Lecture 19 Observability Canonical Form and the Theory of Observers *

November 15, 2012

Observability Canonical Form

$$
\begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered}
$$

Suppose this is observable:
Let $S=\left(\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right)$ Assume scalar output.
Let $z=S x$. Then

$$
\begin{aligned}
& \dot{z}=S A S^{-1} z+S B u \\
& y=C S^{-1} z
\end{aligned}
$$

Let $S^{-1}=\left(\begin{array}{l:l:l}S 1 & \cdots & S n\end{array}\right)$
$C A^{k} S_{j}= \begin{cases}1 & k=j-1 \\ -a_{j-1} & k=n \\ 0 & \text { otherwise }\end{cases}$
Hence,

$$
\begin{gathered}
S A S^{-1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right) \\
C S^{-1}=\left(\begin{array}{lllll}
1, & 0, & 0, & \cdots & , 0
\end{array}\right)
\end{gathered}
$$

[^0]\[

S B=\left($$
\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}
$$\right)
\]

Summary: For Single Input/Single Output systems

$$
\begin{gathered}
\dot{x}=A x+b u \\
y=C x
\end{gathered}
$$

The system is said to be in controllability canonical form if:

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right), b=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

It is in observability canonical form if

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right), c=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Observers

Suppose we are given

$$
\begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered}
$$

and we wish to estimate x_{0}. "After a while", the state is given by

$$
x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\sigma)} B u(\sigma) d \sigma
$$

If A is a stable matrix (i.e. eigenvalues in the l.h.p), then the dependence of $x(t)$ on x_{0} diminishes over time. Thus, eventually depends only on the second term. If we run another system

$$
\dot{z}=A z+B u ; z(0)=z_{0}
$$

in parallel, then the over time $e=z-x$ decreases to 0 .

Proof. $e=z-x$ satisfies the homogeneous linear ordinary differential equation $\dot{e}=A e$.

Identity Observer

$$
\begin{align*}
\dot{x} & =A x+B u \\
y & =C x \tag{1}
\end{align*}
$$

We propose an observer of the form

$$
\dot{z}=A z+E(y-C z)+B u, z(0)=z_{0}
$$

where E is a coefficient matrix to be specified.
Theorem. If the system (1) is observable, the coefficients of the characteristic polynomial of $A-E C$ may be selected arbitrarily by appropriate choice of E.

Proof. The result follows from the eigenvalue placement problem follow the controllable pair $\left(A^{T}, C^{T}\right)$. Hence, we can find a K, such that $A^{T}+C^{T} K$ has any chosen characteristic polynomial. Let $E=-K^{T}$. Then $A-E C$ has the same characteristic polynomial.

Note that if $e=z-x$

$$
\begin{aligned}
\dot{e} & =\dot{z}-\dot{x} \\
& =A z+E(y-C z)+B u-A x-B u \\
& =A z+E(C x-C z)-A x \\
& =(A-E C) e
\end{aligned}
$$

If the eigenvalue of $A-E C$ are in the l.h.p, then $e(t) \rightarrow 0$ asymptotically.

Reduced Order Observers

We don't need to propagate an n-dimensional reconstruction of the state since we directly observe p-dimensions in the form of the output y.

Thus, we seek to reconstruct $n-p$ observer states. We are given the system

$$
\begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered}
$$

We assume that the $p \times n$ matrix C has full rank p. Let v be any $(n-p) \times n$ matrix such that $p=\binom{v}{c}$ is non-singular.

The set of independent vectors that are the row of C can be completed by an additional $n-p$ independent row vectors to yield a basis for \mathbb{R}^{n}. These rows are grouped together to gain the $(n-p) \times n V$, making $p=\binom{v}{c}$ invertible.

Let $\bar{x}=P_{x}$, and write $\bar{x}=\binom{w}{y}$. In terms of \bar{x}, the system dynamics are of the form:

$$
\binom{\dot{w}}{\dot{y}}=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\binom{w}{y}+\binom{B_{1}}{B_{2}} u
$$

It is possible to extract from this system a system of order $n-p$ which has as inputs the known quantities u, y.

Let E be $(n-p) \times p$ matrix, and subtract $E \cdot($ bottom part of the system $)$ from the top.

$$
\begin{aligned}
\dot{w}-E \dot{y} & =\left(A_{11}-E A_{21}\right) w+\left(A_{12}-E A_{22}\right) y+\left(B_{1}-E B_{2}\right) u \\
& =\left(A_{11}-E A_{21}\right)(w-E y)+\left(A_{11} E-E A_{21} E+A_{12}-E A_{22}\right) y+\left(B_{1}-E B_{2}\right) u
\end{aligned}
$$

Letting $v=w-E y$, this reduced order system takes the form:

$$
\dot{v}=\left(A_{11}-E A_{21}\right) v+\left(A_{11} E-E A_{21} E+A_{12}-E A_{22}\right) y+\left(B_{1}-E B_{2}\right) u
$$

where y, u are known inputs. Form an observer by copying this system

$$
\dot{z}=\left(A_{11}-E A_{21}\right) z+\left(A_{11} E-E A_{21} E+A_{12}-E A_{22}\right) y+\left(B_{1}-E B_{2}\right) u
$$

The error in the z estimate of z propagates according to

$$
\begin{aligned}
\dot{e} & =\dot{z}-\dot{v} \\
& =\left(A_{11}-E A_{21}\right) e
\end{aligned}
$$

the rate at which $e \rightarrow 0$ depends on the eigenvalues of $\left(A_{11}-E A_{21}\right)$. This can be placed arbitrarily provided that $\left(A_{11}, A_{21}\right)$ is an observable pair.

FACT. If the original system (A, B, C) is observable, then $\left(A_{11}, A_{21}\right)$ must be an observable pair.

Proof. Left to students as homework.
Reconstructing the original state: Since $v=w-E y, z \sim v, \hat{w}=z+E y$ is my observer estimate of w. The state estimate is thus:

$$
\hat{x}=p^{-1}\binom{\hat{w}}{y}=p^{-1}\binom{z+E y}{y}
$$

Observers in Feedback Loops (the Separation Principle)

$$
\begin{gathered}
\dot{x}=A x+B u \\
y=C x \\
\dot{z}=A z+E(y-C z)+B u
\end{gathered}
$$

We would like to choose a gain matrix K, defining a feedback $u=K x$ such that the resulting closed loop system is stable. Unfortunately, x is not available. For this purpose, assuming the observer works, we can by feeding back $u=K z$, the resulting closed loop system is of the form:

$$
\begin{gathered}
\dot{x}=A x+B K z \\
\dot{z}=(A-E C) z+E \underbrace{C x}_{\mathrm{y}}+B K z
\end{gathered}
$$

Let $e=z-x$, then the above may be rewritten as:

$$
\begin{gathered}
\dot{x}=(A+B K) x+B K e \\
\dot{e}=(A-E C) e
\end{gathered}
$$

or

$$
\binom{\dot{x}}{\dot{e}}=\left(\begin{array}{cc}
A+B K & B K \\
0 & A-E C
\end{array}\right)\binom{x}{e}
$$

FACT. $\operatorname{det}\left(\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right)=\operatorname{det}(X) \operatorname{det}(Z)$, where X and Z are square blocks.
Proof.

$$
\begin{gathered}
\left(\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & Z
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
0 & I
\end{array}\right) \\
\operatorname{det}\left(\begin{array}{ll}
I & 0 \\
0 & Z
\end{array}\right)=\mathbf{1} \operatorname{det}\left(\begin{array}{cc}
I_{n-1} & 0 \\
0 & Z
\end{array}\right)=\cdots=\operatorname{det}(Z)
\end{gathered}
$$

Similarly,

$$
\operatorname{det}\left(\begin{array}{cc}
X & Y \\
0 & I
\end{array}\right)=\operatorname{det}(X)
$$

We know that

$$
\operatorname{det}\left[\left(\begin{array}{cc}
I & 0 \\
0 & Z
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
0 & I
\end{array}\right)\right]=\operatorname{det}\left(\begin{array}{ll}
I & 0 \\
0 & Z
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
X & Y \\
0 & I
\end{array}\right)
$$

and the result (fact) follows. From this, it is easy to see that the eigenvalues of $\left(\begin{array}{cc}A+B K & B K \\ 0 & A-E C\end{array}\right)$ are the eigenvalues of $A+B K$ together with the eigenvalues of $A-E C$.

[^0]: *This work is being done by various members of the class of 2012

