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u g(s) :. y=C1X1+C2X2+...+CnXn

Output Feedback

y1=C11X1+C12Xa+...+CinXn

u y2=C2aX1+C22%a+...+C2nXn
G(s) 2

) ""n=Cn1x1+Cn2K2+. ot CrnXn

(If C=(c;;) is invertible, you can do more)
Case 1:

_ o g(s)
gs)u—ky)=y<=y= T3 k()
If

(S) . Cnsnil + ...+ CQS + Cl
g\ = s+ ap_18" 1 +... +ag

1
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then,

g(s) _ Cns" 1 +... +C4
1+kg(s) s+ (an—1+kCy)s" 1 +...4+(ap+kCh)

We're interested in the zeros of 1 + k g(s) being in the right hand plane.
We can check the image of 1+ k g(s) for R(s) > 0

gets mapped to

/_-\> 1+kg(s)

It’s easier to check {1+ kg(s):s=1w;—00 <w < o0}

Nyquist Criterion Let g(s) be a scalar rational function of a complex vari-
able s: 0+ tw.

I'(g) ={utrv:u=RgLw)(v="(g(tw)); —00 <w < oo}
is called the Nyquist locus of g.
If T'(g) is bounded, we say the Nyquist locus encircles (ug + ¢t vp), p times if

(a) up +tv ¢ I'(g), and
(b) 27p is the net increase in the argument of g(tw) — ug — ¢ vy

Theorem: Suppose g(s) has a bounded Nyquist locus. If ¢g(s) has 7 poles in

g(s)
the r-h.p.(R(s) > 0), then =7

1 1
—Z + ¢0 is not on the Nyquist locus, and I'(g) encircles % =+ ¢0 times in the

has p + v poles in the r.h.p. if the point

clockwise sense.

Example:
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Multiplying & dividing by (—tw — 2),

—2 w
— 0 L
w2 +4 w2 +4 -

I'(g) =A{

The Nyquist locus looks like:

A

-1/2 m

-1/k

Y 4

Vad
T

A 4

The Nyquist locus encircles —1/k either

0 times if —1/k < -1/2 <= 1/k>1/2 <=k < 2
or

—1 times if —1/k > —-1/2 <= 1/k<1/2 <=k > 2

Proof: Let f be a rational function of a complex variable s. Suppose that in
a region R, f has a pole P; and a zero Z;.
N

E
N

(s—2z1)(s—22)...(s— zm)

(s =p1)(s — p2)(s —ps) ... (s — pn)
Let s trace a tiny circle clockwise about z;

Write f(s) = K

s=5(0)=(z1+ee) O<w<oo

Then,

f(@) _ KEeLO(s(IGG) — 22) . (8(9) — Zn) _ 5 o0
eet?. .. (s(0) —p) €

the argument decreases by 2w. More generally, the argument of f changes by

(z — p)2m as a curve is traversed clockwise around a region containing z-zeros

and p-poles(counting multiplicities). Hence, as w runs from —oo to oo, we can

think of tracing a very large "D” shaped region in the r.h.p., and the argument

g(0) and
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of 14k g(s) changes by 27 x (no. of times origin is encircled) = 27 x p = 27X (no.
of times g(s) encircles).

I

-

—0o0

™

Further remarks on frequency domain stability analysis Type-m systems and
the ”Final Value Theorem”:
Consider a signal ef; 0 <t < o0,

lim,_,0 sé(s) = [;° se(t)e ' du

= lim,o [—e(t) e |5 + [;7 €' (t) =]

=e(0) + [,7 € (t)dt

e(0) + lim;_,o0 €(t) — e(0)
= hthoo e(t)

Laplace Transform Final Value Theorem:

limy s o0 €(t) = limg—s 00 S €(S)

An Application: Tracking

E=Y—Y
é=19, = ([ +G(s)K)
The transfer function is (I + G(s) K)~! from y, to e.
Definition: A system is said to be of Type-m if it can track a polynomial
input of degree m with finite, but non-zero steady state error.
Suppose,
Yy () =Co+Crt+ ...+ Cpt™
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. Co C) Cm 1 m
Then,
(5) =
sels) = ———
1+kg(s)

If ¢(0) is finite, lims_,¢ s é(s) = oo . The only way sé(s) — 0 is if g(s) has s — 0
pole of order> m at s = 0.

Given,

& =Ax+Db, xg is an equilibrium.
Solution

— A To+b=0

<= 1z + A71b in the case that A is not invertible.

The equilibrium X is asymptotically stable if the state converges X for all
initial conditions.
The solution to this differential equation is,

eAt (X(0) +A71b) — AL-1)b,
and the equilibrium will be asymptotically stable if eA* — 0 as f — oo.

Let A = a + ib, and write e}t = elatib)t
e)\t — e(a+L b)t

— eateth

= e (cosbt +isinbt)

A1 o0
0 A 1]t Ne .o BPe31)
e

0 0 A\ e te _—
0 M tert
0 0 et

In general, when there is a non-trivial Jordan block, there will be matrix
entries involving terms t* e** for positive integers k. Then,

tk . ktk71
pe v

kAt
the Y

= hmf—>oo
k!

(— )\)k e~ At

In general, the dynamic characteristics associated with eigenvalue A = a+¢b

are,
et (cosbt +isinbt)) p(t)

hmt—)oo

(L’Hospital)

= hmt—)oo



