Solutions

Prof. J. Baillieul Mechanical Engineering Electrical and Computer Engineering Systems Engineering

(10/29/2024)

ENG EC/ME/SE 501:

First Quiz

1. (a) Find the Jordan Normal Form J_A of 15 pts

$$
\mathbf{A} = \left(\begin{array}{rrr} 5 & 5 & -4 \\ 8 & 5 & -4 \\ 12 & 6 & -5 \end{array} \right).
$$

- (b) Find a matrix U such that $U^{-1}AU = J_A$. 15 pts
- (c) For the J_A found in part (a), compute $e^{J_A t}$ in closed form. 10 pts
- 2. The characteristic polynomial of the matrix

$$
\left(\begin{array}{cccc} -1 & 2 & 4 & -2 & 8 \\ 18 & 2 & 24 & -12 & -7 \\ -12 & -8 & -3 & 10 & 4 \\ -18 & -12 & -30 & 4 & 3 \\ 3 & 2 & -3 & 6 & 5 \end{array}\right)
$$

is of the form $p(s) = s^5 + a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0$. Find the value of a_4 . **15** pts

- 3. Compute e^{At} where $A = \begin{pmatrix} \sigma & \omega \\ -\omega & \sigma \end{pmatrix}$. 15 pts
- 4. Let $g(s) = \frac{6s+8}{s^3+9s^2+23s+15}$. Do any two out of the following four:
- (a) Write down the standard controllable realization. Is this system observable?
- (b) Write down the standard observable realization. Is this system controllable? $\{15 \text{ pts} \text{ each}$
- (c) Write down a realization in "tandem form".
- (d) Write down a realization in "Jordan form".

501 EXAM SOLUTIONS

EQUIVALENT REDUCED ROW ECHELONI FORM IS

$$
\begin{pmatrix} 1 & 0 & -1/6 \\ 0 & 1 & -7/3 \\ 0 & 0 & 0 \end{pmatrix}
$$

IF WE LET X3=S, THE WE READ OFF THE REST OF THE SOLUTION $X_2 = 2/36$, $X_1 = 1/36$. THE EIGENVECTOR MAY BE TAKEN TO TSE

$$
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = S \begin{pmatrix} \frac{1}{2} \\ 2/3 \\ 1 \end{pmatrix}
$$

 $SIEP2:$ Solve $(A-\lambda I)^2\zeta=0$.

$$
\begin{pmatrix} 4 & 5 & -4 \ 7 & 4 & -4 \ 12 & 6 & -6 \end{pmatrix} \begin{pmatrix} 4 & 5 & -4 \ 8 & 4 & -4 \ 12 & 6 & -6 \end{pmatrix} = \begin{pmatrix} 8 & 16 & -12 \ 16 & 32 & -24 \ 24 & 48 & -36 \end{pmatrix}
$$

RREF.

Contract Contract Contract

$$
\begin{pmatrix} 1 & 2 & -\frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

SOLUTION IS OBTAINED BY SETTING $X_3 = S$ $x_1 = \sqrt[3]{25} - 2t$. $X_2 = L$. THEN $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3/25 & -2t \\ t \\ 5 \end{pmatrix} = 5 \begin{pmatrix} 3/2 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$ Note that for $s=1$, $t=2/3$, we obtain the previously determined eigenvector. Note that From this calculation it follows that $ker(A-\lambda I)^2$ is a two dimensional subspace, and thus there is considerable latitude in choosing a element of the desired JNF basis. A somewhat arbitrary choice is $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$

which is in
$$
ker(A-\lambda I)
$$
 [So $\lambda=1$], as desired. We have shown that

$$
A\begin{pmatrix} 3/2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 12 \end{pmatrix} + \begin{pmatrix} 3/2 \\ 0 \\ 1 \end{pmatrix}
$$

$$
A\begin{pmatrix} z \\ 8 \\ 12 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 12 \end{pmatrix}
$$

$$
\frac{\text{STEP3:} \quad \text{Solve (A-}\lambda\text{I})\overline{x} = \emptyset \quad \text{for } \overline{x} \text{ with } \lambda = 3. \quad \text{One choice :} \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.
$$

 ω ith respect to the basis vectors determined in Steps 2 and 3, the JNF is seen to be

$$
\begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 3 \end{pmatrix}
$$

$$
|(b) Letting A = \begin{pmatrix} 5 & 5 & -4 \\ 8 & 5 & -4 \\ 12 & 6 & -5 \end{pmatrix} we
$$

See from Problem (a) that

$$
\begin{pmatrix} 2 & 3/2 & 1 \\ 9 & 2 & 3/2 \end{pmatrix} = \begin{pmatrix} 2 & 2+3/2 & 3/2 \\ 8 & 8+0 & 3 \end{pmatrix}
$$

A $\begin{pmatrix} -2 & -72 & 1 \ 8 & 0 & 2 \ 12 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 2+72 & 6 \ 8 & 8+0 & 6 \ 12 & 12+1 & 9 \end{pmatrix}$ $=\begin{pmatrix} 2 & 3/2 & 1 \ 8 & 0 & 2 \ 12 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 3 \end{pmatrix}$
Hence, this is the desired U.

1(c) Since
$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}
$$
 and $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
\nCompute,
\n
$$
\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} e^{t} & 1 & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{3t} \end{pmatrix}
$$

2. Given that

$$
A = \begin{pmatrix} -1 & 2 & 4 & -2 & 8 \\ 18 & 2 & 24 & -12 & -7 \\ -12 & -8 & -3 & 10 & 4 \\ -18 & -12 & -30 & 4 & 3 \\ 3 & 2 & -3 & 6 & 5 \end{pmatrix}
$$

CharacteristicPolynomial[A, s]

315 108 - 18 024 s + 4837 s² + 305 s³ - 7 s⁴ + s⁵ Hence a_4 =-7.

 $3.$

$$
\begin{pmatrix} e^{t\sigma}\cos[t\omega] & e^{t\sigma}\sin[t\omega] \\ -e^{t\sigma}\sin[t\omega] & e^{t\sigma}\cos[t\omega] \end{pmatrix}
$$

$$
H(a)
$$
\n
$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -15 & -23 & -9 \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$
\n
$$
C = \begin{pmatrix} 8 & 6 & 0 \end{pmatrix}
$$

$$
\Delta dt \quad \begin{pmatrix} C \\ C A \\ C A^2 \end{pmatrix} = \det \begin{pmatrix} 8 & 6 & 0 \\ 0 & 8 & 6 \\ -90 & -138 & -46 \end{pmatrix}
$$

 $= 440$

HENCE OBSERVABLE.

 $4(b)$

$$
53 + 952 + 235 + 15 \overline{65 + 8}
$$

$$
\underline{65 + 8}
$$

$$
-46 + \cdots
$$

$$
-46 + \cdots
$$

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -15 & -23 & -9 \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 6 \\ -416 \end{pmatrix} \qquad C = (1, 0, 0)
$$

\n
$$
(B \quad A \times B \times A^2 \times) = \begin{pmatrix} 0 & 0 & -116 \\ 6 & -416 & 276 \\ -416 & 276 & -1516 \end{pmatrix}
$$

$$
\det\begin{pmatrix} 0 & 0 & -46 \\ 6 & -46 & 276 \end{pmatrix} = -440
$$

\n
$$
-46 & 276 -1516
$$

\nHence $Contr0$ 1 also
\n
$$
A = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 52 & 1 \\ 0 & 0 & 53 \end{pmatrix}
$$

\n
$$
B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$

\n
$$
C = (C_1, C_2, C_3)
$$

\n
$$
C = (C_1, C_2, C_3)
$$

\n
$$
C = (C_1, C_2, C_3)
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

\

 $-44-$

Solving For the
$$
c_i
$$
's to get the
\n 0.5×10^{16} From the
\n $C_i = 2$ $C_2 = 6$ $C_3 = 0$
\n A_4
\n A_5
\n $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$
\n B_5
\n $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$
\n C_5
\n C_6
\n C_7
\n C_8
\n C_9
\n C_9
\n C_1
\n C_1
\n C_2
\n C_1
\n C_2
\n C_3
\n C_4
\n C_5
\n C_6
\n C_7
\n C_8
\n C_9
\n C_9
\n C_1
\n C_1
\n C_1
\n C_2
\n C_3
\n C_4
\n C_5
\n C_7
\n C_8
\n C_9
\n C_9
\n C_1
\n C_1
\n C_1
\n C_1
\n C_2
\n C_3
\n C_3
\n C_4
\n C_5
\n C_7
\n C_8
\n C_9
\n C_9
\n C_1
\n C_1
\n C_2
\n C_3
\n C_3
\n C_3
\n C_4
\n C_5
\n C_7

 \overline{a}

