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ABSTRACT: 
 It is well known that an unbiased forecast of the final value of a portfolio requires compounding 

at the arithmetic mean return over the investment horizon. However, the maximum likelihood practice, 

common with academics, of compounding at the estimated mean return, produces upward biased and 

highly inefficient estimates of long-term expected returns. We derive analytically two estimators of long-

term expected returns for given sample sizes and horizons, one unbiased and one efficient in small 

samples. Both entail penalties that reduce the annual compounding rate as the investment horizon 

increases. The unbiased estimator, which is far lower than the compounded arithmetic average, is still 

very inefficient, often more so than a simple geometric estimator known to practitioners. Our small-

sample efficient estimator is even lower. These results compound the sobering evidence in recent work 

that the equity risk premium is lower than suggested by post-1926 data. Our methodology and results are 

robust to extensions such as predictable returns. We also confirm analytically that parameter uncertainty, 

properly incorporated, produces optimal asset allocations in stark contrast to conventional wisdom. 

Longer investment horizons require lower, not higher, allocations to risky assets.  
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Estimates of expected long-term returns, or the risk-premium, are crucial inputs in 

empirical asset pricing and especially portfolio theory. First, it is important to know what wealth 

a portfolio is expected to generate over the long term, for example, in the context of pension 

funds and retirement policy. Second, this forecast is an implicit input to the asset allocation 

decision, the optimal mix of risky and risk-free assets. Portfolio theory is most always derived 

under the assumption that the agent knows the parameters of the return distribution. While 

sophisticated models of time-varying opportunity sets are well developed, the effect of parameter 

uncertainty on the forecast and the optimal investment decision are not as often discussed. 

 

Recent reconsiderations of the equity risk premium have put the issue of parameter 

estimation back on the front burner of academic research. Fama and French (2002) or 

Jagannathan et al. (2000) make the case that the risk premium, i.e., the mean return in excess of 

the risk-free rate, is less than implied by post-1926 average returns. In addition, more inclusive 

databases also result in lower historical risk premia. For example, Dimson et al. (2002) and 

Jacquier et al. (2003) show that including returns from pre-1926 periods reduces historical 

average returns. Our results compound this sobering evidence. We show that a downward 

penalty for estimation risk should be applied to the per-period estimate of the risk premium when 

it is used for long-term forecasts. This argument is absent in the current literature on the 

declining equity premium and its implications for long-term investment. 

 

At the core of the discussion is the magnitude of the estimation error in mean returns 

even with long samples. Of course, given the true parameters of the asset-return distribution, an 

unbiased forecast of the terminal value of a portfolio obtains by compounding the initial value at 

the arithmetic mean rate of return over the investment horizon. Substituting a maximum 

likelihood, arithmetic average for this true mean is of course asymptotically efficient and often 

advocated, e.g., Campbell (2001). Yet, practitioners often prefer geometric averages to simulate 

future portfolio values, arguing that the arithmetic average produces upward-biased long-term 

forecasts. 

 

 This paper studies the effect of estimation error when this unbiased and efficient one-

period maximum-likelihood estimator is used for multi-period forecasting. We show that the 

usual asymptotic arguments for the consistency and efficiency of this common practice, although 

 1



maximum likelihood, do not apply. This is because the forecasting horizon is often sizable 

relative to the sample size. Hence, the small-sample bias and inefficiency due to Jensen’s 

inequality and the estimation error of the mean, do not vanish. Asymptotics here require the ratio 

of the length of the estimation period to that of the forecasting horizon also to be large.   

 

 First, for the unbiased estimator, initially discussed by Blume (1974), we review the 

analytic derivation detailed in Jacquier et al. (2003).1 Then we derive an analytical formula for a  

small-sample efficient estimator, based on the minimization of mean squared errors. This is an 

appropriate replacement for the maximum likelihood procedure, here the arithmetic estimator, 

when asymptotic conditions are not met. Both these new estimators of expected long-term 

returns compound initial value at a weighted average of the arithmetic and geometric average 

returns. The weights depend on the ratio of the estimation period to the investment horizon. The 

small-sample efficient estimator is always lower than the unbiased estimator, itself always 

smaller than the arithmetic estimator. Using the small-sample efficient estimator results in a 

considerable efficiency gain over the unbiased estimator. In fact, even the practitioner-favored 

geometric estimator, while biased, is more efficient than the unbiased estimator for large 

investment horizons. 

 

 It is important to recognize that simulation methods of future returns are not immune to 

these bias and inefficiency problems. Most simulation methods that use sample estimates as 

inputs to a scenario analysis only reproduce the problems which we describe analytically. 

 

Our initial analysis focuses on the simple case of i.i.d. log-normal returns, so we verify 

the robustness of our methodology and results to generalizations of this simple data generating 

process. Namely, extending our optimal estimator to allow for predictable returns requires only a 

simple modification of the initial formula. We show that predictability has little effect on the 

compounding of estimation risk. This is because predictability modifies the data generating 

process of both past and future data in ways that partially cancel in the computation of the 

estimator. We also discuss robustness to heteroskedasticity and the estimation of the variance. 

 

To illustrate the practical import of these results, we consider an application to a classic 

problem of optimal asset allocation. We show that, even with i.i.d. returns, the optimal allocation 
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to the risky asset must be reduced compared to the known-parameter case to properly incorporate 

estimation risk; the longer the horizon, the greater the reduction. This is in stark contrast to 

conventional wisdom that recommends increasing the allocation for longer horizons. For realistic 

values of the inputs, we demonstrate that these effects are large and should be taken into account.  

Again, we provide easy-to-implement analytical results.   

 

The next section reviews the biases of the geometric and arithmetic estimators of 

expected long-term returns, and the derivation of an unbiased estimator. Section 2 derives a 

small-sample efficient estimator which should be used instead of the maximum likelihood 

estimator. We show that the efficiency gain compared to the maximum likelihood and the 

unbiased estimators are considerable. Section 3 relaxes the i.i.d. assumption and discusses the 

robustness of the estimators proposed, providing specific results for autocorrelated returns. 

Section 4 discusses the implications of these results for long-term asset allocation. Section 5 

concludes. 

 

1 UNBIASED ESTIMATION OF LONG-TERM EXPECTED RETURNS 

1.1 Biases of the arithmetic and geometric estimators 

 

 We now show that the two most common competing estimators of expected future long-

term returns are both biased. Assume that the one-period return, Rt, of a stock portfolio is log-

normally distributed. That is, the log-return rt = ln(1 + Rt) is i.i.d. normal with mean µ,  standard 

deviation σ.2 Therefore, the multi-period log-return, a sum of one-period log-returns over a 

future investment horizon of H periods, is normal with mean Hµ and variance Hσ2. For an 

investment of $1, VH ,  the future portfolio value in H periods, can be written as 

VH  =  $1 × exp(µH + σ∑
i=1

H
 εt+i ), where  εt+i ~ i.i.d. N(0,1)   (1) 

By the properties of the log-normal distribution, the expected return over H periods is: 

 
E(VH) = e(µ + ½σ2)H  =  [1 + E(R)]H       (2) 
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Equation (2) is the basis of the standard practice of forecasting portfolio value by compounding 

at the expected rate of return. For example, the Ibbotson Associates publication Stocks, Bonds, 

Bills and Inflation Annual Yearbook simulates future portfolio values using arithmetic averages 

of past returns. Campbell (2001), who addresses the impact of autocorrelation on long-term 

forecasts, recommends the substitution of the sample average R
−

 for E(R) when returns are i.i.d.  

 

However, the sample-average holding period return, R
−

, is an unbiased but of course noisy 

estimator of E(R). Jensen’s Inequality implies therefore that  

 E([1 + R
−

]H ) > [1 + E(R
−

)]H   =  [1 + E(R)]H = E(VH).    (3) 

Because of the estimation error in R
−

, the compounded sample-average return gives an upward-

biased estimate of the expected future portfolio value. That the bias should vanish in large 

sample is probably at the root of the typical practice of substituting the maximum likelihood 

estimate of E(R) into (2). We will see that this asymptotic intuition is misleading when H is 

sizeable compared to the sample size T. Blume (1974) first discusses this bias. However, because 

he assumes that returns are normal rather than log-normal, he does not obtain exact formulas for 

expected values or bias. Cooper (1996) analyzes the bias in the context of discount factors for 

capital budgeting purposes.  He concludes that the arithmetic mean is usually nearly appropriate, 

even accounting for estimation error. However, because discount factors involve powers of the 

reciprocal of the rate of return, the biases he finds differ drastically from those considered here. 

In our case, Jacquier et al. (2003) provide an analytical expression for the bias and an unbiased 

estimator. We review them briefly. 

 

 Denote by µ̂, the sample average computed over T past periods of log-returns,  i.e.,  the 

maximum likelihood estimator of µ..  It can be written as 

 µ̂  = 
1
T ∑

i = 1

T
 ln(1 + R−i )  =  

1
T 




µT + σ ∑

i = 1

T
 ε−i   . 

As is well known, µ̂ is unbiased with standard deviation σ/ T.  It is conveniently written as  

 µ̂  = µ + ω σ/ T  , where  ω ~ N(0,1).       (4) 
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It is well known, e.g., Merton (1980), that for i.i.d. returns, the precision of the estimator 

of µ depends only on the calendar span of the historic sample period. That is, µ̂ cannot be made 

more precise by sampling the data more often, only by sampling for a longer time period. This is 

at the core of the imprecision of standard estimates of mean returns and market risk premia. See 

Fama and French (2002) and Jagannathan et al. (2000) for recent discussions. In contrast, the 

estimate of variance can be made arbitrarily precise by sampling more frequently within a given 

sample period. Therefore, as high-frequency returns data have been available for at least 40 

years, the estimation error in σ is a second order effect. For our purposes, we will ignore the 

estimation error in σ.  

 

A first estimator for E(VH), based on the arithmetic average return, replaces E(R) in (2) by 

R
−

. Alternatively, one can insert µ̂ in (2), estimating 1+E(R) by e(µ^  + ½σ2). (1 + R
−

)H and e(µ^  + ½σ2)H, 

while not exactly equal in small sample, have the same probability limit. They are both Maximum 

Likelihood Estimators (MLE) of E(VH). Asymptotically, the MLE is invariant to transformation, 

so substituting µ̂ or R
−

 appropriately, results in a MLE estimator of E(VH). Because the sampling 

distribution of (1 + R
−

)H is only asymptotically lognormal and requires simulations, we would 

prefer to use e(µ^  + ½ σ2)H which has an analytical distribution. We must first convince ourselves, 

however, that the two estimators have similar properties for realistic values of T and H. 

 

Insert Figure 1 here 

 

 

Figure 1 plots the ratios of the sample means and standard deviations of the two 

estimators for investment horizons, H, from 1 to 40 years, historical sample size T = 75 years, µ 

= 0.1, σ = 0.2. These values are typical of a scenario where µ is estimated from a long sample of 

equity returns. For example, the mean and standard deviation of the log-return on the S&P500 

from 1926 to 2001 are .099 and .196. Figure 1 shows clearly that the two estimators are very 

similar even for long horizons. The sample means of the two estimators are within 0.5% of each 

other even for horizons up to 40 years. Their standard deviations are within 4% of each other. 

For the rest of the paper, we will refer to A = e(µ^  + ½ σ2)H as the arithmetic average estimator.   
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The bias of the arithmetic average (MLE) estimator A follows from (4) . Rewrite A as: 

 A = e(µ^  + ½ σ2)H = e(µ + ωσ/ T + ½ σ2)H   = e(µ  + ½ σ2)H e(ωσ/ T )H  

Substituting from equation (2),  we obtain  

 E(A)  = E(VH)  E[eωσH/ T ] = E(VH) e½σ2H2/T     (5) 

Hence, the arithmetic average estimator is always biased upward by a factor of e½σ2H2/T.  

 

Note that µ̂ is the logarithm of the geometric mean return. The “geometric average” 

estimator, denoted G, compounds at the exponential of µ̂ rather than µ̂ + ½ σ2. Practitioners often 

advocate it as an alternative to the arithmetic average estimator A. The argument is often made as 

follows. “As G = (P1 / P-T )1/T, compounding at G into the future is the only way to generate 

forecasts that match the growth rate observed in the past, e.g. from T periods ago until now.” 

We can write the expectation of G as: 

 

 E(G)  =  E(eµ
^ H)  =  E[e(µ + ωσ/ T )H ]  =  eµH  + ½σ2H2/T  

=  E(VH) e½ σ2(H/T − 1)H        (6) 

 

Therefore the intuition in the above argument is correct only in the razor’s edge case for which H 

= T. Then the geometric average estimator results in an unbiased forecast of expected cumulative 

returns. In all other cases, G is biased. The investment horizon H is of course exogenously set. 

There is no reason to restrict the estimation period T to be equal to H even if this were feasible. 

This would amount to giving up precision in µ̂, just for the sake of removing bias. One clearly 

wants to use the largest T available no matter the investment horizon considered.  

 

1.2 Unbiased Forecasts of Long-Term Expected Returns 
For any T and H, one can design an unbiased estimator of E(VH). In fact, the direct 

inspection of equations (5) or (6) shows that compounding at a rate µ̂ + ½ σ2(1 − H/T) removes 

the bias.  

 

Formally, we consider estimators in the class 
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C = e(µ^  + ½kσ2)H.        (7) 

These estimators nest the geometric average estimator G (k = 0) and the arithmetic average 

estimator A (k = 1).  They can be interpreted as using a compounding rate that is a linear 

combination of A and G with weight on A equal to k.3 The unbiased estimator U, obtains by 

solving for the value kU that sets E(C) in (7) equal to E(VH). The result is  

 

kU = 1 – H / T.         (8) 

 

The unbiased estimator, U, is always smaller than the arithmetic estimator A since kU is 

less than 1. Only as the forecast horizon H becomes small relative to the estimation period, T, 

does the maximum likelihood estimator become unbiased.  The geometric average estimator, G, 

is biased downward when kU is positive, that is, when H < T. For investment horizons longer 

than the estimation period, i.e., H > T, G is biased upward, like A. G is unbiased only for T = H. 

 

 The bias in A can persist even as µ̂ converges to µ when the sample size T increases, as 

long as the ratio H/T remains sizeable. For the estimator of expected terminal wealth to converge 

to its true value, both T and T/H must be large. 

 

2   SMALL-SAMPLE EFFICIENT ESTIMATION 

Asymptotics in our case is in T/H, not in T. The previous section showed that for relevant 

values of T and H, the MLE is biased; large sample conditions are not met. One can then strongly 

suspect that it not efficient either in the relevant small-sample conditions. Rather than counting 

on asymptotic efficiency, i.e., asymptotic minimum mean-squared error, one needs to construct a 

small-sample-efficient estimator for the sample size and horizon considered. 

  

Further, note that unbiasedness is not in itself an estimation goal. Rather, it is typically 

used if needed to reduce a universe of possible estimators to a manageable set. This can lead to 

inadmissible estimators, as noted for example by Stein (1956). Instead, estimators should be set 

to minimize a loss function, a measure of average distance to the true parameter. When the 

problem at hand does not supply a specific loss function, a natural candidate is the mean squared 
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error (MSE), the expectation of the squared deviation of the estimator from the true parameter.  

MSE can be written as the sum of the variance and squared bias. If tractability is not an issue, 

there is no reason to impose unbiasedness when searching for a minimum mean squared error 

estimator.   

A minimum MSE estimator of expected future wealth, again within the class of 

estimators C in (7), is easily derived. Recall that the class nests A, G, and U, for k = 1, 0 and 1 − 

H/T.  The MSE of an estimator in class C is: 

 

MSE(C)= E[C −  E(VH) ]2  =  E(eµ̂H +  ½kσ2H  −  eµH +  ½σ2H )2 

= E(e2µ̂H + kσ2H  −  e2µH +  σ2H  −  2 eµ̂H+ ½kσ2H +µH + ½σ2H)  (9) 

Substituting µ̂ = µ + ω σ/ T, from (4) and evaluating  the expectation yields: 

 
 MSE(C) = e2µH + 2σ2H2/T  + kσ2H  + e2µH +  σ2H  −  2 e2µH + ½σ2H2/T + ½kσ2H + ½σ2H 

 

Minimizing this expression over k results in the minimum MSE estimator, denoted M, of E(VH): 

 

kM = 1 – 3 H/T            (10) 

 

Hence, for realistic values of T and H, the two popular estimators, arithmetic and 

geometric, and the unbiased estimator sometimes proposed in the literature, are all sub-optimal 

in terms of mean squared error, the most commonly used risk function. Equation (10) also shows 

that the best estimator of expected cumulative returns is even lower than the unbiased estimator. 

Table 1 compares the estimators for relevant ranges of T and H.  

 

 

-- Insert Table 1 here -- 

 

Do these different values of k lead to very different estimates of E(VH)?  To illustrate the 

long-term effect of these differences in compounding rates, Panel (a) of Figure 2 plots the 

various estimates of E(VH) versus the investment horizon H. The estimates of final wealth 
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diverge dramatically across estimators for longer horizons. For T = 75, the arithmetic average A 

predicts that $1 will compound to $120 in 40 years, the unbiased estimator forecasts $80, while 

the minimum MSE forecasts only $25. When T is 30 years, U and especially M dramatically 

penalize predictions for investment horizons longer than T. The optimal estimator M penalizes 

long-horizon forecasts far more than U, as soon as H becomes  sizeable relative to T. 

 

Insert Figure 2 here 

 

Panel (b) of Figure 2 plots the effective annual compounding rates of A, G, U, and M 

versus H, for T = 75 years (the length of the CRSP monthly data base) and 30 years (a shorter 

sample size more relevant for an emerging market). The two horizontal lines in Panel b, A (e.1 + ½ 

× .22
 = 12.7%) and G (e.1 = 10.2%), are unaffected by H, while U and M “penalize” the increasing 

H by linearly decreasing the compounding rate. The effects are large. Even for a lengthy sample 

period of T = 75 years, a 30-year investment horizon, broadly appropriate for a retirement fund, 

calls for the compounding rate to decline from the arithmetic 12.7%, to about 10% for M.  

Necessary corrections become dramatic with shorter sample periods. For T = 30, the appropriate 

compounding rate is about 8% even for a 20-year investment horizon. These results compound 

the sobering message in Fama-French (2002) and Jagannathan et al. (2000), that the per-period 

estimate of the equity premium is lower than once thought. 

 

One may argue that the results for M are specific to the risk function chosen. While this is 

of course correct, the loss function chosen here has some wide appeal. Mainly, it is the small 

sample implementation of the efficiency criterion invoked to justify the maximum likelihood 

principle. Also, the same estimator is obtained whether one minimizes sampling loss in terms of 

dollars or returns. Estimators optimal with respect to alternative loss functions, e.g., asymmetric, 

can be derived in a similar fashion, see Jacquier (2004). 

  

Because the predictions of the various estimators of final wealth differ so considerably, 

so must their predictive accuracies. Panel A of Figure 3 plots the root mean squared error of each 

estimator as a multiple of the value of expected final wealth, for µ = .1, σ = .2, T = 60, as a 

function of H. By construction of course, M is most precise at all horizons, and therefore is the 
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lowest curve. We first note that the precision of the MLE estimator, A, largely favored in the 

academic community, is astonishingly poor. At a horizon of 40 years, its RMSE is nearly 2.5 

times the true expected value of final wealth. Such a magnitude renders estimates nearly useless. 

The second poorest estimator in terms of precision is clearly U, the unbiased estimator. In fact, 

surprisingly enough, it is the geometric estimator G, which comes second best. The RMSE of G 

doesn’t diverge much from that of the efficient estimator for horizons below 25 years. Even at a 

horizon of 40 years, the RMSE of G is only about 30% higher than that of M.   

 

 

Insert Figure 3 here 

 

 Panel b of Figure 3 gives us further information on the relative precisions of these 

estimators. There, we plot the percentage improvement in RMSE of G, U, and M over A as a 

function of H/T. Again, by construction, the efficient estimator M establishes an upper bound on 

the improvement in RMSE. At very short horizons, A, M, and U are all virtually identical with 

values of k ≈ 1 [see equations (8) and (10)], so the improvement over A is negligible. As the 

horizon extends, the improvement of M becomes dramatic, surpassing 60 percent at a 40-year 

horizon. The geometric estimator does its best at mid-range horizons. Its curve achieves 

tangency with that of M at H/T = 1/3. This follows from equation (10), which shows that at this 

point, kM = 0, making G achieve efficiency. Close to this point, on either side of it, G is close to 

efficient. It is noteworthy that as soon as H/T is greater than about .2, the unbiased estimator U 

has a substantially higher RMSE than G. In fact, the geometric estimator is less precise than A 

and U, with a negative “improvement” in RMSE, only at shorter horizons. This is because, while 

the estimators M, A, and U converge for very low values of H/T, G remains downward biased. 

Note that the crossing of the curves for U and G (around H/T = 0.2) occurs where G 

compensates for its squared bias (U has no bias) with an equal reduction in variance. For larger 

H/T’s, the variance of U is just too large to make its unbiasedness an interesting feature. 

 

To summarize, the catastrophic lack of precision of A, the relatively disappointing 

imprecision of U, and strong performance of the geometric estimator in the middle range of 

investment horizons are the striking features of Figure 3.   
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3 ROBUSTNESS 

To produce clear analytical results, we have made so far a number of simplifying 

assumptions. This section shows that the results are robust to these assumptions.  

A large literature beginning with Summers (1986), Poterba and Summers (1988), and 

Fama and French (1988) has addressed the autocorrelation of long-term returns.  Estimates point 

to negative autocorrelations at lags in business cycle range.  While the strength of the evidence is 

somewhat disputed, our analysis easily adjusts to autocorrelated returns. Autocorrelation enters 

the analysis through the variance of two sums of returns, namely H future returns for the forecast 

and T past returns for the estimate of µ. Given an autocorrelation structure, we introduce the 

correlation matrix C and vectors of ones, i, of dimensions T or H as appropriate. The variance of 

a sum of log-returns is then σ2i′Ci, instead of Tσ2 or Hσ2.  This affects E(VH) in equation (2),  

where the exponential term becomes H(µ + ½  i′CHi σ2/H). Similarly, µ̂ in equation (4) becomes 

µ + ω σ i′CTi/T.  The analysis then follows. Defining FT = i′CTi/T and FH = i′CHi/H, the 

unbiased and minimum mean-squared error estimators require respectively 

 

kU = 1 –  
H
T  × 

FT
FH

           (11) 

kM = 1 –  
3H
T  × 

FT
FH

         (12) 

 
The correction is similar for other non-i.i.d. specifications. The ratio FT/FH more 

generally can be replaced with the ratio of the variance of the sum of the T returns from the 

estimation period divided by T, to the variance of the sum of the H returns from the forecast 

period divided by H.  It would be straightforward to generalize this approach for other ARMA 

processes. These corrections require little modification of our basic formulas. One suspects that, 

for most stable forms of predictability, the new ratios in (11) and (12) may not be far from 1. 

 

 

Insert Figure 4 here 
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Figure 4 plots the unbiased and efficient estimators with and without the corrections for 

autocorrelation. We estimated an MA(4) process on the S&P 500 annual log-returns from 1926-

2001 and computed kU and kM as per equations (11) and (12). Figure 4 shows that the correction 

is really a second-order effect given the autocorrelation in the data. Forecasts are barely affected 

by the correction. Other realistic long-term autocorrelations produced the same results. 

 

For similar reasons, heteroskedasticity poses little problems for these estimators.  

Heteroskedasticity enters our computation through the variance of the sum of T or H returns.  For 

long investment horizons, this is essentially captured by the unconditional variance, provided 

that variance is stationary. Empirical estimates of heteroskedasticity such as stochastic volatility 

models imply that conditionality in variance essentially vanishes for forecasting horizons beyond 

a few years. Note however, that a given form of heteroskedasticity in annual returns would 

warrant a modification of the standard estimator of µ, as well as the variance of the sum of the 

next H returns if H is small. Evidence of heteroskedasticity in annual returns is however weak. 

 

Our results can also be used under alternative estimation procedures.  For example, Fama 

and French (2002) note that use of the dividend discount model may provide more precise 

estimates of the market risk premium than historical averages. This efficiency gain is easily 

incorporated in our model. Simply convert the variance reduction in the estimation into an 

equivalent increase in estimation period, T. Namely, for a more efficient estimator, a reduction in 

sampling error variance by a factor of E is equivalent to an increase in notional sample size by a 

factor of E. This is also an intuition for the correction for autocorrelation in equations (11) and 

(12), which effectively adjusts H/T for the ratio of “average variance” of the returns in the 

estimation period to that of the forecasting horizon. 

 

 One may also worry that σ is in fact unknown and also estimated. Estimation error in σ 

introduces non-normality in the predictive distribution of log-returns (see for example Bawa et 

al., 1979). The variance of the predictive distribution is inflated by a factor of ν/(ν−2), where ν is 

the sample size used to estimate the variance. Again, as pointed out before, the sampling 

distribution of σ̂ converges to σ when the sampling frequency increases. One will therefore 
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benefit from the use of higher frequency returns for the purpose of estimating σ.  The inflation 

factor will then be extremely close to 1, and the induced non-normality negligible.   

 

4 OPTIMAL FORECAST VS. OPTIMAL ALLOCATION 
 

How important are these issues to economic decisions?  We consider in this section an 

application to a classic problem in finance: a portfolio allocation between a risk-free asset and a 

risky asset. Samuelson (1969) or Merton (1969) show that for investors with power utility 

functions, the optimal allocation to the risky portfolio is w* = 
α − r0

γσ2  where α ≡ µ + ½ σ2 is the 

expected rate of return on the risky asset, r0 denotes the risk-free return, and γ is the investor’s 

measure of relative risk aversion. The optimal allocation in these models is independent of time 

horizon, and the portfolio is rebalanced continuously to maintain the optimal weights. 

 

To re-visit this problem under parameter uncertainty, consider an investor with power 

utility function who maximizes the expectation of utility of final wealth given by:   

 

 U(VH)  =  
VH

1 − γ

1 − γ    =  
1

1 − γ  exp[(1 − γ) ln(VH)]     (13) 

Given a capital allocation of w to the risky portfolio and (1−w) to the risk free asset, 

where the weight w is maintained constant through continuous rebalancing, the portfolio value at 

the horizon date is log-normal with parameters:4 

 
 ln(VH) ~ N(µH, σ2

H)  ≡  N[(r0 + w(α − r0) − ½ w2σ2H, Hw2σ2]   (14) 

 
Log-normality with these moments of ln(VH) implies that expected utility is:  

 

 E[U(VH)] = 
1

1 − γ  exp{(1 − γ)H[r0 + w(α − r0) − ½ w2σ2 + ½(1 − γ)w2σ2]}  (15) 
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Maximizing (15) with respect to w yields the well-known optimal allocation w* = 
α − r0

γσ2 . 

For i.i.d. returns, the result is independent of the horizon, an implication extensively discussed in 

the literature.  

 

In contrast, conventional advice is to increase the allocation with the horizon. This advice 

is often motivated in the literature by allowing predictability in expected returns, e.g., Campbell 

and Viceira (1999), Detemple et al. (2003), Wachter (2002) and others, or by invoking non-

portfolio sources of income such as labor as in Bodie, Merton, and Samuelson, (1992). 

 

The Samuelson-Merton result assumes knowledge of the parameters of the return 

distribution. Bawa et al. (1979) discuss a “variance inflation” effect due to estimation error on 

asset allocation in a one-period framework. The effect is not very dramatic for a single period. 

We now show that it is far greater when the ratio H/T is non-trivial.  Barberis (2000) discusses it, 

but focuses on the interaction of asset allocation with learning, whereas we are more concerned 

with implications of estimation uncertainty and alternatives to unbiased estimators of expected 

return, even if no learning or predictability occurs. We now show analytically that the interaction 

between estimation error and (long) forecasting horizon is very important.  

  

From a decision theoretic perspective, the mere substitution of a point estimate in the 

optimal allocation in place of the unknown α is incorrect. Rather, the investor, after estimating µ 

(hence α) has a distribution that represents its uncertainty. This may be a sampling distribution 

or, for a Bayesian econometrician, the posterior distribution. Therefore, E[U(VH)] in (15) is 

random, as a non-linear function of a random variable α. Following decision theory, the proper 

expected utility to maximize is that resulting from first integrating α out of equation (15); see 

Bawa, Brown, and Klein (1979) and Berger (1985) for Bayesian analysis and decision theory, 

and also Chamberlain (2000) for a recent study. This integration produces the expected utility of 

wealth given the data, E[U(VH | D)], to be optimized by the investor. Specifically: 

 
E[U(VH) | D]  =  ⌡⌠E[U(VH)/α]  p(α | D) dα      (16) 
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Given a sample size of length T, and no prior information, the posterior distribution of α 

is simply N(α̂ , σ2/T).  The result of the integration in (16) is 

 

 E[U(VH | D)] =  
1

1 − γ  exp{(1 − γ)H[r0 + w(α̂ − r0) − ½ w2σ2 + ½(1 − γ)w2σ2(1 + 
H
T)]} (17) 

 
While α in (15) is replaced with α̂, the last term in (17) is new. It reflects the variance 

inflation due to the estimation of α. The maximization of (17) yields the optimal asset allocation: 

 w* = 
α̂ −  r0

σ2[γ + 
H
T  (γ − 1)]

         (18) 

For H<<T, equation (18) collapses to the standard optimal allocation. Otherwise, for γ > 

1, the allocation to the risky asset is decreased (relative to the known-parameter case) in favor of 

a higher allocation to the risk-free asset. Recognition of the uncertainty in the estimate of α leads 

investors to shy away from risky assets, the more so the greater the ratio H/T. First, this result is 

precisely contrary to the common advice to invest more in stocks for longer horizons.  Second, it 

happens even if returns are unpredictable. The only exception is log-utility investors, for whom γ 

= 1. Because log-utility is linear in α, estimation uncertainty and the horizon H do not affect the 

location of the optimum.  

 

Note that the problem can easily be written where the investor has a proper prior. The 

optimal allocation in (18) will then involve the posterior mean rather than α̂, and a modified 

sample size accounting for the prior precision rather than T. One could then deduce from that 

optimal allocation what type of prior could be consistent with ignoring parameter uncertainty. It 

will have the feature that the prior mean increases, above the sample mean, with the forecasting 

horizon. 

 

As in Barberis (2000) and Brennan (1998), our rationale on long-term asset allocation 

turns on an often-overlooked wrinkle in the argument concerning the proposition that stocks are 

less risky as long-run investments. The result here is driven by the fact that the impact of 

estimation uncertainty compounds as the investment horizon becomes more distant. Rebalancing 
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does not eliminate this effect. This consideration might well dominate mild negative serial 

correlation as one evaluates the risk of stocks at different investment horizons. And, while the 

strength of serial correlation in market returns is still contested, there is no doubt about the 

considerable estimation error surrounding estimates of mean return. 

 

Insert Figure 5 here 

 

Figure 5 plots w* as a function of H for the parameters used in Figure 2, namely µ̂ = .1, σ 

= .2. We also use r0 = .04, and γ = 2 and 4.  The lines labeled “conventional” show the asset 

allocation in the known-parameter case. The downward sloping lines depict the optimal 

allocation to the risky portfolio when parameter uncertainty is properly incorporated. Figure 5 

shows that estimation uncertainty has a dramatic interaction with the investment horizon. The 

optimal asset allocation may differ considerably for different investment horizons. For a long 

estimation period of 75 years, the optimal weight on the risky asset falls from 87%, under the 

“conventional” approach to 70% as the investment horizon expands from 1 to 40 years. The 

effect is far more pronounced when the estimation period is shorter, as it would be for an 

emerging market or if one believed that the U.S. was subject to structural breaks. For T = 30 

years, the allocation falls to 53%.   

More risk-averse investors have lower “conventional” allocation to the risky asset.  Even 

for them, the effect of horizon is very strong as a fraction of the conventional allocation. For an 

investor with γ = 4, the 40-year conventional allocation is 43% while the optimal allocation is for 

T=30 is only 20%. 

This example is admittedly only indicative in that we assume the choice of w* is a once-

and-for-all decision. A full-blown asset allocation problem [see Brennan (1998) and Barberis 

(2000)] would allow for dynamic updating of the estimate of µ and the allocation w* as agents 

learn about the true distribution of returns from new data, and would give rise to intertemporal 

hedging demands against changes in the perceived opportunity set along the lines of Merton 

(1973). These issues would take us far afield from the forecasting problem, however.5 Further, 

the evidence on the predictability of asset returns is far from uncontroversial. While we do not 

explicitly account for time-varying hedging demands, (18) does provide an analytical guideline 
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to the impact of estimation uncertainty even in their presence. One may take (18) as indicative of 

the importance of estimation risk for simple asset allocation even in the presence of rebalancing. 

 
5 CONCLUSION 

We have considered the problem of forecasting portfolio values over long horizons when 

the return distribution is estimated from historic data. While recent papers address the estimation 

of the one-period expected return, few have focused on the formulation of long-term expected 

returns. Moreover, the literature focuses most exclusively on the arithmetic (maximum 

likelihood) and geometric estimators, rarely on unbiased estimators. It has so far ignored 

naturally efficient estimators such as those minimizing mean squared error (MSE), which can be 

seen as the small sample generalization of the principles justifying the maximum likelihood. We 

derive an analytic small-sample efficient estimator of long term expected returns. It is far lower 

than the MLE, the unbiased, and even the geometric average estimator when H is larger than T/3. 

The resulting efficiency gains are spectacular, not only on the MLE but also on the unbiased 

estimator for long horizons, and on the geometric estimator for the shorter horizons.  

We show how the results are easily adjusted for serial correlation. However, realistic 

values of autocorrelation appear unimportant for the long-horizon forecasts that are the concern 

of this paper. 

 

Strong cases are made in recent studies that the estimate of the market risk premium 

should be revised downward. Our result compounds this by stating that even these lower 

estimates of mean return should be adjusted further downward when used to predict long-term 

returns. Our results also show that alternative methods of estimation of the risk premium that can 

be shown to be more precise, e.g., Fama and French (2002), are especially valuable if the 

premium is to be used for long term forecasts. 

 

We also analytically derive a striking implication for long-term asset allocation. Contrary 

to conventional wisdom, longer investment horizons imply lower allocations to risky assets in 

order to account for the fact that the estimation error gets compounded at the investor’s horizon.  
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Table 1 

Properties of alternative estimators of cumulative portfolio return. 

All estimators are of the general form e(µ^  + ½kσ2)H.  µ̂ is the maximum likelihood estimator of the 
mean log-return from a sample of length T.  The investment horizon is H years. The values for k 
are as follows: 
 

Arithmetic estimator (A):  k = 1 
Geometric estimator (G):  k = 0 
Unbiased estimator (U):  kU = 1 – H/T 
Minimum MSE estimator (M): kM = 1 – 3 H/T 
 

Condition     Ordering  Bias < 0 Bias > 0 

T >>H   kM ≈ kU ≈ 1  M ≈ U ≈ A  G 

T > 3H   0 < kM < kU < 1 G < M < U < A G, M  A 

3H > T > H  kM < 0 < kU < 1 M < G < U < A M, G  A 

H > T   kM < kU <0  M < U < G < A M  G, A 
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Figure 1: Ratios of sampling means and standard deviations of estimators A1 = (1 + R
−

)H and 

A2 = e(µ^  + ½σ2)H, µ = 0.1, σ = 0.2, T = 75. The mean and standard deviation of A1 are 

computed from 2 million draws of the asymptotic distribution of R
−

. 
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Figure 2: Estimators of Long-Term Expected Returns: A, G, U, M. µ̂ = 0.1, σ = 0.2. 
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Figure 3: Root Mean Squared Errors of Estimators A, G, U, M.  µ̂ = 0.1, σ = 0.2, T=60 years. 
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Figure 4: Effect of autocorrelation on estimators U and M, µ̂ = 0.1, σ = 0.2, T = 75,  MA(4) on 
annual S&P returns: θ = (-0.16, -0.02, -0.16, -0.08) estimated on 1926-2001 
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Figure 5: Combined effects of horizon and estimation error on optimal allocation, µ̂ = 0.1, σ = 0.2 
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1 See also Roll (1983) who discusses how, due to Jensen’s inequality, different estimates of portfolio 

mean returns have different biases, e.g., first compound and then cross-sectionally average or vice-versa.  

2 Autocorrelation in returns modifies the variance of the long-term returns but not the spirit of the 

following discussion.  Section 3 discusses the effect of autocorrelation and heteroskedasticity.   

3 Considering the seemingly larger class e(k1µ̂ + ½ k2σ
2)H adds no generality. One can show that any 

value k1≠1 leads to infeasible estimators, i.e., functions of the true parameter. We restrict our analysis to 

feasible estimators, i.e., functions solely of sample statistics. It is also easily verified that feasible 

estimators in the class, w1 A + w2 G, require w2 = 0 and map one to one with those in equation (7). 

4 This can be shown formally using, for example, Ito’s lemma.  However, it is easier to note that under 

continuous rebalancing, i.e., with fixed portfolio weights, the instantaneous portfolio return is log-

normally distributed with constant mean and variance, which implies that the full-period return remains 

log normal with the same parameters per unit time.  

5 Barberis (2000) presents optimal asset allocations both for buy-and-hold investors who never rebalance, 

and for investors who update parameter estimates as more data become available and periodically 

rebalance optimally.  Our case is somewhere between these extremes in that our investors rebalance but 

do not update.  The greater simplicity of this setting allows us to maintain the focus on forecasting issues 

as well as to derive a closed-form solution for asset allocation that analytically demonstrates the 

importance of the key ratio H/T.  Symmetrically, Barberis (2000) presents detailed analysis of optimal 

asset allocation using numerical simulations, but, in contrast to our focus, devotes little attention to 

properties of alternative estimators of expected return. 
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