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White Noise and Wiener Processes

Think of a semi - infinite bar Let u(x, t) denote the temperature in the bar at
x at time t.

Rate of heat transfer from left to right accross a section at x = x0 is,

H(x0, t) = − lim
d→0

K.A
u(x0 + d

2 , t)− u(x0 − d
2 , t)

d

= −K.A∂u(x0, t)

∂x

The net rate at which heat flows in a segment between x0 and x+ ∆x is,

H(x0, t)−H(x0 + ∆x, t) = K.A(
∂u(x0 + ∆x, t)

∂x

∂u(x0, t)

∂x
)

Denote this by Q. Average change in temperature during the time period ∆t
os proportional to Q.∆t and inversly proportional to the mass ∆m of the
infinitessimal segment = ρA∆x

This amount is
Q.∆t
sρA∆x ,

Where ’s’ is a proportionality constant which is equal to the specific heat of
the material.

The average temperature at time t will be the actual temperature at some
point x0 + θ(t).∆x, where 0 ≤ θ(t) ≤)

∗This work is being done by various members of the class of 2012
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u(x0 + θ(t).∆x, t+ ∆t)− u(x0 + θ(t).∆x, t) =
Q.∆t

sρA∆x

Dividing throught by ∆t and letting ∆t→ 0.∆x→ 0 we obtain:

∂u(x0, t)

∂x
=
α2

2
.
∂2u(x0, t)

∂x2

Where all the physical constants are lumped together in α.

Next, notice that p(x, t) =
1√

2πσ2t
e
− x2

2σ2t (x, t are variables) satisfies the

equation,

∂p

∂t
=
α2

2
.
∂2p

∂x2

p(x, 0) = δ(x)

How might a stochastic process associated with p(x, t) come up?
The simplest stochastic process is random walk in 1 dimension.

x0 = 0

xn+1 = xn + zn

p{zn = 1} = 1/2, p{zn = −1} = 1/2

Suppose zn obeys porbability, Pr{zn = ∆} = 1/2, P r{zn = −∆} = 1/2
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Consider this random walk as n→∞,∆→ 0 and T = time interval between
steps → 0 such that,

nT ∼ t

∆ ∼
√
T

∆
T = step size per unit time (= Velocity)∼

√
T
T = 1√

T
→∞

Pr{x(t) ∈ [x+ dx]} ∼ 1√
2πt

e
−x

2

2t dx

This is called unit variance wiener process.

For the random walk:

E(x(nτ)) = 0

E(x(nτ)2) = ns2

s2 is the same variance parameter = nτ → t
The wiener process is an independent increments process:
For t2 > t1 x(t2)− x(t1):

E{(x(t2)− x(t1))x(t1)} = 0

E(x(t1)x(t2)) = E(x(t1)2) if t2 > t1 = t1

Rxx(t1, t2) = E(x(t1)x(t2)) = min(t1, t2)

A slightly more general treatment has,

p(x, t) =
1√

2πσ2t
e−

x2

2σ2t ; p(x, 0) = δ(x)

The first and second order statistical characteristics are,

• E(x(t)) = 0

(
=

∞∫
−∞

x p(x, t) dx

)

• E(x(t)2) = σ2t

(
=

∞∫
−∞

x2 p(x, t) dx

)

•Rxx(t1, t2) = σ2min(t1, t2)

(
= E(x(t1)x(t2))

)
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DEFINITION: A stochastic process x(t) is said to be white noise if it is
stationary and

Rxx(τ) = E(x(t)x(t+ τ) = qδ(τ)

Suppose x(t) is white noise and,

(d)y

(d)t
= x(t), y(0) = 0

y(t) =

t∫
0

x(τ) dτ

Formally,

Eyy(y(t1)y(t2)) = E

[ t1∫
0

t2∫
0

x(τ)x(σ) dσdτ

]

=

t1∫
0

t2∫
0

E
(
x(τ)x(σ)

)
dσdτ

=

t1∫
0

t2∫
0

qδ(τ − σ) dσdτ

If t2 > t1 this is,

=

t1∫
0

q dτ = qt1

(Conversly, if t1 > t2 it is = qtż)

E(y(t)) = 0

E(y(t1)y(t2) = q min(t1, t2)

Formally, we’ve shown that the derivative of a wiener process is white noise.

Consider a linear system driven by a stochastic input,

ẏ = Ay + bx

We can easily write down the evolution of the means,

˙̄y = Aȳ + bx̄
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Lets compute the second order statistics,

Ryy(t1, t2) = E(y(t1)y(t2)T )

∂

∂t2
(Ryy(t1, t2)) = E(y(t1)y(t2)T )

= E(y(t1)TAT + bTx(t2))

= E(y(t1)y(t1)T )AT + E(y(t1)x(t2))bT

= Ryy(t1, t2)AT +Ryx(t1, t2)bT

∂2

∂t1∂t2
=

∂

∂t1

{
E(y(t1)y(t1)T )AT + E(y(t1)x(t2))bT

}
= E[(Ay(t1) + bx(t1))y(t2)T ]AT + E[(Ay(t1) + bx(t1)x(t2)]bT

= ARyy(t1, t2)AT + bRxy(t1, t2)AT +ARyx(t1, t2)bT + bRxx(t1, t2)bT

Compute the mean and covariance of y(t) assuming that y(0) = 0

Ryy(0, t2) = E(y(0)y(t2)T ) = 0

Ryy(t1, t2) = eAtRyy(0, t2) +

t∫
0

eA(t−s)bRxy(s, t)ds

What about Rxy(t1, t2)?

∂

∂t2
Rxy(t1, t2) =

∂

∂t2
E
[
x(t1)y(t2)T

]
= E

[
x(t1)y(t2)AT + x(t2)bT

]
= Rxy(t1, t2)AT +Rxx(t1, t2)bT

Rxy(t1, t2)T = eAtRxy(t1, 0) +

t∫
0

eA(t−σ)bRxx(t− σ) dσ, eAtRxy(t1, 0) = 0

=⇒ Rxy(t1, t2) =

t2∫
0

bT eA(t2−σ)Rxx(t− σ) dσ
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Finally we go back to the expression for Ryy,

Ryy(t1, t2) =

t1∫
0

et1−τ bRxy(τ, t2) dτ

=

t1∫
0

eA(t1−τ)b

t2∫
0

bT eA
T (t2−σ)Rxx(τ,σ) dσ dτ

=

t1∫
0

t2∫
0

eA(t1−τ)bbT eA(t2−τ)Rxx(τ, σ) dσ dτ

Special case: x(t) = White noise

Rxx(t1, t2) = q.δ(t1 − t2)

Ryy =

t1∫
0

t2∫
0

eA(t1−τ)bbT eA(t2−τ)q.δ(t− σ) dσ dτ

=

min(t1,t2)∫
0

eA(t1−τ)bbT eA(t2−τ)q dτ (∗)

The risks associated with blindly applying calculus rules when white noise is
involved.

Consider, ẋ = Ax+ bẇ

d

dt
(xxT ) = (Ax+ bẇ)xT + x(xTA+ ẇbT )

= AxxT + xxTAT + bẇxT + xẇbT

Taking expectations of both sides,

d

dt
E(xxT ) = AE(xxT ) + E(xxT )AT + bE(ẇxT ) + E(xẇ)bT

Being able to solve this hinges on knowing E(xẇ),

x(t) = eAtx0 +

t∫
0

eA(t−s)bẇ(s) ds
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Assume eAtx0 = 0

E
(
x(t)ẇ(t)

)
=

t∫
0

eA(t−s)bE(ẇ(s)ẇ(t)) ds

=

t∫
0

eA(t−s)bqδ(t− s) ds

= bq

Then letting E(xxT ) be denoted by σx(t)

σx(t) = eAtσx(0)eA
T t + 2

t∫
0

eA(t−σ)bbT eA
T (t−σ) dσ (∗)

(∗) 6= (∗∗)
The resolution to this situation is to carefully redevelop calculus - we’ll follow
Ito.

Suppose we wish to study the evolution of a wiener process on an interval
a ≤ t ≤ b.Partition the interval a = t0 < t1 < · · · < tn = b and define the ITo
stochastic integral,

lim
||ti+1−ti→0

n−1∑
i=0

b(ti)
[
w(ti+1)− w(ti)

]
=

b∫
a

b(t)dẇ


