Dynamic Systems - State Space Control
- Lecture 14 *

October 23, 2012

1 Equilibirum Points
THEOREM: A necessary a sufficient condition for the equilibrium point of

xqot = Ax + b is that the Eigenvalues of A have negative real parts. That is to
say that the eigenvalues lie in the left half complex planes.

& = Ax + Bu
y=Cx

State feedback u(t) = Kx(t)
Compared to output feedback u(t) = Ky(t)

The closed loop system with state feedback is:
&= (A+ Bk)x

Examples:

1. RLC Circuit

Insert drawing here

Kirchoft’s Law (Voltage Drops)

V=IR
V = dFL/dt
V= 1/0/1015

*This work is being done by various members of the class of 2012
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L =d?I/dt* + RAI/dt + 1/cI = E(t)

RLC circuit is controlled by voltage flux

2. Positioning a Mass Spring Dashpot System

Insert drawing here

mi + ci + kx = u(t)(c > 0)

First orderizing the system yields

T =2,T2 =2

(£.1 _ 0 1 z
Zo)  \—=k/m —c/m) \xs
The characteristic polynomial is

Mt ed/m+Ek/m=0

Roots A\; = —¢/2m £+ 1/2m~/c? — 4km
z(t) = areMt + age?!

If there is a large damping ¢ >> 4km
Insert drawing here

If either k or m or both are large

z(t) = are”*™cos(1/2m/|c2 — 4kmlt) + aze”*"sin(1/2mn/|c® — 4kmlt)

What can be achieved with feedback

u(t) = —kpx1(t) — kyxa(?)

<2> N <—k0/m —cl/m> (i;) + (—kp:vl(t)o— k’vxg(t)>
- (—k/ng —k, —0/771 - k) @;)
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The closed loop characteristic polynomial equation is
N+ (e/m+k)N+k/m+k,=0
Second order control systems

&4 2wi +w?x =0, >0

¢ is the damping ratio
w is the natural frequency

The three cases of interest are ( < 1,{ =1,{ > 1

Why these are of interest
52 4+ 20ws+w? =0

s=—C(Cwtwy3 -1

Case ( <1

Let a = —(w,w >0

Then a? = (?w? < w?

Hence we can choose b s.t a? +b? = w
The differential equation becomes:

2

i —2ai + (a®> + b3z =0

First orderize as follows
Xr1 =T
o =2 —ax/b

Then

£L:1 = axry + b(EQ

Lo = —bxq + axs

()= (5 2) ()

(a b)t
B(t,0)=c\ 0 @

- < e cos(bt) e‘”sin(bt))

—e%sin(bt) e*cos(bt)

We have computed
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z(t) = z1(t) = e*cos(bt)x1(0) + e sin(bt)z2(0)

Insert drawing here
= Celat)sin(bt + ¢)

C = /x1(0)? + 22(0)2

& = arctan(z1(0), 22(0)

Ifa>0
Insert drawing here

Case ( >1

A = —C omega —wy/(2 —1
Ao = —( omega +w+/(%2 -1

These roots are either both positive or both negative. Again let a = —(w,w > 0
Then a? = (2w? > w? Hence there is a b? < a?sich that a? — b? = w?
First orderize as the system
T, = ax1 + brs
Ty = bx1 + axo
.T.l _[(a b xT1
LL:Q o b «a o

The transition matrix is

e<2 g>t:<1 0>+<0 b>+1/2 %2 z??

1 b
0 0 +...

The even terms sum to

ebt + e—bt/2 0
0 et e )2
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The odd terms sum to

0 ebt — e /2
et —e=bt/2 0

The transition matrix is
eat 0 6bt 4 efbt/Z 6bt o efbt/2
0 eat ebt _ e—bt/2 ebt 4 e—bt/2
Assuming (without loss of generality) b > 0 we have |a| > b
w(t) = Crel®™t 4 Chelo=0)t
a<0
Insert drawing here

a>0
Insert drawing here

Case (=1
l"l =X
SC'Q = 93.1 + wx1
33:1 Y %) 1 X1
1:2 o 0 —Ww I
z(t) = e “!(z1cost + 22(0))
Summary -

Pole locations and closed loop dynamics. Poles occur as complex conjugate
pairs.

Insert drawing here

2 Mass Spring System Reprise

mi + c& + km = u(t)

Assuming we can measure x, % and feed them back

u(t) = —kpx(t) — ki (¢)
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The closed loop system is
mi + (c+ kv)d + (k—kp)z =0
k+ky/m = w?
c+ky/m = 20w
C=c+ky/2y/k + kpy/m

When ¢ < 1
w? =a*+b?
¢ =—a/w=—a/Va?+ b
When ¢ > 1
P =a?—b?
¢ =—-a/w=—a/\a?—b?
When ( =1

w?=a®+ b
z(t) = Cre ™" + Che ™ 0 < 0,b> 0, |a| > b

If —a— is very large compared tob ( =1

z(t) = Ce™

Insert drawing here
If kv is very large ¢ >> 1 and —a—, b have similar magnitude
a+b=-w<0

z(t) = Cre @t + 6'26(7%7“))15

Insert drawing here

When ¢ = 1 there is fast damping but there is danger if there are modeling
errors of the system actually being underdeveloped

3 Roth, Hurwitz Asymptotic Stability

-> G(s) —->
Suppose g(s) is a proper rational transfer function, g(s) = n(s)/d(s)
Asymptotic stability depends on the zeros of g(s)

d(s) =s"+a, —1s""1 + ...+ ag
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They need to be in the left half plane.

d(s) is said to be a Hurwitz polynomial when they are.

Since d(s) is the product of factors of the form s+a and s? + by s + bg

With a, by, by real and positive, a necessary condition for d(s) to be Hurwitz is
that all coefficients aj be positive. This however is not sufficient.

Exercise 1. For a polynomial having all coefficients positive such that it is
not Hurwitz.

The Routh table associated with d(s) = s™ +a, — 1s" "> + ... + ag

ap | a2 | G4 | A
ap | as | as | ar
bi | by | bg | by
Cl | C2 | C3 | Cq
dy | da | dg | dy

The entries below the two rows of a’s are”
b1 = ar1az — apas/ax

by = a1aq — apas/ay
bz = aias — apar/ay
CcC1 = b1CL3 — bgal/bl
Coy = b1a5 — bgal/bl
dy = c1by — b102/C1

etc ...

ROUTH-HURWITZ THEOREM: The number of sign changes in the left-
hand column as you go down is equal to the number of zeros in the right half
plane.

Example : d(s) = s* + 8% + 52 + 11s + 10

Routh Table :

by =11%1—1%10/11
by=1%1—1x0/11
¢ =1/11—1%11/1/11 = —120
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Two sign changes in the first column means two zeros in the right half plane.

Reference : Lerrant, Lepschy, Viavo. 1999. ”A Simple Proof of the Routh
Test”. IEEE Transactions on Automatic Conrol. 44(6). 1306-1309.



