Lecture 15: Controllability and Observability *

October 25, 2012

1 Controllability
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where Ey = (1,1), E; = (0, 1).
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*This work is being done by various members of the class of 2012
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Consider the ’free response’ with initial condition:

21(0) -1
2(0) 0
z3(0) [ | -1
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z3(t) -1 2sin 2t — cos 2t
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1 .
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y(t) (1 1.0 1) 2sin 2t — cos 2t 0
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Theorem. There exists a control u(-) which steers the state x(t) of the system
&= A(t)x(t) + B(t)u(t)

from the value xg at time t = tg to x1 at time t = t1 > ty if and only if
xg — D(to,t1)x1 belongs to the range space of

W(tg,t1) = /t1 ®(to, t)B(t)B(t)T ®(to,t)Tdt

to

Proof. The set of points that can be reached along trajectories of the system
are:

x(t) = ®(t, to)xo +/ ®(t,0)B(o)u(o)do (%)

to

Hence, we must be able to define a u(-) on [tg, t1], s.t.
ty
Xr1 — (I)(tl,to)(ﬂo = / (I)(tl, O’)B(O’)U(U)dd
to

Suppose xzg — ®(tg,t1)x1 lies in the range space of W (tg,t1). Then there is an
n € R™, s.t.
xo — ®(to, t1)z1 = W(to, t1)n

Define

u(t) = —B(t)" ®(to, 1) n
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B(J)T(I)(t()a U)T do - n

Use this in (*):
.’E(tl) = (I)(tl,to).’EO — / 1 (I)(tl,J)B(J)
N————’

to
— U

to

= (I)(tl,to)ito — (I)(tl,to)/ 1 (I)(to, U)B(U)B(U)T(I)(to, O’)TdO' -n

= (I’(th to)l‘o — (I)(t1, to)W(to, t1)77
= (I)(tl,to)x() — q)(tl,to)[l‘o — <I>(t07t1):r1]
— proving that this works

= xl
Suppose on the other hand, that xg — ®(tg, t1)x1 does not lie in the range space
of W(to,t1). Then there exists a vector, y, such that W(tg,t1) -y = 0, but

y - (xo — D(to,t1)x1) # 0, as shown in the figure below:

Xy~ (D(to - tl)Xl

Assume, contrary to what we wish to prove, that there is a u(-) such that

x1 = ®(t1,t0)x0 +/ 1 ®(ty,0)B(0o)u(o)do

to

o — @(tmtl)l‘l = —/ @(tmd’)B(O’)U(O’)dO’

i.e.
to

to

Then,
0 £y (20— Blto, tr)z1) = —y/ " B(ty, o) B(o)u(o)do



Control System Theory 4

But,
0=y " Wi(to, t1)y

N / y" @ (to,7)B(0)B(0)" ¥ (to,0)  ydo

to

t1
_ / IB(0)T D (to, o) y||%do = B(o)Td(ty, o) Ty = 0

to

This and (1) cannot both be true, and these mutually contradictory state-
ments imply that if u(-) exists, zo — ®(to, t1)21 is in the range space of W (%o, 1)

W (tg,t1) = /t1 ®(to, t)B(t)B(t)T ®(to, t) T dt

to

Remark 1. If W(tg,t1) is non-singular (i.e. has rank n), the system
&= A(t)x(t) + B(t)u(t)
is said to be controllable.

Remark 2. The proof gives a formula that can be used to steer the system from
Ty to xq.

Remark 3. This will turn out to be the minimum energy control.
Remark 4. W (to,t1) is called the controllability grammian.
Simplification in the case of constant coefficients
T = Ax + Bu

Theorem. For A,B = constant matrices, the range space and null space of
W (to,t1) coincide with the range space and null space of

WT: [BvAB7 aAnilBHB’ABa”' aAnilB]T

Proof. Let x € N(W (to,t1))

t
0= ajTW(tO, tl);(; e / mTeA(to—U)BBTeAT(tO—g-):L_dO_
to

t
- / ||BT6AT(t°7‘7)x||2dU — BTeA (to—0)p = ¢
to
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This means that all derivatives are zero, so that
BTz =0
BTATz =0
BTAT Dy =0

Hence Wpz = 0. This means x € N(Wry).
Suppose, on the other hand, that 2 € N(W7). Then

Wrx=0= 2" Wraz =0
so that
|[B,AB,--- , A" 'B]Tz||?> =0
=12'B=0,2TAB=0,--- ,2TA" 1B =0
By the Cayley-Hamilton theorem,

n—1

eA(tU_a) = Z Oti(t() — 0')14Z
i=0
tn—1
/ Z a;(to — U)a:TAiBBTeAT(t"*”)dJ
to =0

2" W(to, t1) =

=0

W (to,t1) is symmetric = W(to,t1)x =0

Hence, N(W(to,t1)) = N(Wrp).

Since W (to,t1) and Wr are symmetric, their range spaces are the orthogonal
complements of the null spaces. Hence, these are also equal O

System is controllable < W (tg,t1) has rank n < [B, AB,--- , A" 1B] has
full rank n.

Example: mZ + kx = u(t)

The standard first orderization is:

(2= (B)-(% o)) (%)
e

(b Ab)

[
7 N
I~

rank = 2 = controllable.
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2 Observability

A(t)x(t) + B(t)u(t)
()x(t)

|
Q

x
y(t)
We observe y(-), but we would like to know z(-).
¢
y(t) = C[t)0(t, to)xo+ | C(t)P(t,0)B(o)u(o)do
to

To reconstruct z(t), we need only to determine xy. There is thus no loss of
generality in considering just

Define: L : R™ — C™[tg, t1] (=continuous functions on the internal ¢ty < ¢t < 1
taking values in R™) by L, (t) = C(t)®(t, to)xo.

Proposition. The null space of L coincides with the null space of

M(tg,t1) = /tl Bt to)'C ()T C()D(t, to)dt

to

Proof. If M (tg,t1)xo = 0, then ' M(to,t1)xo = 0 and hence:

0= / " T (1) T OB (1, to)rodt

to

- / O, to)ao| Pdt

to
= C(t)q)(t,to)xo =0
On the other hand:

t
Loy =0= [ ®(t,to)"CH)TC(t)D(t, to)odt =0

to

= M((to, t1)xo = 0. This proves the proposition



