
Lecture 15: Controllability and Observability ∗

October 25, 2012

1 Controllability

ẋ = Ax+Bu

y = Cx

Let

G(s) =

(
1

s2 + 4
,
s+ 1

s2 + 4

)
=
E0 + E1s

s2 + 4

where E0 = (1, 1), E1 = (0, 1).
The standard controllable realization:

A =


0 0 1 0
0 0 0 1
−4 0 0 0
0 −4 0 0

 , B =


0 0
0 0
1 0
0 1

 , C =
(

1 1 0 1
)

eAt =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0 1 0
0 0 0 1
−4 0 0 0
0 −4 0 0

 t+
1

2


−4 0 0 0
0 −4 0 0
0 0 −4 0
0 0 0 −4

 t2+

1

3!


0 0 −4 0
0 0 0 −4
16 0 0 0
0 16 0 0

 t3 +
1

4!


16 0 0 0
0 16 0 0
0 0 16 0
0 0 0 16

 t4 + · · ·

=


cos 2t 0

1

2
sin t 0

0 cos 2t 0
1

2
sin 2t

−2 sin 2t 0 cos 2t 0
0 −2 sin 2t 0 cos 2t


∗This work is being done by various members of the class of 2012
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Consider the ’free response’ with initial condition:
x1(0)
x2(0)
x3(0)
x4(0)

 =


−1
0
−1
1



x1(t)
x2(t)
x3(t)
x4(t)

 = eAt


−1
0
−1
1

 =


− cos 2t− 1

2 sin 2t
1
2 sin 2t

2 sin 2t− cos 2t
cos 2t

 ,

y(t) =
(
1 1 0 1

)
− cos 2t− 1

2 sin 2t
1
2 sin 2t

2 sin 2t− cos 2t
cos 2t

 = 0

Theorem. There exists a control u(·) which steers the state x(t) of the system

ẋ = A(t)x(t) +B(t)u(t)

from the value x0 at time t = t0 to x1 at time t = t1 > t0 if and only if
x0 − Φ(t0, t1)x1 belongs to the range space of

W (t0, t1) =

∫ t1

t0

Φ(t0, t)B(t)B(t)TΦ(t0, t)
T dt

Proof. The set of points that can be reached along trajectories of the system
are:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, σ)B(σ)u(σ)dσ (∗)

Hence, we must be able to define a u(·) on [t0, t1], s.t.

x1 − Φ(t1, t0)x0 =

∫ t1

t0

Φ(t1, σ)B(σ)u(σ)dσ

Suppose x0 − Φ(t0, t1)x1 lies in the range space of W (t0, t1). Then there is an
η ∈ Rn, s.t.

x0 − Φ(t0, t1)x1 = W (t0, t1)η

Define

u(t) = −B(t)TΦ(t0, t)
T η
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Use this in (*):

x(t1) = Φ(t1, t0)x0 −
∫ t1

t0

Φ(t1, σ)B(σ)B(σ)TΦ(t0, σ)T︸ ︷︷ ︸ dσ · η
− u

= Φ(t1, t0)x0 − Φ(t1, t0)

∫ t1

t0

Φ(t0, σ)B(σ)B(σ)TΦ(t0, σ)T dσ · η

= Φ(t1, t0)x0 − Φ(t1, t0)W (t0, t1)η

= Φ(t1, t0)x0 − Φ(t1, t0)[x0 − Φ(t0, t1)x1]

= x1 → proving that this works

Suppose on the other hand, that x0−Φ(t0, t1)x1 does not lie in the range space
of W (t0, t1). Then there exists a vector, y, such that W (t0, t1) · y = 0, but
y · (x0 − Φ(t0, t1)x1) 6= 0, as shown in the figure below:

Assume, contrary to what we wish to prove, that there is a u(·) such that

x1 = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, σ)B(σ)u(σ)dσ

i.e.

x0 − Φ(t0, t1)x1 = −
∫ t

t0

Φ(t0, σ)B(σ)u(σ)dσ

Then,

0 6= y · (x0 − Φ(t0, t1)x1) = −y
∫ t1

t0

Φ(t0, σ)B(σ)u(σ)dσ (1)
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But,

0 = yTW (t0, t1)y

=

∫ t

t0

yTΦ(t0, σ)B(σ)B(σ)TΦ(t0, σ)T ydσ

=

∫ t1

t0

‖B(σ)TΦ(t0, σ)T y‖2dσ ⇒ B(σ)TΦ(t0, σ)T y = 0

This and (1) cannot both be true, and these mutually contradictory state-
ments imply that if u(·) exists, x0−Φ(t0, t1)x1 is in the range space of W (t0, t1)

W (t0, t1) =

∫ t1

t0

Φ(t0, t)B(t)B(t)TΦ(t0, t)
T dt

Remark 1. If W (t0, t1) is non-singular (i.e. has rank n), the system

ẋ = A(t)x(t) +B(t)u(t)

is said to be controllable.

Remark 2. The proof gives a formula that can be used to steer the system from
x0 to x1.

Remark 3. This will turn out to be the minimum energy control.

Remark 4. W (t0, t1) is called the controllability grammian.

Simplification in the case of constant coefficients

ẋ = Ax+Bu

Theorem. For A,B = constant matrices, the range space and null space of
W (t0, t1) coincide with the range space and null space of

WT = [B,AB, · · · , An−1B][B,AB, · · · , An−1B]T

Proof. Let x ∈ N(W (t0, t1))

0 = xTW (t0, t1)x =

∫ t

t0

xT eA(t0−σ)BBT eA
T (t0−σ)xdσ

=

∫ t

t0

‖BT eA
T (t0−σ)x‖2dσ ⇒ BT eA

T (t0−σ)x ≡ 0
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This means that all derivatives are zero, so that

BTx = 0

BTATx = 0

BTAT (n−1)x = 0

...

Hence WTx = 0. This means x ∈ N(WT ).
Suppose, on the other hand, that x ∈ N(WT ). Then

WTx = 0⇒ xTWTx = 0

so that
‖[B,AB, · · · , An−1B]Tx‖2 = 0

⇒ xTB = 0, xTAB = 0, · · · , xTAn−1B = 0

By the Cayley-Hamilton theorem,

eA(t0−σ) =

n−1∑
i=0

αi(t0 − σ)Ai

xTW (t0, t1) =

∫ t

t0

n−1∑
i=0

αi(t0 − σ)xTAiBBT eA
T (t0−σ)dσ

= 0

W (t0, t1) is symmetric ⇒ W (t0, t1)x = 0
Hence, N(W (t0, t1)) = N(WT ).
Since W (t0, t1) and WT are symmetric, their range spaces are the orthogonal

complements of the null spaces. Hence, these are also equal

System is controllable ⇔ W (t0, t1) has rank n ⇔ [B,AB, · · · , An−1B] has
full rank n.

Example: mẍ+ kx = u(t)
The standard first orderization is:{

x1 = x
x2 = ẋ

⇒
(
x1
x2

)
=

(
0 1
− k
m 0

)
︸ ︷︷ ︸

A

(
x1
x2

)
+

(
0
1
m

)
︸ ︷︷ ︸

b

u(t)

(
b Ab

)
=

(
0 1

m
1
m 0

)
rank = 2 ⇒ controllable.
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2 Observability

ẋ = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

We observe y(·), but we would like to know x(·).

y(t) = C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, σ)B(σ)u(σ)dσ

To reconstruct x(t), we need only to determine x0. There is thus no loss of
generality in considering just

ẋ = A(t)x(t), y(t) = C(t)x(t)

Define: L : Rn → Cm[t0, t1] (=continuous functions on the internal t0 6 t 6 t1
taking values in Rm) by Lx0(t) = C(t)Φ(t, t0)x0.

Proposition. The null space of L coincides with the null space of

M(t0, t1) =

∫ t1

t0

Φ(t, t0)TC(t)TC(t)Φ(t, t0)dt

Proof. If M(t0, t1)x0 = 0, then xT0M(t0, t1)x0 = 0 and hence:

0 =

∫ t1

t0

xT0 Φ(t, t0)TC(t)TC(t)Φ(t, t0)x0dt

=

∫ t1

t0

‖C(t)Φ(t, t0)x0‖2dt

⇒ C(t)Φ(t, t0)x0 ≡ 0

On the other hand:

Lx0 = 0⇒
∫ t

t0

Φ(t, t0)TC(t)TC(t)Φ(t, t0)x0dt = 0

⇒M(t0, t1)x0 = 0. This proves the proposition


