Dynamic Systems - State Space Control
- Lecture 3 *

September 11, 2012

Recall some basic facts about finite dimensional vector spaces.

Let v be a vector space whose field of scalars is R or C.

There are two laws of combination,

1 Vector Addition

e For v1,v9,v3 € V, the laws of vector addition are associative;

(’Ul -|—'U2) +’l}3 =1 —+ (1)2 -|—’U3)

e For v1,v5 € V, the laws of vector addition are commutative;

U1+02:’02+Ul

e There exists a zero vector 0 € V, such that;

v+0=vforallveV

e For every v € V,—v € V as well.

*This work is being done by various members of the class of 2012
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2 Scalar Multiplication

e For any a € R(C) and v €V,

av eV
e For o, 5 € R(C)
a(Bv) = (af)v (scalar multiplication is associative)
e For o € R(C) and v,w €V,
a(v+w) = av+ aw (Distributive over vector spaces)
e For a, f € R(C),v inV
(a4 B)v=av+ pv (Distributive over scalar addition)

A basis for a vector space V is a linearly independent set of vectors: vy, ..., vy,
that spans V. Saying that vy, ..., v, spans V means that for every w € V there
are scalars aq, ..., a;, such that,

W = aqvy, ..., apvy,

1,s,s2,...,s"— These monomials are a basis of the vector space of polynomials
p(s) having degree < n A vestor space V is finite dimensional of dimension n if
it has a basis with n elements.

A finite dimensional vector space over R"(resp C™) is isomorphic to
R™(resp C™).

THEOREM: Any square matrix with distinct eigenvalues can be put into
a diagonal form by a change of basis.

PROOF:': List the n eigenvalues corresponding to distinct eigenvalues. Prove
this is a basis (DO THIS!). With respect to this basis, the matrix has diagonal
form.

Matrices whose eigenvalues are not distinct

Examples:

1.

6 1)
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G 3)

Jordan Canonical Form:

Recall that the eigenvalues of a matrix A are the roots of the characteristic polynomial,

p(A) = det(A\ — A)

Suppose p(\) can be factored

PA) = (A=A (A= Ap)"
where \; # A; for i # j (to be sure that such factorisation exists, we must allow
for complex eigenvalues)

For each A\; we are interested in the associated generalized eigenspace,

MF =ker(A—\I)F ={veV:(A- )\ =0}

What are these?
M =ker(A — \;1)° = ker(I) = {0}

M" = ker(A — \;I) = eigenspace of \;
For v € M*,

(A= XDy = (A - ND(A-NDPo=(A-N10=0
Therefore, M* € M**+1 we have an increasing chain of subspaces M° c M! C

Since M* C C for all k, there is some value ¢ such that M* = M? for all
k > t, let t be the smallest integer such that Mk = M? for all k > ¢ (call
Mt = My,)

Another (this time decreasing) subspace chain which is of interest is,

(A— N I)kFC =W



Background on Linear Algebra 4

Here we have C* = W9 c W' C ...

Let my; = dim M,;) The dim Wt =n— m(x;) (Since the dimensions of the
range space and the null spce of (A — A;I)" must add up to r) We must have,

Wk =W for k>t

And we denote W' by Wj,

Proposition 1: C" is the direct sum of M, ) and W, ) (i.e any v € C"
maybe writen uniquely as W = vy, + wy, where vy, € My, wm € W( ,\j))

Proof: Since (A — N 1)W(y,) = (A= NI)TIC" = (A — N\ I)'C™ = Wy,

We see that A — A;1 is nonsingular on W(y ). Let v be any vector in C". Then
(A= XI)'v=0¢e W,,). Because (A — \;I)" is nonsingular on W(y,y. There is
a unique wy, = W,y such that (A — \;1)'W,, = . Let vy =V — wp,. It is
casily seen (A — A\;1)'Vy, = 0, so that V,, € My ).

Hence C" = M) + W(,,) and remains only to show that the expression
W = vy, + wp, is unique. This follows since dim My ) + dim W,y = n, and

any pair of respective basis.

For M,y and Wy y{v1,...,vn},{w1, ..., wn} together define a basis for C".
C" = Mp,) ® W)

Where, @ is the notation for direct sum.

M()\l)
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Proposition 2: For any 4,j, A — Al maps My,), W(,,) onto themselves.

Proof: In the case i = j we've shown that (4 — X\;1)M**1 ¢ M* ¢ M**! and
(A= X\I)Wk = W*k+L c Wk This implies W,y and My ) are invarient
under (A — X\ 1)

But from this it follows that these subspaces are invariant under any
polynomial in A — A\;I. In particular, under A — A\ = A — NI+ (A — A\j)1.

Proposition 3: For \; # Aj, M(,) C Wiy

Proof: Let v € M(y,). I claim that v cannot be in kernal of A —A;I. For j # i
suppose to the contrary, V &€ ker(A — A;I). Then,

()‘j — )\i)ti’l) = {A — )\ZI — (A — )\j[)}ti’U

= (A= NI+ 2(—1)’“ (tk) (A—Nip)' (A — Nk
k=1

= 0 (the first term = 0 because v € My,)), the remaining terms would need to
be zero under the assumption v € ker(A — A\;1)

Since A; — A; # 0, this implies v = 0. This in turn implies (A — A;I)|as, (The
linear transformation restricted to subspace My,)) is non-singular. This
means that A — \;I maps M,,) onto it-

self and hence, My, is contained in the range of (A—X;I)% which is just W)

Proposition 4: C" = M) ® M,) @ - & My,
Remark: The direct sum notation means that any vector v € C" can be
uniquely expressed as a sum, V' =wv1 + -+ +vp,v; € M(y,)

Proof: C" = M,,) ® W(,,) and since W(y,) D M,),
We can write,

C" = Mp,) ® (W) N[Mn,) & M)
= M) @ (W) N Moyl @ (Wi NWiy)))
= M) ® M) © (W) N Winy))

Similiarly we obtain,
C" = M(>\1) ® M(>\2) ® M(Aa) ® (W(A1) N W()xz) n W()xs))
Eventually we obtain,

C" =M @ Mpng) - @M,y @ (W) NN W)
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To complete the proof, we show that
Won NN Wa,) = {0}

Since each Wy, is invarient under all A — NI, W,y N---N W, is invarient
as well.

A — A;j1 is non-singular on Wy,) N--- N Wy ).Otherwise it would be singular
on all Wy,ys and W, ) in particular. Hence,

(A= M) (A= N)2 . (A= M)

is nonsingular on W,y N ---N W, ). But since this operator maps all vectors
in C" to zero, the only way it could be nonsingular on W) N---N Wy y is if
this intersection is the zero subspace.



