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1 Summary of Controllability and Observability

ẋ = A(t)x(t) +B(t)u(t)

y = c(t)x(t)

x ∼ dim n, y ∼ dim m, u ∼ dim p

W (t0, t1) =

∫ t1

t0

Φ(t0, t)B(t)B(t)TΦ(t0, t)
T dt

M(t0, t1) =

∫ t1

t0

Φ(t, t0)
TC(t)TC(t)Φ(t, t0)dt

These grammians tell the whole story.
The system is controllable⇔ W (t0, t1) is invertible.
The system is observable⇔ M(t0, t1) is invertible.
For the constant coefficient case, the relevant objects are
(B,AB, . . . , An−1B) controllability: rank n
(C,CA, . . . , CAn−1)T observability: rank n

2 Discrete time case

x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k)

∗This work is being done by various members of the class of 2012
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x(N + 1) = A(N)x(N) +B(N)u(N)

= A(N) . . . A(1)︸ ︷︷ ︸
Φ(N,1)

x(1) +A(N) . . . A(2)B(1)u(1) + . . .+B(u)u(N)

= Φ(N, 1)x(1) +
N−1∑
j=1

Φ(N, j + 1)B(j)u(j) +B(N)u(N)

2.1 Discrete Time Theorem

Discrete Time Theorem: There exists a control sequence u(1), . . . , u(N) that
steers the state of

x(k + 1) = A(k)x(k) +B(k)u(k)

from x(t) = x0 to x(N) = x1 if and only if

x1 − Φ(N − 1, 1)x0

belongs to the range space of

W =
N−2∑
j=1

Φ(N − 1, j + 1)B(j)B(j)TΦ(N − 1, j + 1)T +B(N − 1)B(N − 1)T

Proof: Suppose there is an η such that

x1 − Φ(N − 1, 1)x0 = Wη

Let

u(j) =

{
B(j)TΦ(N − 1, j + 1)T η j = 1, . . . N − 2
B(N − 1)T η for j = N − 1

Then

x(N) = Φ(N − 1, 1)x0 +
N−2∑
j=1

Φ(N − 1, j + 1)B(j)(B(j)TΦ(N − 1, j + 1)T )η

+B(N − 1)B(N − 1)T η

= Φ(N − 1, 1)x0 +Wη

= x1

Going the other way, suppose that x1 − Φ(N − 1, 1)x0 is not in the range
space of W . Then there exists a y ∈ Rn such that y ◦ (x1 −Φ(N − 1, 1)x0) ≠ 0,
but WT y = 0. Following the same reasoning as in the continuous time case,
this would imply
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0 = yTWy =
N∑
j=1

||B(j)TΦ(N, j)T y||2

⇒ B(j)TΦ(N, j)T y = 0 for j = 1, . . . N

This contradiction shows that if there is an input sequence achieving specified
boundary conditions for all possible choices of boundary conditions, then W has
full rank.

2.2 Constant coefficient case

x(N + 1) = Ax(N) +Bu(N)

= A2x(N − 1) +ABu(N − 1) +Bu(N)

. . .

= ANx(1) +AN−1Bu(1) +AN−2Bu(2) + . . .+ABu(N − 1) +Bu(N)

The controllability rank condition [rank (B,AB, . . . , AN−1B) = n] is equiv-
alent to the condition of whether or not we can find a sequence u(1), . . . , u(N)
which steers between x0 and x1 for any choice of values x0, x1 ∈ Rn.

We can always choose N ≤ n. Hence the controllability condition is

B,AB, . . . , An−1B

has rank n.

2.3 Observability in the constant coefficient discrete time
case

y(k) = Cx(k) x(k + 1) = Ax(k)

we observe

y(k) = Cx(k)
y(k + 1) = CAx(k)

...
y(n− 1 + k) = CAn−1x(k)

}
observe eq.

We can always solve the observe eq. for x(k) in terms the sequence y(k), y(k+
1), · · · , y(k + n− 1) ⇔ rank (C,CA, · · · , CAn−1)T = n
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3 Sampled systems hybrid continuous discrete
systems

ẋ = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)
(1)

By samlpling the state every h seconds, we get

y(kh) = C(kh)x(kh)

Letting
x(k) = x(kh), A(k) = Φ((k + 1)h, kh)

B(k) =

∫ (k+1)h

kh

Φ((k + 1)h, s)B(s)ds

C(k) = c(kh)

We find the state and output dynamics of

x(k + 1) = A(k)x(k) +B(k)u(k) (2)

is the same as a sampled system, sampled every h units of time

ẋ = A(t)x(t) +B(t)uc(t)

y(t) = C(t)x(t)
(3)

where
uc(t) = u(k) for kh ≤ t < (k + 1)h

(2) is called the sampled version of (1).
Note: Constant coefficient continuous time systems give rise to constant co-

efficient sampled systems.

A = eAh

B =

∫ (k+1)h

kh

eA[(k+1)h−s]Bds =

∫ h

0

eA(h−s)Bds

The Laplace transform of

ẋ = A(t)x(t) +B(t)uc(t)

y(t) = C(t)x(t)

is
ŷ(s) = C(Is−A)−1Bûc(s)
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A discrete sequence x(0), x(1), x(2), · · · has an associated z-transform

x̂(z) =
∞∑
k=0

x(k)z−k

Apply the z-transform to both sides of

x((k + 1)h) = Ax(kh) +Bu(kh)

y(kh) = Cx(kh)

∞∑
k=0

x((k + 1)h)z−k) = A

∞∑
k=0

x(kh)z−k +B

∞∑
k=0

u(kh)z−k

The left hand side can be written

z[
∞∑
k=0

x(kh)z−k − x(0)]

Assume that x(0) = 0
Denote

Y (z) =
∞∑
k=0

y(kh)z−k

X(z) =

∞∑
k=0

x(kh)z−k

U(z) =
∞∑
k=0

u(kh)z−k

zX(z) = AX(z) +BU(z)

Y (z) = CX(z)

= C(Iz −A)−1BU(z)

We wish to have a formal procedure for relating the z-transform of a sample
system to the Laplace transform of the continuous time system from which it
was obtainted.

Given a continuous signal f(t), we define the sampled represatation to be

f∗(t) =

∞∑
k=−∞

f(kh)δ(t− kh)

where δ(t) is the Direc delta function defined formally by∫ ∞

−∞
y(s)δ(s)ds = g(0)
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The Laplace transform of the sampled system f∗(t) is

∞∑
0

f∗(t)e−stdt =

∫ ∞

0

∞∑
k=−∞

f(kh)e−stδ(t− kh)dt

= f(0) + f(h)e−sh + f(2h)e−s2h + · · ·

=

∞∑
k=0

f(kh)(e−sh)k

This is the z-transform provided f(t) = 0 for t < 0 and provided we make
the identification z = esh.

REMARKS ON THE ZERO-ORDER HOLD:
Given the sampled signal {f(kh), k = 0, 1, 2 · · · }, one useful reconstruction

is
fc(t) = f(kh) for kh 6 t < (k + 1)h

Applying this to our sampled control input uc(t), the Laplace transform is

ûc(s) =

∫ ∞

0

e−stuc(t)dt

=
∞∑
k=0

∫ (k+1)h

kh

e−stu(kh)dt

=
∞∑
k=0

u(kh)(−1

s
e−st |t=(k+1)h

t=kh )

=
∞∑
k=0

u(kh)
1

s
(e−skh − e−s(k+1)h)

=

∞∑
k=0

u(kh)e−skh 1

s
(1− e−sh)

=
1

s
(1− e−sh)L(u∗(t))

=
1

s
(1− e−sh)uc(z)

Note that 1
s (1 − e−sh) is the Laplace transform of the zero-order hold; i.e.

the Laplace transform of

x(t) =

{
1 0 ≤ t < h
0 elsewhere


