Lecture 11 *

October 11, 2012

1 Last Time

& = Az + Bu Time Domain
y=Cx
§=C(Is— A)"'B(u) Frequency Domain

2 Why is it Called Frequency Domain?

mi+ Kxr=u

-0 (3)

When the input is u = 0, the output is easily found from the matrix
exponential (Peano-Baker Series)

y(t) = Asin(wt) + Beose(wt)

where w = /%
m

*This work is being done by various members of the class of 2012
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(s — Ay =1 (S _“’>

Using from above (A)(B)(C)

0 L
A= " B:(O) ¢ =(1,0)
_. ]k 0 1
s w 0
. -1 _ 52+w2 52+OJ2
o(sI — A)~' = (1,0) I L (1)
82+OJ2 82+UJ2
v
52 + w?

Let u(t) = sin(w,t). Consider the system forced by u.

9= g(s)u(s)

w Wo
§2 + w? s + w?

24+ w? s2 4 w?

where

3 Changing Basis
Changing Basis: The effect on time and frequency doman representations,
Given T = Ax (1)

We have seen that solutions are conveniently represented by

eMt 0O . . . 0
0 e 0 . . . 0
0 0 et . . . 0
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In the case that A is normal. How do the representations of
i = Ax + Bu

y=Cx (t)
and

j=c(sI — A)'Ba
look under a change of basis

Let z = Tz, where T is any invertable matrix, Then
=Tz
=T(Az + Bu)
=TAT '2+ TBu

y=Cx=CT 'z
In terms of the state variable z, the system is written as

%= Az+ Bu
y=0Cz
A=TAT™!
B=TB

c=cr!

The frequency domain representation of the transform system is
§=C(Is—A)"'Ba
=CT Y(Is - TAT YT B

CT Y TT 's+TAT "TBa
=CT YT[Is — AT YT B
=CT HT[Is— A"'T~YHTBa

C(Is— A)~'Ba
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4 Realization Theory

Realization Theory: How do we get a state space representation from a transfer
function?

Case 1: SISO (single input single output) system of the form

S) =
9(s) ™ 4 Q18" 4 + a,

this relates inputs to outputs by § = g(s)@

First orderizing this in the obvious way.

r1T =Y
T2 =Y
Tn = ynil
T 0 1 0 . 0 T 0
To 0 0 1 . 0 To 0
= . 0 + u(t)
0 0 0 1 0
Tn —a, —a1 —Q3 . —Qp_1 Ty 1
A
Z2
Y=z = (1, ...... , O)
x'ﬂ
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Again we wish to find a system such that

or in other words

To find the state space representation, introduce an intermediate variable Z,

and write

we write these factors as

ISR

Iy 0 1 0 0 Iy 0
i) 0 0 1 0 T2 0
= . 0 + .| u®)
0 0 0 1 . 0
Tn —a, —a1 —as —Qp—1 Ty 1
r = T

The time domain rendering of y is then

n—1

d
y(t) = bnfl Wflf + box(t)

=bp 1Ty + . + box1
The overall system is
a1 0 1 0 0 1 0
T2 0 0 1 0 T2 0
= . 0 + .| u®)
0 0 0 1 0
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Starting from the same transfer function we perform long division

bn_1 bn_2—bn_1an_1
s + T +

(8" + ap_18" 14 ... +ao))bn_15’”_1 + o + B,
bn—1s""1 4+ by_1a,-15""2 + ....
bn—2 - bn—lan—l)sn72 + ...

Proper rational functions, in this way, admit Taylor series expansions about
infinity

what about MIMO (multiple input multiple output) systems?

G(s)=C(sI - A)™'B

-1
le(I—A) B
s s

For s sufficiently large, every entry in the matrix % is small hence we may
appeal to writing

where
1
f(r)_l—’l“
— =1 24
1—A +r+rt+
A\ 7! 2
(1-2) credi 2,
S
The
1 A\ B CAB CA’B
G(s)C<I> B:C—Jrc2 +C3 + .o
S S S S

Note that
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-1t otk
skt1l | T kI

Hence the inverse Laplace transform of G(s) is

A22 A33
CB+C(At)B+C< ; >B+C( 3f )B

= CeB

Theorem: Let G(s) be a ¢ x m matrixof rational functions such that the
degrees of the numerators exceed the degrees of the denominators for each entry.
Then there exist constant matrices A, B, C such that

G(s)=C(Is— A)~'B.

Proof let P(s) be the monic polynomial that is the least common multiple
(L.e.m) of the denominators (monic — leading coefficient = 1, l.c.m. : if f(s) =
(s=X)(s=PB)(s=7),9(s) = (s —B)(s— ), then the L.em is (s — X\)(s — B)(s —
~¥)(s = ¢); Then

P(s)G(s) = E — 0+ Eys+ Eys*> + E,_15" !
Where r = degree of P

Let O,, be the m x m zero matrix, let I x m be the m x m identity matrix.
Define A to be the rm x rm matrix

Om I, Om, Onm,
A= . . . . .
O O Om . I
—Polm —p1lm —p2lyy . —pp_1lm
where
P(s)=s"4+ P._1s" 1+ ... + P15+ po
let
Om
O"n
B = . 7C:(E03E17' 7Em)
Om
I,

Now we will show that
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Note: that (I's — A)~!B is the solution # to the matrix equation
(Is-—A)X =B (*)
Partition

g
T

=
Il

Ln

Compatible with A (i.e. 2 is m-dimensional)

then (*) may be written

T Om I Om . Om T
Ii'g Om Om Im . Om :il2
S . . . . . . +
. Om Om Om . I
-%n _poIm _pIIm _p2Im _pn—llm T
component wise this is
Si‘l‘:i’i_i_l Z.:l,....,T'f].
Si’r = —Po.fl — Pli‘g ..... — 7-,1515,, + Im
—(—PO—PLS— ..... - T,lS" 1)$1+Im
the last equation may be rendered as
S"3y = (=P, — Pls — ... — P,_1S" iy + 1,
1
f_ g
z Pls) m

Now note that

C(Is—A)™'B=C

= E iy + Fi@g + oo + Ep_120

= E,i1+ FE1889 + eoo. + Ep_15" L2,
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= (By+ E184 . + By 18" Ny

1 n—1y __
= %(Eo +Eis+ ..+ Ep_18"7) =G(s)

Om
Om Om I m Om Om
A= : . . . . B= ,C = (E,, En,
Om Om Om . L, Om
_poIm _pl—[m _pQIm . _pnfljm Im

Standard controllable realization of G(s)
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