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September 11, 2012

Recall some basic facts about finite dimensional vector spaces.

Let v be a vector space whose field of scalars is R or C.

There are two laws of combination,

1 Vector Addition

• For v1, v2, v3 ∈ V, the laws of vector addition are associative;

(v1 + v2) + v3 = v1 + (v2 + v3)

• For v1, v2 ∈ V, the laws of vector addition are commutative;

v1 + v2 = v2 + v1

• There exists a zero vector 0 ∈ V, such that;

v + 0 = v for all v ∈ V

• For every v ∈ V,−v ∈ V as well.

∗This work is being done by various members of the class of 2012
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2 Scalar Multiplication

• For any α ∈ R(C) and v ∈ V,
αv ∈ V

• For α, β ∈ R(C)

α(βv) = (αβ)v (scalar multiplication is associative)

• For α ∈ R(C) and v, w ∈ V,

α(v + w) = αv + αw (Distributive over vector spaces)

• For α, β ∈ R(C), v inV

(α+ β)v = αv + βv (Distributive over scalar addition)

A basis for a vector space V is a linearly independent set of vectors: v1, ..., vn
that spans V . Saying that v1, ..., vn spans V means that for every w ∈ V there
are scalars α1, ..., αn such that,

W = α1v1, ..., αnvn

1, s, s2, ..., sn− These monomials are a basis of the vector space of polynomials
p(s) having degree ≤ n A vestor space V is finite dimensional of dimension n if
it has a basis with n elements.

A finite dimensional vector space over Rn(resp Cn) is isomorphic to
Rn(resp Cn).

THEOREM: Any square matrix with distinct eigenvalues can be put into
a diagonal form by a change of basis.

PROOF: List the n eigenvalues corresponding to distinct eigenvalues. Prove
this is a basis (DO THIS!). With respect to this basis, the matrix has diagonal
form.

Matrices whose eigenvalues are not distinct

Examples:

1. (
1 0
0 1

)
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2. (
λ 1
0 λ

)

Jordan Canonical Form:

Recall that the eigenvalues of a matrixA are the roots of the characteristic polynomial,

p(λ) = det(λI −A)

Suppose p(λ) can be factored

p(λ) = (λ− λ1)r1 ...(λ− λp)rp

where λi 6= λj for i 6= j (to be sure that such factorisation exists, we must allow
for complex eigenvalues)

For each λj we are interested in the associated generalized eigenspace,

Mk = ker(A− λjI)k = {v ∈ V : (A− λjI)kv = 0}

What are these?
M0 = ker(A− λjI)0 = ker(I) = {0}

M1 = ker(A− λjI) = eigenspace of λj

For v ∈Mk,

(A− λjI)k+1v = (A− λjI)(A− λjI)kv = (A− λjI)0 = 0

Therefore,Mk ∈Mk+1 we have an increasing chain of subspaces M0 ⊂M1 ⊂

Since Mk ⊂ C for all k, there is some value t such that Mk = M t for all
k ≥ t, let t be the smallest integer such that Mk = M t for all k ≥ t (call
M t = Mλj )

Another (this time decreasing) subspace chain which is of interest is,

(A− λjI)kCn = W k
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Here we have Cn = W 0 ⊂W 1 ⊂ . . .

Let mλj = dimM(λj) The dimW t = n − m(λj) (Since the dimensions of the
range space and the null spce of (A− λjI)t must add up to r) We must have,

W k = W t for k ≥ t

And we denote W t by Wλj

Proposition 1: Cn is the direct sum of M(λj) and W(λj) (i.e any v ∈ Cn
maybe writen uniquely as W = vm + wm where vm ∈M(λj), wm ∈W(λj))

Proof: Since (A− λjI)W(λj) = (A− λjI)t+1Cn = (A− λjI)tCn = Wλj

We see that A− λjI is nonsingular on W(λj). Let v be any vector in Cn. Then
(A− λjI)tv = 0 ∈W(λj). Because (A− λjI)t is nonsingular on W(λj). There is
a unique wm = W(λj) such that (A− λjI)tWm = γ. Let vm = V − wm. It is
easily seen (A− λjI)tVm = 0, so that Vm ∈M(λj).

Hence Cn = M(λj) +W(λj) and remains only to show that the expression
W = vm + wm is unique. This follows since dimM(λj) + dimW(λj) = n, and
any pair of respective basis.

For M(λj) and W(λj){v1, . . . , vn}, {w1, . . . , wn} together define a basis for Cn.

Cn = M(λj) ⊕W(λj)

Where, ⊕ is the notation for direct sum.
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Proposition 2: For any i, j, A− λI maps M(λj),W(λj) onto themselves.

Proof: In the case i = j we’ve shown that (A− λjI)Mk+1 ⊂Mk ⊂Mk+1 and
(A− λjI)W k = W k+1 ⊂W k. This implies W(λj) and M(λj) are invarient
under (A− λiI)
But from this it follows that these subspaces are invariant under any
polynomial in A− λiI. In particular, under A− λiI = A− λiI + (λi − λj)I.

Proposition 3: For λi 6= λj ,M(λi) ⊂W(λj)

Proof: Let v ∈M(λj). I claim that v cannot be in kernal of A− λjI. For j 6= i
suppose to the contrary, V ∈ ker(A− λjI). Then,

(λj − λi)tiv = {A− λiI − (A− λjI)}tiv

= (A− λiI)tiv +

ti∑
k=1

(−1)k
(
ti
k

)
(A− λiI)ti−k(A− λjI)kv

= 0 (the first term = 0 because v ∈M(λj)), the remaining terms would need to
be zero under the assumption v ∈ ker(A− λjI)

Since λi − λj 6= 0, this implies v = 0. This in turn implies (A− λjI)|Mλi
(The

linear transformation restricted to subspace M(λi)) is non-singular. This
means that A− λjI maps M(λi) onto it-
self and hence, M(λi) is contained in the range of (A−λjI)tj which is just W(λj).

Proposition 4: Cn = M(λ1) ⊕M(λ2) ⊕ · · · ⊕M(λp)

Remark: The direct sum notation means that any vector v ∈ Cn can be
uniquely expressed as a sum, V = v1 + · · ·+ vp, vj ∈M(λj)

Proof: Cn = M(λ1) ⊕W(λ1) and since W(λ1) ⊃M(λ2),
We can write,

Cn = M(λ1) ⊕ (W(λ1) ∩ [M(λ2) ⊕M(λ1)])
= M(λ1) ⊕ ([W(λ1) ∩M(λ2)]⊕ (W(λ1) ∩W(λ2)))
= M(λ1) ⊕M(λ2) ⊕ (W(λ1) ∩W(λ2))

Similiarly we obtain,

Cn = M(λ1) ⊕M(λ2) ⊕M(λ3) ⊕ (W(λ1) ∩W(λ2) ∩W(λ3))

Eventually we obtain,

Cn = M(λ1) ⊕M(λ2) · · · ⊕M(λp) ⊕ (W(λ1) ∩ · · · ∩W(λp))
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To complete the proof, we show that

W(λ1) ∩ · · · ∩W(λp) = {0}

Since each W(λi) is invarient under all A− λjI,W(λ1) ∩ · · · ∩W(λp) is invarient
as well.
A− λjI is non-singular on W(λ1) ∩ · · · ∩W(λp).Otherwise it would be singular
on all W(λi)s and W(λj) in particular. Hence,

(A− λ1I)r1(A− λ2I)r2 . . . (A− λpI)rp

is nonsingular on W(λ1) ∩ · · · ∩W(λp). But since this operator maps all vectors
in Cn to zero, the only way it could be nonsingular on W(λ1) ∩ · · · ∩W(λp) is if
this intersection is the zero subspace.


