Lecture 6 Model: Linear System with Inputs and
Output in Discrete and Continuous Time*

September 20, 2012

1 Discrete Time

o(k) = Ak — Da(k — 1) + B(k — )u(k — 1)
= A(k — D[A(k — 2)x(k — 2) + B(k — 2)u(k — 2)] + B(k — u(k — 1)
Ak — DAk — 2)a(k — 2) + A(k — 1)B(k — 2)u(k — 2) + B(k — Du(k — 1)

_ Ak — 1)A(k —2) - A0)z(0) + A(k — 1)A(k — 2) - - A(1) B(0)u(0)+
o4 B(k — Du(k — 1)

If we define the state transition matrix

Ok, 1) = A(k — 1)A(k —2) - A(),

then, the ’solution’ to (*) is:

.
2(k) = ®(k,0)2(0) + Y _ ®(k,)B(l — 1)u(l — 1)

=1

*This work is being done by various members of the class of 2012
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2 Continuous Time

Newton’s Law:
A’z
Tz u(t)
1 (unit mass

)
First orderize: Let z1(t) = x(t), z2(t) = d—f(t)

(20) ()-8 a) () (1)

The general form of state-space evolution equations for finite dimensional
linear system in continuous time is:

where, z(t) € R, u(t) € R™, y(t) € RP.

3 Dynamic Diagrams

Basic elements are shown below:

x(6) TN + 3,

'

Summation
Transmission x(k) a(k) alk)x(k)
x(k) o x(k)
Splitting i -

x(k)
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Unit Delay x(k + 1)| : x(k)

Integration x(2) x(¢)

Examples:

(i) z(k+1) = a(k)z(k) + b(k)u(k)

u(k) Black x(k)

Box

Black box revealed as in Figure 1:

Lk). 0 ;C >X(k +1)>> x(k)

v

a(k)

Figure 1: Black Box Revealed

(ii) Mass-spring System. (As shown in Figure 2)
mi + kx = u(t)
Think of how you would first orderize this system.

(—kz +u)

// —kx + u)dtdt

Hence, according to the expression, the dynamic diagram of the mass-spring
system is shown as in Figure 3.
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Figure 2: A Mass-Spring System

u®) T = | > ‘ > x(t)
+ \‘/ m

k

A

Figure 3: Dynamic Diagram for the Mass-Spring System

4 Equilibrium Points:

4.1 Discrete Time
x(k+1) = Az(k)

. Equilibrium equation is:
T, = Az,

if 1 is not an eigenvalue of A, then the only equilibrium state is 0.

Case.
z(k+1) = Az(k) + b
Equilibrium equation is:
Te = Az + b
=x.=(1I—A)""

is the unique solution provided A does not have 1 as an eigenvalue.

4.2 Continuous Time

Case of no input/forcing & = Az
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The equilibrium equation is:
Ax =0

If 0 is not an eigenvalue of A, the only equilibrium equation is z = 0.

Case.

&T=Ax+0b
The equilibrium equation is 0 = Ax, + b. If 0 is not an eigenvalue of A, the
equilibrium (unique) equation is:

ze =—A"1b

4.3 Other Physical System That Will Be Used To Illus-
trate General Principles

4.3.1 RLC-Circuits and Ohm’s Laws

Voltage drop across a resistance is

R _
A V =IR

I Voltage drop across a inductance is

d
TS V=i

Voltage drop across a capacitance is
Y4 V = %, where @ is charge on the

—WWWWWWW— capacitor, and Q(t) = [ I(s)ds

4.3.2 Kirchoff’s Law.

The sum of voltage drops around any loop equals the applied voltage. As in the
circuit in Figure 4:

dal Q
L— +RI+==E(t
a T =0
This looks like a first order system, but it is actually second order in disguise
since @ = [ Idt. We can equivalently write:
d*1 dl 1
L—+R—+==FE'(t
i Ry ta=P0
We can think of this as a linear control system. It could be first orderized.

We can ask questions such as how does I change as we prescribe to E?
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Figure 4: An RLC Circuit

4.3.3 The simple pendulum

-mg sin 6",

mg cos 6

mg

Figure 5: A Pendulum System

At rest, the pendulum in Figure 5 is at
z\ (0
y)  \U
xz(t)\ _ [lsinf(t) o .
In general, (y ( t)) = (l cosO(t) ) The force of gravity is resolved as illus-
trated:
)\ [ lcosf i
y)  \—lsind
£\ [ —lsinf)\ ;o lcosO \ ;
<y> = (—lcos9> " (—lsin9> o

Gravitational force is: mg ((1)>
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Acceleration force is: m (;) = —ml <s1n 9) 62 + ml ( cos ) ]

cos —sinf
Net torque

I cosf Net force vector
—sinf ) \ (Gravitation + acceleration)

- cosd sinf\ o cosf \ ; 0
=1 <— sin 9) [—ml (cos 9) 6"+ mi <— sin 9) 0 —myg <1)]

= ml?6 + mgl sin 0

If there is an exogenously applied torque 7, the equation of motion is:

’leé—i-mglsinH = T‘

Think of 7 as a control input, determining the behavior of 6(t) is a nonlinear
control. But we will see how linear techniques can be applied.
Consider a nonlinear control system of the form introduced in the last class:

(t) = f(x(t), u(t), t) (1)

Think about a variational trajectory with respect to some nominal control
input u(t):

S l0) + 5.(6) = F(l) + 52(0) u(t) + u(0),1
= 70 u(t),0) + 5L (0,050
+ %(az, u, t)0,(t) + high order terms in 0y, 6,

To first order, the variation is given by

d
Z02(8) = A(0)3x (1) + B(£)3u(t)
where
A=Y
Oz B(t;20,t0,uo(t),t)
B - 2
ou @ (t;x0,t0,u0(t),t)

where ®(t; xo,to, uo(t),t) is the flow corresponding to the nominal control
input up(-). This is especially going to be of interest when we linearize about
an equilibrium trajectory.

Returning to the pendulum example, first orderize the equation in the box:
r1 =10, r9 = 6. Then,
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()= () ann, )+ ( 2 )0

mi?
€2
= . T(t
—% sin x| + %

Under the nominal control 7 = 0, there are two equilibrium equations:

(=)= @) ()=6)

To find the variational equations, we write:
g . = g = g
_J + 5, —Z6, —= 0 Oy
l sin(xy D) (01 201 (0.0) 701 ; o

The linearized pendulum control system relative to the equilibrium equation

()= ()=
() =( 5 o) () ( 2 )

ml2

The pendulum system linearized about <i1> = (g) is similarly show to
2
be:

() (5)



