Lecture 10 *

John Baillieul

September 20, 2012

$$\dot{x} = Ax + Bu$$

 $y = Cx$ $TimeDomain$

1

$$\hat{y} = C(Is - A)^{-1}B\hat{u}$$
 Frequency Domain

Time-invariant case only

Recall:

$$(sI - A)^{-1} = \frac{1}{|sI - A|} \cdot adj(sI - A) \tag{*}$$

 $adj \doteq adjoint, \ adjunct, \ adjugate$

Now,

$$|sI - A| = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$

is the characteristic polynomial.

(Convince yourself that each cofactor of sI - A is a polynomial of degree $\langle n. \rangle$)

Hence,
$$adj(sI - A) = E_{n-1}s^{n-1} + E_{n-2}s^{n-2} + \dots + E_1s + E_0$$

Thus,

$$(sI - A)^{-1} = \frac{E_{n-1}s^{n-1} + \dots + E_1s + E_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}.$$

From (*),

$$(s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0})I = E_{n-1}s^{n} + E_{n-2}s^{n-1} + \dots + E_{1}s^{2} + E_{0}s$$
$$-AE_{n-1}s^{n-1} - \dots - AE_{1}s - AE_{0}$$
$$= E_{n-1}s^{n} + (E_{n-2} - AE_{n-1})s^{n-1} + \dots + (E_{0} - AE_{1})s - AE_{0}$$

^{*}This work is being done by various members of the class of 2012

We equate coefficients:

$$I = E_{n-1}$$

$$a_{n-1}I = E_{n-2} - AE_{n-1}$$

$$a_{n-2}I = E_{n-3} - AE_{n-2}$$

$$\vdots$$

$$a_1I = E_0 - AE_1$$

$$a_0I = -AE_0$$

Theorem. The coefficients

$$a_0, a_1, \cdots, a_{n-1}$$

 $E_0, E_1, \cdots, E_{n-1}$

in the expression $(sI-A)^{-1} = \frac{E_{n-1}s^{n-1} + \dots + E_1s + E_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$, may be determined successfully by means of the recursive formulas:

(1)
$$\begin{cases} E_{n-1} = I \\ E_k = AE_{k+1} + a_{k+1}I \end{cases}$$

(2)
$$a_k = -\frac{1}{n-k}tr(AE_k)$$
 $k = n-1, n-2, \dots, 0$

Writing the algorithm:

Proof. It is really required only to show (2).

First, note:

$$AE_{n-1} = AI = A$$

$$AE_{n-2} = A^{2}E_{n-1} + a_{n-1}I = A^{2} + a_{n-1}A$$

$$AE_{n-3} = A^{3} + a_{n-1}A^{2} + a_{n-2}A$$

$$\vdots$$

$$AE_{k} = A^{n-k} + a_{n-1}A^{n-k-1} + \dots + a_{k+1}A$$

$$\vdots$$

$$tr(AE_{k}) = tr(A^{n-k}) + a_{n-1}tr(A^{(n-k-1)}) + \dots + a_{k+1}tr(A)$$

Claim 1:

$$tr(A^j) = \sum_{i=1}^n \lambda_i^j,$$

where $\lambda_1, \dots, \lambda_n$ are the eigenvalues (not necessarily distinct) of A.

<u>Proof of the claim</u>:

For any matrix B, $tr(B) = \sum_{i=1}^{n} \lambda_i(B)$. (If B is any matrix, and P is a change of basis that yields the Jordan Normal Form of B, call it J_B , then:

$$P^{-1}BP = J_B$$

$$\sum_{i=1}^{n} \lambda_i = tr(J_B) = tr(P^{-1}BP) = tr(BPP^{-1}) = tr(B)$$

If λ is an eigenvalue of A, then λ^j is an eigenvalue of A^j (because $Ax = \lambda x \Rightarrow A^2 x = \lambda Ax = \lambda^2 x$). The Claim 1 follows.

Hence,

$$tr(AE_k) = s_{n-k} + a_{n-1}s_{n-k-1} + \dots + a_{k+1}s_1,$$

where $s_j = \sum_{i=1}^n \lambda_i^j$.

The theorem now follows from Newton's formula

$$s_{n-k} + a_{n-1}s_{n-k-1} + \dots + a_{k+1}s_1 = -(n-k)a_k$$

Newton's formula may be found in Fadeev, V.N. $\underline{\text{Computational Aspects of Linear Algebra}}$, Dover 1959.

Theorem. Consider the polynomial:

$$p(s) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$

Let $\lambda_1, \dots, \lambda_n$ be the (not necessarily distinct) roots of this polynomial, and let

$$s_k = \sum_{i=1}^n \lambda_i^k$$

Then for $k = 1, \dots, n$,

$$s_k + a_{n-1}s_{k-1} + \dots + a_{n-k-1}s_1 + ka_{n-k} = 0$$

Proof. Associate to each root λ_i , a monic polynomial of degree n-1 which has root $\lambda_1, \dots, \hat{\lambda}_i, \dots, \lambda_n$, where " $\hat{\lambda}_i$ " means that the i-th root is omitted from the list. Denote this polynomial by:

$$s^{n-1} + a_{n-2}^i s^{n-2} + \dots + a_0^i = p_i(s)$$

$$s^{n-1} + a_{n-2}^{i} s^{n-2} + \dots + a_{0}^{i} = \frac{s^{n} + a_{n-1} s^{n-1} + \dots + a_{1} s + a_{0}}{s - \lambda_{i}}$$

$$= s^{n-1} + (a_{n-1} + \lambda_{i}) s^{n-2} + (a_{n-2} + a_{n-1} \lambda_{i} + \lambda_{i}^{2}) s^{n-3} + \dots + (a_{2} + a_{3} \lambda_{i} + a_{4} \lambda_{i}^{2} + \dots + a_{n-1} \lambda_{i}^{n-3} + \lambda_{i}^{n-2}) s$$

$$+ (a_{1} + a_{2} \lambda_{i} + a_{3} \lambda_{i}^{2} + \dots + a_{n-1} \lambda_{i}^{n-2} + \lambda_{i}^{n-1})$$

$$+ (a_{0} + a_{1} \lambda_{i} + a_{2} \lambda_{i}^{2} + \dots + a_{n-1} \lambda_{i}^{n-1} + \lambda_{i}^{n}) s^{-1}$$

$$+ \dots$$

But, of course, there are no terms with negative exponents. Equating coefficients,

$$a_{n-2}^{i} = a_{n-1} + \lambda_{i}$$

$$a_{n-3}^{i} = a_{n-2} + a_{n-1}\lambda_{i} + \lambda_{i}^{2}$$

$$\vdots$$

$$a_{1}^{i} = a_{2} + a_{3}\lambda_{i} + \dots + a_{n-1}\lambda_{i}^{n-3} + \lambda_{i}^{n-2}$$

$$a_{0}^{i} = a_{1} + a_{2}\lambda_{i} + \dots + a_{n-1}\lambda_{i}^{n-2} + \lambda_{i}^{n-1}$$

Then,

$$\lambda_1 a_k^1 + \lambda_2 a_k^2 + \dots + \lambda_n a_k^n = \lambda_1 (a_{k+1} + a_{k+2}\lambda_1 + \dots + a_{n-1}\lambda_1^{n-k-2} + \lambda_1^{n-k-1})$$

$$+ \lambda_2 (a_{k+1} + a_{k+2}\lambda_2 + \dots + a_{n-1}\lambda_2^{n-k-2} + \lambda_2^{n-k-1})$$

$$\vdots$$

$$+ \lambda_n (a_{k+1} + a_{k+2}\lambda_n + \dots + a_{n-1}\lambda_n^{n-k-2} + \lambda_n^{n-k-1})$$

This last expression

$$= a_{k+1}s_1 + a_{k+2}s_2 + \dots + a_{n-1}s_{n-k-1} + s_{n-k}$$

We know that each a_k^i is the sum of products of roots in the list $\lambda_1, \dots, \hat{\lambda}_i, \dots, \lambda_n$. This may be written explicitly

$$a_0^i = (-\lambda_1)(-\lambda_2)\cdots(-\hat{\lambda}_i)\cdots(-\lambda_n)$$

$$\dots$$

$$a_{n-1}^i = -\lambda_1 - \lambda_2 - \cdots - \hat{\lambda}_i - \cdots - \lambda_n$$

$$a_{n-3}^i = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \cdots + \lambda_{n-1}\lambda_n$$

$$\hookrightarrow no \ product \ with \ \lambda_i \ as \ a \ factor$$

More generally, the coefficient a_k^i involves sum of products of roots taken n-k-1 at a time. From this we may explicitly write down an expression for $\lambda_1 a_k^1 + \dots + \lambda_n a_k^n$

E.g.

$$\lambda_1 a_{n-2}^1 + \lambda_2 a_{n-2}^2 + \dots + \lambda_n a_{n-2}^n$$

$$= \lambda_1 (-\lambda_2 - \lambda_3 - \dots - \lambda_n) + \lambda_2 (-\lambda_1 - \lambda_3 - \lambda_4 - \dots - \lambda_n)$$

$$+ \dots + \lambda_n (-\lambda_1 - \lambda_2 - \dots - \lambda_{n-1})$$

$$= -2a_{n-2}$$

Next,

$$\lambda_1 a_{n-3}^1 + \lambda_2 a_{n-3}^2 + \dots + \lambda_n a_{n-3}^n$$

$$= \lambda_1 (\lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \dots - \lambda_{n-1} \lambda_n) + \lambda_2 (\lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \dots - \lambda_{n-1} \lambda_n) +$$

$$+ \dots + \lambda_n (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \dots - \lambda_{n-2} \lambda_{n-1})$$

$$= -3a_{n-3}$$

This pattern persists, and in general,

$$\lambda_1 a_{n-k}^1 + \dots + \lambda_n a_{n-k}^n = -k a_{n-k}$$

and this proves the theorem

The results presented in today's lecture show how to get

$$C(sI-A)^{-1}B$$

given A, B, C. i.e.

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \Leftrightarrow \hat{y} = C(sI - A)^{-1}B\hat{u}$$

<u>Problem to think about</u>: Given $\hat{y} = G(s)\hat{u}$, where G(s) is a matrix of proper rational functions, find A, B, C.