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Abstract

Efforts to apply computer vision and various optical and acoustic proximity sensors for distributed/
coordinated motion control of a small group of autonomous vehicles has led us to consider a number
natural feedback control laws which utilize realtime measurements of relative distances between the
vehicles. Unfortunately, none of the feedback laws satisfies Brockett’s necessary conditions for asymptotic
stabilization. They do appear to provide a basis for practical solutions to a number of interesting vehicle
control problems, however. Part of the rationale for proposing feedback laws which are not asymptotically
stabilizing is that in a number of cases of practical interest, one may show that the set of initial conditions
which are not driven to the prescribed rest point is either small (in some sense) or uninteresting (in the
problem context) or both. In some cases, one can also show that by choosing feedback gains in terms of
the problem’s initial conditions—using say a table look-up—it is possible to steer from any given initial
state into an arbitrarily small neighborhood of the desired goal state. The aim of the research here is
to develop a large catalogue of simple controlled motions which in appropriate sequential combinations
permit autonomous nonholonomic vehicles to assemble themselves and execute coordinated motions in
highly structured formations.

Keywords: formation framework, rigid formation, leader first-follower pair, constructive rigidity

1 Introduction

This paper is concerned with the interplay between nonlinear control designs and the problem of coordinated
motion control of groups of robot vehicles. The discussion is largely guided by recent experiments with a
group of laboratory robots, where the information needed in real-time for motion control is gained from a
variety of sensors including sonar, active vision, laser range finders, GPS, and so forth. An important open
problem in controlling group motions of highly instrumented robots is that of registering and reconciling
real-time sensor data. The central problem we treat here, however, concerns the use of available data from
sensors to control nonholonomically constrained motions of (possibly large) groups of vehicles. The paper
consists of two interrelated parts: the first dealing with basic concepts of the stability of formations and the
second treating methods of achieving stable formations by groups of vehicles whose motions are subject to
nonholonomic constraints.
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The stability analysis of motions of vehicle formations has followed several distinct paths in the recent
literature. A number of researchers have worked to extend classical robot navigation methods based on the
use of synthetic potentials and motions based on gradient descent. (See, for instance, [13] and [12].) Lian
and Murray have discussed the use of a Nonlinear Trajectory Generation (NTG) algorithm tailored to the
special needs of multivehicle formation motions, [15]. The recent work of Tanner, Pappas, and Kumar ([18])
considers the problem of input-to-state stability for interconnected systems, and discusses ways in which the
stability of a formation may be assessed in terms of knowledge of primitive component graphs. The work
of Eren, Belhumeur, and Morse ([6]) shows how tightly structured formation control may be discussed in
terms of the theory of graph rigidity (See [7] and [8] for the basics of this theory.). In the work described
below, we make contact with both these approaches. We consider formation motions of two classes of mobile
robot vehicle models. Both are idealizations of the real world, but they both provide models which can
be analyzed and which provide guiding principles for actual implementations of distributed control laws.
The simplest models involve what we shall call holonomic point vehicles—or point vehicles for short. Each
vehicle is modeled as a point which undergoes holonomic motion (in the plane or in space). Using localized
relative distance control, it is shown how stable motions of individual vehicles may be used together with
selected patterns of local feedback to produce stable formations. Making contact with the classical theorem
of Henneberg, we show that essentially the only stable formation graphs are those which are constructible
by a sequence of rigid vertex extensions. The result is of particular interest because it defines the class of
possible formations which are stable under local relative position feedback, and it points immediately to a
control strategy for having autonomous robot vehicles assemble themselves into any of these formations.

In the other class of models treated below, all vehicles are modeled as nonholonomic skates. These are also
idealizations of the physical world, but they allow us to examine how the essential features of graph-based
theories of formation motions must be adapted to account for nonholonomic constraints on the motions of
component vehicles.

The paper is organized as follows. In Section 2, we introduce terminology needed to discuss formation
graphs. Section 3 presents basic results on the theory of rigid formation stability for the case of point
vehicles. The main idea is that certain patterns of relative proximity information are required to ensure
stable formations. It is shown that essentially the only stable rigid formations are obtained through a
constructive procedure starting with a leader-first-follower pair. All the results of Section 3 are established
for the case of point vehicles, but they serve to motivate the class of nonholonomic vehicle control laws
discussed in Section 4. All the control laws use simple relative proximity feedback in different ways. Because
they generally fail to satisfy Brockett’s necessary conditions, asymptotic stability results are not possible. It
is shown, however, that by carefully tuning the feedback laws to the measured operating conditions, stable
performance can be guaranteed which meets the design objectives on very thin and easily specified sets. In
Section 5, we present our conclusions, emphasizing that the set of control laws described in Section 4 must be
further enlarged to provide an adequately rich set of motion options to create the stable formation patterns
described in Section 3.

2 Formation graphs

It is useful to discuss the controlled motions of multiple robots in terms of the level of coordination involved.
The following terminology will help organize this discussion.

Definition 1 A squadron configuration is an element (q1, . . . , qn) in a finite product SE(m, IR) × · · · ×
SE(m, IR) of copies of the Euclidean group where m = 2 or 3. �

Definition 2 A formation graph G is a pair G = (S, E) where S is a finite vertex set, {s1, s2, . . . , sn}, in
one-to-one correspondence with n elements (configurations) qj ∈ SE(m, IR), and where E ⊆ S ×S is a set of
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directed edges εij = ε(qi, qj) specifying associations among pairs of vertices and the configurations to which
they correspond. �

Given a formation graph (S, E), let e be the cardinality of the edge set E. Admitting the possibility that E
is the empty set, it is obvious that 0 ≤ e ≤

(
n
2

)
.

Definition 3 A formation framework (S, E,q) consists of a formation graph (S, E) and a function q from
the vertex set S into the squadron configuration space SE(m, IR) × · · · × SE(m, IR). �

It will frequently be convenient to blur the distinction between S and the set of configurations {q1, . . . , qn}
to which it corresponds under the mapping q.

Definition 4 A formation specification is a labeling of the edges εij ∈ E of the formation graph by elements
in appropriate subgroups Hij ⊂ SE(m, IR) such that for each εij ∈ E, Hij is a fixed subgroup of one of the
ten known types of Lie subgroups of SE(3, IR). (See [16] for details on the lattice of Lie subgroup types.)
For each squadron configuration, a formation specification assigns values Fij = Fij(qi, qj) ∈ Hij . �

We think of each entry qj in a squadron configuration (q1, . . . , qn) as a pair Rj , rj where Rj is an element
of the rotation group SO(m) and rj ∈ IRm, for m = 2 or 3. Formation specification functions take values
in subgroups Hij ⊂ SE(m, IR) which may naturally be thought of as specifying relative position information
regarding the i−th and j−th nodes. We emphasize the important special case in which Hij = IR, however,
in which real number data of any kind can be used to label a formation graph.

The special case of point vehicles. A complete theory of motions of groups of vehicles in either the
plane or in space must capture the details of interrelationships between configurations in SE(m, IR), for
m = 2 or 3 respectively. This will be especially important in describing group motions of vehicles subject to
nonholonomic constraints. Nevertheless, there is an interesting part of the theory in which the configuration
space of each vehicle may be taken to be simply IR2 or IR3. We use parallel terminology as needed: A
point vehicle squadron configuration is an element (q1, . . . , qn) ∈ IRm × . . . × IRm, where m = 2 or 3, with
corresponding definitions of point vehicle formation graph, point vehicle formation framework, and point
vehicle formation specification involving the appropriate parallel modifications.

Examples (i) A useful formation specification is given by associating to each εij ∈ E the Euclidean distance
dij = ‖ri − rj‖ between corresponding configurations. In the case of sensor-labeled graphs, we have dij =
‖ri − rj‖ + nij , where nij is a variable sensor noise, sensor bias, etc. Since sensing is being done in a
distributed fashion, with each sensor subject to noise and bias, we do not assume that dij = dji.

(ii) For formations of vehicles modeled as having positive spatial extent, an interesting formation specifica-
tion is given by associating to each εij ∈ E the corresponding relative orientation RiR

−1
j . Such specifications

are of interest in describing group motions of flocks of birds and schools of fish. (See e.g. [3], [10], and [11].)

The idea of a formation graph is closely related to the idea of a Euclidean graph proposed earlier by
Brockett ([2]), but in our formulation, we do not impose the consistency conditions of Brockett. Similar
ideas have also appeared recently in several places in the rapidly growing body of research on motions of
groups of robots. See Das et al. [5] for ideas bearing the greatest similarity.

Given a formation specification F = {Fij} where Fij = Fij(qi, qj) ∈ Hij , a formation motion is defined
to be a curve q(t) =

(
q1(t), . . . , qn(t)

)
, 0 ≤ t ≤ tf in SE(m, IR)n along which F is constant. We are interested

in the real-time information processing that must be carried out in order to maintain a given formation.
An interesting special class of formation motions is associated with the relative distance constraint function
Fij(q1, . . . , qn) = ‖ri − rj‖. For this class of formation specifications, the case in which all

(
n
2

)
relative

distances ‖ri − rj‖ remain constant is of special interest.
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Figure 1: (a) A planar mobile robot’s configuration is prescribed by body coordinates (xk, yk, θk). (b) In
formations involving multiple robots, follower robots determine their positions with respect to a “leader” or
“leader-follower” pair.

Definition 5 Motions which preserve all pairs of relative distances ‖ri − rj‖ are called rigid motions of the
framework. �

In the next section, we shall describe conditions under which distributed control can be applied to keep
rigid formations (statically) stable.

3 Stably rigid formations of point vehicles

The idea of rigidly maintaining pairwise constant distances between members of a formation has been
extensively explored in the case robot vehicles are idealized to be points in Eren, Belhumeur, and Morse
[6]. The analysis relies heavily on ideas from classical Euclidean geometry, as well as current results from
contemporary rigidity theory and structural topology. (See, for instance, [7].) In our development, we shall
be principally concerned with the case in which the robot vehicles move subject to nonholonomic constraints.
We begin, however, by studying the simpler case of rigid formations of point vehicles. This setting illuminates
important details of the consequences of the intervehicle distances being measured in a distributed fashion
by sensors which are subject to noise. Our aim is to develop formation specifications which imply rigidity
and which are in some sense minimal.

Vehicle formations based on distributed sensing. Consider, for instance, the problem of rigidly
maintaining a triangular formation of three robot vehicles. Suppose each of three robots A, B, and C has
the capability of sensing distance and line-of-sight direction to neighboring robots using sensors which may
include sonar, active IR, laser range finders, or stereo vision. As depicted in Figure 2, we draw arrows
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Figure 2: A triangular formation determined by sensor measurements. Each of three mobile robots can sense
the distance to its two neighbors, and also the angles between the line-of-sight vectors to the neighbors. The
labels on the arrows - e.g. dAB - denote the distance from A to B as measured by an active sensor (e.g. sonar)
on the robot at the base of the arrow.

between pairs of robots in the formation and label each arrow with the distance measured from the robot
at the base of the arrow. The measurements needed to determine whether the robots are in the prescribed
formation are thus made in a distributed fashion. It is clearly not necessary for every robot to know all the
dimensions of the triangle being formed, but each robot needs to be able to verify and communicate that it
is at the prescribed distance from its neighbors. Because each distance measurement can be made by more
than one robot, triangular formations can be robustly maintained in the face of sensor failures. If the robots
are able to communicate, then in the worst case of sensor failure, a single robot with working sensors can
guide the other two to their required positions in the triangle.

There is a problem with trying to integrate such redundant sensor data, however. In the ideal case of
perfect measurements, we would have dAB = dBA (refer to Figure 2), but in the real world of noisy sensors
and otherwise faulty measurements, we cannot assume this. An interesting consequence of the measured
distance dAB being unequal to the measured distance dBA is that decentralized, non-communicating position
control is inherently unstable. Assume (without loss of generality) that the measured distance dAB > dBA. If
the two robots A and B are programmed to move to have a specified separation, A will try to move closer to
B, while B will try to move away from A (because of the difference in the measured values of the distance).
Without additional compensating control, the two robots will thus push and pull each other out from any
preassigned neighborhood in their shared workspace. We shall refer to this type of instability which is due
to unreconciled differences in real-time data from distributed sensors as an information-based instability.

Two simple approaches to controlling this instability are

1. Have only one of the two robots actively control the separation distance while the other remains passive,
and

2. Have the robots communicate to each other their respective distance measurements and appropriately
compensate for the sensor misregistration.

Of these solutions, the first is considerably simpler because it does not require real-time communication
of sensor data over a noisy and possibly congested communications channel. Nevertheless, both approaches
will be of interest, and we find it useful to distinguish two formation control strategies accordingly.
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Terminology: (i) We shall use the term sensor-mediated formation control to refer to the class of
distributed feedback control laws in which each robot controls its own position based only on data available
from its own on-board sensors. (ii) The term communications-mediated formation control refers to the class
of distributed feedback laws in which some of the robots in the formation control their positions using data
which is acquired from sensors on other robots in the formation and transmitted over a communications link.
�

Consider the problem of configuring three robots into a prescribed triangular shape based on sensor-
measured relative distances. Two possible distance sensing strategies are depicted in Figure 3. In Figure
3(a), each robot senses its distance to a neighbor in the cyclic pattern depicted. If the robots are able to
communicate with each other, the distance measurements can be shared to determine whether they are in
the prescribed formation. Without communication among the vehicles, stable motions to bring about the
desired formation cannot be achieved using this pattern of sensor feedback, however. This may be seen in
terms of a simple model of controlled formation motions in which the robot coordinates are idealized to be
points —with planar coordinates (x1, y1), (x2, y2), and (x3, y3). The general form of a first-order (kinematic)
model based on relative distance measurements associated with the sensor pattern depicted in Figure 3(a) is











ẋ1

ẏ1

ẋ2

ẏ2

ẋ3

ẏ3











=











f1(x1 − x3, y1 − y3)
g1(x1 − x3, y1 − y3)
f2(x2 − x1, y2 − y1)
g2(x2 − x1, y2 − y1)
f3(x3 − x2, y3 − y2)
g3(x3 − x2, y3 − y2)











. (1)

The linearization of this vector-field about any point involves a matrix of partial derivatives which can easily
be shown to have two zero eigenvalues, eliminating the possibility of asymptotically stable motions. �

1 2

3

1 2

3

(a) (b)
Figure 3: There is enough combined sensor information to determine whether the three robots are in a
prescribed triangular configuration in either case. In case (a), there is no way for the robots to configure
themselves in the prescribed configuration without communication. In case (b), however, robot 2 can use
only it’s local sensor data to position itself the prescribed distance from robot 1, and then robot 3 can use
only its own sensor information to position itself the prescribed distances from both 1 and 2.

Remark 1 On the unstable motions associated with cyclic sensing of relative positions. The instabilities
that result from such cyclic sensing patterns are similar to—but richer than—the previously described
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information-based instabilities. The motions of (1) will typically have asymptotic limiting behaviors whose
gross qualitative features depend strongly on the initial configurations of the formation and for which there
is a limiting steady state motion/configuration which can only be determined by integrating the differential
equation. A special case which illustrates the possibilities is the first-order relative distance control law
defined by (

ẋi

ẏi

)
=

[
di −

√
(xi − xj)2 + yi − yj)2

] (
xi − xj

yi − yj

)
(2)

for (i, j) = (1, 3), (2, 1), and (3, 2). This is an easily implementable kinematic control law using relative
distance measurements between the i-th and j-th robot vehicles. There are two easily identifiable asymptotic
limiting behaviors. In one typical behavior, (corresponding to an open set of initial conditions), the three
points (xi(t), yi(t)) approach a stationary triangular configuration with coordinate values satisfying

di −
√

(xi − xj)2 + yi − yj)2 = 0, for (i, j) = (1, 3), (2, 1), (3, 2).

The solution set of this system of equations is a subvariety of IR6 having dimension 3, reflecting the fact
that these equations do not determine either the position or orientation of the triangle whose shape they
characterize. This indeterminacy is the essential feature of one form of instability associated with a cyclic
pattern of distributed relative distance sensing.

Another limiting behavior observed for the motions of (2) is one in which all points move at the same (non-
zero) velocity and are aligned one behind the other. In this case, ẋ1 = ẋ2 = ẋ3 �= 0, and ẏ1 = ẏ2 = ẏ3 �= 0.
This manifestation of instability is similar to the information-based instability discussed above. Again, there
is an open set of initial conditions which lead to this motion in the limit.

Stable formation motions using acyclic relative position sensing. For the problem of relative
position sensing depicted in Figure 3(b), there is an obvious leader-follower hierarchy which is missing in
the case of cyclic sensing. In this case, and in what follows, we resolve any indeterminacy by assuming the
leader and first-follower (vehicles 1 and 2 respectively) have global position information which allows them to
navigate to a prescribed configuration with respect to a fixed (world) coordinate system. Once this is done,
vehicle 3 will control its position using only feedback measurements of relative proximity to vehicles 1 and 2.
No similar hierarchical position control strategy will work for the case of cyclic proximity sensing. Denote
the distance between vehicles 1 and 2 by d12. We can place vehicle 3 at distances d1 and d2 respectively
from vehicles 1 and 2 provided d1 + d2 ≥ d12. To avoid a degeneracy in which the three vehicles lie on a
line, it is useful to assume that three “triangle” inequalities are satisfied:

d1 + d2 > d12, d1 + d12 > d2 d12 + d2 > d1.

Under this assumption the two equations

d1 −
√

(x − x1)2 + (y − y1)2 = 0 and

d2 −
√

(x − x2)2 + (y − y2)2 = 0
(3)

determine two distince possible locations of robot vehicle 3 which are each a distance d1 and d2 respectively
from vehicles 1 and 2. We propose the following kinematic control law to move vehicle three toward one of
these locations:

(
ẋ
ẏ

)
=

[
d1 −

√
(x − x1)2 + y − y1)2

] (
x − x1

y − y1

)
+

[
d2 −

√
(x − x2)2 + y − y2)2

] (
x − x2

y − y2

)
. (4)
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Let (xe, ye) be one of the two solutions to (3). This is clearly a rest point for the system (4). The linearized
motion about this rest point is given by

( ˙δx
δ̇y

)
= −A(xe, ye)

(
δx
δy

)
,

where

A(xe, ye) =

(
(xe−x1)

2

d1
+ (xe−x2)

2

d2

(xe−x1)(ye−y1)
d1

+ (xe−x2)(ye−y2
d2

(xe−x1)(ye−y1)
d1

+ (xe−x2)(ye−y2
d2

(ye−y1)
2

d1
+ (ye−y2)

2

d2

)

.

It is straightforward to show that the matrix A(xe, ye) has two positive eigenvalues unless the quantity
(xe −x1)(ye −y2)− (xe −x2)(ye −y1) vanishes. This cannot happen unless the three points (xe, ye), (x1, y1),
and (x2, y2) are collinear, which our triangle inequality assumption has ruled out.

We have in fact shown that triangular configurations are stable under the acyclic pattern of relative
position sensing depicted in Figure 3 precisely when the triangle is rigid (the case in which the three triangle
inequalities are satisfied). Stable rigid formation motions thus require that we enforce the assumption that
there are no cycles in the formation graph. Das et al. have previously mentioned this assumption ([5]),
and it will be shown below that it is necessary, but not sufficient, to characterize stably rigid point vehicle
formations.

Stable rigid vehicle formations. Consider an n-vehicle squadron in which vehicle 1 is designated to be
“leader,” and vehicle 2 is “first-follower” as in Figure 3. We are interested in relative motions of vehicles
other than these two which result in stably rigid formations. Suppose a formation specification is given
by labeling each edge εij ∈ E of the formation graph with a prescribed distance dij between the vehicle
positions ri and rj . Each such edge label will have an associated direction indicating whether the distance
is measured by the i-th vehicle looking at the j-th vehicle or vice-versa. To implement distributed relative
distance based formation control, each vehicle in the formation will move in order to control its relative
distance to all other vehicles to which there corresponds a directed edge in E. To the i-th vehicle in the
formation, with associated vertex si ∈ S, there is a corresponding set of vertices

Ji = {s ∈ S : there is a directed edge ε ∈ E fromsito s}.

We shall blur the distinction between vertices in si ∈ S and the indices i labeling the formation vehicles to
which they correspond. Using this notation, and motivated by the examples above, we introduce a general
model for distributed relative distance control of a point vehicle formation:

(
ẋi

ẏi

)
=

∑

j∈Ji

uij(dij ,
√

(xi − xj)2 + yi − yj)2)
(

xi − xj

yi − yj

)
, i �= 1, 2, (5)

where dij is the set-point distance between vehicles i and j, and uij is thus a function of both the set-point
and the measured distance. The leader (i = 1) and first-follower (i = 2) are assumed to be staionary in this
analysis.

Definition 6 A formation will be said to be stably rigid under a control law of the form (5) if for any suffi-
ciently small perturbation in the relative positions of the vehicles, the control law steers them asymptotically
back into the prescribed formation (in which the relative distance constraints are satisfied).

In general, we would like to characterize larger stably rigid configurations (4 or more graph nodes) in
which all vehicles are at prescribed positions relative to a “leader” (node 1 in Figure 3(b)) and a “first
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follower” (node 2 in Figure 3(b)). With the aim of stating sufficient conditions for stable formations, we
introduce a term from the classical theory of graph rigidity. We say that a formation framework (S, E,q) is
isostatic if the removal of any edge e ∈ E results in a framework which is not rigid. Isostatic frameworks thus
have no redundant edges. They are clearly of interest because any sensor-mediated formation control which
does not require sensor registration will clearly produce an isostatic formation framework. Having an isostatic
formation framework is by itself not sufficient to guarantee stable formation motions, as has been seen and
is illustrated by Figure 3(a) (which is isostatic but not stably rigid). Even under the dual hypothesis that a
formation framework is both isostatic and acyclic, we cannot conclude that stably rigid formation motions
are possible. This is easily seen by looking at the formation depicted in Figure 4. Under sensor-mediated
control using relative distance measurements as depicted, the formation graph is both isostatic and acyclic.
The formation is not stably rigid, however, because the relative distance between node 2 and node 3 is not
directly available from the distributed sensor measurements. Hence, at least one further condition is needed
for a sensor-mediated control strategy toproduce a stably rigid formation. We recall the following:

Definition 7 Let (S, E) be a directed graph. For a vertex s ∈ S, the out-valence of s is the number of
incident edges which are directed away from s, and the in-valence is the number of edges incident to s which
are directed toward s.

1 2

3 4

Figure 4: If relative distances are prescribed on the directed edges of this formation graphic, the resulting
formation framework is rigidly prescribed. It is not stably rigid, however, as explained in the text.

From Figure 4, it is clear that the presence of a vertex with out-valence 3 causes a problem because when
this occurs, none of the other three vertices can have an out-valence greater than 1. This means the relative
distance between nodes 2 and 3 cannot be determined by the distributed sensor data alone. This observation
suggests our general result:

Proposition 1 If a formation is stably rigid under the distributed relative distance control (5), then the
corresponding formation graph must

1. be isostatic,

2. be acyclic, and

3. have no vertex with an out-valence greater than 2.
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Proof We have already established that the formation graph should be isostatic and acyclic. Hence we turn
to the third condition. It was clear in the case of a formation graph with four vertices that this condition
is necessary, since otherwise, as illustrated by Figure 4, the graph is not stably rigid based on only local
information from distributed sensors. This may be extended to the general case using Laman’s theorem,
which states that if a graph (S, E) is isostatic, then the cardinalities of the sets S and E are related by
|E| = 2|S| − 3. (See [8] for a statement and proof of Laman’s Theorem.) Suppose some vertex has out-
valence ≥ 3. Then among the remaining |S| − 1 vertices, the total out-valence must be ≤ |E| − 3 (since the
total out-valence over all vertices is |E|). Now from Laman’s theorem, |E| − 3 = 2|S| − 6 = 2(|S| − 3). We
claim that at least three of the remaining |S|−1 vertices must have out-valence less than 2. To see this, first
notice that at least two of all the vertices must have out-valence < 2, for otherwise the remaining vertices in
the graph would exceed 2(|S|−3) in total out-valence. Label any two vertices having out-valence less than 2
a and b. By the same valence counting argument, we see that if there is no third vertex with out-valence <
2, then both vertices a and b must have out-valence 0, meaning neither could locate it’s position relative to
the formation. Small perturbations in the relative positions of these nodes would not decay asymptotically,
and indeed their motion could in no way be coordinated with the formation. Hence we have established the
claim that at least three vertices would have out-valence < 2 under the assumption that at least one vertex
in the formation graph has out-valence > 2. But if at least three vertices have out-valence less than 2, then
the formation is not stably rigidly positioned with respect to a “leader” and “first-follower.” This establishes
the proposition. �

The necessary conditions of the proposition are not also sufficient. The formation and sensing pattern
depicted in Figure 4 shows that an acyclic isostatic formation graph does not guarantee that the formation
is stably rigid. Even adding the requirement that there is a no vertex with out-valence greater than 2 will
not guarantee stable rigidity as the following example shows.

Example 1 Consider a formation graph which is isomorphic to the complete bipartite graph K33 with the
edge orientations as depicted in Figure 5(a). By redrawing the graph as in Figure 5(b), one may verify that
just as in the analysis of the configuration of Figure 4, some of the nodes 3,4,5,and 6 do not have their relative
positions determined using the distributed distance sensing patterns depicted in the graph. Nevertheless, all
the conditions of Proposition 1 are satisfied.

1 2

3

5

6

4

1 2

3

5

6

4

(a) (b)

Figure 5: The directed graph depicted here satisfies the necessary conditions of Proposition 1, but it is not
stably rigid.

To establish sufficient conditions, we introduce the following useful constructive procedure. Let (S, E) be
a formation graph with vertex set S = {s1, . . . , sn}, and n ≥ 2, and let s0 be a vertex which is different from
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any in S. Further let {si1 , si2} be any two vertices in S. The directed graph (Ŝ, Ê) where Ŝ = {s0, s1, . . . , sn}
and Ê = E ∪ {(s0, si1), (s0, si2)} with the directions of the added edges being from s0 to sij , is called an
extension of (S, E). A corresponding extension to a formation framework (S, E,q) is called a rigid extension
if the points q(s0),q(si1), and q(si2) are not collinear.

Theorem 1 If a formation is constructed from a framework comprised of a single directed edge by a sequence
of rigid extensions, then it is stably rigid.

Proof The proof is a simple inductive construction. We have shown that adding a vertex to a directed
edge results in a stably rigid formation framework, provided the added vertex does not correspond to a point
which is collinear with the edge. At each stage in the inductive construction, the added vertex will result in
a stably rigid formation except in the exceptional case of its being collinear with the two vertex points to
which it has been attached. �

Remark 2 Theorem 1 gives the simplest characterization of sensor-based formation rigidity of which we
are aware. It shows that there is a close but not exact connection with the classical theory of graph rigidity.
It also gives a simple constructive procedure for assembling rigid vehicle formations which has two salient
features: (i ) it is simpler than the classical procedure for constructing rigid (isostatic) graphs, and (ii ) it
can be used to guide the assembly of rigid formations of nonholonomic vehicles, as will be described in
Section 5 below. To understand the first of these points, recall that there are two classical procedures for
constructing rigid graphs—extensions and edge-splits. Extensions are essentially the same as what we have
called rigid extensions. (See [8] for details.) Edge-splits are not of interest to us because they result in
vertices of valence three. The main distinction between our construction of rigid formations and the classical
constructive theory of rigid planar graphs is highlighted by the following classical result.

Theorem 2 (Henneberg, [8]) A planar graph is rigid if and only if it may be constructed from a single edge
by a sequence of extensions and edge-splits.

The classical rigid planar graphs which are of interest to us are thus those which can be constructed from
a single edge by vertex extensions alone. Some idea of the kinds of graphs which can thus appear is given
by considering the problem of enumerating the set of all rigid isostatic graphs on six vertices. There are
thirteen in all. Of these, eleven can be constructed by extensions alone, while two (including the complete
bipartite graph K33, depicted with directed edges in Figure 5) require edge-splits.

Remark 3 On formations assembled with reference to a leader-first-follower pair. The constructive charac-
terization of formation rigidity in Theorem 1 suggests that all rigid formations can be assembled by adding
vehicles in sequence relative to a fixed leader-first-follower pair. Strategies for doing this in the case of large
numbers of vehicles remain to be articulated, but as we shall see below, there are control laws even in the
case of nonholonomic vehicles for moving a vehicle into position as a rigid extension to a given formation
framework.

4 Rigid formations of vehicles subject to nonholonomic constraints

Up to this point, we have confined our discussion to the very simple case of controlling formations using
simple line-of-sight distance measurements between idealizations we have called “point vehicles.” We are
able to tightly couple motion control of such vehicles with a stability theory for graphs because it is always
possible to move such vehicles in any direction including those aligned with edges of the formation framework.
The theory of stably rigid formation frameworks is more challenging in the case of nonholonomic vehicles .
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While several feedback control laws using line-of-sight proximity sensing arise in a very natural way, many
do not satisfy Brockett’s necessary conditions for asymptotic stabilization, and hence their use must involve
care for the stability of the resulting motion and its effect on integrity of the prescribed formation framework.
The feedback designs we shall propose are of a simple type in which controls are continuous functions of
the system states. While such feedback laws cannot be asymptotically stabilizing in any neighborhood of a
desired limiting point, we shall show that asymptotic control objectives can be achieved on all but a thin
subset of system states. Understanding the geometry of these subsets is essential to the success of our method
of controlling robot vehicle formations.

Our approach is one of several that have been proposed for “hedging” the consequences of Brockett’s
theorem. In the nonlinear control theory literature of the past decade or so, various techniques for stabilizing
systems not satisfying Brockett’s necessary conditions have been proposed. These include the use of time-
varying controllers (e.g. [4],[17]) and discontinuous control laws ([14]). For a proof and discussion of Brockett’s
theorem and additional references, see [1].

The present section presents several results of a research program aimed at developing a large catalogue
of simple motions which may be implemented by feedback control using “near-neighbor” sensing strategies.
Specifically, we analyze three simple controlled nonholonomic motions, each of which can be used in con-
junction with other controlled motions to assemble or move a rigid vehicle formation of the type described
in Section 3. The three motions are:

• A simple feedback law based on relative distance and bearing measurements to move a nonholonomic
vehicle from an “essentially arbitrary” initial configuration to a prescribed location and orientation.

• A simple feedback law of the same type to control a nonholonomic vehicle starting at an “essentially
arbitrary” initial configuration to follow a “leader” vehicle which is moving at fixed (but unknown)
rates of forward and turning motions, and

• A simple feedback law of the same type to control a nonholonomic vehicle starting from an “essentially
arbitrary” initial configuration to approach to within a prescribed distance of a goal location with an
orientation prescribed as +π/2 or −π/2 with respect to the line-of-sight vector to the goal. This motion
can be used in conjunction with a circling motion and a reorientation motion (described elsewhere)
to assemble formations of any prescribed geometry (such as the rigid frameworks of the preceding
section).

The terminology “essentially arbitrary” here is important, because none of the feedback laws discussed in
this section guarantees globally asymptotic motion toward the desired goal configuration. The results below
give explicit characterizations of the initial configurations where the control laws break down, and it is shown
these sets of configurations are very thin. Each of the control laws is designed with the idea that it will
operate within a prescribed region in a vehicle’s configuration space and will achieve only a very specific
objective (such as move a vehicle to within a prescribed sensed distance of another vehicle). Our overall
strategy is to develop a sufficiently rich set of control laws that they can be spliced together to achieve global
objectives from actions which are localized in both time and space. The emphasis here is on relative position
control (as opposed to global position control). Implicit in the discussion is the assumption that there is
a leadership hierarchy (as is suggested by the constructive procedure of Theorem 1). We assume that the
global positions and motions of the leader and first-follower are determined in some way, and our focus will
be on motions which position other vehicles with respect to those above them in the leader-follower hierarchy.

Motion primitives for assembling vehicle formations: All vehicles under consideration have
configuration variables (x, y, θ) as depicted in Figure 1. Motions are assumed to be nonholonomic, and
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governed by the equations of motion 


ẋ
ẏ

θ̇



 =




v cos θ
v sin θ

ω



 . (6)

The control inputs are the vehicle’s forward velocity v and turning rate ω, and in each of the motions we
discuss, v and ω will be defined in terms of other variables which are directly related to the motion objective
and whose values can be determined in real time from sensor data. This simple general model of velocity
control does not satisfy Brockett’s necessary conditions, and therefore none of the control laws which are
specializations of (6) will be globally asymptotically stabilizing. Our approach to all the systems under
consideration is to use very classical types of constant-gain feedback while carefully keeping track of the
restricted spatial domains in which such laws will achieve the desired objectives. The most basic control law
of the type we shall consider is the following.

Simple vehicle motion toward a stationary goal frame: We define our control law in terms of the
variables depicted in Figure 6. Let (xr, yr, θr) represent the position and orientation of the goal frame. More
specifically, we let ρ be the line-of-sight distance and φ the angle relative to the controlled vehicle’s frame.
These variables correspond to quantities which are readily available from sensor measurements of bearing
and relative proximity. In terms of ρ and φ, the equations of motion (6) are written




ρ̇

φ̇

θ̇



 =




−v cos φ
−ω + v

ρ sinφ

ω



 . (7)

goal frame

φ
ρ

controlled
vehicle

Figure 6: The controlled vehicle measures line-of-sight distance and relative orientation to the goal frame.

We wish to find a feedback law which will steer any initial state (x0, y0, θ0) to the goal state (xr, yr, θr).
Although there is no continuous feedback law which will be globally asymptotically stabilizing, we propose
the following feedback law

v = k1ρ, and
ω = k2φ + k1 sinφ,

(8)
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with the hope of tuning the parameters k1 and k2 to meet our motion objectives. Using this v and ω in
equation (7), we obtain closed loop equations in which the equation for φ becomes:

φ̇ = −k2φ,

so that
φ(t) = φ0e

−k2t,

where φ(0) = φ0. The equation for ρ becomes

ρ̇ = −k1ρ cos φ.

Since φ(t) tends exponentially to 0 as t → ∞, ρ also tends asymptotically to 0. Thus, for any choices of
k1, k2 > 0, the pair (ρ, φ) is asymptotically stable with (ρ, φ) → (0, 0) as t → ∞. The θ component of the
equations requires a more detailed analysis. Under this feedback law,

θ̇ = k2φ + k1 sinφ,

from which it follows that

θ(t) = θ0 −
[
φ0e

−k2t
]t

0
−

[
k1

k2
Si(φ0e

−k2t)
]t

0

,

where Si(x) is the Sine Integral defined by

Si(x) =
∫ x

0

sin t

t
dt.

We wish to have θ(t) → θr as t → ∞, so that

θr = θ0 + φ0 +
k1

k2
Si(φ0). (9)

From equation (9), we see that the gains need to be chosen to satisfy the ratio

θr − θ0 − φ0

Si(φ0)
=

k1

k2
. (10)

It is also necessary that both k1,k2 > 0. There are three cases to consider:

Case −π < φ0 < 0. In this case, since Si is an odd function, we must choose the representation of our
goal orientation θr such that θr − θ0 < φ0 < 0. This will ensure that both k1, k2 > 0, and the resulting
trajectory will have the vehicle turning in the appropriate (clockwise) direction.

Case 0 < φ0 < π. In this case, we must chose the representation of our final goal orientation such that
θr − θ0 > φ0, and the resulting motion has the vehicle turning monotonically in the counter clockwise
direction.

Case φ0 = 0, π. In this case, the vehicle approaches (moves away from) (xr, yr) = (0, 0) along the line-of-
sight vector (xr − x0, yr − y0) (φ ≡ 0), and we see that the control law (8) cannot be used to steer the
vehicle into the desired configuration.
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Figure 7: The controlled vehicle starting at four different points on forty-five degree lines and moving to a
goal configuration with coordinates (x, y, θ) = (0, 0, 0). Although it is difficult to see even in the magnified
diagram, the vehicle starting in the upper left-hand quadrant must turn through more than 7π/4 radians.

The content of this analysis is illustrated in Figure 7. We plot four motions, starting at four different
points which are equidistant from the origin along the diagonal lines indicated. In all cases, the initial
heading relative to the line-of-sight to the goal is φ0 = −π/10, so that the vehicles turn in a clockwise
direction as they move toward the goal. Since in all cases, the goal configuration has the vehicle’s body axes
aligned with the given spatially fixed frame, the different initial configurations require different amounts of
turning—with the vehicle starting in the lower left-hand quadrant turning the least and the vehicle in the
upper left-hand quadrant turning the most. The gains have been chosen so that in all cases k1 = 1 and
k2 = 0.397813, 0.132604, 0.0795626, and 0.0568305 respectively corresponding to the initial conditions in
the lower left-hand quadrant and proceeding counter clockwise to the upper left-hand quadrant. Explicit
calculation shows that in all cases (ρ(t), φ(t), θ(t)) → (0, 0, 0) as t → ∞, and that ρ̇/φ̇ → 0, so that the
curvature of the paths increases as t → ∞. Moreover, the relative rates of increasing curvature are such that
the curves never intersect.

Remark 4 An example of hybrid feedback control. For any choices of k1, k2 > 0, ρ and φ tend asymptotically
to zero. If (10) is satisfied exactly, θ also tends asymptotically to zero. The real-time data needed to realize
this control comes from sensor measurements of ρ and φ. Our control of θ is accomplished by choosing k1

and k2 to satisfy (10), and in principle, this needs to be done only once—before initiating the motion.

Remark 5 An invariant quantity. Suppose (x(t), y(t), θ(t)) is a trajectory defined by the above control
strategy. Suppose the motion is stopped at some time T , 0 < T < ∞. We then restart the motion, using
the same strategy with

θr − θ(T ) − φ(T )
Si(φ(T ))

=
k1

k2
.

This ratio must be exactly what it was on the first segment of the trajectory, and this shows that in fact

θr − θ(t) − φ(t)
Si(φ(t))

is invariant under the motion of (7) with respect to the control (8). This in turn, allows us to write down
an equivalent feedback law

v = ρ, and

ω =
Si(φ) φ

θr − θ − φ
+ sinφ,

which, for the proper choice of θr representing the goal configuration, will steer (7) asymptotically to
(ρ, φ, θ) = (0, 0, θr), provided the initial condition φ0 �= 0.
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Simple vehicle motion toward a moving goal frame: Consider the same sets of variables as depicted
in Figure 6. Now, however, we assume the goal frame is moving with forward velocity vr and turning velocity
ωr, so that the goal-frame equations of motion are




ẋr

ẏr

θ̇r



 =




vr cos θr

vr sin θr

ωr



 ,

and the equations of relative motion are



ρ̇

φ̇
α̇



 =




−v cos φ + vr cos(φ − α)
−ω + (v/ρ) sinφ − (vr/ρ) sin(φ − α)

ωr − ω



 , (11)

where α is the relative angle α = θr − θ.

For the control law
v = k1ρ, ω = k2φ, with k1, k2 > 0, (12)

the closed loop equations are,



ρ̇

φ̇
α̇



 =




−k1ρ cos φ + vr cos (φ − α)

−k2φ + k1 sinφ − (vr/ρ) sin (φ − α)
ωr − k2φ



 . (13)

When vr �= 0 the system (13) is no longer of a form whose asymptotic stabilizability is in question because
of Brockett’s theorem. Given any prescribed motion of the “leader” (vr, ωr) it is possible to study stable
tracking laws. Here we provide a detailed analysis of the quasi-static case in which the motion of the leader
is at constant velocity (vr, ωr). In this case there is a unique relative equilibrium configuration with the
follower having a constant relative distance and bearing. If (ρ0, φ0, α0) represents this equilibrium which is
obtained by setting (ρ̇, φ̇, α̇) = 0 then,

φ0 = ωr

k2
,

α0 = φ0 − arctan
(

−ωr+k1 sin
(

ωr
k2

)

k1 cos
(

ωr
k2

)
)

, and

ρ0 = vr cos (φ0−α0)
k1 cos φ0

.

(14)

The linearized system about this equilibrium point is given by



δ̇ρ
˙δφ
˙δα



 = A(ρ0, φ0, α0)




δρ
δφ
δα



 (15)

where

A(ρ0, φ0, α0) =






−k1 cos φ0 vr cos (φ0 − α0)(tanφ0 − tan (φ0 − α0)) vr sin (φ0 − α0)
vr sin(φ0−α0)

ρ2
0

−k2
vr cos (φ0−α0)

ρ0

0 −k2 0




 . (16)

The determinant of A(ρ0, φ0, α0) is

det(A(ρ0, φ0, α0)) = −k2(ω2
r − 2k1ωr sin(φ0) + k2

1) (17)
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which is non-zero when the reference frame is moving for all choices of k1, k2, ωr, vr except k1 = ωr and
φ0 = π

2 .
A striking fact is that the eigenvalues of A(ρ0, φ0, α0) do not depend on vr. The characteristic equation

of (16) is,

λ3 + (k2 + k1 cos φ0)λ2 + (−ωrk1 sinφ0 + ω2
r + 2k1k2 cos φ0)λ + k2(ω2

r + k2
1 − 2k1ωr sinφ0) = 0. (18)

Since (18) is a cubic equation there is always one real root, i.e., A(ρ0, φ0, α0) will always have one real eigen-
value. Using Routh-Hurwitz criteria it is straightforward to show that the eigenvalues of matrix A(ρ0, φ0, α0)
have negative real part for k2 > k1. Thus the original non-linear system given by (11) is locally asymptotically
stable for k2 > k1. Two cases are of interest.

When ωr = 0, vr �= 0 the reference frame (lead vehicle) is moving in a straight line. The unique rest point
of (13) is given by

φ0 = 0
α0 = 0
ρ0 = vr

k1
= 1

(19)

Assuming no saturation for the follower’s forward velocity and choosing k1 = vr we can ensure that the
follower frame stably tracks the reference frame if k2 > k1. If k2 > 4k1 then the tracking system is
overdamped and for 4k1 > k2 > k1 it is underdamped.

When ωr �= 0, vr �= 0, the lead vehicle traces a circular arc of radius, rL =
∣
∣
∣ vr

ωr

∣
∣
∣. Because there are no

natural physical units for this problem we shall impose a normalization in which ρ0 = 1. The discussion
will then be focused on the stability of the tracking motions for the leader circle of various geometries. The
unique relative equilibrium point of (13) is given by (16) with ρ0 = 1, and thus

vr =
√

k2
1 + ω2

r − 2k1ωr sinφ0 (20)

For given reference frame velocities (vr, ωr) we can choose the turning velocity gain such that, k2 = ωr/φd,
where φd is the desired bearing for the follower frame. We assume that |φd| < π

2 to guarantee that all
eigenvalues of A are in the LHP. Since the leader is moving in a circular arc, to maintain a constant distance

rωr = v r/

φ

φ

ρ

Follower

Leader
L

φ
d

d

d

d

rωr = v r/

φ

ρ

Leader

Follower

d

d

L

rωr = v r/
Leader

φ

Follower

L

dρ
d

(a) (b) (c)

Figure 8: (a) ρd = 2rL sinφd - the follower tracks the leader on the same circular arc. (b) ρd > 2rL sinφd -
the follower tracks the leader at a radius bigger than leader’s radius. (c) ρd < rL - the follower always tracks
the leader at a radius smaller than the leader’s radius.
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ω r/

φd

ρ
d

ρ
d

φ
d

rr=vL

Figure 9: Two leader-follower relative equilibria for ρd >
∣
∣
∣ vr

ωr

∣
∣
∣ > ρd cos φd.

and bearing to the leader, the follower also has to move in a concentric circular arc. When the leader’s radius
of curvature is smaller than 1 this geometric condition is mathematically expressed as, cosφd < rL < 1. We
can also see from Figure 8 that for ρd < 2rL sinφd the follower’s radius is smaller than that of the leader.
For ρd > 2rL sinφd the follower’s radius is larger than the leader. Solving (20) for k1 we get,

k1 = ωr

(
sinφd ±

√
rL − cos2 φd

)
.

If k1 < k2 then the the system (11) is asymptotically stable to (1, φd, α0). If both values of k1 < k2 then
there are two stable relative equilibria that will stabilize the system to (1, φd) but they will have different
relative orientation α as shown in Figure 9. If the leader’s radius of curvature is larger than 1 i.e., 1 < rL,
then solving (20) for k1 we get the unique stabilizing solution

k1 = ωr

(
sinφd +

√
rL − cos2 φd

)
.

The choices of gains in (12) can thus be made in a way that ensures stable tracking in this simple setting.
Work which will be subsequently reported will provide a detailed analysis of both the qualitative dynamics
of tracking a leader whose forward and turning velocities vr, ωr are both constant. In addition, we shall
discuss the implications of this analysis in terms of tracking leaders whose path velocities are time-varying
but subject to curvature constraints.

Simple vehicle motion to a preassigned distance to a goal ending with orientation perpendicular
to the line of sight vector: Let ρ and φ be the sensor-measured quantities depicted in Figure 6. Let
d be a desired distance from the goal point (xr, yr) to which we wish to have the robot vehicle approach.
Consider the control law v = λ(ρ − d), ω = ρ sinφ − d for which the closed loop system is:




ẋ
ẏ

θ̇



 =




λ(ρ − d) cos θ
λ(ρ − d) sin θ
ρ sinφ − d



 , (21)

with λ > 0 being a suitably chosen feedback gain. In applying this control law, we assume the initial distance
ρ0 > d. We then have the following.
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Lemma 1 Along trajectories of (21),

φ̇ = λ(1 − d
ρ ) sinφ − (ρ sinφ − d), and

ρ̇ = −λ(ρ − d) cos φ.
(22)

The next proposition provides important information characterizing the motions of (21) (or equivalently
(22)).

Proposition 2 The variety
ρ sinφ − d = 0

is an invariant set for the system (21).

Proof Let x0,y0, and θ0 be initial conditions for (22) such that with

ρ0 =
√

(x0 − xr)2 + (y0 − yr)2, and

φ0 = arctan (xr − x0, yr − y0),

we have ρ0 sinφ0 − d = 0. Let x,y, and θ evolve according to (21), and let

ρ(t) =
√

(x(t) − xr)2 + (y(t) − yr)2, and

φ(t) = arctan (x(t) − x0, y(t) − y0).

Introduce the new variable
s(t) = ρ(t) sinφ(t) − d.

The time derivative with respect to t is

ṡ(t) = ρ̇ sinφ + ρ cos φφ̇,

and from the preceding lemma, it follows that this may be rewritten

ṡ(t) = −ρ(t) cos φ(t)s(t).

We thus have the following representation of s:

s(t) = e−
∫ t

ρ(σ) cos φ(σ) dσs0.

This proves the proposition, since s0 = 0 implies s(t) ≡ 0. �

A further characterization of motions of (21) is given by the following.

Proposition 3 Suppose the forward velocity gain λ is in the interval 0 < λ < d. Then if the initial value
of ρ is given by

ρ0 =
√

(x0 − xr)2 + (y0 − yr)2,

and if we let φs denote the smallest positive solution of φ = arcsin[d/ρ0], then the set φs ≤ φ ≤ π/2,
d ≤ ρ ≤ ρ0 is invariant under the motion of (21).
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Proof From Lemma 1,
φ̇ = λ(1 − d

ρ ) sinφ − (ρ sinφ − d), and
ρ̇ = −λ(ρ − d) cos φ.

Clearly ρ(t) is decreasing throughout d < ρ ≤ ρ0. Moreover, when φ = φs, φ̇ > 0 and when φ = π/2,
φ̇ = (λ/ρ)(ρ − d) − (r − d) = (λ/ρ − 1)(ρ − d) < 0, under the assumption that λ < d < ρ. This proves the
set is invariant as claimed. �

Consider the function

V (ρ, φ) =
1
2

(ρ sinφ − d)2

on the invariant set defined in the previous proposition. Differentiating this along trajectories of (21), we
obtain (using Proposition 2)

V̇ = −ρ cos φ (ρ sinφ − d)2.

Since the compact set E characterized in Proposition 3 is invariant, and since solutions of (21) tend in
the limit t → ∞ to approach the zero set of V̇ (Lasalle’s theorem), we conclude that in the asymptotic
limit, trajectories must approach either cosφ = 0 or ρ sinφ − d = 0. We know from Proposition 1 that
ρ sinφ−d = 0 is invariant under the motion of (21). Moreover, there is no solution (21) such that ρ cos φ ≡ 0
while ρ sinφ − d �= 0.

From the ρ-component of equation (22) we know that in the set E, ρ(t) decreases in the limit to d. The
corresponding limit for φ must be π/2, and we have established the following.

Proposition 4 Suppose the forward velocity gain λ is in the interval 0 < λ < d, and let ρ0 and φs be defined
as in Proposition 3. Any motion of (21) which starts in the set E = {(ρ, φ) : d ≤ ρ ≤ ρ0, φs ≤ φ ≤ π/2}
tends asymptotically to (ρ, φ) = (d, π/2). I.e., the vehicle coordinates (x, y, θ) are such that (x, y) tends to a
point on the circle

(x − x0)2 + (y − y0)2 = d2

with the vehicle’s body-frame x-axis, (cos θ, sin θ) tangent to the circle.

While the proposition is immediately useful in terms of designing control laws which will move a vehicle
toward tangency with a circle of any radius d about a desired goal point, the hypotheses are actually
conservative. Indeed, for any initial condition in which ρ > d and ρ sinφ − d �= 0, the corresponding
trajectory of (21) tends asymptotically toward the circle as described in the proposition. The essential
features of these motions are illustrated in Figure 10. Note that the variety ρ sinφ−d = 0 has two branches,
corresponding to two solution 0 < φ ≤ π/2 and π/2 < φ < π. These are depicted as green and black curves
respectively. On the first of these (green) branches, the motion of the vehicle is asymptotically toward
tangency with the circle. On the second (black) branch, the motion is away from the circle. However, these
unbounded motions are unstable in the sense that any perturbation will result in a motion which departs
and ultimately turns back toward a point of tangency with the circle. Here the set of points which do not
lead to trajectories meeting the asymptotic goals of the feedback law is even thinner than in the first simple
motion considered above.

Remark 6 A completely symmetric analysis applies to the control law v = λ(ρ − d), ω = −ρ sin−d, for
which ω = −ρ sin−d = 0 is an invariant variety. In this case, almost all trajectories turn toward tangency
in the clockwise direction with respect to the goal circle.
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(a) (b)

Figure 10: The feedback control (21) is again almost asymptotically stabilizing. Depicted here are several
trajectories with initial coordinates x = 0.5, y = 0, and various values of initial orientation θ. The goal is to
move toward a circle of radius 1 centered at (x, y) = (−1.5, 0) with final alignment tangent to the circle, and
pointed in the counterclockwise direction of tangency. Figure (a) shows two trajectories in which the initial
conditions have the vehicle slightly misaligned in the clockwise (red) and counterclockwise (blue) sense with
respect to the unstable branch of the invariant variety ρ sinφ−d = 0. Figure (b) shows two trajectories near
the stable branch of the invariant curve ρ sin φ − d = 0. Indeed the green trajectory is coincident with this
stable branch.

5 Conclusions and preview of further work

We have given a constructive characterization of stably rigid formation frameworks of point vehicles. We have
also described three of many possible simple control laws which are of use in assembling and coordinating
the motions of formations of nonholonomic vehicles. Although these control laws are not asymptotically
stabilizing, we have shown that they do achieve desired objectives asymptotically away from very thin sets
of initial conditions which can be described explicitly on a case by case basis. Although there is currently
no theory of rigid formations for nonholonomic vehicles, our present research is aimed at understanding how
switching rules can be developed for a set of carefully selected control laws in order to achieve formation
motions which approximate what can be achieved in the case of point vehicles.
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