Lecture 15: Controllability and Observability *

October 25, 2012

1 Controllability

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

Let

$$G(s) = \left(\frac{1}{s^2 + 4}, \frac{s+1}{s^2 + 4}\right) = \frac{E_0 + E_1 s}{s^2 + 4}$$

where $E_0 = (1, 1), E_1 = (0, 1).$

The standard controllable realization:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}$$

$$\begin{split} e^{At} &= \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) + \left(\begin{array}{c|c} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \end{array} \right) t + \frac{1}{2} \left(\begin{array}{c|c} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{array} \right) t^2 + \\ & \frac{1}{3!} \left(\begin{array}{c|c} 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \\ \hline 16 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 \end{array} \right) t^3 + \frac{1}{4!} \left(\begin{array}{c|c} 16 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 \\ 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 16 \end{array} \right) t^4 + \cdots \\ & = \left(\begin{array}{c|c} \cos 2t & 0 & \frac{1}{2} \sin t & 0 \\ 0 & \cos 2t & 0 & \frac{1}{2} \sin 2t \\ -2 \sin 2t & 0 & \cos 2t & 0 \\ 0 & -2 \sin 2t & 0 & \cos 2t \end{array} \right) \end{split}$$

^{*}This work is being done by various members of the class of 2012

Consider the 'free response' with initial condition:

$$\begin{pmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \\ x_4(0) \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{pmatrix} = e^{At} \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\cos 2t - \frac{1}{2}\sin 2t \\ \frac{1}{2}\sin 2t \\ 2\sin 2t - \cos 2t \\ \cos 2t \end{pmatrix},$$

$$y(t) = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\cos 2t - \frac{1}{2}\sin 2t \\ \frac{1}{2}\sin 2t \\ 2\sin 2t - \cos 2t \\ \cos 2t \end{pmatrix} = 0$$

Theorem. There exists a control $u(\cdot)$ which steers the state x(t) of the system

$$\dot{x} = A(t)x(t) + B(t)u(t)$$

from the value x_0 at time $t=t_0$ to x_1 at time $t=t_1>t_0$ if and only if $x_0-\Phi(t_0,t_1)x_1$ belongs to the range space of

$$W(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, t) B(t) B(t)^T \Phi(t_0, t)^T dt$$

Proof. The set of points that can be reached along trajectories of the system are:

$$x(t) = \Phi(t, t_0)x_0 + \int_{t_0}^t \Phi(t, \sigma)B(\sigma)u(\sigma)d\sigma \tag{*}$$

Hence, we must be able to define a $u(\cdot)$ on $[t_0, t_1]$, s.t.

$$x_1 - \Phi(t_1, t_0)x_0 = \int_{t_0}^{t_1} \Phi(t_1, \sigma)B(\sigma)u(\sigma)d\sigma$$

Suppose $x_0 - \Phi(t_0, t_1)x_1$ lies in the range space of $W(t_0, t_1)$. Then there is an $\eta \in \mathbb{R}^n$, s.t.

$$x_0 - \Phi(t_0, t_1)x_1 = W(t_0, t_1)\eta$$

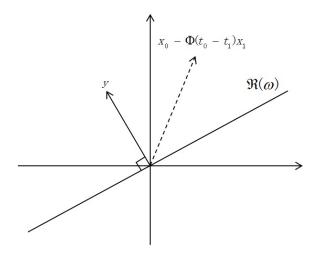
Define

$$u(t) = -B(t)^T \Phi(t_0, t)^T \eta$$

Use this in (*):

$$x(t_1) = \Phi(t_1, t_0)x_0 - \int_{t_0}^{t_1} \Phi(t_1, \sigma)B(\sigma) \underbrace{B(\sigma)^T \Phi(t_0, \sigma)^T}_{-u} d\sigma \cdot \eta$$
$$- u$$
$$= \Phi(t_1, t_0)x_0 - \Phi(t_1, t_0) \int_{t_0}^{t_1} \Phi(t_0, \sigma)B(\sigma)B(\sigma)^T \Phi(t_0, \sigma)^T d\sigma \cdot \eta$$
$$= \Phi(t_1, t_0)x_0 - \Phi(t_1, t_0)W(t_0, t_1)\eta$$
$$= \Phi(t_1, t_0)x_0 - \Phi(t_1, t_0)[x_0 - \Phi(t_0, t_1)x_1]$$
$$= x_1 \rightarrow proving that this works$$

Suppose on the other hand, that $x_0 - \Phi(t_0, t_1)x_1$ does not lie in the range space of $W(t_0, t_1)$. Then there exists a vector, y, such that $W(t_0, t_1) \cdot y = 0$, but $y \cdot (x_0 - \Phi(t_0, t_1)x_1) \neq 0$, as shown in the figure below:



Assume, contrary to what we wish to prove, that there is a $u(\cdot)$ such that

$$x_1 = \Phi(t_1, t_0)x_0 + \int_{t_0}^{t_1} \Phi(t_1, \sigma)B(\sigma)u(\sigma)d\sigma$$

i.e.

$$x_0 - \Phi(t_0, t_1)x_1 = -\int_{t_0}^t \Phi(t_0, \sigma)B(\sigma)u(\sigma)d\sigma$$

Then,

$$0 \neq y \cdot (x_0 - \Phi(t_0, t_1)x_1) = -y \int_{t_0}^{t_1} \Phi(t_0, \sigma)B(\sigma)u(\sigma)d\sigma$$
 (1)

But,

$$0 = y^T W(t_0, t_1) y$$

$$= \int_{t_0}^t y^T \Phi(t_0, \sigma) B(\sigma) B(\sigma)^T \Phi(t_0, \sigma)^T y d\sigma$$

$$= \int_{t_0}^{t_1} \|B(\sigma)^T \Phi(t_0, \sigma)^T y\|^2 d\sigma \Rightarrow B(\sigma)^T \Phi(t_0, \sigma)^T y = 0$$

This and (1) cannot both be true, and these mutually contradictory statements imply that if $u(\cdot)$ exists, $x_0 - \Phi(t_0, t_1)x_1$ is in the range space of $W(t_0, t_1)$

$$W(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, t) B(t) B(t)^T \Phi(t_0, t)^T dt$$

Remark 1. If $W(t_0, t_1)$ is non-singular (i.e. has rank n), the system

$$\dot{x} = A(t)x(t) + B(t)u(t)$$

is said to be controllable.

Remark 2. The proof gives a formula that can be used to steer the system from x_0 to x_1 .

Remark 3. This will turn out to be the minimum energy control.

Remark 4. $W(t_0, t_1)$ is called the controllability grammian.

Simplification in the case of constant coefficients

$$\dot{x} = Ax + Bu$$

Theorem. For A,B = constant matrices, the range space and null space of $W(t_0,t_1)$ coincide with the range space and null space of

$$W_T = [B, AB, \cdots, A^{n-1}B][B, AB, \cdots, A^{n-1}B]^T$$

Proof. Let $x \in N(W(t_0, t_1))$

$$0 = x^{T} W(t_{0}, t_{1}) x = \int_{t_{0}}^{t} x^{T} e^{A(t_{0} - \sigma)} B B^{T} e^{A^{T}(t_{0} - \sigma)} x d\sigma$$
$$= \int_{t_{0}}^{t} \|B^{T} e^{A^{T}(t_{0} - \sigma)} x\|^{2} d\sigma \Rightarrow B^{T} e^{A^{T}(t_{0} - \sigma)} x \equiv 0$$

This means that all derivatives are zero, so that

$$B^{T}x = 0$$

$$B^{T}A^{T}x = 0$$

$$B^{T}A^{T(n-1)}x = 0$$

$$\vdots$$

Hence $W_T x = 0$. This means $x \in N(W_T)$.

Suppose, on the other hand, that $x \in N(W^T)$. Then

$$W_T x = 0 \Rightarrow x^T W_T x = 0$$

so that

$$||[B, AB, \cdots, A^{n-1}B]^T x||^2 = 0$$

 $\Rightarrow x^T B = 0, x^T AB = 0, \cdots, x^T A^{n-1}B = 0$

By the Cayley-Hamilton theorem,

$$e^{A(t_0 - \sigma)} = \sum_{i=0}^{n-1} \alpha_i (t_0 - \sigma) A^i$$

$$x^T W(t_0, t_1) = \int_{t_0}^t \sum_{i=0}^{n-1} \alpha_i (t_0 - \sigma) x^T A^i B B^T e^{A^T (t_0 - \sigma)} d\sigma$$

$$= 0$$

 $W(t_0, t_1)$ is symmetric $\Rightarrow W(t_0, t_1)x = 0$

Hence, $N(W(t_0, t_1)) = N(W_T)$.

Since $W(t_0, t_1)$ and W_T are symmetric, their range spaces are the orthogonal complements of the null spaces. Hence, these are also equal

System is controllable $\Leftrightarrow W(t_0, t_1)$ has rank $n \Leftrightarrow [B, AB, \dots, A^{n-1}B]$ has full rank n.

Example: $m\ddot{x} + kx = u(t)$

The standard first orderization is:

$$\begin{cases} x_1 = x \\ x_2 = \dot{x} \end{cases} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & 0 \end{pmatrix}}_{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \underbrace{\begin{pmatrix} 0 \\ \frac{1}{m} \end{pmatrix}}_{b} u(t)$$
$$\begin{pmatrix} b & Ab \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{m} \\ \frac{1}{m} & 0 \end{pmatrix}$$

 $rank = 2 \Rightarrow controllable.$

2 Observability

$$\dot{x} = A(t)x(t) + B(t)u(t)$$
$$y(t) = C(t)x(t)$$

We observe $y(\cdot)$, but we would like to know $x(\cdot)$.

$$y(t) = C(t)\Phi(t, t_0)x_0 + \int_{t_0}^t C(t)\Phi(t, \sigma)B(\sigma)u(\sigma)d\sigma$$

To reconstruct x(t), we need only to determine x_0 . There is thus no loss of generality in considering just

$$\dot{x} = A(t)x(t), \ y(t) = C(t)x(t)$$

<u>Define</u>: $L: \mathbb{R}^n \to C^m[t_0, t_1]$ (=continuous functions on the internal $t_0 \leqslant t \leqslant t_1$ taking values in \mathbb{R}^m) by $L_{x_0}(t) = C(t)\Phi(t, t_0)x_0$.

Proposition. The null space of L coincides with the null space of

$$M(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t, t_0)^T C(t)^T C(t) \Phi(t, t_0) dt$$

Proof. If $M(t_0, t_1)x_0 = 0$, then $x_0^T M(t_0, t_1)x_0 = 0$ and hence:

$$0 = \int_{t_0}^{t_1} x_0^T \Phi(t, t_0)^T C(t)^T C(t) \Phi(t, t_0) x_0 dt$$
$$= \int_{t_0}^{t_1} \|C(t) \Phi(t, t_0) x_0\|^2 dt$$
$$\Rightarrow C(t) \Phi(t, t_0) x_0 \equiv 0$$

On the other hand:

$$L_{x_0} = 0 \Rightarrow \int_{t_0}^t \Phi(t, t_0)^T C(t)^T C(t) \Phi(t, t_0) x_0 dt = 0$$

 $\Rightarrow M(t_0, t_1)x_0 = 0$. This proves the proposition