about

Except when there is an accident! Rare occasions!

• Why?

Easier to discuss devices than ideas (feedback)

We have not done our job!

K. J. Åström ECC August 31, 1999

The World's largest physics experiment is enabled by control tehnologies

- 27 km. (18 mi.)circumference
- Beam steered, collimated by superconducting magnets
- Beam comprised of 2835 bunches of 10¹¹ protons

- Experiment operates at ~0°K
 - 12M litres liq. N
 - 0.7M litres liq. He
- Time constants
 - Thermal = 0.5 years
 - Beam control = nano sec. and 10 hours

The control of machines

From simple origins to life-saving enhancements...

"Electronic Stability Program (ESP) is a new safety system which guides cars through wet or icy bends with more safety. ...

The key is a yaw-rate sensor, which detects vehicle movement around its vertical axis, and software which recognizes critical driving conditions and responds accordingly. In an instant, instructions are sent to the engine, transmission and brakes, thereby encountering a skid at its onset. ..."

K. J. Åström ECC August 31, 1999

The Position of Control as a Discipline

- Respected
- Coupled to a vast array of engineered systems
- Lacks distinct identity (CERN example)
- Lacks an identifiable industrial base (cf. computers and mobile comm. devices)
 Academic positioning

A Brief History of the Field

Closely tied to emerging technologies (steam, power, electricity, telephone, aerospace ...)

Telecommunications

- Blacks invention 1927
- Nyquist 1932
- Bode 1940
- Servomechanism theory
- Consequences

The second wave

- Recursive estimation
- Maximum principle

The Center for Information and Systems Engineering

The Third Wave

Driving forces

- New challenges
- New applications
- Mathematics
- Computers Basic paradigm
- State Space Rapid expansion
- Subspecialities

Optimal Control Nonlinear Control **Stochastic Control** Computer Control **Robust Control** Robotics Adaptive Control CACE Cooperative and decentralized control

The Next Wave

The two ages of joint cognitive transport systems

Control of Networked Devices

Classical Feedback Control

Classical Feedback Control

The most important paper of the decade

• W.S. Wong & R.W. Brockett, 1995, 1999, "Systems with finite communication bandwidth constraints, II: Stabilization with limited Information Feedback"

IEEE Trans. AC, May, 1999.

The Data-Rate Theorem

Theorem: Suppose the system G(s) (previous slide) is controlled using a data-rate constrained feedback channel. Suppose, moreover, *G* has *k* right half-plane poles $\lambda_1, \ldots, \lambda_k$. Then there is a critical data-rate

$$R_c = \log_2 e \cdot (\Re e(\lambda_1) + \dots + \Re e(\lambda_k))$$

such that the system can be stabilized if and only if the channel capacity $R > R_{c.}$

---Baillieul, 1999, (2002CDC), Nair and Evans, 2000, Tatikonda and Mitter, 2002, . . .

Brief "Partial" History of the Data-Rate Theorem

• D. Delchamps, "Stabilizing a linear system with quantized state feedback," *IEEE Trans. AC*, 1990.

•W.S. Wong & R.W. Brockett, 1995, 1999, "Systems with finite communication bandwidth constraints, II: Stabilization with limited Information Feedback" *IEEE Trans. AC*.

- S. Tatikonda, A. Sahai, & S.K. Mitter, 1998, "Control of LQG systems under communication constraints," *CDC*
- John B., 1999, "Feedback designs for controlling device arrays with communication channel bandwidth constraints," *ARO Workshop*.
- G.N. Nair & R.J. Evans, 2000, "Stabilization with data-rate-limited feedback: tightest attainable bounds," *Sys, & Control Lett*.

• F. Fagnani and S. Zampieri, 2001, "Stability analysis and synthesis for scalar systems with a quantized feedback," Tech. Rept., Politechnico di Torino.

Suppose there are only two (finitely many) actions that can be taken:

Information and Systems

- Jerk the cart left or right one centimeter
- Under what circumstances can one keep the pendulum upright using this very coarse type of "control?"
- Ans: If and only if there is a sufficiently high actiel rate.

When feedback loops are closed using packet-switched wireless communication links, data-rates become an issue.

Current problems:

• Develop a control theory for effectively managing wireless communications capability for automatically configuring *ad hoc* networks.

• Understand the relationship between standard network objectives (such as maximizing traffic capacity) and control objectives.

Some References

- Keyong Li and John Baillieul, "Robust and Efficient Quantization and Coding for Control of Multidimensional Linear Systems Under Data-Rate Constraints," to appear in the *Int'l J. of Robust and Nonlinear Control*.
- K. Li and J. Baillieul, "Robust Quantization for Digital Finite Communication Bandwidth (DFCB) Control," *IEEE Trans*.
 Automatic Control, Special Issue on Networked Control Systems, September, 2004.

The Center for Information and Systems Engineering

Technology of Networked Control Systems

Current Research & Future Trends Networked Real-time Systems • Wireless Networks

Control of Networked Systems

- *Communication constrained* and *information enabled* control systems
 - Coding for robustness to time-varying data-rates
 - Noise, bit-errors, and risk
 - Failure-sensitive control
 - Communication requirements with decentralized sensing and actuation
- Patterns and constraints on information flow in networked control systems
 - Sensing patterns for stable motions
 - Consensus problems for groups of autonomous agents
 - Shaping formations in motion
 - Coverage problems for groups of autonomous agents

Asymptotic Stability Must Be Rethought

Asymptotic Stability Must Be Rethought

A broader theory of *perception based control*

A fundamental distinction between humans and robots in mixed teams is that robots react rapidly to real-time sensor data, whereas humans react to more complex perceptions of the environment in which cognitive processes and prior experience play a role.

The Center for Information and Systems Engineering

Understanding the perceptual basis for observed actions in the natural world - the case of looming obstacles

Time-to-impact perception based on optical flow

Key assumption:

constant closing velocity

 $egin{aligned} & x(t) = x_0 - vt \ & ext{impact occurs at } t = au \ & ext{s.t. } au = rac{x_0}{v} \end{aligned}$

by similar triangles
$$au = d_i/\dot{d_i}$$

Time-to-impact perception based on optical flow

Action attributable to perception of tau

Fig. 2 Wing positions of diving gannet, *Sula bassana* (length ~ 0.9 m, wingspan 1.7 m). Illustration by John Busby. (Reprinted from ref. 7, courtesy of the author and publishers.)

The Center for Information and Systems Engineering

D.N. Lee and P.E. Reddish, 1981. "Plummeting gannets: a paradigm of ecological optics," *Nature*, 293:293-294.

What if acceleration is constant?

 $au(t) = (t_d^2 - t^2)/2t$

Motion control based on perception of tau

Challenge: Can perception of looming obstacles be used to transit an obstacle field?

τ in the field

Geometry/topology plays a role in sensory motor control of animal movement

Hafting et al., (2005). "Microstructure of a spatial map in the entorhinal cortex," *Nature* 436, DOI: 10.1038/ nature03721

John O'Keefe, May-Britt and Edvard Moser

M. Hasselmo

Hasselmo and Brandon, (2012). "A model combining oscillations and attractor dynamics for generation of grid cell firing," *Front. Neural Circuits,* DOI: 6:30.10.3389/ fncir.2012.00030

Emergent geometry of the entorhinal cortex

Emergent geometry of the entorhinal cortex

Consistent across animal subjects.

Emergent geometry of the entorhinal cortex

Neurological enablers of animal movement

The Center for Information and Systems Engineering

ISE

Neuron image thanks to Kandel et al, *Principles of Neural Science*

Motion control based on visual perception

The Center for Information and Systems Engineering

How do they do it?

Concluding Remarks – The state of the art

- Control<u>is</u> and probably will remain a hidden technology
- Networked systems are ubiquitous, and network control systems are essential to understand in both the natural and engineered world.
- The dynamics of perception are important when humans are nodes in a control network.
- The role of information in relation to the physical world remains to be understood.
- The essence of *robustness* and *resilience* in network dynamics remains to be understood.

